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We extend the theory of channel interference to higher-order multiphoton absorption processes. We derive
an explicit expression for channel interference in a three-photon absorption process and propose a general
scheme for deriving such expressions for multiphoton absorption processes of any order. Based on this general
scheme, we derive and analyze the simplest few-state models for multiphoton absorption in centrosymmetric
molecules and discuss the criteria for maximizing the corresponding multiphoton absorption strengths.

I. INTRODUCTION

The optical transitions from one electronic state to an-
other are governed by the magnitude of the involved tran-
sition dipole moment vectors and the corresponding exci-
tation energies. This is strictly true for a one-photon ab-
sorption process, as it involves only one transition dipole
moment. In the case of multiphoton absorption, in which
the transition involves more than one photon and one or
more intermediate states, more than one transition dipole
moment is involved. Hence, the overall transition prob-
ability depends on several transition dipole moments as
well as on their relative orientations and the correspond-
ing energies.

Channel interference is a phenomenon where different
optical channels involved in the same overall transition
interact with each other through the relative orienta-
tion of the involved transition dipole moments. It can
reveal structure–property relationships that lead to ef-
fective design strategies for controlling the multiphoton
activities in different classes of molecules. Since it is di-
rectly related to different transition dipole moments, it
can be controlled in the same way as the direction of
charge transfer is controlled, for instance, by changing
the strength and location of donor-acceptor groups in a
molecule. The effect of channel interference on the two-
photon absorption process in two-dimensional molecules
was first studied by Cronstrand, Luo and Ågren.1,2 Later,
Alam, Chattopadhyaya and Chakrabarti3 generalized it
to three dimensions. The interference of optical chan-
nels can be either constructive or destructive in nature
depending on the relative orientations of different tran-
sition dipole moments, i.e., it can either increase or
decrease the overall two-photon transition probability.
Alam et al. have extensively studied this effect in a
number of molecules, including through-bond as well as
through-space charge-transfer molecules.4–6 They have
also studied solvent effects on channel interference and
reported that channel interference can reverse its nature
when changing the polarity of the solvent.4 Murugan et
al. have also used the channel interference technique to
study the two-photon absorption process in a Bis(BF2)
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complex and the corresponding solvatochromism in pyri-
dinium cyclopentadienylide.7,8 Recently, channel inter-
ference has been used for elucidating the two-photon
absorption based Zn-sensing mechanism,9 and to gain
molecular-level insights into two-photon absorption pro-
cesses in biological systems such as β-amyloid,10,11 the
DsRed chromophore12 and other red fluorescent protein
chromophores.13 Channel interference has also been ap-
plied in other studies.14–17

Although channel interference has extensively been
studied in the case of two-photon absorption processes,
no such studies exist for higher-order multiphoton ab-
sorption processes. Higher-order multiphoton absorption
processes are in general much less explored than the sim-
pler two-photon analogue. The main reason for this is
the computational costs of calculating these processes.
In addition, the mathematical equations involved in the
channel interference phenomenon for higher-order mul-
tiphoton processes are expected to be much more com-
plicated than those involved in the simplest case of two-
photon absorption. In general, the higher the order of the
multiphoton absorption process, the larger the number of
transition dipoles involved, and hence the relevant chan-
nel interference expression is expected to be increasingly
complicated.

Recent work in our group has enabled the calculation
of absorption strengths for any order of multiphoton ab-
sorption.18–23 This has been made possible by the gen-
eralization of quasienergy response theory to arbitrary
order18 and its subsequent implementation in an open-
ended response code based on recursive algorithms.19
Friese et al. have derived expressions for the rotational
averaging of multiphoton absorption tensors20 and im-
plemented the calculation of single residues in the re-
sponse theory framework.21 Subsequent extensions have
enabled the incorporation of explicit22 and implicit23 en-
vironment effects.

In this work we will extend the concept of channel in-
terference to higher-order multiphoton absorption pro-
cesses. The remainder of the work is organized as fol-
lows: First, we will give an introduction to channel inter-
ference (Section II) before presenting a general scheme to
derive channel interference for any order of multiphoton
absorption (Section III). As an illustration of our general
scheme, we will derive explicitly the simplest few-state
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model expressions for multiphoton absorption processes
in centrosymmetric molecules and discuss the conditions
that maximize the corresponding multiphoton absorption
strengths in Section IV, followed by concluding remarks
in Section V.

II. CHANNEL INTERFERENCE

The starting point for deriving channel interference ex-
pressions for multiphoton absorption are the transition
moments S (Eq. 1) and the corresponding expressions
for the multiphoton absorption strengths δ. The tran-
sition moment S for an m-photon absorption process is
a rank-m tensor in three-dimensional space. For two-,
three- and four-photon absorption, the elements of the
transition moments are given as

Sab =
∑
Pab

∑
i

µaoiµ
b
if

∆Ei1
,

Sabc =
∑
Pabc

∑
ij

µaoiµ
b
ijµ

c
jf

∆Ei1∆Ej2
,

Sabcd =
∑
Pabcd

∑
ijk

µaoiµ
b
ijµ

c
jkµ

d
kf

∆Ei1∆Ej2∆Ek3
,

(1)

where the permutation operator P gives all the m! per-
mutations of the indices {a, b, . . . }, each of which runs
over the Cartesian coordinates {x, y, z}. The expres-
sions in Eq. 1 contain a sum over all intermediate states
{i, j, . . .}, which can be the ground state or an electron-
ically excited state. Each of the elements in this sum
represents a specific transition from the ground state o to
the excited state f, and we will here define this as a chan-
nel. Thus, Sab contains a sum over all channels o→ i→ f
for a two-photon transition from o to f, Sabc contains a
sum over all channels o→ i→ j→ f for a three-photon
transition from o to f, etc. Each state i in Eq. 1 has an
associated energy ∆Eiλ, which can be written as

∆Eiλ = ωi −
λωf

m
, (2)

where state i is the λ’th intermediate state in the chan-
nel. The energies ∆Eiλ should not be confused with the
energies of the m photons that together carry the neces-
sary energy to excite the molecule from the ground state
o to the excited state f. The theory of channel interfer-
ence presented here can be equally applied to multipho-
ton absorption where allm photons have the same energy
(degenerate case) or not (non-degenerate case).

The multiphoton absorption strength δ is obtained
from the rotational averaging of the transition moments
S. The theory of rotational averaging has been general-
ized to multiphoton absorption of any order by Friese,
Beerepoot and Ruud.20 For two-photon (2P), three-
photon (3P) and four-photon (4P) absorption processes,

the absorption strengths are20

δ2P =
1

15

∑
ab

(
2SabS̄ab + SaaS̄bb

)
,

δ3P =
1

35

∑
abc

(
2SabcS̄abc + 3SaabS̄bcc

)
,

δ4P =
1

315

∑
abcd

(
8SabcdS̄abcd + 24SaabcS̄bcdd + 3SaabbS̄ccdd

)
.

(3)

Each term in the rotational averaging expressions con-
tains a product of a transition moment S with the com-
plex conjugate S̄, both of which contain a sum over all
the intermediate states (Eq. 1). If one introduces dif-
ferent sets of indices for S and S̄, one can reformu-
late the multiphoton absorption strength δ as a sum
over the two sets of indices, which run over the same
states. This reformulated expression will then describe
the interactions between different channels involved in
the corresponding multiphoton absorption process. In
the case of three-photon absorption, the indices {i, j} for
S and {m,n} for S̄ represent the interference of two chan-
nels (o→ i→ j→ f and o→ m→ n→ f) involved in the
same three-step transition from o to f. The interaction of
the two channels gives rise to the name channel interfer-
ence. The advantage of this reformulation is the possi-
bility to express the multiphoton absorption strength in
terms of (transition) dipole moments and the angles be-
tween them, which are relevant parameters in the molec-
ular design of multiphoton absorption probes.

We note that channel interference describes the inter-
ference of the manifold of optical channels to excite a
molecule to a given excited state using a given number
of photons. It is thus different from the optical interfer-
ence phenomenon resulting from an experimental setup
with two or more laser beams with different energy. An
example of the latter is the optical interference between
a one-photon and a three-photon process that has been
demonstrated by Rebane et al.24 Whereas a setup with
two laser beams as well as photons of different energy are
prerequisites for that process, they are not in the case of
channel interference.

Alam, Chattopadhyaya and Chakrabarti3 have de-
rived an expression for the interference between channels
o→ i→ f and o→ m→ f for two-photon absorption in
three-dimensional molecules

δ2P
im =

8µoiµifµomµmf

∆Ei1∆Em1
·{

cos θif
oi cos θmf

om + cos θom
oi cos θmf

if + cos θmf
oi cos θif

om

}
.

(4)

The total two-photon absorption strength δ2P is a sum
of δ2P

im (Eq. 4) over all the intermediate states i and m.
When combined with the missing factor from the rota-
tional averaging (here 1

30 , see Ref. 25 for a discussion),
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the two-photon absorption strength becomes

δ2P =
4

15

∑
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∆Ei1∆Em1
·{
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if + cos θmf
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om

}
.

(5)

The same strategy as used by Alam, Chattopadhyaya
and Chakrabarti3 can be adopted to derive the channel
interference formula for three-photon or other multipho-
ton absorption processes. We have derived the corre-
sponding expression for three-photon absorption (see the
supporting information file for the full derivation)
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(6)

The theory can be generalized to any order of multi-
photon absorption without an explicit derivation for each
order. In the following, we will present a general scheme
to derive channel interference expressions for multipho-
ton absorption to any order.

III. A GENERAL SCHEME FOR CHANNEL
INTERFERENCE IN MULTIPHOTON ABSORPTION

In order to derive a generalized scheme for channel in-
terference formula in multiphoton absorption processes,
we divide Eq. 5 or Eq. 6 into four parts: the dipole term
(in the numerator), the energy term (in the denomina-
tor), the angle term (in curly brackets) and the prefactor
(the term in front of the summation)

δmP = prefactor×
∑

intermediates

dipole term

energy term
× angle term.

(7)
In the following, we will discuss each of the four parts

in Eq. 7 separately.

A. Dipole term

The dipole term is a product of the magnitude of the
transition dipole moments for the two channels that in-
terfere in anm-photon transition from the ground state o
to excited state f. For two-photon absorption (Eq. 5), two
channels (o→ i→ f and o→ m→ f) lead to four dipoles
(µoi, µif , µom and µmf). The product of these four dipoles
appears in Eq. 5. Similarly, in the case of three-photon
absorption (Eq. 6), the two channels o→ i→ j→ f and
o→ m→ n→ f involve six dipoles (µoi, µij, µjf , µom, µmn

and µnf) and a product of these six dipoles appears in the
corresponding dipole term in Eq. 6. In general, the dipole

term in an m-photon absorption process contains a prod-
uct of 2m dipoles. As a further illustration, the dipole
terms for four- and five-photon absorption processes are
given as

µoiµijµjkµkfµomµmnµnpµpf four− photon,

µoiµijµjkµklµlfµomµmnµnpµpqµqf five− photon.

B. Energy term

The energy term in Eq. 5 contains energies ∆Ei1 and
∆Em1 related to the intermediates state (i and m) of the
two channels in a two-photon absorption process. Sim-
ilarly, the three-photon absorption expression in Eq. 6
contains four energies, one for each intermediate state
(i, j, m and n). In general, each intermediate state i is
associated with an energy ∆Eiλ (Eq. 2). Therefore, the
number of such energies is equal to the number of inter-
mediate states in the two channels, which is 2(m− 1).

For two-photon absorption (m = 2) there is only
one intermediate state in each channel, so λ = 1
(Eq. 2) and the two energies are ∆Ei1 and ∆Em1. Sim-
ilarly, for three-photon absorption, each channel has
two intermediates {(i, j), (m,n)}. Therefore, the energy
term for three-photon absorption has four energies, viz.
∆Ei1,∆Ej2,∆Em1 and ∆En2. For m-photon absorp-
tion, there are m − 1 intermediate states in each chan-
nel and hence λ can assume an integer value from 1
to m − 1 for each channel. As an illustration, the six
energy terms in the two channels o→ i→ j→ k→ f
and o→ m→ n→ p→ f in four-photon absorption are
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given as

∆Ei1 = ωi −
ωf

4
,

∆Ej2 = ωj −
2ωf

4
,

∆Ek3 = ωk −
3ωf

4
,

∆Em1 = ωm −
ωf

4
,

∆En2 = ωn −
2ωf

4
,

∆Ep3 = ωp −
3ωf

4
.

(8)

C. Angle term

The angle term in the channel interference expres-
sion for two-photon absorption processes (Eq. 5) contains
three elements with two cosines each, whereas the corre-
sponding expression for three-photon absorption (Eq. 6)
contains fifteen elements with three cosines each. We
will here distinguish between angles (such as θjf

oi) and el-
ements of the angle term (such as cos θif

oi cos θjf
oj in Eq. 5).

The angle term gives all possible ways in which the dipole
moments can interact with each other, i.e., all the unique
ways to combine the different cosines. Each element of
the angle term contains each dipole once and as such it
contains all the dipoles involved. For example, the ele-
ment cos θif

oi cos θjf
oj in Eq. 5 contains all the four dipoles

involved in this case, but it represents only one possible
way of interaction of the four dipoles. Thus, 2m dipole
moments involved in anm-photon absorption process will
lead to m cosines in each element of the angle term since
each cosine contains the angle between two dipole mo-
ments. In general, the angle term for m-photon absorp-
tion can be written as

2m∑
α1,...,αm=1
β1,...,βm=1

′
m∏
i=1

cosθ
Iβi
Iαi
, (9)

where I is a vector of length 2m containing the indices of
each dipole moment in the dipole term, as illustrated for
two-, three- and four-photon absorption processes:

I = {oi, if, om,mf} two− photon

I = {oi, ij, jf, om,mn,nf} three− photon

I = {oi, ij, jk, kf, om,mn,np,pf} four− photon

The integers αi and βi run from 1 to 2m, and Iαi and
Iβi are the αi’th and βi’th elements of I, respectively.
The integer i runs from 1 to m and ensures there are m
cosines for each element of the angle term in m-photon
absorption. The sum in Eq. 9 is a restricted (represented
by a prime) multiple sum over all indices αi and βi. The
following conditions apply for the indices αi and βi:

1. α1, . . . , αm, β1, . . . , βm all have unique values

2. αi < βi

3. αi < αj for i < j

Condition 1 ensures that each element of the angle term
contains the indices of each dipole only once. As a result
of this, the restricted summation in Eq. 9 does not give
(2m)2m terms, but rather (2m)! terms. Condition 2 en-
sures that each cosine appears only once, i.e., cos θif

oi is al-
lowed but the equivalent cos θoi

if is removed. This reduces
the number of terms by a factor of 2m. Finally, condi-
tion 3 ensures that the same product of cosines appears
only once in the angle term. This reduces the number of
terms by a factor of m!. As an illustration of condition
3 for two-photon absorption, cos θif

oi cos θjf
oj is allowed but

the equivalent term cos θjf
oj cos θif

oi is removed.
Taken together, the number of elements in the angle

term for a channel interference expression for m-photon
absorption (m > 1) is given as

Na =
(2m)!

2m ·m!
=

m∏
i=1

(2i− 1) . (10)

D. Prefactor

The prefactor ( 4
15 in Eq. 5 and 12

35 in Eq. 6) represents
the total number of products of S and S̄ and is therefore
a product of the number of permutations of the indices of
the transition moment S (Eq. 1) and the integers in the
rotational averaging procedure (Eq. 3). The prefactor
also contains a division by the number of angle terms
Na (Eq. 10) to ensure that every product of S and S̄
contributes only once to the final expression.

The number of permutations of the indices in the tran-
sition moment S is given as m! with m being the number
of photons involved. Since both S and S̄ have a permu-
tation operator, the prefactor contains a factor (m!)2.

The number of products of S and S̄ in the rotational
averaging procedure (Eq. 3) is equal to the prefactor of
the rotational averaging ζ times the sum of the contrac-
tion coefficients. The prefactor ζ is given by20

ζ =

m∏
i=1

1

2i+ 1
, (11)

which is the inverse of the product of all odd numbers
equal to or less than 2m+ 1. The sum of all the contrac-
tion coefficients is given by20

Nc =

m∏
i=1

(2i− 1), (12)

which is equal to Na in Eq. 10. The product of ζ and Nc

is simply one divided by 2m+1, which can be verified by
evaluating the number of products of S and S̄ in Eq. 3.
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Combining all contributions, the total prefactor be-
comes

(m!)2 · 1

2m+ 1
· 2m ·m!

(2m)!
=

(m!)3 · 2m

(2m+ 1)(2m)!
, (13)

which can equivalently be written as
m∏
i=1

i2

2i+1 . The pref-

actor (Eq. 13) is 4
15 for two-photon absorption, 12

35 for
three-photon absorption, 192

315 for four-photon absorption,
etc.

E. General characteristics of channel interference in
multiphoton absorption

The preceding analysis is general form-photon absorp-
tion (m > 1). The explicit expressions for two- and three-
photon absorption are given in Eqs. 5 and 6, respectively.
The corresponding expression for four-photon absorption
is given as Eq. A.1 in the Appendix. Some of the char-
acteristics of the channel interference expressions are:

1. The channel interference expressions are invariant
to the exchange of the indices from the two chan-
nels, for example δ3P

ijmn = δ3P
mnij for three-photon

absorption, where δ3P
ijmn represents the term within

the summation in Eq. 6.

2. If a contribution to the multiphoton absorption
strength is negative, this is referred to as destruc-
tive interference. Applied to three-photon absorp-
tion, channels o→ i→ j→ f and o→ m→ n→ f
interfere destructively when δ3P

ijmn < 0 and con-
structively when δ3P

ijmn > 0.

3. Since the dipole term and the prefactor are al-
ways positive quantities, destructive interference
can arise either from a negative energy term or from
a negative angle term. For an excitation to the first
excited state (ωf is lower than ωi for all the other
excited states i), the energy ∆Eiλ (Eq. 2) is only
negative if state i is the ground state o. Thus, an
odd number of ground-state indices causes the en-
ergy term to be negative for an excitation to the
first excited state.

IV. THE SIMPLEST FEW-STATE MODELS IN
CENTROSYMMETRIC MOLECULES

In this section, we will illustrate the use of the gen-
eral approach presented in the previous section to study
channel interference for multiphoton absorption in cen-
trosymmetric molecules. In order to further simplify the
discussion, we will restrict ourselves to the special cases
of the simplest few-state models for two-, three-, four-
and five-photon absorption processes. The expressions

include one-photon transition dipole moments that agree
with the selection rule, i.e. only gerade → ungerade or
ungerade → gerade transitions exist and the others will
vanish. This puts restrictions on the symmetry of the
intermediate states used in the few-state models. In cen-
trosymmetric molecules, for which µoo = 0, the simplest
few-state model for odd-order multiphoton absorption
processes is a two-state model and for even-order mul-
tiphoton absorption a three-state model. For a two-state
model, the intermediate states can be either the ground
state o or the excited state of interest f. For a three-state
model, a third state is introduced. The centrosymmetric
case will be represented by the subscript ‘cs’ to δmP.

A. Two-photon absorption

A two-photon absorption process in a centrosymmet-
ric molecule is possible from the gerade ground state o
(µoo = 0) through an ungerade intermediate state u to a
gerade excited state f (µff = 0). The simplest few-state
model is thus a three-state model with ungerade inter-
mediate state u in each of the two channels. The only
term contributing to δ2P (Eq. 5) in a three-state model
for a centrosymmetric molecule is thus δ2P

uu . Hence, δ2P
cs

is

δ2P
cs =

4µ2
ouµ

2
uf

15(ωu − ωf

2 )2

{
1 + 2 cos2 θuf

ou

}
. (14)

Both transition dipole moments, the square of (ωu−ωf

2 )

and the square of cos θuf
ou are all positive quantities.

Hence, the channels o→u→f and o→u→f always inter-
fere constructively. Within a three-state model, δ2P

cs is
maximized by large and parallel (or antiparallel) transi-
tion dipole moments µou and µuf (Fig. 1) as well as a
small energy term.

0.0 0.5 1.0 1.5
x

0

2

δ2P
cs

cos2θ = 0.0

cos2θ = 0.5

cos2θ = 1.0

FIG. 1. Variation in two-photon absorption strength for
centrosymmetric molecules δ2Pcs (Eq. 14) with µou = x for
different choices for cos2 θufof and (ωu − ωf

2
) = 1 and µuf = 1.
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B. Three-photon absorption

A three-photon absorption process in a centrosymmet-
ric molecule is possible from the gerade ground state o
(µoo = 0) through an ungerade intermediate state i and
a gerade intermedate state j to an ungerade excited state
f (µff = 0). The simplest few-state model is thus a two-
state model with channels o→f→o→f. The only term
contributing to δ3P (Eq. 6) in a two-state model for a
centrosymmetric molecule is thus δ3P

fofo. Hence, δ
3P
cs is

δ3P
cs =

729µ6
of

28ω4
f

. (15)

Both the transition dipole moment µof and the energy ωf

are positive quantities. Hence, the channels o→f→o→f
and o→f→o→f always interfere constructively. Within a
two-state model, δ3P

cs is maximized by a large transition
dipole moment between the ground state and the excited
state of interest and a low excitation energy.

C. Four-photon absorption

A four-photon absorption process in a centrosymmet-
ric molecule is possible from the gerade ground state o
(µoo = 0) through intermediate states i, j and k that are
ungerade, gerade and ungerade, respectively, to a gerade
excited state f (µff = 0). The simplest few-state model
is thus a three-state model with channels o→u→o→u→f
or o→u→f→u→f, where intermediate states i and k are
the ungerade state u and where j is either the ground
state o or the excited state f. There is thus four terms
contributing to δ4P in Eq. A.1, namely δ4P

uouuou, δ4P
ufuufu

and δ4P
uouufu=δ

4P
ufuuou. Hence, δ

4P
cs is

δ4P
cs =

256

35ω2
f

µ2
ouµ

2
uf

∆E2
u1∆E2

u3

[
5
(
µ4

ou + µ4
uf

){
1 + 6cos2θuf

ou

}
− 2µ2

ouµ
2
uf

{
3 + 24cos2θuf

ou + 8cos4θuf
ou

}]
.

(16)

Both transition dipole moments, the squares of ∆Eu1

and ∆Eu3, the energy ωf and the square or quad of
cos θuf

ou are positive quantities. Hence, the channels
o→u→o→u→f and o→u→o→u→f as well as the chan-
nels o→u→f→u→f and o→u→f→u→f will always in-
terfere constructively, while the channels o→u→o→u→f
and o→u→f→u→f always interfere destructively. Within
a three-state model, δ4P

cs is maximized by large transition
dipole moments µou and µuf as well as small energy terms
∆Eu1 and ∆Eu3. If the transition dipole moments are
parallel or antiparallel, however, δ4P

cs is zero for µou = µuf

(the minimum at x = 1 in Fig. 2, red dashed line). This
minimum is caused by an equal contribution of the con-
structive and destructive interference terms to the mul-
tiphoton absorption strength. Note that δ4P

cs depends on

several factors and that a complete picture of the vari-
ation of δ4P

cs with all these factors will be a complicated
multidimensional plot. Fig. 2 represents the dependence
of δ4P

cs on µou only, keeping the other factors fixed to
unity. δ4P

cs shows a similar dependency on µuf .

0.0 0.5 1.0 1.5
x

0

100

δ4P
cs

cos2θ = 0.0

cos2θ = 0.5

cos2θ = 1.0

FIG. 2. Variation in four-photon absorption strength for
centrosymmetric molecules δ4Pcs (Eq. 16) with µou = x for
different choices for cos2 θufof and ωf = 1, ∆Eu1 = 1, ∆Eu3 = 1,
µuf = 1.

D. Five-photon absorption

A five-photon absorption process in a centrosymmet-
ric molecule is possible from the gerade ground state o
(µoo = 0) through intermediate states i, j, k and l that
are ungerade, gerade, ungerade and gerade, respectively,
to an ungerade excited state f (µff = 0). The simplest
few-state model is thus a two-state model with channels
o→f→o→f→o→f. The only term contributing to δ5P in
a two-state model for a centrosymmetric molecule is thus
δ5P
fofofofo. Hence, δ

5P
cs is

δ5P
cs =

87890625µ10
of

704ω8
f

. (17)

Both the transition dipole moment µof and the en-
ergy ωf are positive quantities. Hence, the channels
o→f→o→f→o→f and o→f→o→f→o→f always interfere
constructively. Within a two-state model, δ5P

cs is maxi-
mized by a large transition dipole moment between the
ground state and the excited state of interest and a low
excitation energy.

V. CONCLUSIONS

We have shown that the theory of channel interfer-
ence can be applied to multiphoton absorption beyond
two-photon absorption. We have explicitly derived an
expression for channel interference in a three-photon ab-
sorption process. Furthermore, we have here presented
a general scheme to derive channel interference expres-
sions for multiphoton absorption processes of any order.
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We have found that, in general, destructive interference
can arise either from a negative energy term or from a
negative angle term. It is straightforward to predict the
sign of the energy term provided the final state of inter-
est and the intermediate states involved are known, as is
the case in a few-state model. However, it is not possible
to predict the sign of the angle term without an explicit
evaluation.

Moreover, we have shown how our general scheme can
be used to derive maximizing conditions for multiphoton
absorption strengths using the example of the simplest
few-state models in centrosymmetric molecules.

The concept of channel interference can thus be applied
to any order of multiphoton absorption processes. Hence,
it can be used in the molecular design of multiphoton

absorption probes. As a future prospect, it would be
interesting to extend the idea of channel interference or
dipole alignment to other spectroscopies in the electronic
and may be also in vibrational domains.

VI. SUPPORTING MATERIAL

See supplementary material for the explicit derivation
of Eq. 6.

Appendix: Channel interference in four-photon absorption

δ4P =
192

315

∑
ijkmnp

µoiµijµjkµkfµomµmnµnpµpf

∆Ei1∆Ej2∆Ek3∆Em1∆En2∆Ep3
·

{
cos θijoi cos θkfjk cos θmn

om cos θpfnp+cos θijoi cos θkfjk cos θnpom cos θpfmn+cos θijoi cos θkfjk cos θpfom cos θnpmn+cos θijoi cos θomjk cos θmn
kf cos θpfnp

+ cos θijoi cos θomjk cos θnpkf cos θpfmn+cos θijoi cos θomjk cos θpfkf cos θnpmn+cos θijoi cos θmn
jk cos θomkf cos θpfnp+cos θijoi cos θmn

jk cos θnpkf cos θpfom

+ cos θijoi cos θmn
jk cos θpfkf cos θnpom+cos θijoi cos θnpjk cos θomkf cos θpfmn+cos θijoi cos θnpjk cos θmn

kf cos θpfom+cos θijoi cos θnpjk cos θpfkf cos θmn
om

+ cos θijoi cos θpfjk cos θomkf cos θnpmn+cos θijoi cos θpfjk cos θmn
kf cos θnpom+cos θijoi cos θpfjk cos θnpkf cos θmn

om+cos θjkoi cos θkfij cos θmn
om cos θpfnp

+ cos θjkoi cos θkfij cos θnpom cos θpfmn+cos θjkoi cos θkfij cos θpfom cos θnpmn+cos θjkoi cos θomij cos θmn
kf cos θpfnp+cos θjkoi cos θomij cos θnpkf cos θpfmn

+ cos θjkoi cos θomij cos θpfkf cos θnpmn+cos θjkoi cos θmn
ij cos θomkf cos θpfnp+cos θjkoi cos θmn

ij cos θnpkf cos θpfom+cos θjkoi cos θmn
ij cos θpfkf cos θnpom

+ cos θjkoi cos θnpij cos θomkf cos θpfmn+cos θjkoi cos θnpij cos θmn
kf cos θpfom+cos θjkoi cos θnpij cos θpfkf cos θmn

om+cos θjkoi cos θpfij cos θomkf cos θnpmn

+ cos θjkoi cos θpfij cos θmn
kf cos θnpom+cos θjkoi cos θpfij cos θnpkf cos θmn

om+cos θkfoi cos θjkij cos θmn
om cos θpfnp+cos θkfoi cos θjkij cos θnpom cos θpfmn

+ cos θkfoi cos θjkij cos θpfom cos θnpmn+cos θkfoi cos θomij cos θmn
jk cos θpfnp+cos θkfoi cos θomij cos θnpjk cos θpfmn+cos θkfoi cos θomij cos θpfjk cos θnpmn

+ cos θkfoi cos θmn
ij cos θomjk cos θpfnp+cos θkfoi cos θmn

ij cos θnpjk cos θpfom+cos θkfoi cos θmn
ij cos θpfjk cos θnpom+cos θkfoi cos θnpij cos θomjk cos θpfmn

+ cos θkfoi cos θnpij cos θmn
jk cos θpfom+cos θkfoi cos θnpij cos θpfjk cos θmn

om+cos θkfoi cos θpfij cos θomjk cos θnpmn+cos θkfoi cos θpfij cos θmn
jk cos θnpom

+ cos θkfoi cos θpfij cos θnpjk cos θmn
om+cos θomoi cos θjkij cos θmn

kf cos θpfnp+cos θomoi cos θjkij cos θnpkf cos θpfmn+cos θomoi cos θjkij cos θpfkf cos θnpmn

+ cos θomoi cos θkfij cos θmn
jk cos θpfnp+cos θomoi cos θkfij cos θnpjk cos θpfmn+cos θomoi cos θkfij cos θpfjk cos θnpmn+cos θomoi cos θmn

ij cos θkfjk cos θpfnp

+ cos θomoi cos θmn
ij cos θnpjk cos θpfkf +cos θomoi cos θmn

ij cos θpfjk cos θnpkf +cos θomoi cos θnpij cos θkfjk cos θpfmn+cos θomoi cos θnpij cos θmn
jk cos θpfkf

+ cos θomoi cos θnpij cos θpfjk cos θmn
kf +cos θomoi cos θpfij cos θkfjk cos θnpmn+cos θomoi cos θpfij cos θmn

jk cos θnpkf +cos θomoi cos θpfij cos θnpjk cos θmn
kf

+ cos θmn
oi cos θjkij cos θomkf cos θpfnp+cos θmn

oi cos θjkij cos θnpkf cos θpfom+cos θmn
oi cos θjkij cos θpfkf cos θnpom+cos θmn

oi cos θkfij cos θomjk cos θpfnp

+ cos θmn
oi cos θkfij cos θnpjk cos θpfom+cos θmn

oi cos θkfij cos θpfjk cos θnpom+cos θmn
oi cos θomij cos θkfjk cos θpfnp+cos θmn

oi cos θomij cos θnpjk cos θpfkf

+ cos θmn
oi cos θomij cos θpfjk cos θnpkf +cos θmn

oi cos θnpij cos θkfjk cos θpfom+cos θmn
oi cos θnpij cos θomjk cos θpfkf +cos θmn

oi cos θnpij cos θpfjk cos θomkf

+ cos θmn
oi cos θpfij cos θkfjk cos θnpom+cos θmn

oi cos θpfij cos θomjk cos θnpkf +cos θmn
oi cos θpfij cos θnpjk cos θomkf +cos θnpoi cos θjkij cos θomkf cos θpfmn

+ cos θnpoi cos θjkij cos θmn
kf cos θpfom+cos θnpoi cos θjkij cos θpfkf cos θmn

om+cos θnpoi cos θkfij cos θomjk cos θpfmn+cos θnpoi cos θkfij cos θmn
jk cos θpfom

+ cos θnpoi cos θkfij cos θpfjk cos θmn
om+cos θnpoi cos θomij cos θkfjk cos θpfmn+cos θnpoi cos θomij cos θmn

jk cos θpfkf +cos θnpoi cos θomij cos θpfjk cos θmn
kf

+ cos θnpoi cos θmn
ij cos θkfjk cos θpfom+cos θnpoi cos θmn

ij cos θomjk cos θpfkf +cos θnpoi cos θmn
ij cos θpfjk cos θomkf +cos θnpoi cos θpfij cos θkfjk cos θmn

om

+ cos θnpoi cos θpfij cos θomjk cos θmn
kf +cos θnpoi cos θpfij cos θmn

jk cos θomkf +cos θpfoi cos θjkij cos θomkf cos θnpmn+cos θpfoi cos θjkij cos θmn
kf cos θnpom

+ cos θpfoi cos θjkij cos θnpkf cos θmn
om+cos θpfoi cos θkfij cos θomjk cos θnpmn+cos θpfoi cos θkfij cos θmn

jk cos θnpom+cos θpfoi cos θkfij cos θnpjk cos θmn
om

+ cos θpfoi cos θomij cos θkfjk cos θnpmn+cos θpfoi cos θomij cos θmn
jk cos θnpkf +cos θpfoi cos θomij cos θnpjk cos θmn

kf +cos θpfoi cos θmn
ij cos θkfjk cos θnpom

+ cos θpfoi cos θmn
ij cos θomjk cos θnpkf +cos θpfoi cos θmn

ij cos θnpjk cos θomkf +cos θpfoi cos θnpij cos θkfjk cos θmn
om+cos θpfoi cos θnpij cos θomjk cos θmn

kf

+ cos θpfoi cos θnpij cos θmn
jk cos θomkf

}
.

(A.1)



8

ACKNOWLEDGMENTS

This work has received support from the Research
Council of Norway through a Centre of Excellence Grant
(Grant No. 179568/V30) and through a FRIPRO grant
(Grant No. 250743).
1P. Cronstrand, Y. Luo, and H. Ågren, J. Chem. Phys. 117,
11102 (2002).

2P. Cronstrand, Y. Luo, and H. Ågren, Chem. Phys. Lett. 352,
262 (2002).

3M. M. Alam, M. Chattopadhyaya, and S. Chakrabarti, Phys.
Chem. Chem. Phys. 14, 1156 (2012).

4M. M. Alam, M. Chattopadhyaya, S. Chakrabarti, and K. Ruud,
J. Phys. Chem. Lett. 3, 961 (2012).

5M. M. Alam, M. Chattopadhyaya, and S. Chakrabarti, J. Phys.
Chem. A 116, 8067 (2012).

6M. M. Alam, M. Chattopadhyaya, S. Chakrabarti, and K. Ruud,
Acc. Chem. Res. 47, 1604 (2014).

7N. A. Murugan, J. Phys. Chem. B 118, 7358 (2016).
8R. Zaleśny, N. A. Murugan, G. Tian, M. Medved, and H. Ågren,
J. Phys. Chem. B 120, 2323 (2016).

9J. Bednarska, R. Zaleśny, N. A. Murugan, W. Bartkowiak,
H. Ågren, and M. Odelius, J. Phys. Chem. B 120, 9067 (2016).

10N. A. Murugan, R. Zaleśny, J. Kongsted, A. Nordberg, and
H. Ågren, Chem. Commun. 50, 11694 (2014).

11T. B. Clark, M. Ziółkowski, G. C. Schatz, and T. Goodson III,
J. Phys. Chem. B 118, 2351 (2014).

12N. H. List, J. M. H. Olsen, H. J. A. Jensen, A. H. Steindal, and
J. Kongsted, J. Phys. Chem. Lett. 3, 3513 (2012).

13M. A. Salem, S. Twelves, and A. Brown, Phys. Chem. Chem.
Phys. 18, 24408 (2016).

14N. H. List, R. Zaleśny, N. A. Murugan, J. Kongsted,
W. Bartkowiak, and H. Ågren, J. Chem. Theory Comput. 11,
4182 (2015).

15M. Wielgus, R. Zaleśny, N. A. Murugan, J. Kongsted, H. Ågren,
M. Samoc, and W. Bartkowiak, ChemPhysChem 14, 3731
(2013).

16J. Bednarska, R. Zaleśny, M. Wielgus, B. Jędrzejewska, R. Put-
treddy, K. Rissanen, W. Bartkowiak, H. Ågren, and B. Ośmi-
ałowski, Phys. Chem. Chem. Phys. 19, 5705 (2017).

17M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel,
and C. W. Spangler, J. Phys. Chem. B 110, 9802 (2006).

18A. J. Thorvaldsen, K. Ruud, K. Kristensen, P. Jørgensen, and
S. Coriani, J. Chem. Phys. 129, 214108 (2008).

19M. Ringholm, D. Jonsson, and K. Ruud, J. Comput. Chem. 35,
622 (2014).

20D. H. Friese, M. T. P. Beerepoot, and K. Ruud, J. Chem. Phys.
141, 204103 (2014).

21D. H. Friese, M. T. P. Beerepoot, M. Ringholm, and K. Ruud,
J. Chem. Theory Comput. 11, 1129 (2015).

22A. H. Steindal, M. T. P. Beerepoot, M. Ringholm, N. H. List,
K. Ruud, J. Kongsted, and J. M. H. Olsen, Phys. Chem. Chem.
Phys. 18, 28339 (2016).

23R. Di Remigio, M. T. P. Beerepoot, Y. Cornaton, M. Ringholm,
A. H. Steindal, K. Ruud, and L. Frediani, Phys. Chem. Chem.
Phys. 19, 366 (2017).

24A. Rebane, N. Christensson, M. Drobizhev, Y. Stepanenko, and
C. W. Spangler, Opt. express 13, 6033 (2005).

25M. T. P. Beerepoot, D. H. Friese, N. H. List, J. Kongsted, and
K. Ruud, Phys. Chem. Chem. Phys. 17, 19306 (2015).


