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Abstract 

It is proposed that osteocytes embedded in the bone matrix have the ability to sense 

deformation and/or damage to the matrix and to feed these mechanical signals back to the 

adaptive bone remodeling process. When osteoblasts differentiate into osteocytes during the 

bone formation process, they change their morphology to a stellate form with many slender 

processes. This characteristic cell shape may underlie the differences in mechanosensitivity 

between the cell processes and cell body. To elucidate the mechanism of cellular response to 

mechanical stimulus in osteocytes, we investigated the site-dependent response to 

quantitatively controlled local mechanical stimulus in single osteocytes isolated from chick 

embryos, using the technique of calcium imaging. A mechanical stimulus was applied to a 

single osteocyte using a glass microneedle targeting a microparticle adhered to the cell 

membrane by modification with a monoclonal antibody OB7.3. Application of the local 

deformation induced calcium transients in the vicinity of the stimulated point and caused 

diffusive wave propagation of the calcium transient to the entire intracellular region. The rate 

of cell response to the stimulus was higher when applied to the cell processes than when 

applied to the cell body. In addition, a large deformation was necessary at the cell body to 

induce calcium transients, whereas a relatively small deformation was sufficient at the cell 

processes, suggesting that the mechanosensitivity of the cell processes was higher than that of 

the cell body. These results suggest that the cell shape with slender processes contributes to 

the site-dependent mechanosensitivity in osteocytes. 

 

Keywords: Osteocytes, Bone cells, Calcium signaling response, Mechanical stimulus, 

Mechanotransduction, Cell biomechanics 
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Introduction 

Osteocytes are differentiated from osteoblasts, and become enveloped during the bone 

formation process in adaptive remodeling (Parfitt. 1994). In this process, they change their 

morphology into a stellate form that consists of a cell body with a nucleus and many slender 

processes, constructing intercellular networks with surrounding cells within the bone matrix 

as well as on the bone surface (Kamioka, et al. 2001). This broad bone-cell-network is 

believed to play a significant role in the functional adaptation to mechanical loading of the 

bone. In this network, the osteocytes are thought to be the major cells responsible for sensing 

mechanical stimulus (stress/strain) and sending out signals that coordinate the adaptive 

remodeling response (Burger and Klein-Nulend. 1999). 

Although the character of the mechanical signal that acts on osteocytes as a result of 

bone loading is still unknown, several potential stimuli affecting osteocyte function are 

proposed, such as hydrostatic pressure, fluid flow induced shear stress, bone tissue strain, and 

localized mechanical stimulation by poking (Burger and Klein-Nulend. 1999; Klein-Nulend, 

et al. 1995; Miyauchi, et al. 2000; Vatsa, et al. 2006; Weinbaum, et al. 1994). In the bone 

matrix, the mechanical stimulus sensed by the osteocytes could be affected by the 

complicated mechanical environment associated with their characteristic morphology and 

internal structures. For example, focal adhesion complexes, connecting intracellular actin 

filaments with transmembrane integrin receptors, are localized at the proximal base of the 

osteocytic processes (Kamioka, et al. 2006). This localization may cause concentration of 

deformation/strain of the osteocytic membrane (Wang, et al. 2007), when the drag force 

acting on the pericellular matrix caused by fluid flow deforms the cell processes. Therefore, it 

is possible that osteocytes have the potential to respond to direct deformation of their 

processes at microscopic levels, however, verification of the site-dependency of the response 

has not been performed. To examine the importance of the osteocyte processes in the response 
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to mechanical stimuli, it is critical to compare the response that arises from the processes and 

from the cell body in single isolated osteocytes. 

One of the earliest events in mechanotransduction is intracellular calcium signaling, 

which acts as a messenger to activate various cellular functions (Ajubi, et al. 1999; Berridge, 

et al. 1998; Chen, et al. 2000; You, et al. 2001). In addition, calcium transients in osteocytes, 

induced by local deformation of the cell membrane, are propagated to the neighboring cells 

(Gu, et al. 2007; Yellowley, et al. 2000), suggesting this as a mechanism of communication 

and synchronization in the intercellular network. Therefore, measurement of mechanically 

induced intracellular calcium transients is thought to be a useful indicator for evaluating the 

short-term mechanosensory response in bone cells. 

In this study, we examined site-dependent calcium transients in single primary 

osteocytes. In particular, calcium transients in response to direct deformation of osteocytic 

processes and of the cell body were examined, in which chick-osteocyte-specific-antibody 

(OB7.3) coated microparticles adhered to the osteocyte surface were employed as a marker 

for identification of the osteocytes and as a target for the quantification of the deformation 

applied to the osteocytes. 

Materials and Methods 

Isolation and culture of osteocytes 

Osteocytes were isolated from 13-day-old embryonic chicken calvariae with 

modification of the method described in Kamioka et al. (2004). To release bone cells from the 

bone matrix, the calvariae were cut into small pieces and shake-incubated, with 1 mg/ml 

collagenase type I, in a bone isolation buffer (Hefley. 1987) for 30 min at 37.5°C. To decalcify 

the bone matrix and to expose collagen fibers with bone cells, the calvariae were incubated 

twice with 0.5 mM EDTA in DPBS containing 0.1% BSA for 15 min each. To enzymatically 
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digest collagen and to release bone cells from the collagen fibers, the decalcified matrix was 

treated again with the collagenase for 30 min at 37.5°C. 

The solution was centrifuged for 5 min at 1200 rpm and the pellet was dispersed in 

α-MEM with 2% FBS and antibiotics. To separate osteocytes from mixed bone cells, the 

suspension was filtered using a membrane filter (Millipore) with a pore size of φ = 10.0 µm, 

and then the medium containing osteocytes were collected. The medium was centrifuged and 

the pellet was dispersed in a 1:1 mixture of 0.5% NaCl and a fresh medium to get rid of the 

cells other than osteocytes. The mixture was diluted with a fresh medium and centrifuged 

again, and the osteocytes were collected. Then, the isolated cells were seeded onto φ = 35 mm 

glass bottom dishes (MatTek), coated with 20 µg/ml poly-D-lysine (Sigma) and 20 µg/ml 

fibronectin (human plasma, Chemicon Int.), at a cell density of 7.5 × 103 to 2.0 × 104 cell/dish. 

After incubation for 1 h, the cells were rinsed with DPBS and incubated again for 15–18 h in 

a fresh medium at 37°C, 100% relative humidity, and 5% CO2 in air. 

Surface treatment of microparticles with antibody for attachment to cell membrane 

Polystyrene microparticles (φ = 1.0 µm, Polysciences) were suspended in 20 µg/ml 

polyethylene glycol for 60 min at 37°C, collected by centrifugation, and then suspended in a 

medium with monoclonal antibody OB7.3 (a kind gift from Jenneke Klein-Nulend and 

Cornelis M. Semeins, ACTA-Vrije University) (diluted to 1:5 in α-MEM) for 30 min. The 

microparticles with the immersion coating of OB7.3 adhered selectively to the cell membrane 

of osteocytes. The OB7.3-coated microparticles were then suspended in a medium with 

calcium fluorescence indicators, as described below, and were incubated for 15 min at 37°C to 

allow the microparticles to adhere to the cell membrane. 

To confirm microparticle coating with OB7.3 and adhesion of the coated 

microparticles to the osteocytes, we observed the microparticles with immunofluorescence 
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labeling of with Alexa Fluor 546 goat anti-mouse IgG. In addition, attachment of the 

microparticles was verified based on field emission scanning electron microscopy (S-4700, 

Hitachi) observations.  

Application of localized deformation 

A localized mechanical stimulus was applied to a single osteocyte using a glass 

microneedle via microparticles attached on the cell membrane, as illustrated in Fig.1. A 

microneedle, with a tip diameter of about φ = 2 µm, was attached to a hydraulic 

micromanipulator (MM-188NE, Narishige), and set up on the microscope stage at an angle of 

40 degrees from the dish plane. To quantitatively apply the mechanical stimulus to the cell, 

the microneedle displacement was controlled using a custom-made apparatus, as described by 

Sato et al. (2007), with a linear slider and a piezoelectric actuator (Physik Instrumente) at a 

constant velocity v = 0.5 µm/s.  

Using phase-contrast microscopy, position was traced and displacement of the 

microparticles δ(t) was determined. A series of images was obtained at 0.25 s intervals, and 

detection of the initial movement of the targeted microparticle was defined as t = 0 s for the 

measurement. 

Calcium imaging 

The concentration of intracellular calcium ions, [Ca2+]i, was evaluated using a 

ratiometric method (Grynkiewicz, et al. 1985). Two fluorescent calcium indicators, 6 µM 

Fluo-4 AM and Fura Red AM (Invitrogen), were loaded into the cells with a solubilizing 

agent, 0.01% Cremophor EL (Sigma-Aldrich), for 15 min at 37°C. Subsequently, the cells 

were rinsed with DPBS, and the medium was replaced with a CO2 independent medium for 

pH stabilization. 

The calcium response was observed using a confocal laser-scanning microscope (LSM 
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510, Carl Zeiss). Both calcium indicators were excited at 488 nm wavelength simultaneously, 

and a band pass filter (green: 505–530 nm) and a long pass filter (red: > 560 nm) were used to 

detect the fluorescence of Fluo-4 (516 nm peak) and Fura Red (599 nm peak), respectively. 

To define a responsive cell, we adopted a criteria based on a previous study (Hung, et 

al. 1995), that is, cells with a transient increase in [Ca2+]i of 1.5 times the baseline value were 

classified as responsive cells. We measured the percentage of cells that were responsive to 

mechanical stimulus applied to the cell body and to cell processes, and compared them by 

performing a Fisher’s exact probability test with a statistical significant level of p < 0.01. In 

addition, we measured the magnitude of mechanical stimulus δres that induced the calcium 

transient, and compared for the cell body and cell processes by performing a student’s t-test 

with a statistical significant level of p < 0.05. 

Results 

Identification of cell phenotype and adhesion of microparticles 

The OB7.3-coated microparticles, via which mechanical stimuli were applied to the 

cell, were also used as a marker of osteocytes. Microparticles, dispersed at a density of 1.8 × 

109 particles/cm3 and washed by DPBS, were found to adhere stably to the cell membrane 

even after washing (Fig.2A). Fluorescent immunolabeling (Fig.2B) of the same cell (Fig.2A) 

confirmed that all observed microparticles were coated with OB7.3. 

Scanning electron microscopic images showed the attachment sites of the 

microparticles to the osteocytes (Fig.2C). The OB7.3-coated microparticles were observed in 

both the cell processes and body, and stably attached to the cell membrane as shown in the 

magnified images in Fig.2C. 

Calcium response to locally applied mechanical stimulus 

Changes in [Ca2+]i in an osteocyte were observed in response to local deformation via 
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a microparticle moved by a microneedle for the cell process (Figs.3A-D) and cell body 

(Figs.3E-H). Microparticles targeted for deformation are shown in superimposed images of 

the transmitted and fluorescent images (Figs.3A and E, white arrow). Pseudo-colored ratio 

images at t = 0 s are shown in Figs.3B and F, and their time-lapse images in Figs.3C and G. 

When the targeted microparticle adhered on the osteocyte process displaced by the 

microneedle (white arrowhead in Fig.3B), a rapid calcium transient was observed in the 

region adjacent to the microparticle. In addition, the calcium transient propagated to the 

whole cell body and even to other cell processes (Fig.3C). Contrary to this, a relatively slow 

response was observed for the cell body (Fig.3G). 

To evaluate the intracellular propagation of the calcium transient, the changes in 

[Ca2+]i from two different rectangular regions, I and II (Figs.3A and E), were examined 

(Figs.3D and H). For the cell process, in the region proximal to the deformed process (I), the 

calcium transient increased rapidly from a baseline at t = 3.75 s, reached maximum at t = 5.75 

s and then declined gradually. In the region distal to the deformed process (II), 10 µm from 

region I, the calcium transient was seen after an additional 0.25 s interval. These results 

indicate that the calcium transient starts from the deformed site and propagates to the whole 

cell body within one second. In comparison with this, for the cell body, the calcium transient 

seemed to propagate (Fig.3G), but it was hard to clearly demonstrate it using the temporal 

resolution of 0.25 s, because of the relatively slow increase in [Ca2+]i (Fig.3H). Despite this 

difference in the response, the peak calcium amplitude was comparable in either the cell 

process or the cell body (data not shown). 

Cells were divided into two groups according to the targeted position of the applied 

stimulus, the cell body or the cell process, and the percentage of cells responding to the 

stimulus in each position was determined (Fig.4). It was found that the percentage of cells 

responding to the applied stimulus was higher in the cell process (40.0%) than in the cell body 
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(8.5%) with a significant difference (p < 0.01) by a Fisher’s exact probability test. 

The amount of mechanical stimulus that caused a calcium transient in response to the 

local deformation of the cell body and cell process is represented as the microparticle 

displacement δres, and is shown in Fig.5. Interestingly, the amount of mechanical stimulus 

needed to elicit a calcium transient was different in the cell body (4.3 ± 0.8 µm) and in the cell 

process. (2.0 ± 0.5 µm), and showed a statistically significant difference (p < 0.05) by t-test. 

These results show that a smaller deformation was enough to elicit a calcium transient at the 

cell processes compared to that required at the cell body, implying that sensitivity to 

mechanical stimulus is higher in the cell processes. 

Discussion 

Osteocytes in the bone matrix are located in cavities called lacunae, and they elongate 

their processes into canaliculi. Therefore, the cell processes and cell body of the osteocyte are 

thought to exist in different mechanical microenvironments, that is, the mechanical stimuli are 

dependent on each specific mechanical microenvironment. However, the site-specific 

mechanical responses in the osteocyte have not been examined. 

We previously reported that there are differences in the actin cytoskeletal structure 

between the cell processes and cell body, and we showed that the osteocyte processes are rich 

in actin filaments with higher elastic modulus than the cell body (Sugawara, et al. 2008; 

Tanaka-Kamioka, et al. 1998). These unique internal structures and the site-dependence of the 

elastic modulus could modulate the sensitivity to direct deformation (Adachi, et al. 2003; Wu, 

et al. 1999). Therefore, in this study, we developed an experimental method to apply a 

quantitative local mechanical stimulus to a single osteocyte and compared site-specific 

calcium responses between the cell processes and cell body. 
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Application of local mechanical stimulus in single primary osteocyte 

In this study, to apply a quantitative local mechanical stimulus to a single osteocyte, 

we developed an experimental system using a microneedle and antibody-coated 

microparticles. A monoclonal antibody, OB7.3, that specifically recognizes transmembrane 

Phex protein of chicken osteocytes (Rowe. 1997; Westbroek, et al. 2002), has been reported to 

be useful for the panning method of osteocyte isolation due to its strong binding to the cell 

membrane (van der Plas and Nijweide. 1992). Therefore, the OB7.3-coated microparticle 

binding enabled us to deform osteocyte membranes indirectly using a microneedle, and to 

quantify the local deformation by measuring the displacement of the microparticle. We have 

found that the similar calcium transient was observed when the cell membrane was deformed 

directly using a tip of the microneedle. However, the tip does not stably stick on the cell 

membrane and often slips relative to the membrane (Adachi, et al. 2008; Sato, et al. 2007). 

Therefore, we utilized microparticles directly adhered to the membrane, by which we could 

have advantage to quantitatively evaluated the deformation.  

Similar stimulation was performed using a microparticle coated by fibronectin, a 

known signal transducing transmembrane molecule. The fibronectin-coated microparticles 

adhered to the osteocytic membrane; however, we rarely observed microparticles spread over 

the cell surface from the processes to the cell body. This inhomogeneous adhesion indicates 

localized distribution of the focal adhesions or different adhesion characteristics for the cell 

processes and cell body. Actually, some microparticles adhere to the peripheral region of the 

cell body and cell processes, but not many on the apical surface of the cell body. Therefore, to 

identify differences in mechanosensitivity of the cell processes and cell body, we needed to 

utilize a technique by which we could attach microparticles on both the cell processes and cell 

body. Monoclonal antibody OB7.3 is known to cover the entire surface of osteocytes 

(Kamioka, et al. 2006), therefore, it is an appropriate tool for our purpose. 



 

11 

We defined the measure of the mechanical stimulus to the osteocytes as the 

microparticle displacement, because we assume that the essential mechanical stimulus is the 

relative perturbation to the cell membrane with respect to a fixed-point support such as focal 

adhesions, as discussed by Bonewald (2006) and Wang et al. (2007). The experimental system 

in this study has been designed based on the hypothesized mechanism as illustrated in Fig.6. 

That is, the mechanical stimulus to the cell processes and cell body is applied to a local point 

and the transmitted force focuses on focal adhesions, to which the mechanosensitive (MS) 

channel is believed to interferes or connects (Hayakawa, et al. 2008), via the internal 

structures such as the cytoskeletal actin structure. 

In this experimental system, the displacement of the microparticle was quantitatively 

applied under piezoelectric control; however, the force could not be measured. A new in vitro 

technique that will enable the measurement of the force at pN level (Wang, et al. 2007) is 

strongly desired in order to better understand the mechanosensitivity in osteocytes. 

Nonetheless, the insight into the difference in response to the mechanical stimulus between 

the cell processes and cell body provides useful and important information as a first step for 

studying not only mechanosensing mechanisms but also the biological implications of the 

stellate cell shape with its slender processes. 

Mechanosensitivity in cell processes and cell body 

Adhesive structures that transmit the microparticle displacement to the internal 

osteocytes in this in vitro study correspond to the adhesive structures in vivo to the canalicular 

wall. Indeed, it was reported that the osteocytes attach to the wall in canaliculi mediated by 

tethering elements (Wang, et al. 2007; You, et al. 2004), and that the focal adhesions are 

distributed at the proximal base of the cell processes and cell body in the bone matrix 

(Kamioka, et al. 2006; Vatsa, et al. 2008). A schematic of the hypothesized mechanosensing 

mechanism via the adhesive structure is illustrated in Fig.6A. When the axial interstitial fluid 
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flow in the canaliculi drags cell processes via tethering elements, the relative displacement 

with respect to the locally fixed adhesive structures generates local reaction forces at the 

canalicular projection, which is transmitted via mediated molecules and actin cytoskeleton, 

and result in the activation of MS channels in the vicinity of the focal adhesions (Han, et al. 

2004; Wang, et al. 2007; You, et al. 2001).  

Similarly, mechanical stimulus-induced calcium transient in this study could be 

understood by the mechanism illustrated in Fig.6B, in which the microparticles correspond to 

the tethering element as depicted in Fig.6A. If a similar mechanical signal transmission to a 

fixed-point support such as integrin through the intracellular structure, the observed calcium 

transient could be understood through the same mechanism, implying that the cell processes 

equip the mechanosensitivity to the local mechanical stimulus via adhesive and internal 

structures. 

Higher sensitivity to the mechanical stimulus in the cell processes than the cell body 

might be due to the differential localization of actin filament (Tanaka-Kamioka, et al. 1998), 

as illustrated in Fig.6C. This implies that the force transmission from the displaced 

microparticle with concentrated deformation (Adachi, et al. 2008; Sato, et al. 2007) to the 

fixed point plays a pivotal role. Here, we should emphasizes that this stress/strain 

concentration might also be involved in the amplification of the mechanosensing mechanism 

of the osteocytes, which can be an additional factor affecting the strain amplification 

mechanism (Wang, et al. 2007). 

In contrast with fluid shear stress experiments on the osteocytes (Reilly, et al. 2003; 

You, et al. 2000), the method developed in this study applies mechanical stimulus under 

displacement-controlled condition. One of the limitations of this study is that we still cannot 

clearly understand in vivo mechanical conditions of the osteocytes to reflect to the in vitro 

experiment, such as forces acting on the cell and their corresponding displacements, which 
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may greatly differ from the in vitro experimental conditions due to the complex 

lacuno-canalicular geometry and the distribution of focal adhesions. Therefore, considering 

the displacement-controlled experiment as one of limit cases for the mechanical conditions, 

understanding of the response to direct deformation of the osteocytes would be useful to gain 

further insights into their mechanosensing mechanism. 
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Figure Legends 
 

Figure 1 

Schematic of mechanical stimulus application to an osteocyte. Local mechanical stimulus was 

applied using a glass microneedle via a microparticle attached to an osteocytic cell membrane 

whose surface was treated with a monoclonal antibody OB7.3. A linear slider and a 

piezoelectric actuator were utilized to control the microneedle displacement horizontally and 

were moved at a constant velocity (0.5 µm/s) as indicated by an arrow. We defined the time t 

= 0 s as the initial movement of the targeted microparticle, and the displacement δ of the 

microparticle was measured as the amount of the mechanical stimulus applied to the 

osteocytes. 

 

Figure 2 

An isolated osteocyte with a microparticle attached on the cell membrane. (A) and (B): 

Surface coating of microparticles with OB7.3 was confirmed using anti-mouse goat IgG 

antibody labeled with Alexa Fluor 546. All of the microparticles on the cell surface in the 

transmitted image (A) were labeled with indirect immunofluorescence in image (B). Bar = 10 

µm. (C): FE-SEM images of an osteocyte with microparticles, taken at a tilted angle of 45°. 

Two images in the right are magnified views of the left image around attached microparticles. 

The OB7.3-coated microparticles were attached to both the cell body and cell processes. Bar 

= 10 µm (left) and 2 µm (both right). 

 

Figure 3 

Calcium response induced by application of local mechanical stimulus when the stimulus was 

applied to the cell process (A-D) and the cell body (E-H). (A, E): Superimposed images of 

transmitted and fluorescent images. The microparticles displaced by the microneedle are 
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indicated by white arrows. To measure the intracellular calcium propagation, the fluorescence 

ratios of two fluorescent indicators (RF4/FR) corresponding to [Ca2+]i, normalized by their 

initial values, were measured in two different square regions, Regions I and II. Bar = 10 µm. 

(B, F): Fluorescence ratio images at t = 0 s displayed using pseudo-color. Positions of the tip 

of the microneedle are indicated by arrowheads. (C, G): Time-lapse images from t = 

3.00–4.25 s for the cell process, and those from t = 7.00–8.25 s for the cell body. Positions of 

tip of the microneedles at that time are indicated by arrowheads. (D, H): Time courses of 

change in fluorescence ratio, measured in the Regions I and II displayed in (A, E), were 

obtained every 0.25 s. For the cell process, a rapid transient increase in the ratio was observed, 

and the intracellular propagation of the calcium response was clearly observed by the delay in 

the increase in the ratio in Region II from Region I; whereas a relatively slow increase in the 

ratio was observed for the cell body. 

 

Figure 4 

Percentage of cells responding to local deformation in the cell populations in which the 

microparticles were successfully displaced by the microneedle. Cells were divided into two 

groups by the targeted position of the applied stimulus. The percentage of responsive cells 

when the cell process was stimulated was higher compared to that when the cell body was 

stimulated. (Fisher’s exact probability test **: p < 0.01) 

 

Figure 5 

Stimulus that induces calcium transient. Microparticle displacement δres required to cause 

calcium transient was recorded for every responsive cell. Values are expressed as the Mean ± 

SE for responsive cells in each group. A smaller deformation was sufficient at the cell 

processes to induce a calcium response compared to that at the cell body. (t-test *: p < 0.05). 
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Figure 6 

Mechanosensing mechanism in osteocytes hypothesized in this study. (A): In canaliculi, 

osteocyte cell processes are anchored by tethering transverse elements that span the entire 

pericellular space from the cell membrane to the canalicular wall (You, et al. 2004), and they 

are presumed to attach directly to canalicular projections via focal adhesion molecules (Wang, 

et al. 2007). Interstitial fluid flow generated by mechanical loading causes a relative 

perturbation between the cell process membrane and the canalicular wall, followed by a local 

mechanical stimulus input via adhesion molecules. The induced mechanical stimulus is 

transmitted to adhesion molecules such as integrins through the internal structures such as 

actin filaments, and activates MS channels in the vicinity of integrin, which results in calcium 

transient. (B): A mechanism of calcium transient induced in our in vitro experiment. 

Displacement of an OB7.3 coated microparticle applies a local mechanical stimulus input to 

Phex protein on the cell surface. The mechanical stimulus is transmitted and focused to the 

focal attachment via intracellular structures such as the actin filament. (C): Application of a 

local mechanical stimulus to the osteocyte cell process and cell body in vitro. Difference in 

distance between stimulated and fixed points and in their stiffness could contribute to the 

different mechanosensitivity. 

 

(Bonewald. 2006) 
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