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Seasonal difference in temporal 
transferability of an ecological 
model: near-term predictions of 
lemming outbreak abundances
Eivind Flittie Kleiven, John-André Henden  , Rolf Anker Ims & Nigel Gilles Yoccoz

Ecological models have been criticized for a lack of validation of their temporal transferability. Here we 
answer this call by investigating the temporal transferability of a dynamic state-space model developed 
to estimate season-dependent biotic and climatic predictors of spatial variability in outbreak abundance 
of the Norwegian lemming. Modelled summer and winter dynamics parametrized by spatial trapping 
data from one cyclic outbreak were validated with data from a subsequent outbreak. There was a 
distinct difference in model transferability between seasons. Summer dynamics had good temporal 
transferability, displaying ecological models’ potential to be temporally transferable. However, the 
winter dynamics transferred poorly. This discrepancy is likely due to a temporal inconsistency in the 
ability of the climate predictor (i.e. elevation) to reflect the winter conditions affecting lemmings both 
directly and indirectly. We conclude that there is an urgent need for data and models that yield better 
predictions of winter processes, in particular in face of the expected rapid climate change in the Arctic.

Worries about the consequences of global environmental change have sparked calls for making ecology a more 
predictive science by increasing ecological models transferability in time and space1–5. While some studies still 
convey a pessimistic view on ecological models’ ability to predict complex ecosystem dynamics6–8, more opti-
mistic views are emerging9,10. Hence, investigation of model transferability should be a priority in ecology3,11–14. 
Dietze et al.13 have just proposed that iterative cycles of near-term forecasting and validation (i.e. checks of model 
transferability) should be a systematic activity in ecological research - even in the initial stages of research and 
monitoring programs. A similar scheme (“adapting modeling”) has been proposed by Urban et al.5.

While most of the early ecological transferability literature has focused mainly on the predictive ability of 
abiotic environmental factors15, there is now an increasing understanding of the importance of including biotic 
mechanisms to improve forecasting ability16–18. Indeed, there is a growing body of both theoretical19,20 and empir-
ical evidence16,21 for the importance of including biological interactions. The complexity of biotic interactions has 
been proposed to be one of the main challenges in forecasting ecosystem states22,23. Therefore, gaining knowledge 
about biotic interactions as basis for including them in predictive models has become an increasingly important 
issue. While a few case studies have investigated the transferability of models containing both biotic and abiotic 
predictor variables24,25, such validation studies are still few, in particular, for model projections that involve space 
for time substitution26.

Arctic ecosystems have been proposed to be a good starting point to investigate the temporal variability 
caused by biotic interactions due to their simplicity, i.e. low species diversity and relatively few biotic interac-
tions16. A particularly promising case could be the trophic interactions in tundra ecosystems centered on the 
cyclic outbreak dynamics of lemming populations. These interactions have historically received much attention 
due to their general lesson for ecological theory and their key ecosystem functions27–29. An important attribute 
concerning the ecological functioning of the lemming cycle is the outbreak amplitude; i.e. the abundance of 
lemmings during peak phase of the outbreak cycle30,31. Lemming cycles exhibit considerable spatial and temporal 
variability in outbreak amplitude presumably due to the combined action of both abiotic (e.g. climatic) and biotic 
(intra - and interspecific density dependence) factors32. Two previous studies have shown that statistical models 
that both include abiotic and biotic factors predict quite well variation in outbreak amplitude of the Norwegian 
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lemming (Lemmus lemmus) - either across space within a single outbreak33 or across several outbreaks for a sin-
gle locality34. Here we investigate to what extent a model based on abiotic (elevation as a proxy for local climate) 
and biotic predictors (intra – and interspecific density dependence) of lemming outbreak abundances in space 
(i.e. Ims et al.33) has temporal transferability. Specifically, we do this by assessing the ability of a season-specific 
state-space model, parameterized by spatial data from one outbreak cycle to predict outbreak amplitudes in the 
subsequent cycle. By doing so we apply the framework of near-term forecasting of Dietze et al.13 to advance our 
knowledge about what causes variability in lemming outbreak abundance.

Results
Overall characteristics of the abundance dynamics. Comparing the two consecutive cyclic peaks, 
there were some differences in estimated abundances (Table 1). While estimated lemming abundances were sim-
ilar in the two peak springs, the spatial variability in spring densities (cf. CV values in Table 1) was substantially 
larger in 2007 than in 2011. Moreover, the growth of the lemming population over the peak summer was higher in 
2007 than in 2011 (Table 1), leading to 40% higher estimated autumn abundance in the first peak compared to the 
second peak. For the grey-sided vole that co-occur with the lemming in our study region, the estimated pre-peak 
autumn abundances were similar between the two peaks, while the estimated spring abundance was somewhat 
higher in the second compared to the first peak (Table 1).

Predictors of lemming peak abundances. The estimated coefficients of the fitted models for each of the 
two lemming peaks are given in Table 2. Lemming abundances were generally negatively affected by intra-specific 
density dependence. The elevation effect was consistently positive for the autumn abundances (i.e. increasing 
abundance with elevation). A positive effect of elevation was also found in the spring of the first peak, while there 
was no such over-winter effect during the second peak. Considering the interaction between the rodent species 
(inter-specific density dependence), there was a tendency for a positive effect of grey-sided vole autumn abun-
dance on lemming spring abundance in the first peak, while we found no such effect in the second peak (credible 
intervals encompassed 0 with good margins; Table 2). The estimates for a grey-sided vole effects on autumn 
lemming abundance were smaller and less certain (credible intervals encompassed 0 with good margins; Table 2) 
in both peaks.

Transferability. The temporally consistent parameter estimates of the autumn dynamics in both peaks con-
tributed to a relatively good ability of the estimated autumn dynamics in 2007 to predict the site-specific autumn 
lemming abundances for 2011 (Fig. 2). The mean absolute error (MAE) was 0.55 individual per site for this model 
and there was no apparent bias (Fig. 2). In contrast, the spring part of the model parameterized by data from the 
first peak (2007) performed poorly in terms of its temporal transferability to the spring of the next peak (2011); 
as could be expected from the inconsistent estimates of the spring dynamics in the two peaks (Table 2). The MAE 
for the spring predictions was 0.70 individual per site and a strong bias was evident (Fig. 2). The MAE values have 
to be seen relative to the mean season specific abundance, which is more than 3 times higher in autumn than in 
spring. Therefore, the calculated MAE values show a clear difference in model transferability.

Year Season

Grey-sided vole Lemming

λvole (sd) CV λlem (sd) CV

2006 Autumn 2.84 (2.49) 0.88 0.31 (0.65) 2.07

2007 Spring 0.70 (0.66) 0.94 0.47 (0.69) 1.48

2007 Autumn 3.41 (2.61) 0.77 2.16 (1.56) 0.72

2010 Autumn 2.51 (2.29) 0.92 0.35 (0.58) 1.67

2011 Spring 1.41 (1.17) 0.83 0.45 (0.14) 0.32

2011 Autumn 4.93 (4.22) 0.86 1.53 (0.99) 0.65

Table 1. Estimates of grey-side vole and lemming abundance for the different seasons and years. These 
abundances estimates are given as means and standard deviation (σ) of the posterior means (λ). Coefficient of 
variation (CV) quantifies the amount of spatial variability in abundances ( = σ

µ
CV ).

Peak Season

Inter-specific 
density 
dependence βdvole CI

Elevation 
βalti CI

Intra-specific density 
dependence (βdlem − 1) CI

2006/2007
Spring 0.267 [−0.270: 0.824] 0.845 [0.307: 1.439] −0.999 [−1.143: −0.810]

Autumn 0.100 [−0.227: 0.431] 0.528 [0.201: 0.857] −0.909 [−1.162: −0.607]

2010/2011
Spring −0.085 [−0.492: 0.254] −0.134 [−0.477: 0.179] −0.994 [−1.057: −0.812]

Autumn −0.090 [−0.407: 0.239] 0.390 [0.065: 0.795] −0.350 [−1.624: 1.535]

Table 2. Parameter estimates from the state-space model of season- and cyclic peak-specific lemming 
abundances, given as mean of the posterior distribution and 95% Bayesian credible intervals (CI). One unit of 
the scaled elevation predictor is equivalent to 86 meter.
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Discussion
We investigated the temporal transferability of a dynamical state-space model that was developed to identify 
season-specific biotic and abiotic predictors of cyclic lemming outbreaks. Based on spatial data from one lemming 
outbreak, Ims et al.33 found that a relatively simple model (i.e. with intra - and interspecific-density dependence 
and elevation as predictors) explained well the spatial variation in outbreak abundances. However, our results 
show that the temporal transferability of the model with respect to the subsequent cyclic lemming outbreak was 
only partial. That is, the model part projecting autumn abundances (i.e. reflecting population change over the 
summer) exhibited good transferability, whereas the model part predicting spring abundances (i.e. reflecting 
population change over the winter) performed poorly.

Previous studies have claimed that highly detailed knowledge about a modest number of interactions would 
be most beneficial regarding model transferability35. Indeed, our state-space model included few biotic interac-
tions – i.e. only direct inter- and intra-specific density dependence – yet it appeared to be temporally transferable 
with respect to predicting population changes over lemming outbreak summers. This means that both the data 
(site-specific rodent abundance data and elevation) and the model appears adequate for near-term forecasting of 
lemming outbreak abundances in the autumn. However, the forecast of lemming spring abundances performed 
poorly, meaning that the data/model used for this purpose did not prove to be adequate/transferable.

This seasonal difference in the degree of model transferability is interesting. Arctic ecosystems are known to 
experience high temporal environmental variability both within (i.e. seasonality) and between years36,37. However, 
climatic variation between summers are known to be lower than between winters, in particular for the Atlantic 
sector of the Arctic36. Especially, large inter-annual differences in qualitative snow characteristics, towards which 
lemmings exhibit high sensitivity34, adds significantly to the winter variability. In particular, mild winters increase 
the hardness and humidity of the snow that impact lemming survival negatively34. Thus it appears that detailed 
temporal data and understanding of the impact of winter must be incorporated in models to provide temporally 
consistent predictions. Kausrud et al.34 did this with good result when they projected lemming dynamics for a 
single site. In the present study we attempted to make projection across a large number of sites within an area 
of approximately 10 000 km2 with elevation as a proxy of spatial climatic variation. Elevation has previously 
been used as a proxy for spatial variation in climate in many ecological studies38 including studies of outbreak 
amplitude of cyclic herbivore populations39,40. However, while elevation gradients may reflect spatial differences 
in snow conditions in some winters (i.e. winter 2006/2007), it may not in other winters (i.e. winter 2010/2011). 
Hansen et al.41 recently demonstrated that climatic extreme events during the winter in the high arctic could dis-
connect the association between snow quality and elevation. Generally, transferability of ecological models based 
on spatial data has been found to decrease whenever the magnitude and nature of the spatial and environmental 
variation differs between temporal domains26,42.

This study based on data from a relatively new program to monitor population dynamics of tundra rodents, 
should be seen as an initial loop of the iterative near-term forecasting cycle of Dietze et al.13. Thereby we have 
learned that the summer dynamics of outbreaking Norwegian lemming populations is near-term predictable 
based on the trapping data and elevation, whereas clearly more information is needed to be able to predict the 
pre-outbreak winter dynamics. We consider this lesson to be particular important in face of the ongoing rapid 
change in winter climate in the Arctic43.

Methods
Ethical statement. Rodent trapping was conducted as part of an ecological monitoring project that was 
initiated, financed and approved by The Norwegian Environmental Agency (NEA: ref no 06040003-4). NEA is the 
legal Norwegian authority that licenses sampling of all vertebrate wild life species for scientific purposes.

Figure 1. Population trajectories for Norwegian lemming and grey-sided vole displayed for the study area in 
north-easternmost Fennoscandia. The population trajectories are given as mean number of individuals trapped 
per site (with 2xSE bars) in spring (●) and fall (▲). The full line highlights the periods of the time series (i.e. 
the two cyclic outbreak phases) analyzed by the state-space model.
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System and sampling. The study was conducted within a tundra area of about 10 000 km2 at the 
north-easternmost tip of the Scandinavian Peninsula (70°N to 71°N). Rodent cycles with periodicity of 4-5 years 
prevail in the focal tundra ecosystem, with grey-sided voles (Myodes rufocanus) and the Norwegian lemming as 
the most abundant species44.

Since spring 2004, small rodent snap trapping has been performed on 98–109 sites according to the small 
quadrat method45, with one quadrat (i.e. 12 traps) per site (see Ims et al.33 for details). In order to include spatial 
variability in environmental conditions, the design contains trapping sites that span a range of 30 to 346 m.a.s.l. 
(mean of ~ 200 m.a.s.l.). The orographic effect of elevation amounts to a decrease of approximately 0.6 °C per 
100 m46, making elevation a proxy for spatial variation in temperature. Trapping was conducted twice annually; 2 
days in late June (spring) and two days in early September (autumn) before the onset of winter.

Statistical modelling: analyses and validation. Following Ims et al.33, the trapping data were analyzed 
at the site level (i) including data for the two cyclic lemming peaks (t = 2 peaks) contained in the time series (see 
Fig. 1: i.e. i = 109 sites during the first peak in 2006–2007 and i = 98 sites during the second peak in 2010–2011). 
Typically, Norwegian lemmings are mostly absent in trapping data between peaks (e.g. Turchin et al.47, Fig. 1) 
thus we included only data from the pre-peak autumn (k-2) together with spring (k-1) and autumn (k) in the lem-
ming peak years (k = 3 trapping seasons). The data for the two peaks were analyzed separately with the purpose of 
assessing the transferability of predictors of lemming outbreak abundance across different cycles. The predictors 
investigated were the same of those identified by Ims et al.33; elevation as a proxy for spatial climate variation and 
lemming and grey-sided vole abundance to model intra - and interspecific density dependence. The interspecific 
density dependence is most likely due to the influence of shared predators33,48. Ims et al.33 found that there was no 
residual spatial autocorrelation in the lemming abundance data so we did not include any extra spatial terms in 
the models. Moreover, previous time series analyses (e.g. Stenseth et al.49) have shown that there is no time-lags 
>2 years in small rodent population dynamics, meaning that consecutive cycles can be considered independent.

Small rodent trapping data includes stochastic sampling variability, therefore we analyzed the data using a 
state space model. We modelled the sampling variance in the number of trapped lemmings y( )i k t, ,  and grey-sided 
voles (x )i,k,t  per site (i), season (k) and peak (t) as a Poisson process (λ)33,49. We used the mean absolute predictive 
error (MAE)50 to evaluate model fit (Appendix S1). We also plotted the estimated counts against observed counts 
to investigate whether there were some systematic differences between raw counts and estimated abundance.

With some small modifications from the model of Ims et al.33 (see Appendix S3), we then applied the follow-
ing state-space model to estimate the season- (spring (k = 2) and fall (k = 3)) and peak outbreak-specific (year 
2007 (t = 1) and 2011 (t = 2)) effects of elevation β( elev), inter-specific (βdvole) and intra-specific (βdlem) density 
dependence on lemming abundance:

λ λ

β β λ β β λ σ+ ∗ + ∗ + ∗− −

~

~

y Poisson y log y

Norm log x elev log y

( ) ( )

( ( ) ( ), )
i k t i k t i k t

dvole i k t elev i t dlem i k t t

, , , , , ,

0 , 1, , , 1,k t k t i t k t, , , ,

where σt is the standard deviation. For lemming abundance in the initial season (k = 1) and for grey sided vole 
abundance in all seasons (k = 1:3), the trapping data is also assumed to follow a Poisson process with mean λi,t. 
However, since delayed effects cannot be included in the initial season, log (λi,t) is modelled as Norm (µi,t, σt) 

Figure 2. Graphical display of the season-specific (i.e. spring and autumn) temporal transferability of the 
lemming abundance on a logarithmic scale; i.e. the ability of the model parameterized with the data from the 
first peak (years 2006/07) to predict (x-axis) the estimated lemming site specific abundances (y-axis) in the 
second cyclic peak (years 2010/11). The red dotted line represents y = x.
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where µi,t is a site-specific intercept. We checked that this difference between the autumn and spring models did 
not affect our conclusions regarding transferability, by fitting also a model with only the spring densities as a pre-
dictor of the fall densities (see Appendix S5).

Finally, to evaluate the temporal transferability, the model parameter estimates obtained based on data from 
the first peak (t = 1) was applied to the predictor data for the second peak (t = 2) to derive predicted lemming 
abundance ( λp yi k, ):

λ β β λ β β λ= + ∗ + ∗ + ∗− = = − == = = =( ) ( )p y x elev ylog log( ) logi k dvole i k t elev i t dlem i k t, 0 , 1, 2 , 2 , 1, 2k t k t k t k t, 1 , 1 , 1 , 1

The predicted lemming abundance ( λp yi k, ) was validated against the estimated posterior means for lemming 
abundance for the second peak (λ =yi k t, , 2) by means of the mean absolute error50:

∑= 
 | − − − |

−
=MAE n P P O O( ) ( ) ,i

n
i i

1
1

with P being the predicted abundance ( λp yi k, ) and O the abundance estimated with the Poisson state-space model 
for the second peak (λ =yi k t, , 2). The mean (P and O) is subtracted to account for seasonal differences in 
abundance.

The state space models were specified in a Bayesian framework and priors were kept uninformative51. Posterior 
distributions were obtained using Markov Chain Monte Carlo (MCMC) techniques computed through Jags run 
from R (R Core Team 2015) using the jagsUI package. We used 4 chains, each of 50 000 iterations, with a burn-in 
of 15 000 (see Appendix S2 for details). To assess convergence of the chains, trace plots for all parameters where 
investigated graphically as well as from the Gelman-Rubin statistics (where R̂ <1.1 indicates convergence)52.

Data Availability
All data analyzed in this paper is available on DRYAD, doi:10.5061.
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