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25 Abstract

26 We present a new method for the derivation of gravity wave vertical wavelengths from OH 

27 airglow observations of different vibrational transitions. It utilizes small phase shifts regularly 

28 observed between the OH(3-1) and OH(4-2) intensities in the spectra of the GRIPS (GRound-

29 based Infrared P-branch Spectrometer) instruments, which record the OH airglow emissions 

30 in the wavelength range from 1.5µm to 1.6µm simultaneously. These phase shifts are 

31 interpreted as being due to gravity waves passing through the OH airglow layer and affecting 

32 individual vibrational transitions at slightly different times due to small differences in their 

33 emission heights.

34 The results are compared with co-located observations of the OH(6-2) and O2b(0-1) 

35 transitions by means of spectrometer observations (TANGOO instrument, Tilting-filter 

36 spectrometer for Atmospheric Nocturnal Ground-based Oxygen & hydrOxyl emission 

37 measurements) performed from 2013 until 2016 at Oberpfaffenhofen (48.08° N, 11.27° E), 

38 Germany, and with Na-Lidar measurements acquired between 2010 and 2014 at the Arctic 

39 Lidar Observatory for Middle Atmosphere Research (ALOMAR, 69.28° N, 16.01° E), 

40 Norway. The latter comparison shows best agreement if the mean height difference of the 

41 OH(3-1) and OH(4-2) emission is assumed to be 540 m (1σ=160 m), confirming the result of 

42 von Savigny et al. (2012), who derived a height difference of approximately 500 m between 

43 each vibrational level. For approximately 40 % of all wave events observed with GRIPS, a 

44 quantitative estimate of the phase relationship between the OH(3-1) and OH(4-2) intensities 

45 can be retrieved from the spectra allowing derivation of vertical wavelengths. The retrieval 

46 performs best for wave periods below two hours (80 % success rate) and worse for periods 

47 above ten hours (successful in less than 10 % of the cases). The average wavelength 

48 determined from 102 events amounts to 22.9 km (1σ: 9.0 km).

49 Keywords: airglow; MLT region; atmospheric gravity waves; vertical wavelengths; NDMC



50 1 Introduction

51 Airglow spectroscopy has proven to be a powerful technique for studying dynamical features 

52 of the upper mesosphere / lower thermosphere (MLT region). It is a well-established 

53 observation technique, providing a high temporal resolution as well as a high degree of 

54 reliability and stability, making it suited for instance for long-term studies (see, e.g., Bittner et 

55 al. 2000, 2002; Beig et al., 2003; French and Klekociuk, 2011; Perminov et al., 2014). On 

56 shorter time scales, especially atmospheric gravity waves and solar tides can perturb the 

57 emissions of the various airglow emissions (among others: Hines and Tarasick, 1987; 

58 Swenson and Gardner et al., 1998; López-Gonzáles et al., 2005; Wachter et al., 2015; 

59 Hannawald et al., 2016; Sedlak et al., 2016; Wüst et al., 2016; Silber et al., 2017; Wüst et al., 

60 2017a).

61 The different vibrational bands of the hydroxyl (OH) molecule represent the most intensively 

62 studied airglow emission of the MLT region. Currently, 85 % of the spectrometers or 

63 photometers listed in the database of the Network for the Detection of Mesospheric Change 

64 (NDMC, http://wdc.dlr.de/ndmc) observe at least one of the various OH emissions.

65 While Baker and Stair (1988) are usually cited for attributing the peak height of the emitting 

66 layer to 87 km, recent studies by von Savigny et al. (2012) and von Savigny and Lednyts’kyy 

67 (2013) have shown that OH emissions from different vibrational transitions originate from 

68 slightly different altitudes. As was pointed out by von Savigny et al. (2012), these differences 

69 had already been discussed in older publications such as López-Moreno et al. (1987) and even 

70 Baker and Stair (1988). In addition to their large set of ENVISAT/SCIAMACHY 

71 (ENVironmental SATellite, Scanning Imaging Absorption spectroMeter for Atmospheric 

72 CHartographY) observations comprising OH(8-3), OH(6-2) and OH(3-1) vertical volume 

73 emission rate profiles, von Savigny et al. (2012) explain the observations via sophisticated 

74 model simulations. According to their study, peak emission altitudes of adjacent upper 



75 vibrational levels of OH are on average separated by approximately 500 m, with higher 

76 vibrational transitions originating at higher altitude, which is mainly attributable to the 

77 altitude dependent atomic oxygen quenching rate.

78 This implies that atmospheric waves travelling through the OH emission layer from above or 

79 below influence the individual emissions at different points in time. Since the peak altitude 

80 differences are rather small compared to the emission layer width of approximately 8 km to 

81 10 km, the expected signal will be small as well. However, if such a signal can be identified, 

82 it will involve information on the wave propagation direction as well as its vertical 

83 wavelength. In combination with the horizontal wavelength and the background wind, the 

84 vertical wavelength is essential in estimating the vertical energy and momentum flux (see, 

85 e.g., Swenson and Liu, 1998). Whereas estimating horizontal wavelengths from airglow 

86 imagers can be considered a straight-forward approach, deriving vertical wavelengths is a 

87 more difficult task. Complementary observations by lidars or radars do provide values for 

88 vertical wavelengths. But these instruments are rather expensive and technically complex. 

89 Therefore, such measurements are available for a few sites, only.

90 In the past, several approaches have been developed to derive vertical wavelengths from 

91 airglow observations. On the one hand, it is more or less self-evident to utilize different 

92 airglow emissions, such as OH, which is supposed to be representative for 86–88 km, and O2 

93 or OI, which represent altitudes of 94–96 km and 95–97 km. On the other hand, more 

94 sophisticated methods have been developed by Hines and Tarasick (1987), Tarasick and 

95 Hines (1990), Swenson and Gardner (1998), which retrieve information about the vertical 

96 wavelength of a gravity wave from just one emission. The latter methods take advantage of 

97 the fact that rotational temperatures derived from the vibrational transition lines are 

98 representative for a slightly different altitude than the emissions themselves and thus 

99 variations of airglow intensities and related temperatures often show a distinct phase shift in 



100 the presence of propagating waves. Both methods have advantages and disadvantages, but are 

101 widely used throughout the airglow community for estimating vertical wavelengths (among 

102 others: Reisin and Scheer, 1996; Reisin and Scheer, 2001; López-González et al., 2005; Taori 

103 et al., 2005; Guharay et al., 2008; Takahashi et al., 2011).

104 In the present study we exploit the possibility to deduce vertical wavelengths from 

105 simultaneous observations of different OH vibrational transitions, namely the OH(3-1) and 

106 OH(4-2) emission. The results are compared with a) co-located temperature profiles acquired 

107 with the Na-lidar at the Arctic Lidar Observatory for Middle Atmosphere Research 

108 (ALOMAR, 69.28° N, 16.01° E), Norway and b) co-located observations of OH(6-2) and 

109 O2b(0-1) airglow emissions at Oberpfaffenhofen (48.08° N, 11.27° E), Germany, derived 

110 from ground-based observations of the TANGOO-instrument (Tilting-filter spectrometer for 

111 Atmospheric Nocturnal Ground-based Oxygen & hydrOxyl emission measurements).

112 The paper is structured as follows. Section 2 describes important features of the 

113 instrumentation and of the data retrieved. The results of the GRIPS/lidar and 

114 GRIPS/TANGOO intercomparison are presented and discussed in section 3. We conclude 

115 with a short summary and potential applications in future studies in section 4.

116

117

118 2 Instrumentation 

119 2.1 Airglow spectrometers

120 The GRound-based Infrared P-branch Spectrometers (GRIPS) primarily observe the P-branch 

121 of the OH(3-1)-rotational vibrational transition. The resolving power (λ/Δλ) of ~500 only 

122 allows derivation of the rotational temperatures from their P1 lines. On the other hand, the 

123 instruments cover the spectral range from approximately 1.5 µm to 1.6 µm. Therefore, both 

124 Q-branches of the OH(3-1) and OH(4-2) bands are included in the data and integrated branch 



125 intensities are available for these emissions. Figure 1 displays a typical spectrum acquired 

126 with an exposure time of 15 seconds by the GRIPS 9 instrument. The shaded areas denote 

127 those parts of the spectrum which are taken as best estimates for the Q-branch intensities. The 

128 high temporal resolution and the fact that both emissions are imaged onto the sensor area at 

129 the same time make the GRIPS instruments well-suited for the intended analysis. The 

130 instrument GRIPS 6 has been in operation at the NDMC site Oberpfaffenhofen, Germany, 

131 since January 2009. Technical details as well as the processing scheme of the data are 

132 described by Schmidt et al. (2013). GRIPS 9 was operated at the Arctic Lidar Observatory for 

133 Middle Atmosphere Research (ALOMAR), Norway, from November 2010 until May 2014. 

134 Both technically identical instruments point to the zenith with an effective field of view 

135 (FOV) that corresponds to ca. 24 km x 24 km at the altitude of 87 km.

136 The TANGOO instrument measures the OH(6-2) and O2b(0-1) emissions, covering the 

137 spectral range between 839 nm and 867 nm. Its interference filter (manufactured by Andover 

138 Corporation) has a central wavelength of 867.1 nm with a full width at half maximum 

139 (FWHM) of 0.97 nm and a free aperture of 110 mm. The wavelength is continuously scanned 

140 by tilting the filter mounted in a thermally isolated chamber and the signal itself is recorded 

141 with a Hamamatsu Photonics R943-02 photomultiplier tube operated in photon counting 

142 mode. Thus, there is a time difference between the registration of the OH(6-2) and O2b(0-1) 

143 emissions of approximately one minute. TANGOO is based on the successful experience with 

144 the Argentine Airglow Spectrometer presented by Scheer (1987), which has been acquiring 

145 data for many years so far. 

146 With 0.4° x 2.0°, the TANGOO FOV is almost two orders of magnitude smaller than that of 

147 GRIPS 6, providing a considerably higher sensitivity to small scale structures. Despite this 

148 large difference in the FOV size, usually no significant differences are observed on the time 

149 scales relevant for this study (>0.5 h). For the GRIPS, a detailed discussion of observational 



150 selection concerning vertical and horizontal wavelengths was recently given by Wüst et al. 

151 (2016). TANGOO was developed at the German Aerospace Center (DLR) in close 

152 cooperation with IAFE/CONICET (Instituto de Astronomía y Física del Espacio, Consejo 

153 Nacional de Investigaciones Científicas y Técnicas) and started routine operations at 

154 Oberpfaffenhofen, Germany, in March 2013. Since TANGOO was temporarily deployed at 

155 another NDMC site, only 25 months with 161 cloudless nights of parallel observations 

156 between the two airglow spectrometers are available for this study.

157

158 2.2 ALOMAR Weber Na Lidar

159 The sodium lidar at ALOMAR is capable of measuring sodium density, temperatures and 

160 wind in the height region from 70 km to 110 km - the height range of the upper mesospheric 

161 sodium layer (peak height: ~92 km). It was deployed in August 2000 and during the time 

162 interval of interest for this study it was operated in the configuration described by Dunker et 

163 al. (2013). With an aperture of only 0.6 mrad its FOV in the MLT region is on the order of 

164 <100 m. Unlike the airglow spectrometers used in this study, the two beams of the lidar 

165 usually do not point into zenith direction. In order to retrieve wind velocity one beam usually 

166 points 20° to the north and the other 20° to the east. Thus, the FOV of the Na lidar and GRIPS 

167 are close to each other but do not overlap. Figure 2 illustrates the temporal evolution of the 

168 temperature profiles of the two beams during the night of January 21/22, 2012. As to be 

169 expected only small differences are visible. These can be attributed to the separation of their 

170 FOV, which amounts to about 65 km at the peak height of the Na layer (ca. 92 km).

171

172 3 Results and discussion

173 3.1 GRIPS 9 versus the ALOMAR Na lidar



174 As mentioned above, the GRIPS 9 instrument was operated at ALOMAR during four winter 

175 seasons from November 2010 until May 2014. During the long winter nights at these high 

176 latitudes (69° N) it is evident that the individual OH branches show small differences in 

177 reaction to dynamical disturbances. Figure 3a) depicts the relative intensity perturbations of 

178 the OH(3-1) Q-branch (black) and the OH(4-2) Q-branch (grey) observed during the night of 

179 January 21/ 22, 2012 (corresponding to the lidar measurements shown in Figure 2). The scale 

180 refers to the change with respect to the nightly mean, 0.1 representing 10 % deviation. During 

181 phases of decreasing intensity the OH(3-1) intensity appears to lie systematically above the 

182 OH(4-2) intensity, e.g., between 18 UT and 20 UT or 0:30 UT and 2 UT; the opposite is the 

183 case for phases of increasing intensities, e.g., between 4 UT and 6 UT. Since these differences 

184 are not symmetric about the times of maximum (minimum) intensities, they are not simply 

185 due to different amplitudes in the two emissions but reflect a small phase shift in the temporal 

186 evolution of the oscillations. This interpretation is supported by the result of the harmonic 

187 analysis (HA) also displayed in the Figure. The HA performs a least squares fit, but is used 

188 here in the implementation described by Bittner et al. (1994), which is able to identify a single 

189 period, minimizing the residuals in two independent time series. This allows investigating 

190 potential changes in amplitude and phase between the two data sets. Subsets 3b) and 3c) 

191 illustrate the results for the second and third oscillation identified in the data.

192 The phase differences for the 3.0 h and 6.9 h oscillations are well defined, while for the 15.9 h 

193 oscillation it is negligible. The intensity ratio of the two emissions is of interest, because it 

194 highlights systematic differences between the two emissions more clearly. Apparently, the 

195 intensity of the OH(4-2)-emission is on average 30 % larger than the OH(3-1)-emission 

196 intensity but their ratio also exhibits a significant variation with time (Figure 3d). Again 

197 dominant periods of 6.9 h and 3.2 h are identified with the HA also in the intensity ratios. 

198 Obviously, they agree well with those periods identified before, which exhibit a finite phase 



199 difference (Figures 3a and 3c). Thus, the intensity ratios can be used to confirm the results of 

200 the HA concerning potential phase differences of individual emissions.

201 As stated by Fagundes et al. (1995) in their comparison of the OI(557.7nm) and OH(9-4) 

202 emission, a phase difference Δφ is related to the vertical wavelength λz via the expression:

203 . (3.1)𝜆𝑧 = Δℎ
2𝜋
Δ𝜑

204 In case of OH bands corresponding to adjacent upper vibrational levels, a first estimate of the 

205 height difference Δh between the two layers can be adopted from von Savigny et al. (2012), 

206 who derived an average of Δh≈500 m. With phase differences of 0.16 rad and 0.34 rad for the 

207 3 h and 7 h period oscillations, the vertical wavelengths then amount to 19.4 km and 9.2 km.

208 These values agree well with the rough estimates derived by looking at the lidar profiles 

209 shown in Figure 2. While in the lidar data the dominant wavelengths appear to change over 

210 the night, the GRIPS analysis is based on the entire night. So in order to retrieve reliable 

211 estimates for the dominant wavelengths in the lidar data, the HA is now applied to each lidar 

212 profile individually. All data points with an uncertainty of more than ±10 K are omitted, 

213 which limits the height range under investigation to approximately 80–105 km (without 

214 setting fixed boundaries). Due to the limited height range and the typical temperature profile 

215 with high temperatures at both the top (105 km) and the bottom (80 km), all wavelengths 

216 greater than 40 km are excluded.

217 The retrieved dominant vertical wavelengths (black/grey) of two different nights are displayed 

218 as a function of time in Figure 4 for both beams (solid/dashed). Subset 4a) again shows the 

219 results for January 21/22, 2012. While the shorter wavelength (grey) exhibits little variation 

220 throughout the night, the larger one (black) is not so constant. Until 22:00 UTC the results are 

221 fairly stable yielding values between 25 km and 30 km; starting at 22:00 UTC the values 



222 slowly decrease to smaller values around 20 km and increase again after 02:00 UTC, 

223 exhibiting a larger spread between 20 km and 40 km.

224 While the wavelengths retrieved for both beams agree fairly well for any given point in time, 

225 some uncertainty remains concerning how many different waves are actually present 

226 throughout the night. The following analysis is based on the minimum number of waves 

227 explaining the observations reasonable well (usually two) and attributing the remaining 

228 variability of the data to the uncertainty of the observations.

229 Thus, the mean dominant vertical wavelengths retrieved from the lidar profiles shown in 

230 Figures 2 and 4a) amount to 23.2 km ± 3.4 km and 11.5 km ± 1.2 km, with the individual 

231 values of beam 1 and its one-sigma interval being 23.1 km ± 5.3 km and 11.6 km ± 1.8 km 

232 (23.3 km ± 4.2 km and 11.4 km ± 1.6 km for beam 2). Depending on the signal-to-noise ratio 

233 and the actual atmospheric conditions the retrieved values exhibit a higher or lower 

234 variability. Figure 4b) shows an example with higher variability during the first half of the 

235 night (due to a smaller signal-to-noise ratio) and fairly constant values during the second half 

236 of the night.

237 Although GRIPS is only operated during night time (winter) and only nights with excellent 

238 observing conditions are incorporated in the analysis, we have still succeeded in identifying 

239 24 wave events in 22 nights. At least two waves are identified in any of the lidar observations 

240 analyzed here, but only one vertical wavelength can usually be retrieved from the GRIPS 

241 data.

242 The calculation of the uncertainty of the wavelengths measured by lidar has already been 

243 described above. In the case of GRIPS, the uncertainties of Δh and Δφ in eq. (3.1) contribute 

244 to the overall uncertainty. Dealing with Δ(Δφ), the uncertainty of Δφ, is not as trivial as one 

245 might think, as standard methods appear to overestimate it: despite the ratio OH(3-1)/OH(4-2) 



246 often undoubtedly indicating non-zero values of the phase shift Δφ, calculations may still 

247 show Δφ≈0 within numerical precision. Similar difficulties arise in case of the height 

248 separation uncertainty Δ(Δh), because the value of Δh=500 m adopted from von Savigny et al. 

249 (2012) is only a statistical mean and individual observations may differ substantially from this 

250 value.

251 Therefore, several selection criteria are applied to the results of the spectral analysis, which 

252 are: (1) similar periods need to be identified in both the OH(3-1), OH(4-2) intensities as well 

253 as in their ratio, (2) the relative amplitude of the oscillation of the intensity ratios must at least 

254 amount to one percent, (3) a minimum phase shift Δφ of 0.1 rad between the OH(3-1) and 

255 OH(4-2) intensities is required. This ensures that Δ(Δφ) is small and the overall uncertainty 

256 can be attributed to the unknown value of Δ(Δh). The calculation of λz is now repeated for 

257 different values of the height separation Δh in order to exactly match the results retrieved 

258 from the lidar observations for the entire data set.

259 The results indicate that Δh has to vary from 260 m to 860 m for a perfect agreement between 

260 the two systems, with a mean Δh=540 m, 1σ=160 m, but 95 % of the values already lying 

261 within 540 m ± 240 m. Δh=540 m ± 1σ is adopted for all values stated in this study (unless 

262 stated otherwise). It should be noted, that this is only an upper limit for the uncertainty of Δh, 

263 since it includes contributions from Δ(Δφ), which were neglected here and for simplicity we 

264 assume that the vertical wavelength from the lidar has no systematic or statistical error. 

265 However, this approach yields a reasonable estimate of the overall uncertainty, so that λz can 

266 be determined with a precision of ± 30 %. Figure 5 shows a scatter plot of the wavelengths 

267 retrieved from GRIPS versus the Na lidar wavelengths showing that the wavelengths of 18 

268 out of the 24 wave events agree within their confidence intervals.

269

270 3.2 GRIPS 6 versus TANGOO



271 For 25 months between March 2013 and July 2016, the TANGOO airglow spectrometer 

272 observed the OH(6-2) and O2b(0-1) bands co-located with GRIPS 6 at Oberpfaffenhofen. 

273 Vertical wavelengths retrieved from the phase shift between oscillations in the OH and O2 

274 intensities provide independent evidence, which can serve for validation of the 

275 OH(3-1)/OH(4-2) approach. During the night of July 27/28, 2013 the TANGOO data show a 

276 distinct phase shift of nearly π/2 between the O2 and the OH(6-2) intensity variations (Fig. 

277 6a). The observed amplitudes agree well in spite of the differences between the two 

278 instruments, especially the horizontal extents of their FOV (Fig. 6b). A phase shift between 

279 the OH emissions is not obvious, but the OH(3-1)/OH(4-2) ratio again exhibits a similar 

280 variation as the intensities themselves (Fig. 6c). The maxima of the ratios (dashed vertical 

281 lines) coincide with decreasing intensities; minima correspond to increasing intensities but not 

282 as clearly. This indicates that the variation is not simply caused by clouds, which would make 

283 the intensities and their ratios vary in phase.

284 Vertical wavelengths can be determined according to eq. (3.1) for both data sets. While 

285 Δh=540 m ±160 m for GRIPS 6 can be adopted from section 3.1, many studies dealing with 

286 simultaneous observations of OH and O2 emissions work with typical centroid heights of 

287 87 km and 95 km. However, as pointed out by Liu and Swenson (2003) and by Vargas et al. 

288 (2007), this separation of approximately 8 km may be significantly reduced to between 

289 5.1 km and 5.6 km because of the gravity-wave-induced perturbation of the emission profiles. 

290 Therefore, we adopt a mean separation of 5.5 km between OH(6-2) und O2. This is 

291 approximately the upper value proposed by the above-mentioned authors but still significantly 

292 smaller than the common 8 km. For the prominent period of 1.1 h shown in Figure 6, 

293 wavelengths of 18.5 km ± 5.5 km (GRIPS) and 13.2 km (TANGOO) are obtained in this way 

294 (19.2 km instead of 13.2 km if 8 km separation are adopted for the TANGOO observations).



295 Such a comparison is done for the entire available data set of 161 nights that pass the data 

296 quality criteria. With the HA, 233 waves were identified and wavelength derivation according 

297 to the criteria outlined above was initially possible for 136 waves. The other events had to be 

298 excluded, mostly due to insignificant phase differences or small amplitudes. Another 34 

299 events were excluded due to large uncertainties of the retrieved values caused by the 2π 

300 ambiguity in eq. (3.1): the phase shift between the OH and O2 intensities may be interpreted 

301 as Δφ or Δφ ±2π, ±4π etc. (especially ambiguous, when |Δφ| approaches π). It should be noted 

302 that in all these events waves are clearly present, but their parameters cannot be precisely 

303 determined. This ±2π ambiguity is irrelevant when only the small Δφ between different OH 

304 emissions are considered, but in case of OH and O2, Δφ can become considerably larger. 

305 Excluding ambiguous values from the analysis effectively limits the vertical wavelengths 

306 under investigation to approximately 5 km – 40 km. This is only a minor limitation, since 

307 shorter wavelengths are not supposed to be observable at all due to the finite widths of the 

308 emission layers and the rather small Δφ of larger wavelengths are neither resolved by the 

309 temporal resolution nor can they be distinguished from the case of ducting or evanescence.

310 According to the criteria discussed above, the determination of λz is accepted for periods 

311 below 4 h in two-thirds of the cases, but for periods above 6 h results are only accepted for a 

312 quarter of the cases. Figure 7a) illustrates this dependence on wave period for all 233 waves 

313 observed, discriminating between accepted (black) and rejected (grey) λz. This may be one of 

314 the reasons why Wrasse et al. (2004) did not find any significant phase shift between the 

315 OH(6-2) and OH(8-3) emission in their 19 nights of observation.

316 The mean wavelength of the 102 cases retrieved from the OH(3-1)/OH(4-2) comparison is 

317 22.9 km (1-σ: 9.0 km) with the median being 22.7 km. The respective values based on the 

318 OH(6-2)/O2 comparison are 19.1 km mean wavelength (1-σ: 8.9 km) and 18.4 km for the 

319 median. The mean ratio of the wavelengths determined from the two instruments amounts to 



320 0.99, the median is 0.83 (Figure 7 b)). This indicates that the apparent wavelengths of the 

321 OH(6-2) vs. O2 analysis are on average shorter by roughly 20 % compared to the OH(3-1) vs. 

322 OH(4-2) analysis. The mean difference and the wide distribution can be explained by the 

323 assumptions made for Δh. Both a reduction to 450 m for the height separation between the 

324 individual OH vibrational transitions and an increase to 6.5 km concerning the separation 

325 between OH(6-2) and O2 lead to a more consistent median. The latter value of 6.5 km 

326 however is in better agreement with the nominal height separation of 7 km to 8 km. It is 

327 important to note that the height separation between all the emissions used here is actually a 

328 statistical relationship, and individual values may indeed vary a lot across a larger data set of 

329 many nights. The recent study by Teiser and von Savigny (2017) gives a comprehensive 

330 overview of the variability of the OH(3-1) and OH(6-2) emission altitudes based on 

331 SCIAMACHY data for a fixed local time. 

332 In order to better understand the larger scatter of the wavelengths obtained by the two airglow 

333 spectrometers (Figure 7b)) in contrast to the rather good agreement achieved in the OH / Na-

334 lidar comparison (Figure 5), another five nights with different types of oscillations are shown 

335 in Figure 8. In each case, periods and phases were obtained by the HA as shown in Figure 3 

336 but have been omitted in the plot. Figure 8a) shows one of the clear cases, in which a 3.3 h 

337 period is clearly visible in all four emissions and well reproduced by the HA with a distinct 

338 phase shift, confirmed also by the OH(3-1)/OH(4-2) ratio. The corresponding wavelengths of 

339 18.7 km (GRIPS) and 22.3 km (TANGOO) agree fairly well in this case. The second example 

340 (8b) shows the only case in the entire data set, for which an apparent upward propagating 

341 phase was determined for a long period oscillation of approximately 7 h. This case meets all 

342 the criteria outlined above and both observations yield wavelengths of -14.5 km (GRIPS) and 

343 -19.0 km (TANGOO), the negative sign indicating upward phase propagation. An alternative 

344 explanation may be a horizontal wind larger than and opposite to the horizontal phase speed 

345 of the wave. Although upward propagating waves (with downward phase progression) are 



346 expected to dominate the spectrum at ca. 90 km height (see review by Fritts and Alexander, 

347 2003). Only one wave in our data set shows downward propagation, which is consistent with 

348 this view, but smaller than the notable percentage reported by Reisin and Scheer (2001). This 

349 may not be a serious discrepancy, given a possible selectivity of our present approach and the 

350 complicated processes involved in wave reflection (e.g., Wüst and Bittner, 2008). At the 

351 beginning of the night shown in Figure 8c) a small shift between OH and O2 is apparent 

352 (20:30 UT until 21:00 UT), but during the times of maximum amplitudes at 23:00 UT it again 

353 increases to about π. Clearly, more than one wave is present during this night and it is difficult 

354 to retrieve reliable estimates for the phases of the individual oscillations (compare also the 

355 OH(3-1)/OH(4-2) ratio, showing different behavior than the emissions themselves). Thus, 

356 only a short period (1.6 h) oscillation matches the analysis criteria with vertical wavelengths 

357 of 24.7 km (GRIPS) and 18.3 km (TANGOO). Figure 8d) shows an example in which the OH 

358 and O2 emissions behave differently after 01:30 UT (an uncommon case). Despite some 

359 oscillations clearly visible in the OH(3-1)/OH(4-2) ratio, the phase shift could not be derived 

360 reliably. The same applies to an example of the most common type of nights excluded from 

361 analysis (Figure 8e)). Despite the phase shift clearly visible, especially after 20:00 UT and in 

362 the OH(3-1)/OH(4-2) ratio, the overlying long-period oscillation (or slope) prevents 

363 calculating a reliable quantitative estimate for Δφ. About half of the nights had to be excluded 

364 either because of small phase shifts in the order of the measurement uncertainty or because of 

365 an overlying long-period oscillation / slope of this kind.

366 In principle the values of λz can be entered into the dispersion relation for gravity waves to 

367 retrieve the corresponding horizontal wavelengths λh. Then, if reasonable assumptions are 

368 made for the Brunt-Väisälä frequency (0.02 rad/s-1) and for the range of the horizontal winds 

369 (up to ±80m/s), estimates for the energy density of the waves can be calculated (e.g., Wüst et 

370 al., 2016; Wüst et al., 2017b). But with the given uncertainty of the estimates for the winds 

371 and λz the final results (not shown) also have a considerable uncertainty. The calculations 



372 indicate that the waves have horizontal wavelengths between approximately 100 km and 

373 1000 km and fall mostly into the mesoscale range. It follows that the waves under 

374 consideration in this study belong to a type which is rather common in the canonical gravity 

375 wave spectrum, because both the horizontal wave number k as well as the angular frequency 

376 ω are small (see, e.g., Fritts and Hoppe, 1995).

377

378 4 Summary and Conclusions

379 Integrated intensities of the OH(3-1) and OH(4-2) Q-branch were extracted from GRIPS 

380 airglow spectrometers acquiring data in the spectral range between 1.5 µm and 1.6 µm. Their 

381 time series often exhibit small phase shifts, which can be attributed to the presence of 

382 atmospheric waves. These waves influence the individual vibrational transitions – originating 

383 from different altitudes – at different times. The estimated phase shifts were successfully used 

384 to derive wave parameters.

385 The validity of the retrieval technique was tested by comparing GRIPS 9 airglow observations 

386 with the co-located sodium lidar at ALOMAR (69.28° N, 16.01° E). Best agreement between 

387 the two data sets is achieved if a mean height difference of 540 m (1σ = 160 m) is assumed 

388 for the emission heights between the centroid heights of the OH bands from neighboring 

389 upper vibrational levels. This is in reasonable agreement with the estimate of 500 m obtained 

390 by von Savigny et al. (2012) from satellite observations and modelling.

391 A large data set of 161 nights acquired with the GRIPS 6 instrument at Oberpfaffenhofen 

392 (48.08° N, 11.27° E) was compared to the co-located TANGOO spectrometer observing the 

393 OH(6-2) and O2b(0-1) emissions. The 102 wavelengths successfully derived from both data 

394 sets have a larger scatter compared to the GRIPS-lidar intercomparison. This can be attributed 

395 to the assumptions made for the height separation between the individual emissions. They 



396 tend to agree best, if  the same centroid height separation as from the ALOMAR comparison 

397 is assumed in case of OH(3-1) vs. OH(4-2) and 6.5 km in case of OH(6-2) vs. O2b(0-1). Since 

398 these values are statistical means, individual cases may differ substantially, explaining the 

399 variance of the results. The mean wavelength determined from the OH(3-1) vs. OH(4-2) 

400 relationship is 22.9 km (1-σ: 9.0 km).

401 Despite the large difference in the FOV of GRIPS 6 and TANGOO, no significant differences 

402 between the two data sets are observed on the time scales relevant for this study (>0.5 h), 

403 which can be deduced from the identical OH amplitudes recorded by the two instruments. 

404 Therefore, we conclude that observational selection is most likely caused by the finite OH 

405 layer width (ca. 8–10 km) rather than the FOV.

406 The retrieval based on the comparison of OH(3-1) and OH(4-2) is more successful for periods 

407 below 4 hours, which may be due to the larger relative phase differences in case of shorter 

408 periods and/or due to a higher fraction of tidal waves with different physical properties in the 

409 longer period range. More than 16 instruments, largely identical to our GRIPS, are currently 

410 operated by different investigators throughout the NDMC. Thus, this approach appears to be 

411 feasible for estimating latitudinal and longitudinal differences in the vertical wavelength 

412 spectra.

413 Currently, we are performing first observations with a new instrument, observing not only the 

414 OH(3-1) and OH(4-2) transitions but also OH(7-4) and OH(8-5). The combination of several 

415 transitions is intended to further improve the precision of the retrieved vertical wavelengths.

416
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586

587

588 Figure captions

589

590 Figure 1: Typical GRIPS 9 airglow spectrum. The shaded areas are taken as estimates for the 

591 integrated intensities of the Q-branches (given in arbitrary units). They are acquired 

592 simultaneously since the spectrum is imaged onto a 512-element InGaAs photodiode array.

593

594 Figure 2: ALOMAR Na lidar observations of January 21/22, 2012. The solid (dashed) lines 

595 highlight the location of relative maxima (minima) in temperature. Similar structures with 

596 vertical wavelengths of 10 km–15 km (thick lines, especially during the second half of the 

597 night) or ca. 20 km (first half of the night: 10 km spacing between maximum and minimum 

598 temperature) are observed in both beams.

599

600 Figure 3: a) relative intensity perturbation and successive harmonic fits (b) and c)), OH(3-1) 

601 Q-branch intensity (grey), OH(4-2) Q-branch (black), same date as Figure 2. Small 

602 differences between the two emissions exist and are highlighted by calculating their ratios 

603 shown in subsets d) and e). Periods identified in the ratios match those periods found in the 

604 emissions, which exhibit a distinct phase change.

605



606 Figure 4: The two dominant wavelengths retrieved from each lidar profile independently 

607 throughout two different nights (solid and dashed: beam 1 and 2). The upper panel refers to 

608 the night also shown in Figure 2. Nightly means (dots with error bars) and wavelengths 

609 derived from the airglow observations (rectangles) are also shown.

610

611 Figure 5: Vertical wavelengths retrieved from the airglow observations versus those retrieved 

612 from the lidar profiles. Only in two cases (grey triangles) more than one wavelength was 

613 identified in the airglow data. The dashed grey line serves to guide the eye.

614

615 Figure 6: Airglow intensity variations displayed as relative deviation from the nightly mean 

616 observed with a) the TANGOO instrument (green: O2, red: OH(6-2)) and b) the GRIPS 6 

617 (black: OH(3-1), blue: OH(4-2)). Also the ratio of the OH(3-1) and OH(4-2) intensities shown 

618 in subset c) clearly shows systematic variability. The maxima of the ratios correspond to times 

619 of declining intensities indicated by the dashed vertical lines.

620

621 Figure 7: The analysis yields reliable wavelength estimates predominantly for short period 

622 waves (left panel). Comparison of the wavelengths independently retrieved from the OH(6-2) 

623 and O2 intensities with those retrieved from the OH(3-1) and OH(4-2) intensities (right panel).

624

625 Figure 8: Five nights (a-e) with different variability of the individual emissions. Upper 

626 subpanels show OH(3-1) (black), OH(4-2) (blue), OH(6-2) (red) and O2b(0-1) (green); lower 

627 subpanels show the corresponding OH(3-1)/OH(4-2) ratio (black) with the dominant 

628 oscillations retrieved by the harmonic analysis (red).


















