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The tumor microenvironment (TME) may influence both cancer progres-

sion and therapeutic response. In breast cancer, particularly in the aggres-

sive triple-negative/basal-like subgroup, patient outcome is strongly

associated with the tumor’s inflammatory profile. Tumor-associated macro-

phages (TAMs) are among the most abundant immune cells in the TME,

shown to be linked to poor prognosis and therapeutic resistance. In this

study, we investigated the effect of the metastasis- and inflammation-

associated microenvironmental factor S100A4 on breast cancer cells

(BCCs) of different subtypes and explored their further interactions with

myeloid cells. We demonstrated that extracellular S100A4 activates BCCs,

particularly the basal-like subtype, to elevate secretion of pro-inflammatory

cytokines. The secreted factors promoted conversion of monocytes to

TAM-like cells that exhibited protumorigenic activities: stimulated epithe-

lial–mesenchymal transition, proliferation, chemoresistance, and motility in

cancer cells. In conclusion, we have shown that extracellular S100A4 insti-

gates a tumor-supportive microenvironment, involving a network of cytoki-

nes and TAM-like cells, which was particularly characteristic for basal-like

BCCs and potentiated their aggressive properties. The S100A4–BCC–TAM

interaction cascade could be an important contributor to the aggressive

behavior of this subtype and should be further explored for therapeutic

targeting.
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1. Introduction

Breast cancer (BC) is the most frequent cancer in

women. The prognosis and choice of treatment is

heavily dependent on the subtype of BC. The majority

of the tumors express hormone (estrogen and proges-

terone) receptors and/or human epidermal growth fac-

tor receptor 2 (HER2), allowing targeted treatment

using antihormone or anti-HER2 therapies. For

tumors lacking these receptors, that is, triple-negative

breast cancer (TNBC), chemotherapy is the only treat-

ment option, although resistance usually develops.

Based on gene expression profiling, most TNBC

tumors are defined as basal-like, having high risk of

recurrence, metastases, and poor survival (Sorlie et al.,

2001), which classifies this subtype as aggressive BC.

During the last years, the biological and therapeutic

perspective on cancer has evolved from focusing on

tumor cells only, to encompass the profound impact of

the tumor microenvironment (TME). TME can influ-

ence both cancer progression and therapeutic responses

(McMillin et al., 2013; Quail and Joyce, 2013), and

tumor-related inflammation is now recognized as a hall-

mark of cancer (Hanahan and Weinberg, 2011). The

tumor’s immunological portrait – the presence of

tumor-infiltrating leukocytes, their nature, and the pro-

file of regulatory cytokines – is determinative for BC

outcome and therapeutic response (Fridman et al.,

2012; Loi et al., 2013). Good outcome/response is asso-

ciated with a high fraction of cytotoxic T cells and

assisting T-helper 1 cells, whereas poor outcome/resis-

tance is linked to the dominance of T-helper 2 cells and

tumor-associated macrophages (TAMs) (Savas et al.,

2016). TAMs are among the most abundant immune

cells in the TME, known to be linked to poor prognosis,

especially in basal-like/TNBC (Leek et al., 1996; Zhang

et al., 2013; Zhao et al., 2017). In general, macrophages

are main cells in the inflammatory response, where they

exhibit high plasticity, being able to polarize into dis-

tinct phenotypes in response to external signals. The

cytokine profile in the microenvironment is essential for

macrophage polarization and, consequently, activity

(Pollard, 2004). Two extreme variants of macrophage

polarization are known as the classically activated (M1)

and the alternatively activated (M2) phenotypes. Rather

than acting tumoricidal, like classically activated M1

macrophages, TAMs resemble the M2 phenotype and

are protumorigenic, that is, can suppress antitumor

immunity, promote angiogenesis, stimulate invasion,

and facilitate resistance to therapy (Condeelis and Pol-

lard, 2006; Ruffell and Coussens, 2015). Therefore,

depletion or reprogramming of TAMs is considered to

be an attractive therapeutic option that already

approaches the clinic (Ruffell and Coussens, 2015). Fur-

ther development of TAM-directed therapies would

benefit from better understanding of the complex mech-

anisms regulating their fate and functions.

Recently, we have demonstrated that macrophage

phenotype and functions can be modulated by factors

secreted by aggressive melanoma cells that are stimu-

lated with extracellular S100A4 (Bettum et al., 2014).

S100A4 is a small, Ca2+-binding protein strongly asso-

ciated with metastasis and poor prognosis in various

cancers (Boye and Maelandsmo, 2009; Mishra et al.,

2011; Rudland et al., 2000) and also involved in

inflammatory disorders (Cerezo et al., 2011; Grigorian

et al., 2008). S100A4 is expressed not only in tumor

cells, but also in various stromal cells, and secreted

into the extracellular space (Bettum et al., 2014; Cabe-

zon et al., 2007). Both endogenous and extracellular

S100A4 have been linked to metastasis. Endogenous

S100A4 is known to enhanced cell motility and inva-

sion (Grundker et al., 2016), while extracellular, stro-

mal S100A4 has been shown to instigate inflammatory

events promoting metastasis (Hansen et al., 2014).

In this study, we explored the effect of extracellular

S100A4 on breast cancer cells (BCCs) of different sub-

types and investigated their further interactions with

myeloid cells. We showed that S100A4-activated BCCs

elevated secretion of pro-inflammatory cytokines. The

secreted factors facilitated formation of TAM-like cells

with protumorigenic functions. These results suggest

that S100A4 instigates a tumor-supportive microenvi-

ronment, involving a range of cytokines and TAM-like

cells, which is characteristic for the aggressive basal-

like BC.

2. Materials and methods

2.1. Cell lines

Human BCC lines MDA MB 231 (further referred to

as MDA231), MDA MB 468 (further referred to as

MDA468), SKBR3, and MCF7 were obtained from

American Type Culture Collection, while MA11 was

established at the Norwegian Radium Hospital (Nor-

way) (Rye et al., 1996). The cells were cultured in

RPMI-1640 medium (MDA468 cultured in DMEM)

(Sigma, St. Louis, MO, USA) supplemented with 10%

FBS (PAA, Pasching, Austria) and 2 mM GlutaMAX

(Gibco, Paisley, UK). The immortalized breast epithe-

lial cell line HMLE was a kind gift from R.A. Wein-

berg (Whitehead Institute, Cambridge, MA) and

cultured as recommended. The human monocyte cell
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line THP1 was kindly provided by R. Solberg (Univer-

sity of Oslo, Norway) and cultivated in RPMI-1640

supplemented as above with additional 0.05 mM 2-

mercaptoethanol (Sigma). All cell cultures were main-

tained at 37 °C in a humidified atmosphere containing

5% CO2 and were routinely tested for mycoplasma.

GFP-luciferase (Luc)-labeled MDA468 cells were gen-

erated by transducing the cells with lentivirus carrying

a GFP-Luc construct described previously (Day et al.,

2009) (kindly provided by Glenn Merlino, NIH, MD).

2.2. Primary cultures from BC patient biopsies

Surgical specimens of BC tumors were obtained from

patients enrolled in the ‘OSL2’ study, conducted at sev-

eral hospitals in the Oslo region. Informed and written

consent was obtained from all patients, and the project

was approved by the South East Regional Committee

for Medical and Health Research Ethics (Ref. no. 2007/

1125, 2016/433). Fresh tumor tissue was minced into

~ 1-mm pieces that were put in H14 medium [DMEM/

F12 (Gibco), 2 mM GlutaMAX (Gibco), 20 mM HEPES,

100 U�mL�1 penicillin and 100 lg�mL�1 streptomycin,

250 ng�mL�1 insulin, 10 lg�mL�1 transferrin, 0.1 nM

estradiol, 0.5 lg�mL�1 hydrocortisone, 0.15 IU prolactin

(all Sigma), 2.6 ng�mL�1 sodium selenite (BD Bio-

sciences, San Jose, CA, USA), and 10 ng�mL�1 EGF

(Peprotech, Rocky Hill, NJ, USA)] supplemented with

2% FBS. Cultures were fed one to three times per week

by replacing half of the medium with fresh medium. Cells

propagating outward from adherent explants were har-

vested by trypsination and used for further experiments.

2.3. Ex vivo cultures from patient-derived

xenografts (PDXs)

One luminal (MAS98.06) and one basal-like

(MAS98.12) PDX were established in-house and

described previously (Bergamaschi et al., 2009). All ani-

mal experiments were performed according to protocols

approved by the National Animal Research Authority

and conducted according to regulations of the Federa-

tion of European Laboratory Animal Science Associa-

tion (FELASA). For passaging PDXs, mice were

anesthetized with sevoflurane (Baxter, Deerfield, IL,

USA) and incision was made above sternum to access

mammary fat pad, where a small piece of tumor tissue

was placed. To establish ex vivo cultures, freshly excised

PDXs were rinsed in PBS, necrotic tissue/fibrous layer

was removed, and the remaining tissue was minced,

transferred to a Falcon� 70-lm cell strainer, and

washed with PBS. The spheroids/organoids that stayed

in the strainer were collected and cultivated in H14

medium supplemented with 2% FBS. Routinely, after

one-night cultivation, cultures were rewashed and resus-

pended in fresh medium, and then used for further

experiments.

2.4. Primary monocytes

Human peripheral blood mononuclear cells (PBMC)

were isolated from buffy coats from healthy blood

donors (The Blood Bank, Oslo University Hospital (Ull-

evaal), Norway) using Ficoll-Hypaque density gradient

centrifugation and following the standard protocol.

PBMC (1.5 9 106 cells�cm�2) were seeded in serum-free

X-Vivo 15 medium (Lonza, Basel, Switzerland) supple-

mented with 2 mM GlutaMAX and antibiotics. Primary

monocytes were enriched using plastic adherence before

using them for further experiments.

2.5. Recombinant proteins and drugs

Human recombinant protein S100A4 (rS100A4) was

produced as described previously (Berge et al., 2011)

and used at 2 lg�mL�1. The protein stock had no

detectable endotoxins as assayed by Lonza Biosciences.

The specificity of rS100A4 to induce cytokines has

been validated previously using of a S100A4-blocking

antibody (Bettum et al., 2014). Granulocyte–macro-

phage colony-stimulating factor (GM-CSF) and

macrophage colony-stimulating factor (M-CSF) were

purchased from R&D Systems (Oxon, UK). Carbo-

platin and paclitaxel were from Hospira Nordic (Swe-

den) and Fresenius Kabi (Norway), respectively.

2.6. Preparation of conditioned medium (CM)

from BCCs

BCCs (40 000 cells�cm�2) were cultured in their respec-

tive medium overnight, washed, and incubated in

0.08 mL�cm�2 serum-free DMEM/F12 supplemented

with GlutaMAX, HEPES, and antibiotics. Subse-

quently, 2 lg�mL�1 rS100A4 or the equivalent amount

of PBS was added, and 24 h later, CM-S100A4 and

CM-Ctr, respectively, were collected. To prepare CM

depleted for rS100A4, the BCCs were prestimulated

with rS100A4 (or PBS) for 24 h, washed, and received

the fresh medium, and after 24 h, CM-S100A4-0 and

the respective CM-Ctr-0 were collected. All CMs were

spun to remove cell debris before analysis of cytokine

levels or further use on monocytes. For the latter,

CMs were up-concentrated using Amicon Ultra tubes

with 3-kDa MW cutoff (Millipore, Billerica, MA,

USA) and diluted in fresh medium to 50% of the orig-

inal volume to obtain twofold up-concentration.
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2.7. Treatment of monocytes with CMs

Human primary monocytes were cultured in CMs or

ordinary medium (serum-free X-Vivo 15) with/without

control additives (rS100A4, M-CSF, or GM-CSF) for

7 days. Cultures were observed by microscopy to evalu-

ate morphological changes (images were obtained using

an Olympus IX81 inverted microscope and the Olympus

CELLP IMAGING software, Tokyo, Japan). Cells harvested

by EDTA and gentle scraping were analyzed for the

levels of polarization markers by flow cytometry.

THP1 monocytes (25 000 cells�cm�2) were cultured in

CMs or ordinary medium RPMI (all supplemented with

10% FBS) with/without rS100A4 for 7 days. Immature,

unattached viable (i.e., trypan blue-negative) monocytes

were counted by a Countess automatic cell counter

(Invitrogen, Carlsbad, CA, USA). The harvested cells

were used for analysis of gene expression.

For analysis of cytokines, the THP1 cells were cul-

tured in CM-S100A4 or CM-Ctr for 7 days and

washed, and the same number of cells from both con-

ditions were cultured further in serum-free ordinary

medium (0.08 mL�cm�2) for 3 days, before their

growth medium was analyzed.

2.8. Effects of THP1 on BCCs in cocultures

To prepare TAM-like THP1 and Ctr THP1, the THP1

monocytes (38 000 cells�cm�2) were cultured for

3 days in CM-S100A4 or CM-Ctr from MDA468,

respectively. The resulting THP1 were collected by the

help of TrypLE Express reagent (Gibco) and put in

coculture with na€ıve MDA468 cells labeled with GFP-

Luc (cell ratio 1 : 1, DMEM/4% FBS medium).

The cocultures were grown for 6 days before they

were analyzed for epithelial–mesenchymal transition

(EMT) markers: intracellular localization of E-cadherin

(by immunofluorescence) or gene expression. For the lat-

ter, the cocultured cells were harvested by trypsination,

THP1 cells were depleted using anti-CD45 immunomag-

netic beads (Dynabeads�#111.53, Dynal, Norway), and

the remaining MDA468 cells were subjected to RNA

isolation and further analysis by real-time PCR.

To analyze MDA468 cell morphology/eccentricity

and confluence, the GFP+ cancer cells in the cocultures

were tracked by the IncuCyte ZOOMTM live cell imaging

system (Essen Bioscience, Hertfordshire, UK). To assess

MDA468 cell proliferation, the Luc-mediated biolumi-

nescence was measured as described previously (Seip

et al., 2016). Briefly, after the addition of 0.1 mg�mL�1

D-luciferin (Biosynth AG, Staad, Switzerland), biolumi-

nescence was recorded 10 min later by a plate reader,

Victor X3 (Perkin Elmer, Waltham, MA, USA).

To evaluate MDA468 cell sensitivity to chemother-

apy, the cocultures (prepared in Corning� Costar� 96-

well white plates) were treated for 3 days, and the

Luc+ cancer cell proliferation/viability was scored by

measuring bioluminescence as described above.

To asses MDA468 cell migration, a tumor spheroid-

based assay described previously (Vinci et al., 2013)

was used. Briefly, GFP+ MDA468 cells (4000/96-well)

were allowed to self-assemble into spheroids in the

presence of 2.5% Matrigel (BD Biosciences) in Corn-

ing� Costar� round-bottomed ultralow attachment

plates. Single spheroids were transferred into flat-bot-

tomed wells that were preseeded with Ctr THP1 or

TAM-like THP1 (1500 cells/96-well). The wells were

analyzed using Olympus fluorescence microscope and

the ‘arbitrary structure measurement’ function of the

CELLP IMAGING software. Migration was quantified as

follows: the total area covered by GFP+ cells at day 3

minus area of the initial spheroid.

2.9. Multiplex analyses of cytokines

The collected CMs/growth medium were stabilized using

1% human serum albumin Albunorm (Octapharma AG,

Lachen, Switzerland), stored at �80 °C, and analyzed

for the cytokine levels using a Bio-Plex ProTM Human

Cytokine 27-plex Assay # M50-0KCAF0Y (Bio-Rad,

Hercules, CA, USA), a Luminex 200TM instrument

(Luminex Corporation, Austin, TX, USA), and the BIO-

PLEX MANAGER 6.0 software (Bio-Rad). Cytokine concen-

trations were determined from standard curves of known

concentrations of recombinant proteins.

Cluster heatmaps of cytokine levels were generated

in R (version 3.2.2) using RSTUDIO (version 1.0.136) and

the R package Clustermap (Lingjærde, personal com-

munication). In brief, cytokine data were log10-trans-

formed and median-centered (only cytokines detected

in at least half of the samples were included).

Untreated control samples were clustered using Eucli-

dean distance and complete linkage, and the resulting

order of cell lines and cytokines was used for visualiz-

ing both control and S100A4-stimulated samples in

the heatmaps in Fig. 2A.

2.10. RNA isolation, real-time qPCR, and TCGA

data analysis

Total RNA was isolated using the TRI Reagent� (Invit-

rogen), and 1 lg RNA was reverse-transcribed using

qScript cDNA Synthesis Kit (Quanta Biosciences,

Gaithersburg, MD, USA). Real-time PCRs were per-

formed on the iCycler instrument (Bio-Rad). All reac-

tions were run in parallel using 40 ng cDNA/sample,
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mixed with 200 nM FAM-labeled probe [from the

Universal ProbeLibrary collection (Roche Applied

Science, Penzberg, Germany)], 250 nM of each primer,

and 1x PerfeCTa qPCR Supermix (Quanta BioSciences).

Primers were designed using the PROBE FINDER software

from Roche Applied Science available online at the

Universal ProbeLibrary Assay Design Center. Primer

sequences/probe numbers are listed in Table S1. Relative

gene expression was calculated by the ΔΔCt method.

We used TCGA’s BC cohort (Cancer Genome Atlas

Network, 2012), n = 1052, to assess the expression pat-

tern of genes of interest in different subtypes of BC. Gene

expression was assayed by RNA sequencing, RSEM

(RNAseq by Expectation-Maximization; Li et al., 2010)

normalized per gene. The data were obtained from

TCGA’s dbGAP data portal and log2-transformed prior

to analysis. Subtypes were called using PAM50 (Parker

et al., 2009). We also used PAM50s value for evaluation

P = 6.1e-71
rho = 0.51

P = 1.1e-102
rho = 0.59

P = 9.8e-21
rho = –0.29

P = 1.0e-27
rho = 0.328

250 µm

B

A

Fig. 1. Association between S100A4

expression and abundance of stroma and

immune cells in BC tissue. (A) In silico

methods (specified in Materials and

methods) were applied to estimate the

percentage of tumor cells, stromal score,

immune score, and macrophage

abundance in the tumor samples from

TCGA’s breast cancer cohort (n = 1052).

The correlation between the estimated

parameters and S100A4 transcript levels

is indicated (the colors specify BC

subtypes: red: basal-like; dark and light

blue: luminal A and B, respectively; violet:

HER2; and green: normal-like). (B) The

levels of S100A4 and infiltrated

macrophages in the PDX models,

MAS98.06 (luminal) and MAS98.12 (basal-

like). The representative images show IHC

staining of S100A4 protein and the

macrophage-specific marker CD68. Scale

bar: 250 lm for all the images.

Fig. 2. Cytokines secreted by BCCs at control and S100A4-stimulated conditions. Cytokine levels were assessed in a panel of BCCs, which

include cell lines (MCF7, MDA468, MDA231, HMLE, MA11, SKBR3), ex vivo cultures from PDXs (MAS98.06 and MAS98.12), and primary

cultures from patient biopsies (P1, P2, P3, and P4) that represented different BC subtypes as indicated. CMs were harvested from

nonstimulated controls (CM-Ctr) and cells stimulated with 2 lg�mL�1 rS100A4 for 24 h (CM-S100A4), and analyzed for cytokines by the

multiplex immunoassay. (A) Heatmaps of 25 of 27 cytokines (IL-1b and IL-5 were excluded as their levels were zero in the majority of the

samples) across different BCCs in CM-Ctr (top panel) and CM-S100A4 (bottom panel). The cytokine data (average from two independent

experiments) were log10-transformed and median-centered, CM-Ctr data were clustered, and the resulting order of the BCCs and cytokines was

used for visualizing both CM-Ctr and CM-S100A4 data. Two clusters (a and b) are shown. (B) Average concentrations (pg�mL�1) of five most

abundant cytokines secreted by the individual BCC models in two independent experiments (error bars indicate SEM). (C) Gene expression

levels of the most abundant S100A4-inducible cytokines in luminal and basal-like tumors (the data retrieved from TCGA’s breast cancer cohort).
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of how correlated a tumor is to the basal-like subtype.

Analysis was performed in R (version 3.3.3). The tumor

cell percentage in each sample was estimated from the

SNP array data using the algorithm ASCAT (Allele-Spe-

cific Copy number Analysis of Tumors) (Van Loo et al.,

2010). Abundance of stroma and immune cells in the

samples was inferred from gene expression signatures by

ESTIMATE (Estimation of STromal and Immune cells

in MAlignant Tumors using Expression data; Yoshihara

et al., 2013). The abundance of different subsets of

immune cells, including macrophages, was evaluated

based on gene expression data using TIMER (Tumor

Immune Estimation Resource; Li et al., 2017).

2.11. Immunohistochemistry (IHC) and

immunofluorescence (IF)

For IHC, formalin-fixed paraffin-embedded tumor sec-

tions (3 lm) were pretreated in an automated PT-link

system (Dako, Glostrup, Denmark) before staining with

1 : 500 diluted rabbit anti-S100A4 (Dako) for 30 min at

room temperature followed by Dako Cytomation EnVi-

sion+ System-HRP suitable for rabbit primary antibod-

ies. The pictures were obtained using Olympus IX81

microscope and the CELLP IMAGING software. For CD68

staining, the sections (after deparaffinization and heat-

induced epitope retrieval) were stained with 1 mg�mL�1

rabbit anti-CD68 (Abcam, Cambridge, UK) for 1 h at

room temperature followed by the MACH-3 rabbit

HRP-polymer detection kit and the Betazoid DAB Chro-

mogen kit (Biocare Medical, Concord, CA, USA). The

stained sections were scanned using NanoZoomer HT

digital slide scanner (Hamamatsu Photonics, Hama-

matsu, Japan)

For IF, the cocultures were fixed in 4%

paraformaldehyde, permeabilized with 0.5% Triton

X-100, and stained with 1 : 200 diluted (in PBS/0.05%

saponin) mouse anti-E-cadherin antibody (Cell Signal-

ing, Danvers, MA, USA) overnight at 4 °C. After

staining with donkey anti-mouse Alexa 555 (Jackson

ImmunoResearch, West Grove, PA, USA, diluted

1 : 500) for 1 h at room temperature, the samples were

mounted in ProLong Gold mounting medium contain-

ing DAPI (Life Technologies, Carlsbad, CA, USA).

Fluorescent images were obtained using Zeiss LSM710

confocal microscope (Zeiss, Oberkochen, Germany)

equipped with Plan-Apochromat X 63/1.4 Oil DICII

objective and analyzed using the ZEN 2011 software.

2.12. Flow cytometry

Cell staining was performed in a staining buffer (PBS/

1 mg�mL�1 hu c-Globulins (Sigma), aggregated at 63 °C
for 20 min) for 30 min at 4 °C with anti-CD206-PE and

anti-CD80-PE (BD Biosciences). The samples were ana-

lyzed on a BD LSRII flow cytometer controlled by BD

FACSDIVA software (San Jose, CA, USA). Dead cells were

excluded from the analyses by prestaining with propid-

ium iodide (Sigma). FLOWJO software (FlowJo, Ashland,

OR, USA) was used for the data analysis.

For separation of epithelial cells from the remaining

cells in the primary cultures, the cells were stained with

anti-EpCAM-APC (Biolegend, San Diego, CA, USA)

and sorted into EpCAM-positive and EpCAM-nega-

tive subpopulations by BD FACSDiva flow cytometer.

2.13. Statistical analysis

Statistical analysis was performed using two-tailed Stu-

dent’s t-test or the nonparametric Kruskal–Wallis test.

For TCGA data analysis, we used t-test to assess sig-

nificant difference in the boxplot with two variables,

and Kruskal–Wallis rank-sum test to assess significant

difference in the boxplot with more than two variables.

Differences were considered statistically significant if

P-values were below 0.05.

3. Results

3.1. S100A4 levels correlate with abundance of

stroma and immune cells in BC tissue

We used in silico methods to evaluate the percentage of

tumor cells and abundance of stroma (stromal score) and

immune cell infiltration (immune score) in tumor samples

from TCGA’s BC cohort (n = 1052). Further, we evalu-

ated how these parameters correlated with S100A4

expression. We observed an inverse correlation between

Fig. 3. Effect of BCC-derived CMs on primary human monocytes. (A) The experimental setup is depicted in the cartoon. Primary human

monocytes were cultivated for 7 days in the presence of indicated factors: GM-CSF or M-CSF (both 50 ng�mL�1), rS100A4 (2 lg�mL�1),

CM-Ctr, and CM-S100A4 from MCF7 or MDA468 BCCs. Changes in monocyte morphology and expression of M1 and M2 polarization

markers, CD80 and CD206, were analyzed by microscopy and flow cytometry, respectively. Representative phase-contrast images from

each condition are shown in the upper panel. Histogram overlays indicate the levels of CD80 and CD206 under each treatment condition

(filled histograms) compared to the untreated control (unfilled histograms). (B) Levels of CD80 and CD206 in primary monocytes cultured in

CM-S100A4-0 (depleted for rS100A4) versus the respective control CM-Ctr-0 from MCF7 and MDA468.
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S100A4 transcript levels and the percentage of tumor

cells (Fig. 1A). In contrast, S100A4 transcript levels cor-

related positively with abundance of both stroma and

immune cells, which was true for different subsets of

immune cells: T cells, dendritic cells, neutrophils (data

not shown), and macrophages (Fig. 1A). Also in the

PDX models, we observed that MAS98.12 tumors with

high levels of S100A4 were more infiltrated with macro-

phages (identified by CD68 staining) than MAS98.06

tumors with low S100A4 levels (Fig. 1B). Taken

together, this suggests that in BC, S100A4 is primarily

associated with the stromal component, and as such,

could act extrinsically on malignant cells modulating

their immune interactions.

3.2. Extracellular S100A4 stimulates breast

cancer cells to enhance production of pro-

inflammatory cytokines

To assess BCCs in control conditions and upon stim-

ulation with extracellular S100A4, we analyzed cells

of different origins (cell lines, ex vivo cultures from

PDXs, and primary cultures from patient biopsies)

and representing different BC subtypes, with respect

to their ability to secrete cytokines. Conditioned

media from nonstimulated control cells (CM-Ctr) and

cells stimulated with rS100A4 (CM-S100A4) were

analyzed by multiplex immunoassay measuring levels

of 27 cytokines. The data for 25 detected cytokines

across different BCCs are presented as heatmaps in

Fig. 2A. Hierarchical clustering of the cytokine data

in the control conditions (Fig. 2A top panel) sepa-

rated two main clusters – luminal BCCs (cluster a)

and basal-like BCCs (cluster b) – where the later were

enriched for most of the cytokines. A similar pattern

was observed also in S100A4-stimulated conditions

(Fig. 2A bottom panel). Comparison of the cytokine

profiles in CM-S100A4 versus CM-Ctr revealed a

clear cytokine induction upon S100A4 stimulation,

especially in basal-like samples (Fig. 2A). Figure 2B

specifies the concentrations of the five most abundant

cytokines: IL-8 (the dominant cytokine), IL-6,

CXCL10, CCL2, and CCL5, indicating their enrich-

ment in CM-S100A4, although a model-to-model

variation should be noted. To validate that in the

heterogeneous primary cultures, cytokine induction

was due to response of the cancer cells and not the

stromal cells, we separated cells positive for the

epithelial marker EpCAM from the EpCAM-negative

counterparts. Only the EpCAM-positive cell subpopu-

lations consisting primarily of BCCs responded to

S100A4 by increasing cytokine production (Fig. S1).

Taken together, this indicates that basal-like BCCs,

especially when stimulated with S100A4, create a

microenvironment strongly enriched for numerous

cytokines, particularly IL-8, IL-6, CXCL10, CCL2,

and CCL5, known ‘messengers’ of immune interac-

tions. Interestingly, these five cytokines, as well as

S100A4 itself, were found to be upregulated at the

mRNA level in basal-like tumors compared to tumors

of the luminal subtype (Fig. 2C and Fig. S2). To

note, the basal-like PDX MAS98.12 also had high

levels of S100A4 and, interestingly, were more infil-

trated with macrophages than the luminal PDX

MAS98.06 (Fig. 1B).

3.3. S100A4-activated basal-like BCCs trigger

monocyte-to-macrophage differentiation and

polarization

Given that S100A4-induced cytokines can act on mye-

loid cells, we further studied their influence on mono-

cyte differentiation and polarization. Freshly isolated

human monocytes were cultured in CM-Ctr or CM-

S100A4 from luminal MCF7 or basal-like MDA468

cells (poor and good responders to S100A4, respec-

tively). The fate of the monocytes was analyzed by

observing morphological changes, and by measuring

the levels of CD80 and CD206 proteins, markers of

M1 and M2 polarization, respectively. As shown in

Fig. 3A, MDA468-derived CM-S100A4 supported

monocyte survival and promoted elongated, macro-

phage-like morphology more than the respective

CM-Ctr, or any CM from MCF7. Furthermore, the

CM-S100A4, but not the CM-Ctr, notably increased

the level of CD206, with less change in CD80.

Changes in morphology and increase in CD206/CD80

levels were also observed after treatment with GM-

Fig. 4. S100A4-activated basal-like BCCs stimulate THP1 monocyte differentiation and polarization toward M2 phenotype. The experimental

setup is depicted in the cartoon. THP1 monocytes were cultured for 7 days in CM-Ctr or CM-S100A4 from luminal or basal-like BCCs and

analyzed for their morphological changes (A), number of immature cells that is a reverse measure of differentiation (B), and expression of

genes reflecting M1 and M2 polarization (C). ‘rS100A4’ indicates treatment with 2 lg�mL�1 rS100A4 alone. (A) Representative phase-

contrast images of THP1 cells under indicated conditions; THP1 cultured in CM-Ctr did not demonstrate any morphological changes

compared to ‘Untreated’ THP1 and are therefore not shown. (B) Relative number of immature THP1 cells under each condition. (C) Relative

mRNA expression of M1 and M2 polarization markers, iNOS and CD206, respectively, in THP1 cells under each condition compared to the

untreated control (set to 1); average � SEM (n = 3; no SEM indicates n = 1); *P < 0.05.
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CSF and M-CSF, known inducers of macrophage dif-

ferentiation/polarization that we used to confirm the

expected responsiveness in our monocytes. Of note,

rS100A4 alone also promoted elongated morphology

and upregulation of CD206/CD80 in the primary

monocytes, but to a lower degree than the CM-

S100A4 from MDA468. Further, we employed CM-

S100A4-0, which was depleted for the recombinant pro-

tein (see Materials and methods). CM-S100A4-0 from

MDA468, but not MCF7, also induced upregulation of

CD206 and CD80 by 13- and 3-fold, respectively, com-

pared to CM-Ctr-0 (Fig. 3B). This validates that factors

secreted by S100A4-activated BCCs affect primary

human monocytes and that the basal-like MDA468 has

a stronger influence than the luminal MCF7.

To investigate further whether the capacity to influ-

ence monocytes was linked to a BC subtype, we

employed the monocytic cell line THP1. THP1 mono-

cytes have been used previously to study BC subtype-

dependent effects (Stewart et al., 2012). Besides, THP1

monocytes show minimal response to rS100A4 alone

(Fig. 4) and are an ideal model to study the effects of

CM-S100A4. THP1 monocytes were cultured in the

presence of CM-S100A4 or CM-Ctr from two luminal

and three basal-like BCCs, representing both cell lines

and ex vivo cultures from PDXs. The fate of THP1

cells was evaluated based on their morphology, num-

ber of immature unattached cells (THP1 adhere to the

surface and stop proliferation upon differentiation),

and expression of genes linked to M1/M2 polarization.

As previously, we observed that CM-S100A4 from the

basal-like BCCs induced an adherent, macrophage-like

morphology in THP1 cells (Fig. 4A). This effect was

concomitant with significant reduction in the number

of immature monocytes (Fig. 4B), which is an indica-

tion of macrophage differentiation. Furthermore, such

THP1 cells significantly upregulated CD206, a marker

of M2 polarization, but showed no major changes in

expression of iNOS, a marker of M1 polarization

(Fig. 4C). In contrast, CMs from the luminal-like

BCCs did not induce any of these changes in THP1

cells.

3.4. S100A4-activated basal-like BCCs educate

macrophages to produce cytokines

To characterize the BC-educated THP1 cells further,

we examined their ability to produce cytokines. THP1

monocytes were cultured in CM-Ctr or CM-S100A4

from the luminal and the basal-like BCCs as previ-

ously, and analyzed for expression of the five cytokines

highly produced by BCCs themselves. We found that

CM-S100A4 from the basal-like BCCs made the THP1

cells upregulate CCL2, IL6, CXCL10, and IL8 (the

upregulation of CCL5 was negligible; Fig. 5A).

To confirm the gene expression results, we measured

the levels of secreted cytokines. THP1 monocytes were

cultured in CM-S100A4 or CM-Ctr from MDA468 as

before, washed, and received an ordinary medium, and

three days later, their growth medium was analyzed by

multiplex immunoassay. The morphology of THP1

cells from CM-Ctr and CM-S100A4 is shown in the

insert of Fig. 5B, indicating that the former kept unal-

tered, monocytic appearance, while the latter gained

flat, macrophage-like morphology. Such CM-S100A4-

educated, macrophage-like THP1 cells secreted signifi-

cantly higher amounts of all detectable cytokines

(Fig. 5B). CXCL10, IL-8, CCL2, and CCL5 were

among the top five most abundant cytokines, similar

to what was observed in S100A4-activated BCCs. To

compare the cytokine profiles in educated THP1 and

educating MDA468, we performed hierarchical cluster-

ing analysis. As shown in Fig. 5C, THP1 cultured in

CM-S100A4 clustered close to S100A4-activated

MDA468. This suggests that the CM-S100A4-educated

THP1 macrophages produce cytokines that were

involved in their education.

3.5. BC-educated macrophages promote EMT,

proliferation, chemoresistance, and migration in

BCCs

The effect of S100A4-activated BCCs on macrophage

differentiation, M2 polarization, and production of

tumor-promoting cytokines suggests the formation of

Fig. 5. S100A4-activated basal-like BCCs educate THP1 cells to produce cytokines. (A) THP1 cells were cultured for 7 days in CM-Ctr or

CM-S100A4 from luminal or basal-like BCCs (‘rS100A4’ – treatment with 2 lg�mL�1 rS100A4 alone) and analyzed for expression of cytokine

genes. Relative mRNA expression of indicated cytokines under each condition compared to untreated controls (set to 1). For CCL2, average

� SEM (n = 3, except MAS98.06, where n = 1); the other cytokines were measured in one representative sample from each BCC model.

N.D. indicates below the detection limit. (B) THP1 cells were cultured for seven days in CM-Ctr or CM-S100A4 from MDA468, washed, and

received an ordinary serum-free medium, and after 3 days, their growth medium was analyzed for cytokines by multiplex immunoassay.

The graph indicates the top 10 cytokines elevated in CM-S100A4 compared to CM-Ctr. Average concentrations (pg�mL�1) of cytokines from

two independent experiments � SEM. The morphology of the resulting THP1 cells is depicted in the insert. (C) Heatmap with hierarchical

clustering of all detectable cytokines (log10-transformed and median-centered) in THP1 and MDA468 (Analyzed) in control and S100A4-

stimulated conditions (Stimuli). Two biological parallels for each condition are shown.
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protumorigenic TAM-like cells. To demonstrate that

CM-S100A4-educated macrophages act as TAMs and

support BCCs, we used a three-step model depicted in

Fig. 6. Briefly, THP1 cells were cultured in CM-Ctr

(denoted as Ctr THP1) or CM-S100A4 (further

denoted as TAM-like THP1) and put in cocultures

with na€ıve MDA468 cells labeled with GFP-Luc. The

phenotypic characteristics and functional properties

(proliferation, chemosensitivity and migration) of

MDA468 cells in both cocultures were compared as

described below.

We observed that in the presence of TAM-like

THP1, the MDA468 cells gained phenotypic alter-

ations that resembled EMT. First, their morphology

appeared elongated, mesenchymal-like (Fig. 6A), which

was measured as enhanced eccentricity (Fig. 6B). Sec-

ond, E-cadherin, a hallmark of epithelial phenotype,

shifted its characteristic localization in the cell

membrane to the intracellular space (Fig. 6C). Third,

gene expression analysis revealed downregulation of

epithelial markers (CDH1, KRT19, and EPCAM) and

upregulation of the mesenchymal marker SNAI1

(Fig. 6D).

To examine MDA468 cell proliferation, we tracked

GFP+ cancer cell confluence over time in both cocul-

tures. We observed a higher increase in confluence in

the cocultures with TAM-like THP1 than Ctr THP1

(Fig. 7A). In line with that, we detected 13 � 5% dif-

ference (P = 10�4, n = 5) in bioluminescence, indicat-

ing higher proliferation of Luc+ MDA468 cells in the

cocultures with TAM-like THP1 (data not shown).

To investigate MDA468 cell sensitivity to

chemotherapy, both cocultures were treated with either

carboplatin or paclitaxel for 3 days. The proliferation/

viability of the treated cancer cells was scored by mea-

suring Luc-mediated bioluminescence. We observed a

lower antiproliferative effect of carboplatin (but not

paclitaxel) in the MDA468 cells cocultured with

TAM-like THP1 compared to Ctr THP1 (Fig. 7B).

The difference was not big, from 1.3- to 1.4-fold, but

consistent in all experiments (Fig. S3).

To examine MDA468 cell motility, the cancer cell

spheroids were established and cultured alone or

together with Ctr THP1 or TAM-like THP1 as depicted

in Fig. 8A. Based on the area covered by scattered

MDA468 cells (total area minus initial spheroid area),

TAM-like THP1 promoted cancer cell migration by

approximately 60% compared to Ctr THP1 (Fig. 8B).

In summary, we have demonstrated that in the pres-

ence of extracellular S100A4, basal-like BCCs, com-

pared to luminal BCCs, present a richer cocktail of

cytokines/secreted factors that educate monocytes into

macrophages with TAM features (Fig. 9). Such

educated TAM-like cells equip cancer cells with more

aggressive phenotypic/functional characteristics – mes-

enchymal traits, higher proliferation, higher chemoresis-

tance, and enhanced motility – typical characteristics of

basal-like BC.

4. Discussion

Chronic inflammation is an important hallmark of

cancer, and interactions between tumor cells and the

inflammatory environment represent an attractive

therapeutic target. In this study, we revealed a protu-

morigenic cascade of interactions between BCCs and

myeloid cells, which was triggered by the microenvi-

ronmental factor S100A4. Such a mechanism is in line

with observations from BC tumors, showing an associ-

ation between elevated levels of S100A4 and abun-

dance of both stroma and immune cells, including

macrophages. This suggests that (a) S100A4 is primar-

ily present in the TME and acts on BCCs as an extra-

cellular factor and (b) S100A4 plays a role in

recruiting immune/inflammatory cells to the tumors.

We documented that extracellular S100A4 stimulates

BCCs to release a variety of pro-inflammatory cytokines

and other ‘messengers’ of immune interactions. Impor-

tantly, cancer cells from the aggressive basal-like sub-

type were the most potent cytokine producers. Among

the most abundant cytokines, we identified IL-8, IL-6,

CXCL10, CCL2, and CCL5. This is in concordance

with the observations in patient biopsies, where these

cytokines were expressed at elevated levels in basal-like

tumors compared to the luminal tumors. As these

cytokines are associated with poor prognosis and cancer

progression (Benoy et al., 2004; Lv et al., 2013; Salgado

et al., 2003), their abundance in basal-like tumors may

be linked to the aggressive behavior of this subtype. In

the current study, we pursued this idea by studying the

ability of BCC-secreted factors to engage tumor-sup-

portive macrophages. We showed that upon S100A4

stimulation, basal-like BCCs secrete factors that trigger

monocyte-to-macrophage differentiation and polariza-

tion. This is in line with previous studies demonstrating

that basal-like/TNBC, compared to luminal BC, have

superior abilities to recruit macrophages (Espinoza

et al., 2016; Sousa et al., 2015), modulate their polariza-

tion, and stimulate protumorigenic functions (Hollmen

et al., 2015; Sousa et al., 2015; Stewart et al., 2012; Su

et al., 2014). The current study adds to the previous

knowledge by revealing a strong potentiating influence

of S100A4, which is expressed at elevated levels in

basal-like/TNBC as also reported previously (Egeland

et al., 2017). Furthermore, TNBC shows elevated

expression of TLR4 and RAGE receptors (Mehmeti
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et al., 2015; Nasser et al., 2015), which have been linked

to S100A4-trigged cytokine induction (Cerezo et al.,

2014; Haase-Kohn et al., 2011).

It should be mentioned that we have not pinpointed

specific factors released by S100A4-activated BCCs that

were responsible for the effects on myeloid cells. IL-4,

IL-10, and IL-13 – the known inducers of M2 macro-

phages – are unlikely to be implicated as their levels

were low (not exceeding 7, 70, and 120 pg�mL�1, respec-

tively) despite S100A4 stimulation. The levels of GM-

CSF, found by Su et al. (2014) to mediate BCCs effects

on macrophages, were also negligible in the majority of

the examined BCC models, although 42 pg�mL�1 was

detected in S100A4-activated MDA468. This concentra-

tion, however, was lower than the concentration used to

induce M2 macrophages in Su’s study (Su et al., 2014).
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CCL2 and CCL5, on the other hand, were present in

abundance and could mediate the effects on myeloid

cells. These cytokines are primarily linked to monocyte

recruitment and are known to be able to elevate TAM

levels in tumors (Soria and Ben-Baruch, 2008). Their

role in modulating macrophage phenotype/functions is

less clarified, although it has been demonstrated that

CCL5 can promote prometastatic phenotype of TAMs

(Frankenberger et al., 2015).

The ability of S100A4-activated basal-like BCCs to

promote tumor-supportive phenotype in macrophages

has been verified by functional characterization of CM-

S100A4-educated THP1, denoted TAM-like THP1.

Thus, we demonstrated that such TAM-like THP1 pro-

duced elevated levels of protumorigenic cytokines,

including the mentioned IL-8, IL-6, CXCL10, CCL2,

and CCL5. Thereby, BC-educated macrophages could

function as amplifiers of cytokine production. This

observation is in concordance with previous reports

from TNBC, where it was shown that tumor-infiltrating

immune cells contribute to the total pool of tumor
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cytokines (Espinoza et al., 2016). Interestingly, Picon-

Ruiz et al. (2016) identified the same five cytokines to be

upregulated in BC-educated adipocytes and showed

their protumorigenic influence. Next, we demonstrated

that TAM-like THP1 cells promoted a more aggressive

phenotype in BCCs. The morphological, molecular, and

functional alterations observed in cancer cells suggest

induction of EMT. The most prominent effect was on

their migratory capacity, proposing a potentiating role

of the S100A4–BCC–TAM cascade in metastasis. Su

et al. (2014) also reported acquisition of EMT traits and

enhanced metastasis upon interaction with BC-educated

macrophages. We have also observed reduced sensitivity

to the chemotherapeutic agent carboplatin in the pres-

ence of TAM-like THP1. The potentiated chemoresis-

tance might be associated with the induced EMT.

Recently, we have documented such an association in

malignant melanoma, which, upon interaction with

stromal cells, switched to the mesenchymal phenotype

and, simultaneously, became resistant to therapy (Seip

et al., 2016). There could also be other, EMT-indepen-

dent mechanisms causing TAM-like cells to facilitate

chemoresistance. For example, TAM-produced cytoki-

nes have been shown to stimulate survival signaling

pathways in cancer cells and thereby attenuate sensitiv-

ity to therapy (Yang et al., 2015).

Here, we focused on myeloid cells as interaction part-

ners of S100A4-activated BCCs, but other immune cells

can possibly be engaged through a similar S100A4-trig-

gered cascade. We did observe a correlation between

S100A4 levels and infiltration of not only macrophages,

but also other immune cells, for example, T cells. This is

in line with Grum-Schwensen et al. (2010), who demon-

strated that extracellular S100A4 was involved in

recruiting T lymphocytes and making them release

cytokines, which, altogether, stimulated metastasis.

Thus, S100A4-rich tumors, like basal-like BC, might pos-

sess advantageous mechanisms for engaging immune/in-

flammatory cells with protumorigenic activity.

5. Conclusions

We have shown that the prometastatic microenviron-

mental factor S100A4 stimulates basal-like BCCs to

secrete factors/cytokines that convert monocytes into

TAM-like cells demonstrating tumor-supporting func-

tions. The S100A4–BCC–TAM interaction cascade can

potentiate both metastatic abilities and drug resistance

and could be an important contributor to the aggres-

sive behavior of basal-like BC. Inhibition of such cas-

cade should be explored for therapeutic intervention.
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