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Abstract 

The increased prevalence of chronic wounds requires novel treatment options. The aim of this 

study was to develop a beta-glucan (βG)-loaded nanofiber wound dressing. Nanofibers were 

prepared using the needle-free Nanospider™ technology, an electrospinning method which 

enables the production of nanofibers at an industrial scale. The βG was selected as active 

ingredient based on its confirmed wound healing potential in both animals and humans. 

Hydroxypropyl methylcellulose (HPMC) and polyethylene oxide (PEO) were included as 

copolymers. Rheological profiles of spinning solutions containing HPMC, PEO, βG, ethanol 

and water, were optimized. The nanofiber formation was confirmed by Field Emission 

Scanning Electron Microscopy (FE-SEM), and both nanofibers with (βG-nanofibers) or 

without βG (NoβG-nanofibers) were evaluated by their swelling index and FT-IR 

spectroscopy. The formulations, active ingredient and excipients, were tested for their 

possible in vitro toxicity in keratinocytes. Finally, the wound healing potential of the 

nanofibers was tested in externaly induced excisional wounds in male diabetic db/db mice. 

Three different doses of βG-nanofibers and the βG-free, NoβG-nanofibers, were evaluated for 

their in vivo wound healing efficacy. All nanofiber-treatments provided improved wound 

healing as compared to the negative control (water). All βG-nanofiber-treated groups 

exhibited significantly improved wound healing as compared to the NoβG-nanofiber-treated 

group, indicating the potential of βG-nanofibers as wound dressing.  
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1. Introduction 

With an aging population and increased prevalence of impaired/chronic wounds, the search 

for optimal wound dressings has been intensified in the past years [1]. The optimal wound 

dressing should not only accelerate the wound healing process but also minimize the pain 

associated with wound healing and dressing change [2]. To develop a superior wound 

dressing, it is crucial to understand the complexity of the skin repair processes involving 

many different cell types, the role of signals molecules and feedback loops orchestrating the 

cellular response [3–5]. Delayed/impaired wound healing might be caused by different 

underlying pathologies, such as co-morbidities and peripheral vascular disease and biofilm 

formation [5,6]. Considering the challenges in wound treatment and related health cost [7], 

pharmaceutical and biotechnological industries, as well as academia, focus more on 

developing advanced and active wound dressings, to replace the non-active convential wound 

dressings [8].  

Among emerging technologies in wound dressing development, nanofibers have gained an 

increased attention. The nanofibers closely resemble the native extracellular matrix, and, 

formed as fiber mats, offer improved physical and mechanical wound protection, even against 

bacterial invasions [9]. Moreover, the fibers permit gas exchange, facilitating the wound 

healing process. Drugs and various active substances can be incorporated within the fiber 

mats. By the optimization of the spinning conditions, the release of nanofiber-associated 

drugs can be modified and controlled [10,11]. Electrospinning is the most widely used 

nanofiber fabrication technique [12], as it offers high flexibility in production and enables 

controllable nanofiber pore structure from a wide variety of synthetic and natural polymers 

[13].  

Among various active substances with beneficial effects on wound healing, we have focused 

on β-glucans (βG). They are known to re-activate/activate the innate immune system by 

binding to the dectin-1 receptor on macrophages, dendritic cells and neutrophils [14]. This 

activation can help to revert immunosuppressed macrophages into a responsive phenotype 

[15], and thus improve the stalled wound healing. A formulation containing βG is currently on 

the market as a hydrogel for treatment of dry chronic wounds [16,17]. The soluble 2.5% (w/v) 

βG used in this formulation, as well as in this current study, is a β-1,3/1,6 glucan isolated 

from cell walls of Baker’s yeast (Saccharomyces cerevisiae), and further processed by a 

patented solubilizing procedure [18]. This soluble βG forms a gel at room temperature, and 
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has, in previous studies, been confirmed to maintain its immune-stimulating activity both in 

human cell-lines and animal models [19,20].  

The main aim of this study was to develop an active nanofiber dressing which could be 

clinically relevant and effective in the treatment of medium exuding chronic wounds. 

Moreover, we targeted a nanofiber production method applicable in an industrial scale 

manufacturing. For these reasons, the needle-free Nanospider™ spinning technology, 

developed by Elmarco (Liberec, Czech Republic), was selected. This technology enables a 

26-80 times faster production of nanofibers than the traditional single needle electrospinning 

setup, even when using the smallest Nanospider™ Lab machine, with a production speed of 

around 40 mL/h [21,22]. We selected hydroxypropyl methyl cellulose (HPMC) as a 

copolymer since cellulose derivatives are known to form homogenous nanofiber mats of 

uniform quality [23]; and polyethylene oxide (PEO) was added to assure fiber formation. The 

βG-loaded nanofibers were optimized and evaluated in the chronic wound model, diabetic 

db/db mice.  

 

2. Materials and methods 

2.1. Materials 

Milli-Q water was produced using the Q-Pod® by Merck Millipore (Billerica, MA, USA). 

Sodium chloride and calcium chloride was purchased from Merck (Kenilworth, USA). 

Soluble beta-1,3/1,6-glucan (βG; 2.5% w/w) was a gift from Biotec BetaGlucans AS 

(Tromsø, Norway). The two types of hydroxypropyl methylcellulose (HPMC) used in this 

study, Metolose 60SH-4000 (Hypromellose 2910) and Metolose 90SH-4000 (Hypromellose 

2208), were generous gifts from HARKE Pharma GmbH (Mülheim an der Ruhr, Germany). 

Polyethylene oxide (PEO) was obtained from Sigma-Aldrich (Taufkirchen, Germany). 

Ethanol (EtOH, 96% v/v) was purchased from Kemetyl (Kolbotn, Norway).  

 

2.2. Polymer solution preparation and characterization  

Five different polymer spinning solutions were prepared (Table 1). Two solutions were 

applied in the production of the final electrospun nanofibers and used in the in vivo studies 

(βG-Sol and NoβG-Sol), and the three other solutions were considered the reference solutions 

(Ref-Sol 1, 2 and 3). All Ref-Sol were prepared as described by Frenot and co-workers [23], 
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who successfully produced HPMC fibers from similar solutions using the traditional needle 

electrospinning setup. Two different HPMC qualities were tested (HPMC1 and HMPC2), and 

their specifications are given in Table 2 together with the properties of the other polymers 

applied in the formulations, namely PEO and βG. The solvents applied were EtOH alone 

(NoβG-Sol) or EtOH in combination with water (βG-Sol, Ref-Sol 1, Ref-Sol 2, Ref-Sol 3). 

PEO, HPMC and βG were mixed from pre-made solutions. The PEO solution (5%, w/w) was 

prepared in EtOH (96%) and heated at 70 °C under constant stirring for 30 minutes, before 

cooling to room temperature [24]. The HPMC1 ethanolic solution, premade for the βG-Sol 

and NoβG-Sol, had a final HPMC concentration of 2.91% (w/w), and was prepared at room 

temperature, whereas the premade HPMC solutions made for the Ref-Sols, containing either 

HPMC1 or HMPC2, were made from EtOH: water (50/50,v/v) solvent blends. The βG-Sol 

was prepared by heating the gelled βG (2.5%, w/w) to 60 °C. Heating was conducted to break 

up aggregates and convert the gel into the liquid form. The HPMC-Sol, PEO-Sol and βG-Sol 

were mixed to reach the final polymer compositions of the spinning solutions, as listed in 

Table 1.  

 

Table 1. Composition of the solutions used in electrospinning.  

Solution 
βG  

(%, w/w) 

HPMC (%, w/w) 
PEO  

(%, w/w) 
EtOH  

(%, w/w) 
H2O  

(%, w/w) 

Total dry 
content  

(%, w/w) 
HPMC1

* 
HPMC2

* 
βG-Sol 0.74  1.97  0.30 68.15 28.84** 3.01 

NoβG-Sol  2.80  0.43 96.78 - 3.22 

Ref-Sol 1  2.86  45.14 52.00 2.86 
Ref-Sol 2   2.86 45.14 52.00 2.86 

Ref-Sol 3   2.14 45.47 52.39 2.14 

* Specification given in Table 2. 

**The water content in βG-Sol originates from the 2.5% (w/w) βG. 

 

Table 2. Characteristics of the polymers used for the spinning solutions. 

Trade 
name 

Abbre-
viations 

Approx. Mw 
(kDa) 

Substitution 
type 

Methoxy 
content (%) 

Hydroxypropoxy 
content (%) 

60SH4000 HPMC1 270 2910 28.0-30.0 7.0-12.0 

90SH4000 HPMC2 270 2208 19.0-24.0 4.0-12.0 

 PEO 900  n.a. n.a. 

SBG βG 300-1500  n.a. n.a. 

 



6 
 

The viscosities of the electrospinning solutions were measured and compared using a 

Discovery HR-2 Hybrid Rheometer (TA Instruments, New Castle, DE, USA) equipped with 

40 mm crosshatched plate geometry. The crosshatched plate was lower to form a gap of 1050 

µm against the platform, excess solution removed and the plate lowered to operational height 

of 1000 µm. The samples were soaked for 120 sec at 25 °C to provide a stable temperature 

during the measurement. The flow sweep protocol was performed as a logarithmic sweep 

from 10 to 1000 Pa, logging 10 point per decade using a steady state sensing. The results were 

processed by the Trios software v. 3.2.0.3877 (TA Instruments, New Castle, DE, USA) to 

determine the flow characteristics using the viscosity as a function of the shear rate. 

 

2.3. Electrospinning  

The Elmarco Nanospider™ Lab electrospinning machine (Liberec, Czech Republic), with a 

roll-to-roll collection unit and an adjustable substrate speed of between 0-5000 mm/min, and a 

spinning electrode wire with a power supply capable of delivering 80 kV DC current, was 

applied. The ambient room temperature was kept at 26 ± 1 °C, with a relative humidity of 35 

± 2%. The distance from the electrode to the collector was 20 cm, and the maximum voltage 

of 80 kV was chosen. The polymer solution carriage reservoir, feeding the electrode with the 

polymer solution, was set to move at max speed, corresponding to 300 mm/s; the substrate 

setting applied was 2-4 mm/min, depending on the targeted thickness (weight/area) of the 

nanofiber. 

 

2.4. Fourier-Transform Infrared Spectroscopy (FTIR) analysis 

The dry polymer materials included in the electrospun nanofibers (PEO, HMPC, and freeze 

dried βG), and the final electrospun nanofibers (βG- and NoβG-nanofibers) were analyzed on 

a Cary 630 FTIR instrument from Agilent Technologies (Santa Clara, CA, USA); equipped 

with a diamond ATR sampling accessory. All FTIR spectra were acquired in 64 scans.  

 

2.5. Field Emission Scanning Electron Microscopy (FE-SEM) analysis 

The morphology of the electrospun fibers was investigated by Field Emission Scanning 

Electron Microscopy (FE-SEM), applying the Zeiss Sigma FE-SEM (Carl Zeiss, Oberkochen, 
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Germany). The samples were put on stubs with double sided carbon tape and two drops of 

conductive silver paint (Agar Scientific, Essex, UK) added to increase conductivity. The 

samples were dried for 24 h under an incandescent lamp, before they were sputter-coated with 

gold/palladium using a Polaron SC7640 (Quorum Technologies LTD, Kent, UK). 

Micrographs were taken from the middle of the product roll, to assure a representative sample 

for imaging.  

 

2.6. Swelling index determination 

The absorption capacity of the two types of nanofibers applied in the animal study were 

investigated using a modified method by Boateng and co-workers [25]. The absorption fluid 

used in testing was the “Solution A” from the ISO standard EN 13726-1 [26] which simulates 

the ions concentration in human wound exudate (142 mmol Na2+, 2.5 mmol Ca2+). The fiber 

mats were cut into 8 x 8 cm pieces. The dry fibers were placed in 140 mm ø Petri dishes 

(VWR, Norway), weighed (Wd), and then submerged in “Solution A” for one minute (Sup. 

Figure 1). The excess liquid was immediately removed and the Petri dish left at a 90° angle to 

drain liquid from the fibers for one minute. The excess liquid was removed using tissue paper 

before the weight of the wet fiber mats (Ws) was determined. The experiment was done in 

triplicates and the swelling index Is (%) was calculated using Equation 1.  

 

Equation 1 

௦ሺ%ሻܫ ൌ
௦ܹ െ ௗܹ

ௗܹ
ൈ 100 

Wd = Weight of dry film  

Ws = Weight of film after swelling 

 

2.7. Cytotoxicity of electrospun nanofibers 

The in vitro toxicity of the electrospun nanofibers was evaluated on keratinocytes (HaCaT 

cells) supplied from Thermo Fisher Scientific (Waltham, USA). Cells were cultured in RPMI 

medium (Sigma Aldrich, Steinheim, Germany) supplemented with glutamine and 10% fetal 

calf serum (FCS) at humidified 5% CO2 and 37 °C. The toxicity of the electrospun nanofibers 
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was tested by the MTT assay using the cell proliferation kits from Roche (Sigma Aldrich) 

according to the instruction provided by the supplier. In brief, 90 L of trypsinized HaCaT 

cells were plated in the flat bottom 96 wells plate as the cell concentration 5 x 105 cells/mL. 

To each well 10 L media only (control) or the samples diluted in media (resulting in a final 

concentrations of 1, 10 or 100 g/mL, respectively) were added. The cells were incubated for 

24 hours at humidified 5% CO2 and 37 °C. The next day, 10 L of MTT (final concentration 

of 0.5 mg/mL) was added to each well and the cells incubated for 4 hours for the development 

of violet crystals of formazon. After 4 hours, 100 L of solubilizing reagents (supplied in the 

assay kits) was added to each well and the cells were kept in the humidified incubator for 24 

hours. The UV absorption of soluble formazon was determined on ELISA plate reader at 580 

nm. The UV absorption determined for the control group was considered as 100% viable and 

the effects of various concentration of tested samples on cell toxicity were expressed as 

percentage viability as compared to the control. Results are expressed as the mean of two 

independent experiments for each sample. 

 

2.8. Effect of nanofibers on wound healing in diabetic mice 

2.8.1. Animal study setup 

The in vivo evaluation of wound healing potential of nanofibers was carried out following the 

protocol previously described by our group [27]. The study was conducted in accordance to 

the Home Office Regulations UK and the specific requirements of diabetic animals [28]. Male 

diabetic db/db mice (BKS.Cg-m Dock7m +/+ Leprdb /J mice), 9-10 weeks old (weight 45.6 ± 

2.6 g) provided by Jackson Labs (Bar Harbour, ME, USA) were randomly divided into six 

experimental groups (10 mice per group); four groups were treated with nanofibers and two 

groups received the positive and negative control, respectively. Three different doses of βG-

nanofibers and NoβG-nanofibers (vehicle control) were tested (Table 3). The treatment was 

applied on day 0, 4 and 8 in the nanofiber treated groups, and on day 0, 2, 4, 6 and 8 for the 

animals receiving negative control, and on day 0, 1, 2, 3, 4, 5 and 6 for the animals treated 

with positive controls (more details are given in supplement; Sup. Table 1).  
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Table 3. The doses of βG-nanofibers applied in the in vivo study on diabetic db/db mice 
wound model.  

Treatment group Nanofiber weigh (mg/cm2) Layers βG dose (mg) 
LowβG 0.77 1 0.19 

MediumβG 1.50 1 0.37 
HighβG 4.02 3 0.99 
NoβG 2.10 1 0 

 

2.8.2. Wound induction and treatment 

The wounds were induced on day 0. All animals were anaesthetized using 4% isoflurane 

(IsoFlo®, purchased from Zoetis (London, UK)) and 96%, air followed by 2% isoflurane and 

98% (v/v) air for maintenance. Their left dorsal flank was shaved and cleaned, and a single 

standardized full-thickness wound (1 x 1 cm) created approximately 10 mm from the spine. 

The wounds were covered with a polyurethane occlusive film (Bioclusive® film, purchased 

from Systagenix Wound Management (Gargrave, UK)). Water for injection (50 µL) was 

injected under the occlusion film of the animals in the negative control group. In the positive 

control group, mice received 50 µL solution containing growth factors; 10 µg/dose platelet-

derived growth factor-BB and 1 µg/dose transforming growth factor-alpha (both purchased 

from PeproTech EC Ltd, London, UK) dissolved in 0.5% (w/v) HPMC. For the nanofiber-

treated animals the occlusive film was applied over the nanofibers after they were placed onto 

the wound forming a hydrogel (in situ), as shown in Figure 1. The nanofiber mats were cut in 

1 x 1 cm slices except for the group treated with HighβG nanofibers; these nanofibers were 

cut in 1 x 3 cm and folded twice to form three layers (same contact area). All animals received 

75 µg/kg Vetergesic® (purchased from Alstoe Animal Health (Espoo, Finland)) post-surgery 

– dose volume 100 µL. When necessary, the Vetergesic® treatment was repeated every 12 

hours. 
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Figure 1. The in situ formed hydrogel (upon administration of nanofiber onto the wound) 
before covering with the polyurethane occlusive film. 

 

2.8.3. Wound closure assessment 

Image Pro Plus image analysis software (version 4.1.0.0, Media Cybernetics, Rockville, MD, 

USA) was used to measure the size of the wounds by analyzing the images taken at each 

assessment point (day 0, 4, 8, 12, 16, 20 and 24). To evaluate the changes in the wounds over 

time, three different parameters were determined from the images as described earlier [27]: 

the (1) open wound area, (2) wound contraction area and (3) re-epithelization area (Sup. 

Figure 1). Calculations of the three parameters are shown below. 

 



11 
 

(1). Open wound area: 

ቆ
଴ܣ െ ሺܣ଴ െ ሻ்ீܣ

଴ܣ
ቇ  100	ݔ

 

(2) Wound contraction: 

൬
ሺܴீ்	–	଴ܣ ൅ ሻ்ீܣ

଴ܣ
൰  100ݔ

 

(3) Re-epithelialization: 

൬
்ீܥ െ ்ீܣ

଴ܣ
൰  100ݔ

 

   = Wound area at Day 0	଴ܣ

 Wound area at given time =	்ீܣ

ܴீ் = Re-epithelialization at given time 

 Wound contraction at given time = ்ீܥ

 

2.9. Statistical analysis 

A two tailed t-test was used to determine the difference between the swelling index Is (%) of 

nanofibers. A p values of < 0.05 was considered the significant difference between the 

formulations. 

The two- sample non-parametric statistical Mann-Whitney U-test was used to determine 

statistically significant differences in wound healing between groups in the animal study. 

Significant difference between the groups was set to p < 0.05.  

 

3. Results and discussion 

The ideal wound dressing should, in general, be capable of maintaining optimal humidity at 

the wound site while removing excess exudate, be particle-free, non-toxic and non-allergenic, 

impermeable to bacteria, comfortable and conformable, require reduced dressing changes, be 

cost effective and have long shelf life [3,8,29]. However, an optimal treatment should be 
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chosen based on the wound conditions, location and considering the specific patient’s needs 

[16]. Although βG is commercially available in the form of a hydrogel, we aimed to develop 

alternative βG-loaded wound dressing which would overcome the hydrogel-related 

limitations, i.e. limited use in treatment of exuding wounds.  

Electrospinning is a versatile manufacturing method that forms nanofibrous dressings 

characterized by high surface area to volume ratio. Electrospinning opens new possibilities, as 

nanofibers can be used to treat various types of wounds and are comparable or superior to 

other modern wound dressings, such as hydrocolloids, hydrogels, and similar [13,30]. In 

addition, nanofiber mats are able to absorb wound exudate and provide a moist environment 

within the wound area. Moreover, the method is also suitable for forming nanofibers with 

active ingredients that might accelerate wound healing [13]. 

Although the ability of yeast βG to promote wound healing was first reported by Leibovich 

and Dannon already in 1980 [31], and βG have been used in cosmetics and health promoting 

products for decades [32], nanofiberous wound dressings containing βG is still not available 

on the market. Thus, we were encouraged to develop electrospun nanofibers containing βG as 

the active ingredient. Based on the preliminary results obtained with the needle 

electrospinning setup (results not shown), PEO and HPMC were selected as copolymers for 

the βG-nanofibers, and the only polymers in the NoβG-nanofibers. To further optimize the 

formulation and to address potential upscaling of the production applying the Nanospider™ 

technology, we first optimized the spinning solutions.  

 

3.1. Optimization of electrospinning and resulting nanofibers 

3.1.1. The polymer solutions and viscosity characteristics  

The properties of the polymer solution are one of the main factors affecting the transformation 

of the polymer solution into nanofibers by electrospinning [33]. All polymers applied in the 

formulation, namely HPMC; PEO and βG, are water soluble. HPMC is an highly appreciated 

amorphous–state stabilizing carrier polymer in nanofibers [34]. PEO is known to greatly 

improve the spinability of HPMC even at small concentrations (<0.1%) [35], and is an easily 

electrospinnable polymer, widely applied as a co-spinning agent [36]. Although the 

preliminary studies showed that βG, in combination with HPMC and PEO, could be 

successfully electrospun from an aqueous solution, applying EtOH as a (co-)solvent made the 
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polymer solutions less viscous and reduced the surface tension as compared to the pure 

aqueous solution (results not shown). Since the EtOH/water solvent system is 

environmentally acceptable, affordable and acceptable from the industrial point of view, this 

solvent system was preferred for the polymer solutions applied in the Nanospider™. Higher 

EtOH concentrations enabled the use of higher polymer concentrations in the βG-Sol and 

NoβG-Sol, as compared to the concentrations in the Ref-Sols (Table 1); the polymer 

concentrations were higher than reported by Frenot et al. [23] who applied a 1:1 EtOH/water 

(v/v) solvent system for spinning HPMC in the needle electrospinning setup. Thus, a polymer 

concentration higher than 3% was applied in both βG-Sol and NoβG-Sol. The HPMC2 (Ref-

Sol2) was more viscous as compared to HPMC1 (Ref-Sol1), therefore the upper limit of 

recommendable viscosity regarding the spinability was exceeded when Ref-Sol2 was tested in 

the Nanospider™. The lack of nanofiber formation is usually attributed to too viscous 

polymer solution used in spinning; too viscous solutions limit the formation of jets [37]. Thus, 

the Ref-Sol 3 was prepared with a 25% reduction in HPMC2 concentration as compared to 

Ref-Sol2, and had a final HPMC content of 2.14%. Different degree of substitution is known 

to affect the HPMC features [38], and explains the different viscosities of two HPMC-

derivatives tested. As we aimed to reach higher polymer concentrations, the HMPC1 was 

chosen for the βG-Sol and NoβG-Sol.  

The lower viscosity of NoβG-Sol as compared to βG-Sol (Figure 2), does not only relate to 

the absence of βG in the NoβG-Sol, but also to the lower volume of water, since the 

hydrophilic polymers swell less in EtOH compared to water. It is known that the length of the 

polymers greatly influences the viscosity of the spinning solution, therefore the polymers with 

smaller molecule weights could potentially have been used to gain higher polymer 

concentrations [39]. However, an increase in polymer length induces polymer entanglement 

and prevents the formation of beads on the nanofibers and helps the formation of continuous 

nanofibers [37]. Thus, HPMC with lower molecule masses were not pursued. Spinning of 

both Ref-Sol1 and Ref-Sol3 resulted in nanofibers, however Ref-Sol1 formed only a very thin 

nanofiber layer on the substrate. Moreover, the layer was harder to peel off from the substrate 

than the other formulations.  
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Figure 2. Flow viscosity of tested spinning solutions. 

 

3.1.2. Nanofiber Production by Needle-free Electrospinning 

To successfully produce electrospun nanofibers, not only the choice of polymer solutions, but 

also the processing parameters have to be optimal and controlled [40]. Foremost, it is 

important to consider the characteristics of the equipment that will be used in manufacturing 

[41]. Electrospinning has the advantage of producing the fibers in the nano-range, however 

comparing to other fiber producing methods, such as melt-blown, the production speed is 

rather slow [42]. By using needle-free electrospinning it is possible to produce higher volume 

of nanofiber sheets than with a traditional needle electrospinning setup [41,43,44]. The 

advantage of needle-free electrospinning is that there are no needles, nozzles or spinnerets 

that can be clogged, making the Nanospider™ technology a good candidate for industrial 

upscaling and the chosen technology for this study. Using the Elmarco Nanospider™ Lab, a 

pilot scale machine, the following parameters were successfully applied: the highest current of 

80 kV, a spinning distance of 20 cm and the maximum carriage movement speed of 300 

mm/s. To obtain different thicknesses of the final nanofiber webs, the speed of the substrate 

was varied between 2 and 4 mm/min. When applying the Nanospider™ Lab machine, it is 

important to coat the spinning wire sufficiently to continuously produce Taylor cones (liquid 
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meniscuses from where the charged fluid jets are ejected) all along the wire. When the 

nanofiber mats were prepared using the substrate speed of 2 mm/min, the feed rate limitation 

was related to the higher viscosity of Ref-Sol1, and the spinning wire did not receive the 

needed amount of spinning solution to produce a steady stream of Taylor cones. With a pump 

modification on the Nanospider™ Lab feed system, it could be possible to feed the spinning 

wire more efficiently to increase the output, since the solutions exhibit shear thinning (Figure 

2). βG-Sol performed similarly to Ref-Sol3, producing a steady stream of Taylor cones along 

the spinning wire of the Nanospider™ Lab. The viscosity of the βG-Sol was close to the 

upper limit of what the Nanospider™ Lab can electrospin, and the solution contained the 

maximal dry content that the machine can handle within the current setup. The dry content in 

the NoβG-Sol could have been increased, without exceeding the viscosity limitation of the 

solution. However, since the dry content was in the same magnitude, the production speed 

was sufficient for both fibers, and the 40 mL batch volume was prepared within 30 minutes, 

and found to be suitable. Since the relative humidity affects the properties of the formed 

nanofibers to a high extent, and the higher humidity decreases the fiber diameter [45], the 

humidity and the temperature were monitored and controlled to be kept at 35 ± 2% and 26 ± 1 

℃, respectively.      

 

3.1.3. Fourier-Transform Infrared Spectroscopy (FTIR) analysis 

FTIR spectra for the dried raw materials and the final electrospun nanofibers (βG and NoβG) 

were recorded to confirm the presence of the respective polymers in the fibrous network 

comprising PEO (13.3%, w/w) and HPMC (86.7%, w/w) in the NoβG-nanofibers, and PEO 

(10.0%, w/w), HPMC (65.4%, w/w) and βG (24.6%, w/w) in the βG-nanofibers, respectively. 

Although distinctive band positions might allow the identification of polysaccharide 

structures and their composition [46], the interactions between the polymers, resulting in 

shifts in the band positions, as well as the overlapping bands originating from the different 

polymers in the sample, limit the interpretation of the spectra in terms of identifying the small 

spectral shifts of individual components in the mixture. However, the FTIR spectra obtained 

from the electrospun nanofibers demonstrated spectral features similar to the spectra obtained 

from the respective ingredients (Figure 3), although changes in the relative intensities and 

peak positions were observed. Bands characteristic for βG and HPMC in the region between 

3600 and 3000 cm-1, assigned to the –OH stretching from intermolecular- and intramolecular 

hydrogen bonds, were observed for all βG- and HPMC containing materials, whereas the CH-
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stretching band in the area between 3000 and 2200 cm-1, was observed in all spectra. The βG 

and HPMC exhibited, due to similar chemical structure, a more overlapping spectra than the 

PEO polymer. The CH2 assigned peaks at 842, 960, 1240 and 1278 cm-1 from PEO were more 

pronounced in spectra of the NoβG fibers than the βG fiber spectra. The bands detected at 

around 1100 cm-1, that are formed through the combination of the ether and methylene group 

stretching vibrations in PEO and indicated as C-O-C [47], were also more visible in the NoβG 

than βG fiber spectra. Thus, the intensity of these bands correlated to the PEO concentration 

in the nanofiber formulation.  

 

Figure 3. FTIR spectra of electrospun nanofibers (βG-and NoβG) and the corresponding 
polymers βG, HPMC and PEO. 

 

3.1.4. Morphology of nanofibers 

The morphology and dimensions of electrospun nanofibers provide a good indication of the 

quality of electrospinning, including the choice of polymers, their concentrations, choice of 

solvents, the machine and applied settings, as well as environmental settings (temperature and 

humidity).  
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The FE-SEM pictures of the electrospun nanofibers confirmed the fiber formation. The 

diameter of the electrospun nanofibers was 110 ± 74 nm and 180 ± 95 nm for nanofibers 

made from βG-Sol (Figure 4A) and NoβG-Sol (Figure 4B), and 100 ± 50 nm and 81 ± 39 nm 

for nanofibers made from Ref-Sol 1 (Figure 4C) and Ref-Sol 3 (Figure 4D), respectively. The 

increased diameter observed with increasing polymer concentrations (given in Table 1), is in 

accordance with reports from previous studies [40,45]. All nanofibers displayed the same 

structural forms, namely the ribbon shaped fibers. The formation of ribbon shaped/branched 

fibers might be due to the rapid evaporation of solvent from the outer part of the jet, and the 

subsequent diffusion of solvent from the core out through the surface of the fiber on the 

collector [48]. Changing the relative humidity could prevent the formation of ribbon shaped 

nanofibers and stabilize the jet [45]. However, the production of less branched fibers does not 

necessarily support a more effective cell mobility and three-dimensional cell migration in 

wound healing [49], especially considering the rapid gelling of the nanofibers in this study 

(results given in Section 3.1.5). In addition,  the relatively low humidity applied in this study 

(35 ± 2%) has been shown to lead to ticker nanofibers with a more homogeneous size 

distribution, and to decrease the beads formation, that might be a problem under the 

conditions of higher humidity and polymer concentrations, as well as with a long distance to 

the collector [45].   
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Figure 4. SEM pictures of electrospun nanofibers made from A: βG-Sol. B: NoβG-Sol. C: 
Ref-Sol1. D: Ref-Sol3 polymer spinning solutions, respectively. All scale bars are 1 µm. 
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3.1.5 The nanofiber swelling capacity 

The dry nanofiber dressing is supposed to be applied directly onto the high to moderately 

exudation wound, and to absorb and retain the exudate onto the wound by forming an in situ 

gel (Figure 1) that allows autolytic debridement, while promoting a successful wound healing 

environment. The capability of swelling is therefore crucial for the optimal therapy and was 

thus investigated.     

The βG-nanofiber had a swelling index (Is) of 1287 ± 109 and the NoβG-nanofiber of 1537 ± 

141% (w/w), respectively. Similar level of swelling capacity was reported for alginate 

dressing, that can absorb up to 20 times their own weight in fluid [29]. The average weight of 

the βG-nanofibers and NoβG-nanofibers before swelling was 134 mg and 190 mg, 

respectively. There was no significant differences in the swelling index for the two fiber 

formulations. Although both fibers hydrated very rapidly, the βG-nanofiber seemed to hydrate 

somewhat slower than the NoβG-nanofiber. During the swelling, the βG-nanofiber retained 

air trapped under the fiber (Sup. Figure 1B), whereas the NoβG-nanofiber (Sup. Figure 1C) 

retained air within the gel. This might indicate that the βG-nanofiber would have retained 

more liquid if allowed to soak in the aqueous media for a longer time. However, both 

formulations were allowed to soak for only 60 seconds to avoid obtaining too liquefied fibers 

that would be impossible to remove from the Petri dish, and to allow excess aqueous media to 

be removed in a reproducible way. Thus, the relatively high swelling capacity clearly makes 

the nanofibers less mechanically stable. For comparison, the Curdlan/PVA nanofibers 

obtained for nanofiber scaffolds made for tissue engineering [50], reached a swelling 

saturation of approximately 170% after 24 hours swelling in PBS at 37 ℃.  

The lower mechanical strength and fast swelling of our fibers can be contributed to the use of 

biodegradable and bioabsorbable polymers selected. The high swelling capacity and rather 

poor mechanical strength of this novel dressing indicate that it does not have to be removed 

from the wound; something that is highly advantageous considering patient comfort and pain 

associated to dressing exchange [2]. Moreover, since it is a transparent dressing, the wound 

healing progression and tissue can be observed although the wound is covered with the 

dressing. 
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3.2. Cytotoxicity of electrospun nanofibers 

The toxicity of the nanofibers was tested in vitro using MTT assay method. Three different 

concentrations of the βG-nanofibers, NoβG-nanofibers and βG 2.5% (1, 10, 100 µg/mL) were 

applied on the keratinocytes. Neither the βG-nanofibers nor the NoβG-nanofibers and βG 

2.5%, exhibited any toxicity up to the concentration of 100 µg/mL, which is in agreement 

with Choromanska et al. [51]. These results suggest that nanofibers will not affect the cell 

viability during the proliferation phase of wound healing. 

 

Figure 5. HaCaT cells toxicity as assessed by the MTT-assay. Three different concentrations 
(1, 10, and 100 µg/) of solubilized nanofibers or active ingredient (βG) were applied on 
keratinocytes. Results are given as mean of two independent experiments. 

 

3.3. In vivo wound healing in diabetic mice 

In the final stage of this study, the wound healing potential of the novel nanofibers, both with 

βG (βG-nanofibers) and without βG (NoβG-nanofibers) was tested in vivo. Three different 

doses of βG-nanofibers containing 190, 370 and 990 µg of βG (Table 1), respectively, and the 

NoβG-nanofiber were administered onto the excisional wounds in the diabetic db/db mice. 

Diabetic db/db wound healing model is known to provide a well-defined wound bed that heals 

both from contraction and re-epithelialization, and is considered a reproducible and valuable 

model for testing experimental wound healing treatments [52]. During the treatment, no 
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adverse reactions were observed in any animal group. Only one animal in the LowβG group 

was removed due to subcutaneous abscess and rapid weight loss. However, these changes did 

not appear to be directly related to the treatment. All treatments were applied under occlusive 

cover, to retain the formulations in place, prevent moisture loss, and the animals from 

removing the treatment. The use of occlusive dressing is the current state-of-the-art as it is 

used in clinical wound care to prevent moisture loss and accelerate healing in the acute, 

chronic and infected wounds [29]. The use of occlusive dressing assists wound healing [53]. 

Although the occlusion in itself improve wound healing, the animals in the negative control 

group (water treatments) exhibited an increase in wounded area on day 4 (103.1% of initial 

wound), however, on day 8 the wound contraction was detected (74.2% of initial wound); the 

contraction was in the same magnitude as observed for the NoβG group (73.5% of initial 

wound area). After day 8, all treatments were significantly better than the negative control and 

provided improved healing conditions (p < 0.05). These results indicate that the beneficial 

effect of βG-nanofibers on wound healing can not only be attributed to the active ingredient 

βG, but that the nanofibers as wound dressing also improve wound healing. The HPMC and 

PEO applied as copolymers in the nanofibers seem to contribute in providing an optimal 

moist environment for wound healing. The wound healing mechanisms of βG is derived from 

the activation of the macrophages and the subsequent signaling [14,54], however, the results 

indicate that this healing potential is enhanced by the nanofibers.  

All three groups treated with βG-nanofibers exhibited significantly improved wound closure 

(p < 0.05) as compared to the NoβG group. The results shown in Figure 6 and 7 also 

demonstrate that the wound closure started faster during  the βG-nanofiber treatment (76.8-

82.3%) than the positive control (97.9%) on day 4; however on day 8 the wound closure in 

βG treated groups was similar to the wound closure in mice treated with positive control. 

Unfortunately, we could not confirm the dose-response for the βG-nanofibers, most probably 

because the effective dose was reached already with the lowest dose applied. Thus, it would 

be interesting to investigate the wound healing at lower βG dosages. This could be achieved 

either by lowering the concentration of βG in the electrospun nanofibers, the amount of 

nanofibers, or by reducing the frequency of dosing/application onto the wound. Lower doses 

or reduced frequency of treatment would have both economic benefits and be advantageous 

for the patient compliance and effect of the treatment. The less frequent treatment applied in 

the nanofiber groups might also have caused less stress to the mice and positively attribute to 
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the healing process. It is known that the stress can inhibit wound healing in animals trough 

affecting the functional wound healing pathways [55].  

The wound healing potential of tested treatments was reproducibly demonstrated through the 

small standard deviations from the mean value of the assessed wound closure, contraction and 

re-epithelization (Figure 6). All treated groups had a standard error mean (SEM) < 3.7, with 

an exception of the NoβG group (SEM of 8.9) in the wound closure assessment. The NoβG 

(βG-free nanofibers) are not expected to improve wound healing to a greater extent. In our 

previous study [27] we confirmed the healing potential of βG in wound healing, and present  

results additionally confirm the positive effects of βG in formulation. The improved wound 

healing in the βG-nanofiber treated groups as compared to the NoβG-nanofiber group seem to 

be attributed to the increased wound contraction rather than to an increase in the re-

epithelization (Figure 7). The wound healing contraction, attributed to the panniculus 

carnosus muscle, is known to be more pronounced in murine than in human [52]. Due to the 

rapid gelling of the components within the nanofiber dressing, it is likely that the effects are 

not due to mechanistic contraction, but rater elicited by a cellular response to βG. When 

accounting for the re-epithelization in the diabetic db/db mice model, the contraction of the 

skin will mask some of re-epithelized tissue due to compaction of the wound [56], leading to a 

decline in the cumulative granulation. This decline in re-epithelization can be seen in all 

groups with exception of the water-treated (negative control) group (Figure 6).  

In our previous study on wound healing potential of βG formulated as hydrogel, we failed to 

prove its superiority as wound dressing. We suggested that the failure can be due to an 

adverse effect of Carbopol 971P NF in the hydrogel formulation [27]. The current in vivo 

results support the suggested explanation. In the present study, the excipients applied in the 

nanofibers seem not to interfere with the healing potential of βG, but rather to have a positive 

effect. In addition, nanofibers as dressing improved wound healing physically. There are 

several publications reporting the use of nanofibers for wound treatment in mice [11,57,58] 

and rats [59–62]; however, to the best of our knowledge this is the first work on in vivo 

wound healing of a in situ gel forming βG-nanofibers, with βG isolated from beakers yeast. 

There is only one publication on electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers 

loaded with βG from Aureobasidium pullulans [63]. Kim and co-authors observed small 

differences between the treatment with βG-containing nanofibers and PLGA alone. However, 

they found that βG stimulated the cells that helped with re-epithelialization, proliferation and 

angiogenesis. The use of PLGA as a carrier provides a more rigid nanofiber structure that is 
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less prone to lose its integrity, since PLGA degrades by hydrolysis and does not gel, contrary 

to PEO and HPMC used in our study. Considering that the structure of βG is crucial for the 

cellular response, and plays a significant role in the bioactivity of βG, these two studies are 

not directly comparable. In addition, the evidence of the wound healing potential of βG from 

Aureobasidium pullulans is rather limited [32,64].  

The novel βG-containing nanofibers bear the potential to serve as an advanced wound 

dressing for exuding wounds. The manufacturing scale up should not present serious 

challenge within industrial manufacturing. 

Figure 6. The relative contribution from contraction and re-epithelialization on the total 

wound closure in the different treatment groups (% ± SEM) (n=10).  
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Figure 7. The relative wound closure area after different treatments (± SEM) (n=10)  

 

4. Conclusions 

The Nanospider™ technology applied in the production of electrospun βG-nanofibers was 

proven to be a reproducible and reliable method to manufacture nanofibers of desired features 

considering the treatment of medium exuding wounds. Due to the high capacity of water 

retention and rapid swelling, the nanofibers formed a hydrogel in situ upon administration 

onto the wound. The novel formulation exhibited no cellular toxicity in the in vitro MTT 

assay. The wound healing assessment in the wound model of hard-to-heal wounds confirmed 

that the βG-nanofiber significantly improved the healing as compared to the NoβG-

nanofibers. The findings can be applied as a ground for further testing in human.  
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Nanofiber swelling index 

The appearance of the two different nanofibers (the βG- and NoβG-containing fibers) upon 

soaking in the solution is presented in Sup. Figure 1; the βG-containing nanofibers retained 

the original structure whereas the NoβG fibers appeared more affected by the exposure to 

aqueous medium. However, the swelling index indicated that the two nanofibers had a similar 

swelling capacity (Sup. Figure 1). 

 

 

Sup. Figure 1. Photographs of the 8 x 8 cm nanofibers sheets (A) before soaking in 
“Solution A” (B) soaked βG-containing nanofibers (C) soaked NoβG-containing 
nanofibers.  

“Solution A” composing 142 mmol Na2+ and 2.5 mmol Ca2+ in distilled water. 

 

Wound healing assessment 

During the in vivo wound healing study, pictures of the respective wounds (Sup. Figure ) were 

taken at different time points (Sup. Table 1), and the open wound area, wound contraction and 

re-epithelialization calculated using the computer Image Pro Plus software (version 4.1.0.0, 

Media Cybernetics, USA)   
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Sup. Figure 2. The wound healing parameters assessed by the Image Pro Plus software 

(version 4.1.0.0, Media Cybernetics, USA) to evaluate the progression of wound healing. 

 

Sup. Table 1. Experimental setup for the wound healing experiments 

Formulation 

applied 

Day of treatment (x); day of (re-)anaesthetization (A); day of photography (P)

0 1 2 3 4 5 6 8 12 16 20 24

Positive Control x/A/P x x x x/A/P x x A/P A/P A/P A/P P 

LowβG x/A/P    x/A/P   x/A/P A/P A/P A/P P 

MediumβG x/A/P    x/A/P   x/A/P A/P A/P A/P P 

HighβG x/A/P    x/A/P   x/A/P A/P A/P A/P P 

NoβG x/A/P    x/A/P   x/A/P A/P A/P A/P P 

Negative Control x/A/P  x  x/A/P  x x/A/P A/P A/P A/P P 

Positive Control: Hydrogel containing 10 µg platelet-derived growth factor and 1µg 
transforming growth factor alpha, LowβG: Nanofiber containing 185 µg βG, MediumβG: 
Nanofiber containing 360 µg βG, HighβG: Nanofiber containing 965 µg βG, NoβG: 
Nanofiber without βG, Negative Control: Water for injection 

 

The in vivo experiment comprised animals (10 per group) treated with 6 different treatments. 

The representative photographs of the wound during the 24 days healing process are presented 

in Sup. Figure 3. 
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Sup. Figure 3. Photographs at different time points of animals from the different 
treatment groups;  

LowβG: Nanofiber containing 185 µg βG, MediumβG: Nanofiber containing 360 µg βG, 
HighβG: Nanofiber containing 965 µg βG, NoβG: Nanofiber without βG, Negative Control: 
Water for injection, Positive Control: Hydrogel containing 10 µg platelet-derived growth 
factor and 1µg transforming growth factor alpha. 


