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ABSTRACT
Bivalves have been found in unique benthic assemblages associated with active methane seeps 
and mounds along the western and southern margins of the Svalbard shelf (75–79°N) at 350–
380 m depth. Among the samples collected were a number of shells of Thyasiridae that are 
distinct from any species previously described. Here we describe one new genus Rhacothyas 
gen. nov. and two new species Thyasira capitanea sp. nov. and Rhacothyas kolgae sp. nov., 
including their distinguishing characteristics and the environmental setting where they were 
found. Thyasira capitanea sp. nov. is large compared to many other thyasirids, has an 
equilateral shell and demarcated zones on the median and anterior areas along with a 
distinct posterior sulcus. Rhacothyas kolgae sp. nov. is unique among other thyasirid genera 
and species regarding its characteristic outline, sunken lunule, lack of submarginal sulcus and 
wrinkled surface. Furthermore, we discuss their present occurrence in the context of the 
glaciomarine history of the Svalbard margin. We posit that these new species, after the 
deglaciation of the Barents Sea Ice Sheet, may have originated from other chemosynthetic or 
reducing environments along the Atlantic shelf margin or the southern Barents Sea shelf by 
following the net transport of the North Atlantic Current rather than having evolved in situ.
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Introduction

Cold seeps and vents are known to host specialized 
faunal assemblages associated with seafloor emissions 
of hydrocarbons, sulphide and other reduced com-
pounds, that can be fuelled by microbial chemoauto-
troph production (Sibuet & Olu 1998; Levin et al. 
2000; Thurber et al. 2010). Chemosynthesis can 
provide an alternative energy source, in addition to 
photosynthesis, at methane cold seeps through 
methane oxidation processes (Boetius & Suess 2004). 
Such activity can support associated macrofauna 
through trophic interactions or mutualistic relation-
ships with symbionts, such as sulphide-oxidizing bac-
teria, where the source of sulphide is the anaerobic 
oxidation of methane (AOM) coupled to sulphate 
reduction (Lösekann et al. 2007; Vanreusel et al. 
2009). The discovery of chemosynthetic communities 
at cold seeps has been accompanied by the description 
of a diverse and unique fauna including many Bivalvia, 
mainly belonging to chemosymbiotic Vesicomyidae, 
Solemyidae, Bathymodiolinae, Lucinidae and Thyasiri-
dae (Taylor & Glover 2010). Within the Atlantic and 
Arctic Oceans, there is an apparent high degree of

endemism with closely related but distinct species 
occurring at seep sites as exemplified by the vesico-
myid genus Isorropodon (Krylova et al. 2011; Oliver 
et al. 2011; Oliver & Drewery 2013). A similar pattern 
within the Thyasiridae is also becoming apparent, 
with new species described from the Gulf of Guinea 
(Oliver 2014), Gulf of Cadiz (Rodrigues et al. 2008) 
and off Scotland (Oliver & Drewery 2013). Cold seeps 
and vents are known in polar areas and the North 
Atlantic but many bivalves recorded from here are 
often distinct from the larger-bodied taxa (such as Vesi-
comyidae and Bathymodiolinae) seen at seeps in lower 
latitudes. Thyasira dunbari Lubinsky 1976, is a small 
Arctic species (<7 mm) not confined to chemosynthetic 
settings (Oliver et al. 2002) but recorded both from 
shallow fjord and deep water habitats (Soltwedel 
et al. 2015) including the Håkon Mosby mud volcano 
72°N (Gebruk et al. 2003) and at vent sites on the 
Mohn Ridge 71°N (Schander et al. 2010). The exception 
where larger-bodied chemosymbiotic bivalves (Vesico-
myidae) have been found is Storegga 64°N on the west 
Norwegian shelf (Krylova et al. 2011).

Large thyasirids are present in the fossil seeps from
Svalbard dating from the Jurassic/Cretaceous boundary
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through to the Eocene. The earliest is Cretaxinus hurumi 
Hryniewicz et al., 2014, an atypical thyasirid being tri-
angular in form with a relatively small anterior adductor 
scar (Hryniewicz et al. 2014). Conchocele conradi 
Rosenkrantz, 1942 originally identified as the recent 
C. bisecta (Conrad, 1849) by Hägg (1925) was described 
from late Cretaceous/Eocene deposits of Svalbard and 
also from Cretaceous to Paleocene strata in West 
Greenland (Rosenkrantz 1970; Dam et al. 2009). Living 
Conchocele are now restricted to methane seeps 
along the Pacific rim (Kamenev et al. 2001). Valentich-

AQ3 Scott et al. (2014
¶

) described an Arctic seep-associated
thyasirid, Wallerconcha sarae Valentich-Scott & Powell,
2014, from the Beaufort Sea, but up to present date, 
species descriptions exist solely from collected shell 
material.

Cold seeps in the high Arctic are poorly studied 
compared with other regions at lower latitudes e.g. 
the Mediterranean Sea and Gulf of Mexico (Sibuet & 
Olu 1998; Fisher et al. 2007; Vanreusel et al. 2009). 
Along the western Svalbard margin, vast gas plumes 
associated with hydrocarbon seepages and dissociat-
ing gas hydrates have been reported (Westbrook 
et al. 2009; Sahling et al. 2014). These areas are being 
surveyed to assess the sources and sinks of methane 
and gas hydrates in the Arctic (Ferré et al. 2012; 
Plaza-Faverola et al. 2015; Portnov et al. 2016) and 
their temporal histories (Ambrose et al. 2015). The 
growing evidence of widespread gas seepages in Sval-
bard indicates a potent environmental driver affecting 
local seafloor conditions, including community struc-
ture and ecosystem function (Åström et al. 2016). 
Marine chemosynthetic habitats and seep-associated 
fauna in high Arctic regions are, however, poorly 
explored, but through an increasing number of biologi-
cal studies, a better understanding of the community 
structure and ecological functioning is emerging in 
Arctic areas (Schander et al. 2010; Barrie et al. 2011; 
Sweetman et al. 2013; Åström et al. 2016). Among 
faunal samples we collected in 2014 and 2015 at 
active cold seeps along the western and southern Sval-
bard continental shelf are numerous representatives of 
bivalve shells belonging to the family of Thyasiridae. 
Here, we describe one new genus and two new 
species of Thyasiridae from methane seeps off the 
west coast of Svalbard (75–79°N) including their dis-
tinguishing characteristics and the environmental set-
tings for the sites of record.

Study area and regional settings
Svalbard is an archipelago located at the northern 
North Atlantic continental shelf (76–81°N). The

climate in Svalbard is relatively mild compared with 
other regions in the high Arctic due to the North Atlan-
tic Current system, which transports heat and saline 
water from the Atlantic along the west coast of Sval-
bard (Orvik & Niiler 2002; Rudels et al. 2005). Atlantic 
source water (>35 psu and >3°C) typically dominates 
the western continental shelf areas west of Svalbard 
(Svendsen et al. 2002; Nilsen et al. 2008), and limits sea-
sonal sea ice formation in this region (Seager et al. 
2002; Serreze et al. 2003; Stroeve et al. 2012). In the 
Barents Sea, a marginal sea to the Arctic Ocean, cold 
Arctic water (<34.8 psu and <0°C) encounters the 
warmer Atlantic water in a mixing zone known as the 
Polar Front. Dense Arctic water follows the submarine 
troughs, rounds the southern tip of Spitsbergen, and 
continues as a coastal current northwards along the 
west coast (Figure 1) (Johannessen & Foster 1978; 
Harris et al. 1998).

Materials and methods

Benthic sampling

Sampling activities were carried out during cruises in 
June and July 2014 and May 2015 onboard the R/V 
Helmer Hanssen. Three main regions were surveyed:(1) 
Western Svalbard i.e. Prins Karls Forland shelf (PKF), (2) 
the western Barents Sea i.e. Storfjordrenna (Storfjord 
Trough) seep site (SR) and (3) Pingo-like fea-tures (PLF), 
in Storfjordrenna (Figure 1). Areas of active methane 
seepage were identified by detecting acous-tic flares 
on a keel mounted single beam echo sounder (Simrad 
EK 60, frequencies 18 KHz and 38 KHz). At Prins Karls 
Forland, a box corer was used for sampling the sea floor 
at identified target flare sites. In Storfjordrenna in 2014, 
a triangular scraper (1 × 1 × 1 m) was trawled over the 
sea bottom at an extensive field of seepages for ∼5 
min, bringing up sediments, shell material and 
carbonate crust. In Storf-jordrenna, in 2015, material 
was collected from quanti-tative benthic sampling at 
seep sites with a van Veen grab 0.1 m2, and a camera-
towed multicorer (equipped with 6 liners with inner 
diameter = 10 cm). At all locations and with all 
sampling methods, shells were collected by sieving (1 
and 5 mm) of bulk sediments. On board, shell material 
was sorted and identified as individuals in the 
Thyasiridae family due to the charac-teristic furrow on 
the shell. Following the cruises, bivalves were sent to 
the National Museum of Wales for identification.

The shells were examined and photographed using 
a Leica Z6 microscope supported by Helicon Focus 
stacking software. Direct comparisons were made
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with other thyasirids from the North Atlantic and Arctic 
Oceans held in the collections of the National Museum 
of Wales.

Environmental settings in Storfjordrenna

Storfjordrenna is located to the south of the main 
archipelago of Svalbard at the western margin of 
the Barents Sea. The trough was formed by erosion 
of glacial ice streams from the Barents Sea ice 
sheet (Patton et al. 2015). Storfjordrenna stretches
∼250 km into the Barents Sea in a north-east–
south-west direction and is characterized by mega-
scale glacial lineations on the seabed originating from 
the last deglaciation (Andreassen & Winsborrow 2009; 
Patton et al. 2015). Along the border of the south-west 
Svalbard margin, several sites with active seepages and 
plumes have been observed at the depth range of the 
predicted gas hydrate stability zone ̴ <00 m (Westbrook 
et al. 2009; Portnov et al. 2016). The Storfjordrenna seep 
site, SR, is located close to a glacial grounding zone 
wedge and is characterized as a relatively 
homogeneous and fea-tureless soft bottom 
environment with predominantly silty sediments, ∼350 
m deep, where sporadic out-crops of authigenic 
carbonate crust were seen.

Sediments were black and had a distinct hydrogen 
sulphur (H2S) odour.

A few tens of kilometres north in Storfjordrenna and 
slightly deeper (380 m), the PLF site is characterized by 
several gas hydrate bearing mounds with high flare 
activity. Fine silty sediments with records of authigenic 
carbonates dominated the bottom substrate and 
recovered sediments had a strong smell of H2S. This 
shelf region was influenced by transformed Atlantic 
water, with salinity over 35 psu and water tempera-
tures of 2.40°C, indicative of Atlantic water.

Environmental settings at Western Svalbard shelf

¶

Prins Karls Forland is an elongated fore island located 
at the shelf to the west of the main island of Svalbard, 
Spitsbergen. Along this continental shelf, gas seepage 
and extensive plumes have been reported in a range 
of water depths between 80–400 m, along with elev-
ated concentrations of methane in the water column 
(Westbrook et al. 2009; Sahling et al. 2014; Steinle 
et al. 2015). A more detailed overview of the oceano-
graphic conditions at the western Svalbard shelf and 
seepage into the water column is given in Graves 
et al. (2015) and Steinle et al. (2015). The bottom sub-
strate is heterogeneous with a coarse mix of gravel

Figure 1. Collection sites (black triangles) and the main surface current patterns around Svalbard. Red solid arrows indicate Atlantic 
water and blue dashed arrows represent Arctic water. Modified from Norwegian Polar Institute (2016) and Loeng (1991). Inset map 
from Jakobsson et al. (2012). Site names abbreviations PKF = Prins Karls Forland, SR = Storfjordrenna seep, PLF = Pingo-like features.
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and sand with glaciomarine ice rafted debris covering 
layers of silty hemi-pelagic mud (Åström et al. 2016). 
The overriding bottom water-mass at the sampling 
site was Atlantic water (salinity 35.10 psu, temperature 
3.40°C).

Scientific collection acronyms

FMNH Field Museum of Natural History, Chicago
NMWZ National Museum of Wales, Zoology

National Science Museum, TokyoNSMT 
RBCM Royal British Columbia Museum
SBMNH Santa Barbara Museum of Natural History
USNM United States National Museum
ZMMU Zoological Museum of Moscow University

University Museum of BergenZMNB 
HT PT Holotype 

Paratype

Comparative material examined

Thyasira vulcolutre Rodrigues, Oliver & Cunha, 2008. 
NMW.Z.2007.003.00001, HT, shell, North-east Atlantic, 
Gulf of Cadiz, Captain Arutyunov mud volcano, cruise 
MS Merian 01-03, st. 217 GKG10, 35°39.643′N, 07°
20.046′′′′′W, 1321 m, 30 Apr. 2006, M.R. 
Cunha; NMW.Z.2007.003.00002-3, PT, n = 2 , shells, same 
collec-tion data as holotype.
Thyasira southwardae Oliver & Holmes, 2006. ZMMU Ld- 
29999, HT, 13.4 mm long, Mid-Atlantic Ocean, 
Logatchev Vent Site, Anyas Garden, DSRV Alvin, st. 
Dive 3133, 14°45.189′′′′′N 4 4 °58.829′′′′′W, 3038 m, 27 
Jul. 1997; NMWZ. 2006.6.1, PT, same collection data as 
HT. Thyasira oleophila (Clarke, 1989). FMNH 307755, n 
= 7 ,  Gulf of Mexico, Louisiana slope, st. Bush Hill 
GC-185, 27°46.941′N, 91°30.479′W, 529 m.
Thyasira insignis (Verrill & Bush, 1898). USNM52596, 
syntype, West Atlantic Ocean, off Nova Scotia, RV Alba-
tross, st. 2499, 44°46′′′′′30′′ N 5 9 °55′′′′′45′′ W, 238 m, 
from photographs only.
Thyasira sp. Western North Atlantic, Laurentian Fan, RV 
Hudson, Cruise 87-0003, st. 13, 43°834.46′N, 55°38.35′W 
to 43°35.32′N, 55°38.23′W, 3718–3720 m, photographs, 
courtesy of Professor Rose Petrecca, Rutgers University 
Marine Field Station, NJ, USA.
Thyasira sarsi (Philippi, 1845). NMWZ, n = 100, North 
Sea, Atlantic Ocean, including shells from the Skagerrak 
methane seep (58°1.3′N, 9°34.6′E) and Norwegian 
fjords (Bokn).
Thyasira sp. n = 1, 32 mm height, damaged shell, North 
Sea off Norway, Storrega Pockmark, ROV Victor, Cam-
pagne Vicking, RV Pourquoi pas?, 64°38.58′′′′′N, 
04°53.02′′′′′E, 745 m, 31 May 2006, photographs, 
courtesy of Anders Warén, Swedish Natural History 
Museum. Thyasira scotiae Oliver & Drewery, 
2014. NMWZ.2012.074.4, HT, 18.6 mm long, 
North-east

Atlantic, Hatton-Rockall site west of Scotland, FRV 
Scotia, cruise 0712S, st. S12283a, 57°57′N, 15°33′W, 
1187–1200 m, 23 Jun. 2012, 2012.074.5, 3 PT, 13.9–
19.8 mm long, same collection data as HT. 
Ascetoaxinus quatsinoensis Oliver & Frey, 2014. RBCM 
010-00221-005, HT, 31.3 mm long, Canada, British 
Columbia, Vancouver Island, Quatsino Sound, 50°
15.482′N, 128°26.400′W to 50°14.519′N, 128°26.567′W, 
1086–1318 m, 2 Sep. 2004, J. Boutillier, Fisheries and 
Oceans Canada.
Axinus cascadiensis (Oliver & Holmes, 2007). NMWZ, PT, 
n = 5, NE Pacific Ocean, Baby Bare Seamount, Cascadia 
Basin, DSRV Alvin, Dive 3152, 47°42.65′N, 127°47.15′W, 
2591 m, 14 Oct. 1997, originally from same collection 
as HT, FMNHC 280989 (Oliver & Holmes 2007). 
Conchocele bisecta (Conrad, 1849). RBCM, 006-00076- 
001, PT, n = 1, locality unknown, probably Queen Char-
lotte Sound, British Columbia.
Channelaxinus excavatus (Dall, 1901). SBMNH 83964, PT, 
n = 1, Farallon Islands, Gulf of the Farallones, California, 
USA, st. J-13 (Benthos 9).
Wallerconcha sarae Valentich-Scott & Powell, 2014. 
SBMNH 235481, HT, 23.9 mm long, Beaufort Sea, 
Alaska, Canning Seafloor Mound, st. ECS004 137, core 
IP–1, section 3, 31 cm, 4.65 mbsf, 71.317°N, 143.999°
W, 2358 m, Aug. 2010, photographs from Paul Valen-
tich-Scott.
Axinulus hadalis (Okutani, Fujikura & Kojima, 1999). 
NSMT 71431, HT, Pacific Ocean, Japan Trench, ROV 
Kaiko, 7326 m, from photographs from Paul Valen-
tich-Scott, 5 Aug. 1998.

Taxonomy

Class BIVALVIA Linnaeus, 1758 Subclass 
HETERODONTA Neumayr, 1884 Order 
VENEROIDA H. & A. Adams, 1856 
Superfamily THYASIROIDEA Dall, 1900 
Family THYASIRIDAE Dall, 1900

Genus Thyasira Lamarck, 1818
Type species Tellina flexuosa Montagu, 1803

Diagnosis

Fragile shells, subcircular, ovate to ovate-polygonal in 
outline with a posterior sulcus; escutcheon variably 
expressed, absent to deep, with or without an auricle 
producing a submarginal sulcus. Lunule not demar-
cated. Hinge teeth lacking or as a single ‘cardinal’ 
tubercle, ligament sunken. Sculpture weak of commar-
ginal lines and growth stops, periostracum thin. 
Anterior adductor scar elongate, posterior adductor
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scar ovate, pallial line entire. Ctenidium with two demi-
branchs, lateral body pouches large and multilobed,
foot vermiform, heel obsolete, toe developed.

Remarks

The genera of the Thyasiridae are not fully resolved and
the limitedmolecular data available suggest that there is
not full congruence between current taxa andmolecular
based clades (Taylor et al. 2007). Oliver & Frey (2014)
illustrated anatomical characters that also challenged
current taxonomy, further suggesting that shell based
taxonomies are not fully reliable. Here, shells alone are
available and consequently their generic placing
cannot be made with certainty. The following species
is therefore referred to Thyasira sensu lato.

Thyasira capitanea sp. nov. Åström & Oliver
(Table I, Figures 2A-I)

Type material
Holotype ZMBN 106013, 1 complete shell, 27.2 mm
height, Barents Sea, Svalbard, Storfjordrenna, R/V
Helmer Hanssen, CAGE-14-3 cruise, st. SR 1, 75°
50.56′N, 16°37.75′E, 350 m, 9 Jul. 2014.
Paratypes n = 2 v, same collection data as HT; ZMNB
106014, n = 4 v, Barents Sea, Svalbard, Storfjordrenna,
R/V Helmer Hanssen, CAGE-15-2 cruise, st. PLF 2, 76°
06.37′N, 16°02.25′E, 383 m, 23 May 2015.

Diagnosis

Shell to 50 mm in height (holotype 27.2 mm), thin,
equivalve, equilateral, moderately inflated, beaks pro-
sogyre. Outline pyriform-polygonal, higher than long,
except in shells smaller than 15 mm where height
and length are approximately equal. Contour
complex, lunule flattened, smooth, set off by a subtle
change in angle from the distinct flattened anterior
slope itself demarcated from the remainder of the
anterior by a weak anterior ridge; the median area is

divided by a weak change in angulation, posterior
sulcus prominent but not deep or sharply angled; sub-
marginal sulcus very narrow, auricle absent. Outline
reflecting the contours; posterior long, very steep, sub-
marginal sinus indistinct; posterior sinus shallow; lunule
margin slightly concave, upper anterior short, straight;
anterior weakly curved; ventral narrower, rounded; pos-
terior ventral straight or slightly concave.

Hinge plate narrow, lacking teeth; ligament very
long, almost as long as the submarginal sulcus, set on
a shallow resilifer. Muscle scars indistinct, anterior
adductor scar elongate, separated from the pallial line
for half its length; posterior adductor scar oval about
half the size of the anterior scar.

Sculpture weak of low but dense commarginal
raised ridges and more prominent growth stops. Shell
white in colour, periostracum persistent, thin, adherent,
and beige to greyish-green in hue.

Etymology

‘Capitanea’ from the Latin capitaneus means ‘chief in
size’ (Brown 1956) and refers to the large size of this
species.

Comparisons

Thyasira capitanea sp. nov. is large for the majority of
thyasirids compared only with species in Conchocele,
Ascetoaxinus and Channelaxinus. These latter taxa
have obliquely skewed shells quite unlike the equilat-
eral shell of T. capitanea sp. nov. Other moderately
large thyasirids have been found at cold seeps, most
recently T. scotiae Oliver & Drewery, 2013 from the
Hatton-Rockall site west of Scotland, and this species
and other similar Atlantic forms are compared and illus-
trated in Oliver & Drewery (2013). Thyasira capitanea sp.
nov. has demarcated zones on the median and anterior
areas as well as a distinct posterior sulcus. Such demar-
cation over the whole genus is not seen in other Atlan-
tic species associated with seep settings: T. scotiae;
T. vulcolutre Rodrigues et al., 2008; T. sarsi, (Philippi,
1845); T. insignis (Verrill & Bush, 1898); T. southwardae
Oliver & Holmes, 2006; or T. oleophila Clarke, 1989. A
faint anterior angulation is present in T. oleophila but
not on the median area, this species is atypical in
having a pustulose surface. The pyriform-polygonal
outline is not shared with any of these species but is
reminiscent of species assigned to Channelaxinus
although here the angulation is much stronger, the
lunule is excavated and the posterior sulcus and sub-
marginal sulcus are steeply and sharply defined
(Oliver & Frey 2014; Oliver 2015). Channelaxinus is

Table I. Thyasira capitanea sp. nov. measurements (mm).
Abbreviations: lv = left valve, rv = right valve, pr = paired
(articulated) valves.

Height Length Tumidity (paired)

Holotype pr 27.2 25.6 15.3 (7.7)
Paratype rv 33.2 29.6 10.7
Paratype rv 15.9 15.4 4.6
Paratype rv 33.7 31.5 10.6
Paratype lv 19.2 17.7 5.8
Paratype lv 17.0 15.8 5.1
Paratype lv 12.0 12.1 4.0
subfossil pr 18.7 18.1 10.7
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represented in the deep Atlantic only by the rarely col-
lected and much smaller C. perplicata (Salas, 1996) and 
to date has not been associated with any chemosyn-
thetic setting.

A relatively large (32 mm) thyasirid has been col-
lected from the Storegga Pockmark off the coast of 
Norway at ∼64°N. It is known only from a single 
damaged shell (illustrated in Oliver & Drewery 2013) 
and has not been described. It differs from T. capitanea 
in having a very long anterior slope con-tinuous with 
the lunule margin such that there are no anterior 
angles or ridges.

Rhacothyas gen. nov. Åström & Oliver

Type species. Rhacothyas kolgae sp. nov. (this paper)

Diagnosis

Moderate sized shell to 28 mm, thin, equivalve, sub-
equilateral, prosogyrous beaks slightly in front of 
midline, somewhat compressed. Outline subovate, dis-
tinctly longer than high, lunule sunken, posterior sulcus 
shallow, submarginal sulcus obsolete. Ligament deeply 
sunken, in a rather wide resilifer. Hinge edentulous. 
Sculpture of dense, but variably expressed, raised 
lines and weak ridges covered by an adherent wrinkled 
periostracum.

Etymology

’Rhaco’ from the Greek rhakodes meaning wrinkled 
(Brown 1956) and ‘thyas’ a contraction of Thyasira.

Differential diagnosis and remarks

While it is not normal protocol to create novel taxa 
based on such limited material, these shells are so dis-
tinctive that it is not logical to assign them to any 
current genus. The majority of thyasirids have shells 
that are oval, polygonal or obliquely oval in outline, 
that is, generally slightly higher than long. The combi-
nation here of the characters of the outline, sunken 
lunule, lack of a submarginal sulcus and wrinkled 
surface are not seen in any other genus.

Only two other shells bear any similarity, Axinulus 
hadalis (Okutani, Fujikura & Kojima, 1999) (Figure 
3E–F) from 7000 m in the Japan Trench and Waller-
concha sarae Valentich-Scott & C.L. Powell, 2014 
(Figure 3C–D) from 2385 m in the Beaufort Sea. Both 
have a similar wrinkled surface but both lack a 
defined lunule and the posterior sulcus is by compari-
son poorly developed. Axinulus hadalis has a short liga-
ment on a shallow resilifer while that of Wallerconcha is

more like that of Rhacothyas (Figure 3A–B). While there 
are similarities with A. hadalis, the type of the genus 
Maorithyas marama Fleming, 1950 is radically different 
and doubtfully distinguishable from Thyasira sensu 
stricto (see Oliver 2014 p. 127). Wallerconcha further 
differs in the long anterior slope such that the anterior 
is much narrower than the posterior whereas in Rha-
cothyas the outline is almost symmetrical.

Rhacothyas kolgae sp. nov. Åström & Oliver 
(Figures 4A-F)

Type material
Holotype ZMNB 106015, 1 v, 24.5 mm long, Arctic 
Ocean, West Svalbard, Prins Karls Forland, R/V 
Helmer Hansen, CAGE-14-1 cruise, st. PKF 2, 78°
37.59′N, 09°24.29′E, 350 m, 22 Jun. 2014 (Figure 4D).

Paratypes 1 complete v and 3 broken v, same collec-
tion data as HT.

Other material examined

A third complete right valve (Figures 4E–F), 27.7 mm 
long, same collection data as HT, used for chemical 
assay.

Diagnosis

See generic account

Description

Holotype (Figures 4A–C) of a single right valve, 
24.5 mm length, 21.0 mm height, 6.4 mm width. Thin, 
equivalve, sub-equilateral, prosogyrous beaks slightly 
in front of midline, somewhat compressed. Outline 
subovate, distinctly longer than high, lunule sunken 
demarcated by a weak ridge, rugose; posterior sulcus 
shallow, submarginal sulcus obsolete. Ligament 
deeply sunken, in a rather wide resilifer about 2/3 the 
length of the posterior slope. Hinge edentulous. Sculp-
ture of dense, but variably expressed, raised lines and 
weak ridges covered by an adherent wrinkled perios-
tracum. Shell white in colour, periostracum a pale 
olive drab in hue. Anterior adductor scar elongate 
and relatively wide, the ventral third separated from 
the pallial line; posterior adductor scar ovate about 
half the size of the anterior scar.

Etymology

‘Kolgae’ after Kolga, the Norse goddess of the Arctic 

Ocean.
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Comparisons

See generic account.

Discussion

We have described one new genus and two new 
species of Thaysiridae from methane seeps off the 
western and southern shelf of Svalbard and Barents 
Sea (75–79°N). These Svalbard shells are quite distinct 
from other larger-bodied seep-associated species 
known from the north-east Atlantic. Since the benthic 
habitats where these thyasirids were found are geolo-
gically relatively young (<15,000 years) (Patton et al. 
2015), it is likely that the bivalves have evolved else-
where and spread into this region from adjacent che-
mosynthetic environments, and possibly from the 
north-west Atlantic (Skarke et al. 2014).

The discovery of chemosymbiotic bivalves at active 
cold seeps in the Arctic is not surprising in light of che-
mosynthetic faunas in the geological record dating 
back to the Early Cretaceous and Late Jurassic and 
the reporting that methane seepage west of Svalbard 
has been active for the past 2.7 million years (Plaza-
Faverola et al. 2015). However, the fauna at Storfjor-
drenna and Prins Karls Forland seeps contains two 
species of large thyasirid that are not known elsewhere 
in the Arctic or Atlantic Oceans. The genus Rhacothyas 
is so far only known from the PKF seep and Thyasira 
capitanea sp. nov. is quite distinct from the other 
larger thyasirids associated with seeps in the Atlantic 
Ocean. Krylova et al. (2011), in the discussion on the 
vesicomyid Isorropodon, suggested that this genus 
had penetrated the Norwegian Sea from the Atlantic 
along the African-European continental margin.

Figure 2. A–I. Thyasira capitanea sp. nov. A–D, external and internal views of the holotype. E, dorsal view of the holotype. F–I, 
external views of shells from CAGE-15-2.
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Figure 3. A–F. Comparative figures of (A–B) Rhacothyas kolgae gen. et sp. nov., (C–D) Wallerconcha sarae, ( E –F) Axinulus hadalis.

Figure 4. A–F. Rhacothyas kolgae gen. et sp. nov. A–B, external and internal of holotype. C, dorsal of holotype. D, external of para-
type, lunule broken. E–F, external and internal of assayed valve.
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While this may also be true for the thyasirids as evi-
denced by the morphological similarities between 
T. southwardae, T. vulcolutrae, T. scotiae and T. sarsi 
that form a series along the eastern Atlantic margin 
(Oliver & Drewery 2013), the Svalbard thyasirids do 
not fit into this series. The recent discovery of numer-
ous methane seeps along the north-western US Atlan-
tic margin (Skarke et al. 2014) could potentially provide 
many novel taxa that may or may not have affinity with 
the taxa found around Svalbard.

Deglaciation of the Barents Sea Ice Sheet

The geological setting for our bivalve records is rela-
tively young. During the Last Glacial Maximum (Late 
Weichselian interstadial period), the Barents Sea and 
Svalbard were covered by an extensive marine-based 
ice sheet, with average global sea level ∼126 m lower 
than today (Peltier & Fairbanks 2006; Patton et al. 2015). 
Deglaciation of this Barents Sea Ice Sheet (BSIS) from 
the shelf break started around 20,000 years ago (Jessen 
et al. 2010) and seawater began to penetrate outer 
troughs in the Barents Sea by 16,000 ka BP and later on 
also into the fjords of Svalbard (Jessen et al. 2010; Łącka 
et al. 2015). Palaeontological records from sediment 
cores sampled in Storfjordrenna show that 
communities of foraminifera followed the different 
water masses (Arctic, Atlantic, fresh or saline), entering 
Storfjordrenna throughout the degla-ciation of the BSIS 
(Rasmussen et al. 2007; Rüther et al. 2011; Łącka et al. 
2015). The physical conditions at the seabed close to a 
glacier front are an extreme environment for many 
benthic and sessile organisms (Włodarska-Kowalczuk & 
Pearson 2004; W łodarska-Kowalczuk et al. 2005). 
Outflow of fresh water decreases the salinity close to a 
tidal glacier front, glacio-marine sedimentation is heavy 
and the turbidity in the water column is high 
(Szczucinski & Zajaczkowski 2012), leading to a low 
diversity benthic community dominated by a few 
motile opportunists, mostly poly-chaetes (Włodarska-
Kowalczuk et al. 2005, 2007). As the ice sheet and its 
associated glaciers retreated, it is likely that a more 
diverse benthic macrofaunal commu-nity was 
established on the newly exposed sea floor.

Along the western shelf of Svalbard, several sites 
with gas hydrate reservoirs and seabed methane emis-
sions have been identified (Westbrook et al. 2009; 
Sahling et al. 2014). Gas hydrates are ice crystals enclos-
ing natural gas, and their stability is greatest at high 
pressure and low temperature (Koh & Sloan 2007). 
Under the Barents Sea ice sheet, gas hydrates in the 
sub seabed were stable (Winsborrow et al. 2016). As 
the thickness of the ice diminished due to deglaciation,

pressures decreased and temperatures rose. This 
initiated gas hydrate disassociation, and allowed 
migration of gas in the sediments and venting of gas at 
the sea floor (Crémière et al. 2016; Portnov et al. 2016). 
The favourable circumstances of a steady supply of 
methane or sulphur and a suitable substrate created 
the basic conditions for specialized seep fauna (Schulze 
& Halanych 2003; Dubilier et al. 2008), allowing 
colonization of a new seep environment. Cold seep 
communities may establish in timescales from decades 
to centuries and can persist over thousands of years if 
there is sufficient seepage to sustain che-moautotroph 
production (Bowden et al. 2013; Ambrose et al. 2015). 
We propose that the early macro benthic seep 
communities in this region have been generated as a 
result of gas hydrate dissociation after deglaciation, 
and formed ∼12,000–14,000 years ago (Rasmussen et 
al. 2007; Ingólfsson & Landvik 2013; Pau et al. 2014; 
Patton et al. 2015; Rise et al. 2015; Portnov et al. 2016).

Dispersal of chemosynthetic fauna

Sub seabed hydrocarbon reservoirs occur all along the 
North Atlantic continental margin and the coast of 
Norway (Ziegler 1977; Andreassen et al. 1990; Vogt et 
al. 1997; Mienert et al. 2005; Vadakkepuliyambatta et al. 
2013; Portnov et al. 2016). The Håkon Mosby mud 
volcano (HMMV) was discovered in 1989 at the 
southern border of the Barents Sea (72°N) and has been 
the focus of extensive biogeochemical and bio-logical 
studies (Gebruk et al. 2003; Niemann et al. 2006; 
Lösekann et al. 2007; Decker & Olu 2012; Ryba-kova et 
al. 2013). Seafloor emissions of methane at HMMV 
occur from gas hydrates in the sub seabed (Vogt et al. 
1997; Lein et al. 1999) and support chemo-associated 
faunal populations. The macrofauna at HMMV caldera is 
represented by known chemosym-biotic organisms 
including siboglinid worms mixed with bivalves e.g. 
Thyasira dunbari and other conven-tional, 
heterotrophic fauna such as amphinomid poly-chaetes, 
and caprellids (Gebruk et al. 2003; Decker & Olu 2012; 
Rybakova et al. 2013). Tissue from thyasirids at HMMV, 
both from the caldera and in background 
environments, outside the volcano, showed depleted 
δ13C signals, indicating nutrition from methane carbon 
sources (Decker & Olu 2012). Globally, there are around 
100 species of Thyasiridae recognized from a wide 
range of habitats including hydrocarbon seeps, vents, 
oxygen minimum zones and organic enriched 
sediments, where a few of them are chemo-symbiotic 
(Taylor & Glover 2010; Duperron et al. 2013). Several 
degrees of microbial symbiosis have
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been described within this family (Dufour 2005), 
demonstrating a varying nutritional dependence on 
symbiosis amongst the chemosynthezising thyasirids 
(Dando & Spiro 1993).

Given the young age of the habitats where we found 
the two new species, there has been insufficient time for 
evolution of such distinct shell sizes and features in the 
described taxa. We presume instead that dispersal and 
colonization of seep-associated bivalves from western 
Svalbard is likely to have originated from nearby che-
mosynthetic systems such as the HMMV or others 
areas known for seepage in this region (Figure 5). In 
addition to HMMV and known vents and seeps at the 
Mid-Atlantic Ridge (Pedersen et al. 2010; Schander 
et al. 2010; Sweetman et al. 2013), there are areas of 
gas seepage associated with widespread pockmark 
fields in the southern Barents Sea (Chand et al. 2009; 
Rise et al. 2015) and along the north-west coast of 
Norway (Sauer et al. 2015; Crémière et al. 2016). The 
modern, overriding current regime, driven mainly by 
the North Atlantic Current and West Spitsbergen

Current system, drives northward transport of plank-
tonic forms, reaching Western Svalbard and the 
locations of our records (Loeng 1991; Seager et al. 
2002; Blindheim & Rey 2004; Berge et al. 2005; Cottier 
et al. 2010). The connectivity among chemosynthetic 
habitats and dispersal between chemosynthetic and 
conventional systems, is poorly known (Duperron 
et al. 2013; Levin et al. 2016), however, it is believed 
that whale falls, in addition to vents and seeps can 
serve as temporary reducing or chemosynthetic ‘step-
ping-stone’ environments, allowing dispersal of 
chemo-associated organisms, over even greater dis-
tances (Smith et al. 1989; Dahlgren et al. 2006). Whale 
falls can support chemo-ecosystems over decades 
(Smith et al. 1989; Baco & Smith 2003) and have been 
shown to host unique faunal communities with highly 
specialized forms (Glover et al. 2005, 2013; Danise 
et al. 2014). A minke whale fall in the North Sea (Kosterf-
jord, Sweden) supported high densities of Thyasira sarsi, 
in particular during the final ‘sulphidic’ stage of the 
whale decay (Danise et al. 2014). Thyasira sarsi is seen

Figure 5. Potential pathways of dispersal of seep-associated fauna from nearby vent and seep localities in the North Sea and Fram 
Strait to seeping areas at western Svalbard shelf and Storfjordrenna. Samples from this study are indicated by grey triangles. Red 
diamonds represent known vent and seep areas, light grey circles show sulphide deposits and yellow circles show acoustic methane 
plumes during sampling of Svalbard bivalves (this study). Map modified from Pedersen et al. (2010) and Norwegian Polar Institute 
(2016).

10 E. K. L. ÅSTRÖM ET AL.

905

910

915

920

925

930

935

940

945

950

955

960

965

970

975

980

985

990

995

1000

Changes
Deleted Text
(Crémière et™al. 2016; Sauer et™al. 2015)

Deleted Text
Deleted Text
(



as a mixotroph species, demonstrating a varying nutri-
tional dependence on sulphur oxidizing endosym-
bionts. In sulphide rich environments, tissues of T. sarsi
can have highly depleted values of δ13C (Dando et al.
1991; Dando & Spiro 1993) and it is suggested that
high densities of T. sarsi are controlled by the degree
of sulphate reduction rates in the sediment (Danise
et al. 2014).

Conclusions

Thyasira capitanea sp. nov. and Rhacothyas kolgae sp.
nov. were found in two separate regions along the
western Svalbard shelf margin at ∼350–380 m depth
associated with methane cold seeps. These two new
species have a relatively large size and have morpho-
logical features that are very distinct from other
known thyasirids and from each other. Colonization
has most likely occurred from other nearby seep and
vent areas if we consider the age of the present
stage of this region and the time frame for initiating
seafloor emission in relation to deglaciation. It is plaus-
ible that the seep-bivalves at Svalbard have spread into
Svalbard shelf waters from adjacent vent and seep
systems with the possible assistance of whale falls
and evolved in situ to their present form.
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