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ABSTRACT

In this paper, we further analyse the problem that polarimetric
target decomposition methods in general have more physical
parameters than equations, making the decomposition under-
determined and hence have no unique solution. The com-
mon approach to get around this problem is to make certain
assumptions, thus fixing one or more parameters, allowing
the other free parameters to be solved from the set of expres-
sions. We recently showed how to obtain additional infor-
mation from fourth-order statistics to find a unique solution
to model-based polarimetric decompositions ([1]). We pre-
viously showed a fourth-order unique solution that was valid
only for Gaussian data, and indicated that non-Gaussian data
led to an over-estimation in many of the parameters. This
work describes our new method to obtain a generic textured
data solution through an optimisation approach and presents
preliminary results for a sea ice specific model.

Index Terms— Polarimetric Decomposition, Product
Model, Scattering mechanisms, Statistics, Optimisation, Sea
ice

1. INTRODUCTION

The backscatter of SAR signals from Arctic sea ice, and many
other rough surfaces, is thought to be caused by a combina-
tion of several scattering mechanisms, in general categorised
as surface scattering, volume scattering, and double bounce
scattering. SAR polarimetry has the capability of decompos-
ing the signals into components representing these specific
mechanisms. One class of polarimetric decomposition the-
orems is denoted model-based decompositions, in which, a
physical model is connected to the various scattering mech-
anisms. The Freeman-Durden three-component model [2] is
a well-known example of a model-based decomposition al-
gorithm, where a specific parameterised model is associated
with the covariance matrix of each of the above-mentioned
components. There is experimental evidence that electromag-
netic backscatter from sea ice in some cases has a high degree
of depolarisation. Depolarisation is in some decomposition
models mostly attributed to volume scattering. However, for
sea ice backscattering it is anticipated that depolarisation can

also be caused by surface effects related to rough and highly
deformed ice, as well as by volume type scattering from brine
inclusions and inhomogeneities inside the ice column.

Previous analysis of polarimetric decompositions of sea
ice scenes using existing algorithms show that the power of
the double bounce component often is an order of magnitude
below the contribution from surface and volume scattering,
and that high double bounce is restricted to isolated features
[3]. Hence, we will in this study explore model-based polari-
metric decomposition using a model which consists of only
two terms; a surface scattering component and a volume scat-
tering component. The surface component is to be described
by the extended Bragg (X-Bragg) model [4]], which can also
predict surface based depolarisation. The volume component
is modelled as an azimuth symmetric scattering mechanism,
consisting of randomly oriented scatterers, geometrically cat-
egorised with a single shape parameter. In total, the model for
the polarimetric coherence matrix has 6 unknowns, but only 5
independent equations to solve for the parameters. Hence, the
system is underdetermined like many decomposition models.

In [1]] we explored how higher-order statistical moments
can add information, and be used to obtain a determined set
of equations. We have found that considering statistical com-
ponent mixtures leads to the same decomposition equations
for the second-order covariance or coherency matrices, and
importantly gives extra unique equations for the fourth-order
marginals that can be combined to find a unique solution.
In addition, the fourth-order expressions are quite generic,
add only one additional texture parameter, and are found
in terms of the second-order elements that fully define the
Gaussian speckle scattering distributions. We have previ-
ously only shown a solution for purely Gaussian scattering
coefficients and demonstrated that radar texture would lead
to over-estimates of many of the parameters. In addition
the estimation did not consider any random variation due
the speckle, and assumed that the covariance estimate was
perfect. We attempt to remedy these weaknesses here.

We will recap the theoretical aspects of our methodology,
detail the new optimisation approach, and show results of pre-
liminary studies based on simulated and real data.
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2. BASIC METHOD

Traditional Decompositions model the covariance or co-
herency matrix as a mixture of contributions

C= ZPJCJ or

where P; represents the power in each component and C j or
’i‘j are SPAN normalised covariance or coherency matrices
for each scattering model. For example, the Freeman-Durden
3-component decomposition [2] has single-bounce, double-
bounce and volume components. Under such modelling the
P;s are independent variables in the solution.

It is equivalent to convert to power fractions, such that
f; = P;j/SPAN or P; = f; SPAN, and there are still N,
independent variables, SPAN plus (N, — 1) fractions due to
the constraint Z;\fz‘l fi=1

Thinking about decompositions as mixing fractions leads
to a statistical interpretation as a probabilistic mixture with
the implication that we may carry this mixture modelling
down to the scattering vector level (s or k) as, for example,

N.
pe(k) = fipi(k) (D
j=1

Furthermore, we consider the scalar product model for
texture, such that

k=7 X; X~Ng0,Tj) and E{7;} = 1.

Consequently, the second-order statistics are exactly the de-
composition as before, since E{7;} = 1,

Nc
T =) f;SPANT,;

j=1

and it follows that the fourth-order statistic in each channel is

N
Ef{lki|*} =) f; 2 E{7}} SPAN* T} ; 2

j=1

where Tj; ; is the i diagonal elements of the j™ model ma-
trix, and for the moment we take all E{sz}s as equal.

These are unique equations and valid for any scattering
component models. Note that if we assume no texture, i.e.,
Gaussian vectors, then E{77} = 1.

3. AN EXAMPLE DECOMPOSITION

We shall explore the two component X-Bragg model for sea
ice that we have introduced before [3]], which was previously
used for soil moisture applications in [4]. The second-order

coherency model has six parameters (fs, SPAN, 4, and p real,
plus 8 complex), but only five equations (3 real diagonals,
plus one complex off-diagonal). The physical parameters
have been described previously in [4} [1]. We extend these
equations with our fourth-order expressions and the full set
of equations for the decomposition are listed thus:

The second-order expressions

<T1;> = f. SPAN ﬁ + (1=fs) SPAN gf;};

<Tys> = f. SPAN % + (1=f,) SPAN E;:g
<Ts5> = f, SPAN % + (1—fs) SPAN E;:Z;
<T12> = fs SPAN %

The fourth-order expressions

| a0 [“*”)]2)

<k®> =2 E{r?} SPANQ(fS [

a+187) (3=0)
Do _ g g2y span( [ 1B sine@o)]* L T(=p)]
<ha'> =2 B{T7} SPAN (f[ 20+ 1317) } +@ fﬁ)[(:&—p)}
Do _ g g2y span?(f, | 1BP L= sine@o) ]* L TA-p)]?
ks> =2B{7"} SPAN (Jc{ 2+ 1817) } S f”[(s—p)}

If we take the simple case with Gaussian component scat-
tering vectors and assume that each multi-look coherency ma-
trix estimate has no speckle variation, then the equations can
be solved analytically and are very fast to evaluate. To demon-
strate this example we choose a large number of looks to avoid
too much variation, and we expect that the analytical solution
will possibly produce the occasional invalid solution.

4. OPTIMISATION APPROACH

The more general case has unknown radar texture, i.e., non-
unity E{7?}, and should account for some speckle variation.
We suggest that it may be solved with a non-linear error func-
tion minimisation routine.

Our optimisation approach is to empirically build a cost
function based on the total squared error from each of the rel-
evant coherency matrix elements and fourth-order moments,
essentially an error for each equation. Since the equations
are essentially matching the estimated values at the pixel with
the parametric expressions for each element, then a simple er-
ror is the difference between observed element and the model
values. This gives four error terms for the coherency ma-
trix equations three for the fourth-order expressions. Since
the fourth-order expressions need a value for the unknown
E{72%}, we could include it as an additional optimisation pa-
rameter, or use the three ratios of fourth-order terms such that
the texture parameter cancels away. We have implemented
the latter approach here for simplicity, although the texture
estimate itself could also be interesting to interpret.

Finally, the different elements and orders may have
hugely different scales and may lead to the largest element’s
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(f) Real sea ice image, Radarsat-2, general non-Gaussian optimised solution

Fig. 1. Preliminary results for the simulated test-pattern under different test conditions. The colour scale is fixed for all plots
to give an immediate visual validation, and the columns represent different physical parameters. The sub-captions list the
generated data type and the solution method. There are two plots with Gaussian generated data, and two with non-Gaussian
data. We can see that the new optimisation approach improves the robustness through the speckle variation, and achieves the
correct solution for the non-Gaussian case. The final plot is for a real sea ice scene and generally shows the expected behaviour.



error dominating the total error function and would lead
to some equations being essentially ignored. Hence, we
have tried to normalise the error terms such that each error
is approximately equal, and hence all the equation should
have a balanced influence on the solution. We currently use
an empirical approach, where the element sample variance
is calculated from a local window, but we hope in the fu-
ture to determine theoretical variance estimates under the
model assumptions. In addition we have applied some simple
square-root transforms to make the error terms more sym-
metric and presumably more robust, and these were verified
experimentally from the local histograms. This approach
seems to achieve good results the simulated data verification.

5. PRELIMINARY RESULTS

We use our previous coherency matrix blocked test-pattern,
with different parameter values within the valid range of pa-
rameter values for sea ice and ocean properties. We generated
data for each block of 200 x 200 pixels for this simulated test-
pattern by a ‘hard’ probabilistic mixture model for the scat-
tering vectors under the mixture model in equation (I). We
then used a large number of looks, for example 50 x 50, to
suppress the speckle variation and to get the right mixtures,
on average, for the multi-look coherency matrix image, under
our modelling assumptions. The fourth-order moments were
calculated from the SLC scattering vectors for each dimen-
sion within each multi-look window. Finally, we use the var-
ious algorithms to try to recover the parameters and compare
to the original generated values.

The results for this test-pattern are shown in Fig.[I] (a) to
(e). The first row (a) shows five of the generated parameters
(fs» fv, 9, pand |3]), and can be visualised as the colour refer-
ence for the quality of the results since we keep all the colour
scales fixed. Row (b) shows the previous results for Gaus-
sian data using the fourth-order equations with the Gaussian
analytical solution. We see the occasional random solution,
which we expect is due to not accounting for the speckle
induced error in the solution. Row (c) clearly demonstrates
that new optimisation approach produces smoother results
than the analytical solution. So far, all the generated data
was Gaussian, so we next generated non-Gaussian compo-
nents, with an K-distribution with moderate texture (o« = 10).
Row (d) shows that non-Gaussian data produces incorrect
estimates for the parameters when using the Gaussian-only
analytical solution, while row (e) shows the new general re-
sult for non-Gaussain data with the non-Gaussian (textured)
model via the new numerical optimisation approach. This
recovers the original colours (and hence parameters) and may
be used for general real POISAR scenes.

The final experiment in Fig. |1|(f), is with real sea ice data
from a Radarsat-2 scene of the Fram strait from September
2011. The scene depicts some open water, some smooth level
ice, some rough deformed ice areas, and some ridges. In-

terpreting the five physical parameter images, we can clearly
see that many known physical relations are correctly mod-
elled, such as water dominated by surface scattering, low ¢
and higher | B|, although the true values are unknown for this
scene and cannot be validated.

6. CONCLUSIONS

This work presents a new optimisation approach to solve
the decomposition parameters through the second-order and
fourth-order expressions. This work extends the previous
work that showed that the fourth-order terms determines a
unique solution and finds a generic non-Gaussian, or tex-
tured, data solution via cost function optimisation. The op-
timisation approach solves two limitations: it now partially
accounts for speckle variation; and it produces results for the
non-Gaussian case that we could not solve analytically. This
is only the preliminary results, but it already looks promising.

The results clearly demonstrate that the minimisation re-
duces some of the invalid solutions due to the speckle varia-
tion, and that the over-estimation is removed when analysing
non-Gaussian, textured, data. The modelling appears to give
realistic results for a real sea ice data-set, but has not yet been
validated to the actual dielectric parameters, or correlated to
the helicopter-borne surface roughness measurements.

The derived high-order statistical expressions are found
to be independent of the actual physical model, and relate
back to the second-order covariance or coherency matrices
only. Hence, we believe that this approach should add value
to all underdetermined decomposition schemes and this shall
be tested in the future.
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