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Abstract	31	
β-Lactam	 antibiotics	 are	 of	 utmost	 importance	 when	 treating	 bacterial	 infections	 in	 the	32	
medical	 community.	 However,	 currently	 their	 utility	 is	 threatened	 by	 the	 emergence	 and	33	
spread	 of	 β-lactam	 resistance.	 The	 most	 prevalent	 resistance	 mechanism	 to	 β-lactam	34	
antibiotics	is	expression	of	β-lactamase	enzymes.	One	way	to	overcome	resistance	caused	by	35	
β-lactamases,	 is	 the	development	of	β-lactamase	 inhibitors	 and	 today	 several	 β-lactamase	36	
inhibitors	e.g.	avibactam	are	approved	in	the	clinic.	Our	focus	is	the	oxacillinase-48	(OXA-48),	37	
an	 enzyme	 reported	 to	 spread	 rapidly	 across	 the	 world	 and	 commonly	 identified	 in	38	
Escherichia	 coli	 and	 Klebsiella	 pneumoniae.	 To	 guide	 inhibitor	 design,	 we	 used	 diversely	39	
substituted	 3-aryl	 and	 3-heteroaryl	 benzoic	 acids	 to	 probe	 the	 active	 site	 of	 OXA-48	 for	40	
useful	 enzyme-inhibitor	 interactions.	 In	 the	 presented	 study,	 a	 focused	 fragment	 library	41	
containing	 49	 3-substituted	 benzoic	 acid	 derivatives	 were	 synthesised	 and	 biochemically	42	
characterized.	 Based	 on	 crystallographic	 data	 from	 33	 fragment-enzyme	 complexes,	 the	43	
fragments	could	be	classified	 into	R1	or	R2	binders	by	their	overall	binding	conformation	in	44	
relation	 to	 the	 binding	 of	 the	 R1	 and	 R2	 side	 groups	 of	 imipenem.	 Moreover,	 binding	45	
interactions	attractive	for	future	inhibitor	design	were	found	and	their	usefulness	explored	46	
by	 the	 rational	 design	 and	 evaluation	 of	 merged	 inhibitors	 from	 orthogonally	 binding	47	
fragments.	The	best	 inhibitors	among	the	resulting	3,5-disubstituted	benzoic	acids	showed	48	
inhibitory	 potential	 in	 the	 low	micromolar	 range	 (IC50	 =	 2.9	µM).	 For	 these	 inhibitors,	 the	49	
complex	X-ray	structures	revealed	non-covalent	binding	to	Arg250,	Arg214	and	Tyr211	in	the	50	
active	 site	 and	 the	 interactions	 observed	with	 the	mono-substituted	 fragments	were	 also	51	
identified	in	the	merged	structures.		52	

1 Introduction	53	
Years	 of	 overuse	 of	 antibiotics	 have	 selected	 for	 antibiotic	 resistant	 strains	 (1),	 and	 today	54	
medical	personnel	are	frequently	 forced	to	administer	 last-resort	antibiotics.	However,	 the	55	
number	of	cases	where	last-resort	antibiotics	fail	in	treatment	are	increasing	(2)	and	deaths	56	
due	 to	 antibiotic	 resistant	 infections	 are	 expected	 to	 surpass	 cancer	 deaths	 by	 2050	 (3).	57	
Bacterial	 resistance	 towards	 clinically	 important	 β-lactam	 antibiotics	 (4)	 like	 penicillins,	58	
cephalosporins	 and	 carbapenems	 originates	most	 often	 from	 the	 occurrence	 of	 β-lactam-59	
hydrolysing	enzymes	–	the	β-lactamases.	60	

The	β-lactamase	enzymes	are	of	ancient	origin	 (5)	and	today	over	2600	enzymes	spanning	61	
four	 classes	 of	 β-lactamases	 are	 known	 (6-8).	 b-Lactamases	 are	 grouped	 into	 two	 super	62	
families	based	on	the	enzyme	mechanism	for	b-lactam	hydrolysis:	the	serine	dependent	β-63	
lactamases	(SBLs;	Amber	class	A,	C,	and	D)	and	metallo-b-lactamases	(MBLs;	Amber	class	B)	64	
(7,9).	SBLs	are	characterized	by	a	serine	residue	in	the	active	site,	while	MBLs	require a	metal	65	
co-factor,	usually	one	or	two	zinc	ions,	for	enzyme	activity.	This	work	focuses	on	the	class	D	66	
SBLs	–	also	called	oxacillinases	(OXAs)	–	and	in	particular	on	the	oxacillinase-48	(OXA-48).		67	

The	 class	 D	 SBLs	 are	 characterized	 by	 a	 hydrophobic	 environment	 in	 the	 active	 site,	 that	68	
facilitates	the	carboxylation	of	a	lysine	residue.	The	N-carboxylated	lysine	plays	a	critical	role	69	
in	 the	 substrate	 hydrolysis	 (10).	 Originally,	 the	 OXAs	 were	 believed	 to	 have	 a	 limited	70	
substrate	 profile	 only	 hydrolysing	 penicillins,	 but	 with	 the	 emergence	 of	 carbapenem-71	
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hydrolysing	 OXA	 variants,	 e.g.	 OXA-23,	 OXA-24	 and	 OXA-48,	 their	 clinical	 relevance	 has	72	
increased	 (11).	OXA-48	was	 reported	 for	 the	 first	 time	 in	 2001	 and	has	 since	 then	 spread	73	
rapidly	 across	 the	 world.	 (11)	 It	 is	 commonly	 identified	 in	 Escherichia	 coli	 and	 Klebsiella	74	
pneumoniae.	75	

One	strategy	to	circumvent	resistance	 in	β-lactamase	producing	pathogens	 is	the	use	of	β-76	
lactamases	inhibitors	(4,12)	in	combination	with	the	β-lactam	antibiotic.	Inhibitors	of	class	A	77	
SBLs	 like	 clavulanic	 acid,	 sulbactam	 and	 tazobactam	 became	 clinically	 available	 from	 the	78	
1980s	(13),	but	only	a	few	class	D	β-lactamases	are	inhibited	by	these	β-lactamase	inhibitors	79	
e.g.	OXA-2	and	OXA-18	(14).	In	2015,	a	new	SBL	inhibitor,	avibactam,	targeting	class	A,	C	and	80	
some	class	D	SBLs,	including	OXA-48,	was	approved	by	the	FDA	for	treatment	of	complicated	81	
urinary	 tract	and	 intra-abdominal	 infections	 (15).	However,	 the	 inhibition	 level	of	different	82	
class	 D	 β-lactamases	 by	 avibactam	 varies	 (16,17).	 With	 the	 first	 reports	 of	 resistance	 to	83	
avibactam	published	(18),	one	can	speculate	that	it	will	only	be	a	matter	of	time	before	class	84	
D	β-lactamases	show	resistance	to	avibactam	as	well.		85	

The	 development	 of	 new	OXA	 inhibitors,	 either	with	 a	 different	 enzyme-inhibition	 profile	86	
compared	 to	 existing	 inhibitors,	 or	 as	 alternative	 when	 resistance	 to	 existing	 inhibitors	87	
arises,	is	of	importance.	We	have	previously	reported	a	fragment-based	screening	approach	88	
to	 identify	 weak	 inhibitors	 of	 OXA-48	 (19).	 The	 most	 interesting	 hit	 was	 3-(pyridin-4-89	
yl)benzoic	acid	1	with	an	IC50	of	250	µM	and	a	ligand	efficiency	(LE)	of	0.32.	Crystallographic	90	
data	from	enzyme-fragment	complexes	indicated	two	overlapping	binding	conformations	of	91	
the	fragment.	Merging	of	the	two	conformations	of	1	into	one	molecule	2	(Fig.	1)	gave	a	10-92	
fold	increase	in	binding	affinity	improving	the	IC50	from	250	µM	to	18	µM	(19).		93	

	94	

Figure	1:	The	two	alternate	conformations	of	fragment	1	(light	grey)	in	complex	with	OXA-48	95	
(dark	grey	surface)	(A	and	B),	the	merged	compound	2	(pink)	in	complex	with	OXA-48	(dark	96	
grey	surface)	(C),	and	a	schematic	view	of	the	merging	approach	described	in	previous	work	97	
(D)	(19).	98	

In	 this	 study,	 we	 describe	 the	 use	 of	 small	 mono-substituted	 fragments	 -	 analogues	 of	99	
fragment	1	-	as	probes	to	explore	the	OXA-48	binding	site.	The	aim	was	to	identify	fragment-100	
enzyme	interactions	in	the	two	alternate	binding	pockets	of	the	active	site	of	OXA-48,	which	101	
could	be	of	general	 interest	 for	 the	design	of	OXA-48	 inhibitors.	We	wanted	to	exploit	 the	102	
ability	of	small	fragments	to	efficiently	explore	the	binding	pocket	as	they	are	less	restricted	103	
by	 size	 and	more	 flexible	 compared	 to	more	 elaborated	 inhibitors.	Moreover,	 the	 smaller	104	
fragments	generally	have	the	advantage	of	being	more	easily	prepared	making	the	discovery	105	
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process	more	work-efficient.	 Furthermore,	 we	wanted	 to	 translate	 the	 knowledge	 gained	106	
into	the	rational	design	of	di-substituted	inhibitors	related	to	compound	2	circumventing	the	107	
laborious	preparation	of	a	large	library	of	elaborated	inhibitors.	108	

Towards	 this	 goal,	we	prepared	a	 focused	 fragment	 library	 containing	3-aryl	benzoic	acids	109	
decorated	 with	 a	 wide	 range	 of	 polar	 groups	 and	 a	 number	 of	 3-heteroaryl	 benzoic	 acid	110	
derivatives.	In	total	49	fragments	were	tested	for	inhibitory	activity	against	OXA-48	and	the	111	
binding	 conformations	 of	 33	 fragment-enzyme	 complexes	 were	 analysed	 by	 X-ray	112	
crystallography.	Based	on	the	structural	information,	fragments	could	be	classified	according	113	
to	 their	 preferred	 binding	 pocket	 and	 useful	 fragment-enzyme	 interactions	 e.g.	 hydrogen	114	
bonds	were	 identified.	Moreover,	 several	new	orthogonally	binding	 fragments	were	 found	115	
leading	 to	 the	 design	 of	 symmetrically	 and	 unsymmetrically	 di-substituted	 inhibitors	 with	116	
improved	 IC50	 in	 the	 low	 micromolar	 range.	 The	 structural	 data	 from	 enzyme-inhibitor	117	
complexes	was	compared	with	enzyme-fragment	complexes.	118	

2 Results	and	discussion	119	

2.1 Synthesis	120	

2.1.1 Synthesis	of	3-substituted	benzoic	acids	121	
A	fragment	library	containing	49	3-substituted	benzoic	acid	analogues	3a–35	was	prepared	122	
(Table	 1).	 The	 fragments	 generally	 fulfilled	 the	 demands	 of	 libraries	 for	 fragment-based	123	
ligand	 design	 (MW	 <	 300,	 clogP	 <	 3,	 hydrogen	 bond	 acceptor/donors	 <	 3)	 (20).	 For	 the	124	
synthesis,	a	strategy	based	on	the	Suzuki-Miyaura	(SM)	cross-coupling	reaction	to	 join	two	125	
sp2–hybridized	 carbons	 was	 employed	 (21).	 Two	 alternate	 coupling	 strategies	 were	126	
successful	 starting	 with	 either	 3-bromobenzoic	 acid	 (Table	 1,	 strategy	 A)	 or	 3-127	
carboxyphenylboronic	acid	pinacol	ester	(Table	1,	strategy	B)	as	starting	materials	allowing	128	
for	the	utilisation	of	a	wide	range	of	aryl	boronic	acids	or	aryl	bromides	to	introduce	diversity	129	
in	the	library.		130	

Many	of	the	required	aryl	boronic	acids	and	bromides	were	commercial	available,	while	the	131	
aryl	bromides	used	as	starting	materials	for	fragments	17-20,	24,	29	and	30	were	prepared	132	
according	 to	 standard	 acylation	 and	 sulphonylation	 protocols.	 The	 NH-tetrazol-5-yl-133	
substituted	arylbromides	(starting	material	for	fragments	26a	and	26b)	were	prepared	by	a	134	
[3+2]	intermolecular	cycloaddition	of	3-	or	4-bromobenzonitrile	with	trimethyl	silyl	azide	in	135	
the	 presence	 of	 dibutyltin	 oxide	 in	 anhydrous	 1,4-dioxane.	 The	 reaction	 mixture	 was	136	
subjected	to	microwave	irradiation	in	a	tightly	sealed	vessel	for	50	min	at	150	°C	to	afford	3-	137	
or	4-bromobenzotetrazole	in	86%	and	82%	yield,	respectively.	 	138	
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Table	 1:	 Preparation	 strategy	 and	 inhibitor	 activities	 of	 a	 library	 of	 3-substituted	 benzoic	139	
acids	analogues	against	OXA-48	(IC50,	Kd	and	LE).		140	

	141	
Comp.	
ID	

Ar	=	 Strateg.	
Yield	

IC50	

(μM)	
KD		

(μM)	
LEd	 Comp.	

ID		
Ar	=		 Strateg.	

Yield	
IC50	

(μM)	
KD		

(μM)	
LEd	

3a*	
	

B	
78%	 90	 170	 0.35	 11b*	

	

A	
97%	 180	 350	 0.29	

3b*	
	

B	
67%	 170	 300	 0.33	 12a*	

	

A	
82%	 120	 150	 0.29	

4a*	
	

A	
94%	 50	 175	 0.38	 12b	

	

A	
90%	 380	 361	 0.25	

4b*	
	

A	
98%	 110	 110	 0.35	 13*	

	

B	
35%	 330	 330	 0.29	

4c*	
	

A	
39%	 470	 170	 0.29	 14*	

	

A	
95%	 390	 220	 0.27	

5*	
	

A	
84%	 900	 230	 0.25	 15a	

	
B	

36%	 600	 800	 0.27	

6a*	
	

A	
98%	 250	 123	 0.30	 15b	

	
B	

86%	 1400	 550	 0.23	

6b*	
	

A	
98%	 360	 226	 0.28	 16a	

	

B	
15%	 110	 300	 0.31	

6c*	
	

A	
86%	 150	 250	 0.31	 16b	

	

B	
67%	 1000	 970	 0.23	

7	
	

A	
91%	 400	 1000	 0.28	 17*	

	

Ba,	c	
41%	 370	 100	 0.24	

8a*	
	

A	
68%	 130	 170	 0.34	 18	

	

Ba,	c	
65%	 60	 210	 0.24	

8b*	
	

A	
98%	 130	 240	 0.34	 19a	

	

Ba,	c	
26%	 110	 110	 0.26	

8c*	
	

A	
78%	 360	 312	 0.30	 19b	

	

Ba,	c	
10%	 450	 240	 0.22	

9a	

	

Aa,	c	
57%	 210	 200	 0.27	 20	

	

Ba,	c	
11%	 370	 200	 0.22	

9b*	
	

A	
54%	 260	 144	 0.26	 21a*	

	

A	
98%	 35	 100	 0.33	

10	
	

A	
98%	 380	 280	 0.27	 21b*	

	

A	
98%	 450	 290	 0.25	

11a	
	

A	
98%	 260	 220	 0.28	 22	

	

Ba,	b	
87%	 130	 130	 0.27	

*	 X-ray	 structure	 of	 fragment-enzyme	 complex	 available.	 a	 Reaction	 in	 anhydrous	 THF	 instead	 of	142	
dioxane:water	as	solvent;	b	XPhos-Pd	G2	as	catalyst	instead	of	PdCl2(PPh3)2;	c	PdCl2(dppf)	as	catalyst	143	
instead	 of	 PdCl2(PPh3)2.	 d	 LE = (−1.4 ∗ log-. IC1.)/HeavyAtomCount	 with	 units	 kcal/(mol	 per	 heavy	144	
atom).	 	145	

O
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Table	1	continues:		146	

Comp.	
ID	

Ar	=	 Strateg.	
Yield	

IC50	

(μM)	
KD		

(μM)	
LEd	 Comp.	

ID	
Ar	=		 Strateg.	

Yield	
IC50	

(μM)	
KD		

(μM)	
LEd	

23a	
	

Ba,	c	
46%	 230	 170	 0.24	 29	

	

B	
36%	 170	 130	 0.33	

23b	
	

Ba,	c	
34%	 520	 190	 0.22	 30	

	

B	
45%	 800	 900	 0.29	

24*	
	

Aa,	b	
34%	 250	 140	 0.25	 31	

	

B	
67%	 350	 113	 0.28	

25	
	

B	
15%	 1300	 ˃1000	 0.20	 32	

	

A	
6%	 500	 590	 0.31	

26a*	

	

B	
98%	 60	 70	 0.30	 33	

	
B	

24%	 800	 900	 0.31	

26b	
	

B	
98%	 36	 70	 0.30	 34	

	

B	
20%	 310	 400	 0.27	

27*	
	

B	
67%	 110	 400	 0.30	 35*	

	

A	
98%	 35	 159	 0.42	

28*	
	

B	
87%	 240	 160	 0.27	 	 	 	 	 	 	

*	 X-ray	 structure	 of	 fragment-enzyme	 complex	 available.	 a	 Reaction	 in	 anhydrous	 THF	 instead	 of	147	
dioxane:water	as	solvent;	b	XPhos-Pd	G2	as	catalyst	instead	of	PdCl2(PPh3)2;	c	PdCl2(dppf)	as	catalyst	148	
instead	 of	 PdCl2(PPh3)2.	 d	 LE = (−1.4 ∗ log-. IC1.)/HeavyAtomCount	 with	 units	 kcal/(mol	 per	 heavy	149	
atom).	150	

In	general,	couplings	under	standard	aqueous	conditions	using	PdCl2(PPh3)2	as	catalyst	(5–10	151	
mol%),	K3PO4	as	base	(5	equiv.)	in	dioxane/water	gave	good	yields.	The	couplings	leading	to	152	
fragments	9,	17–20	and	22–24	were	not	successful	under	these	standard	conditions.	More	153	
efficient	 catalysts	 (XPhos-Pd	G2	or	 PdCl2(dppf))	 and	water-free	 conditions	 (anhydrous	 THF	154	
instead	 of	 dioxane/water)	 were	 successfully	 employed	 to	 solve	 reactivity	 and	 solubility	155	
problems	 and	 to	 prevent	 hydrolysis	 for	 base	 sensitive	 products	 (9	 and	 24).	 However,	 for	156	
some	 products	 (19a+b	 and	 20)	 the	 yields	were	 still	 low	 (<	 20%).	 Generally,	 the	 reactions	157	
were	easily	purified	by	automated	C18	flash	chromatography	to	provide	compounds	of	high	158	
purity	(>	95%	as	determined	by	UHPLC).	For	some	compounds	(15,	16,	19,	23,	24,	32	and	34),	159	
additional	silica	flash	chromatography	was	necessary	to	provide	sufficiently	pure	products.	160	

2.1.2 Synthesis	of	3,5-disubstituted	benzoic	acid	derivatives.	161	
To	 study	 inhibitor	properties	 like	activity	and	enzyme	 interactions	of	merged	 fragments,	 a	162	
small	series	of	symmetrical	and	unsymmetrical	3,5-disubstituted	benzoic	acids	was	designed	163	
(vide	infra)	and	prepared.	The	synthesis	of	symmetrical	3,5-disubstituted	compounds	36	and	164	
38	 was	 achieved	 under	 the	 conditions	 established	 for	 the	 coupling	 of	 mono-substituted	165	
fragments	 using	 Pd2(dba)3/XPhos	 or	 XPhos-Pd	 G2	 as	 catalysts	 (Scheme	 1)	 (19).	 The	 di-166	
substituted	 coupling	 products	 36	 and	 38	 were	 obtained	 from	 3,5-dibromobenzoic	 acid	 as	167	
starting	material	and	an	 increased	amount	of	 the	boronic	acid	derivative	 (2	equiv.)	 in	54%	168	
and	 65%	 yield,	 respectively.	 Compound	 37	 was	 isolated	 in	 11%	 yield	 as	 by-product	 in	 an	169	
attempt	to	selectively	mono-substituted	3,5-dibromobenzoic	acid	(vide	infra).	170	

N

N

O

O

N
N

N
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	171	

Scheme	 1.	 Preparation	 of	 symmetrical	 3,5-disubstituted	 benzoic	 acids.	 Reagents	 and	172	
conditions:	36:	3-acetamidophenylboronic	acid	(1.5	equiv.),	Pd2(dba)3•CHCl3	(5	mol%),	XPhos	173	
(5	mol%),	dioxane:water	(1:1),	60	°C,	54%;	37:	4-acetamidophenylboronic	acid	(0.75	equiv.),	174	
PdCl2(PPh3)2	(10	mol%),	dioxane:water	(1:1),	95	°C,	11%;	38:	quinolin-6-ylboronic	acid	pinacol	175	
ester	(2.0	equiv.),	XPhos-Pd	G2	(5	mol%),	tert-butanol,	60	°C,	65%.	176	

For	 the	 synthesis	 of	 unsymmetrical	 3,5-disubstituted	 benzoic	 acids	 39,	 the	 sequential	177	
addition	of	two	different	aryl	boronic	acids	under	the	previously	established	conditions	gave	178	
only	 15%	 isolated	 yield	 (Scheme	 2).	 In	 addition,	 the	 procedure	 involved	 tedious	 HPLC	179	
purifications	as	the	reaction	mixture	was	difficult	to	purify	due	to	occurrence	of	symmetrical	180	
by-products	with	similar	properties.	To	improve	the	selectivity	of	the	reaction,	we	changed	181	
the	starting	material	from	3,5-dibromobenzoic	acid	to	3-iodo-5-bromobenzoic	acid	in	order	182	
to	 take	advantage	of	 the	 faster	coupling	reaction	of	aryl	 iodides	when	compared	with	aryl	183	
bromides	 and	 thereby	 to	 prevent	 formation	 of	 symmetrical	 disubstituted	 by-products	184	
(Scheme	 2).	 Investigation	 of	 the	 chemoselective	 coupling	 of	 3-iodo-5-bromobenzoic	 acid	185	
with	quinolin-6ylboronic	acid	pinacol	ester	to	form	mono-substituted	 int-40	showed	that	a	186	
second,	 unwanted	 coupling	was	 not	 easily	 prevented	 and	 a	 careful	 fine	 tuning	 of	 catalyst	187	
(RuPhos-Pd	G3,	XantPhos-Pd	G3,	Sphos/Pd2(dba)3,	Xphos/Pd2(dba)3,	SPhos-Pd	G3,	XPhos-Pd	188	
G2,	 Pd2(dppf)Cl2),	 solvent	 (toluene/water,	 anhydrous	 THF,	 dioxane/water,	 tert-butanol),	189	
reaction	temperature	(40–80	°C)	and	time	(10–48	h)	was	initiated	(Table	SI1,	see	supporting	190	
information).	 The	 composition	 of	 the	 crude	 reaction	mixtures	with	 respect	 to	mono-	 and	191	
disubstituted	 products	 as	 well	 as	 unreacted	 starting	 material	 was	 determined	 by	 mass	192	
spectrometry	 (MS).	 The	most	 chemoselective	 catalysts	were	XantPhos-Pd	G3,	 Pd2(dppf)Cl2	193	
and	 SPhos/Pd2(dba)3	 showing	 good	 selectivity	 for	 the	 aryl	 iodide	 when	 the	 reaction	 was	194	
performed	with	K3PO4	 as	base	 in	dioxane/water	 at	 60	 °C	 for	 24	hours	 (Scheme	2).	At	 this	195	
conditions	with	 SPhos/Pd2(dba)3	 as	 catalyst,	 the	monosubstituted	 intermediate	 int-40	was	196	
obtained	as	main	product	together	with	small	amounts	of	the	disubstituted	by-product	(8–197	
10%).	Careful	purification	to	remove	any	traces	of	the	disubstituted	compound	provided	int-198	
40	in	moderate	yield	(45%).	The	mono-substituted	int-40	was	further	subjected	to	a	second	199	
coupling	with	XPhos-Pd	G2	(5	mol%)	as	catalyst	to	provide	40	in	good	yields	(90%).	200	

O

OHAr
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O

OHBr
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N
H

O
H
N
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	201	

Scheme	 2:	 Preparation	 of	 unsymmetrical	 3,5-disubstituted	 benzoic	 acids.	 Reagents	 and	202	
conditions:	39:	i.	X	=	Br,	3-acetamidophenylboronic	acid	(0.75	equiv.),	PdCl2(PPh3)2	(10	mol%),	203	
dioxane:water	 (1:1),	 60	 °C;	 ii.	 pyridin-4-ylboronic	 acid	 (1.2	 equiv.),	 PdCl2(PPh3)2	 (10	mol%),	204	
dioxane:water	 (1:1),	60	°C;	 int-40:	X	=	 I,	quinolin-6-ylboronic	acid	pinacol	ester	 (2.0	equiv.),	205	
Pd2(dba)3*CHCl3	 (5	 mol%),	 SPhos	 (5	 mol%),	 dioxane:water	 (1:1),	 60	 °C;	 40:	 3-206	
acetamidophenylboronic	acid	(1.5	equiv.),	XPhos-Pd	G2	(5	mol%),	tert-BuOH,	60	°C.	207	

2.2 Evaluation	of	3-substituted	benzoic	acids	208	

2.2.1 Inhibitor	activity	of	3-substituted	benzoic	acids	209	
The	mono-substituted	fragments	3–35	were	initially	investigated	for	their	inhibitory	activity	210	
against	OXA-48	 in	an	enzymatic	assay	and	by	SPR.	 Inhibition	and	binding	data	are	given	 in	211	
Table	1	along	with	the	associated	ligand	efficiencies	(LE).	The	original	hit	fragment	1	had	an	212	
IC50	of	250	µM	and	an	LE	of	0.32.	Most	of	the	fragments	in	this	study	showed	inhibition	at	a	213	
similar	level	with	IC50	>	200	µM	and	LE	≤	0.30.	Fragments	4a	(IC50	(µM)/LE:		50/0.38),	18	(IC50	214	
(µM)/LE:	 60/0.24),	 21a	 (IC50	 (µM)/LE:	 35/0.33),	 26b	 (IC50	 (µM)/LE:	 36/0.30)	 and	 35	 (IC50	215	
(µM)/LE:	 35/0.42)	 showed	 an	 order	 of	 magnitude	 stronger	 inhibition	 and	 were	 the	most	216	
potent	 fragments.	 Even	 though	 there	 are	 some	 discrepancies	 between	 the	 inhibition	 and	217	
binding	 data,	 the	 same	 trends	 are	 maintained	 when	 comparing	 similar	 compounds,	218	
indicating	that	the	compounds	indeed	bind	specifically	to	one	site	of	the	enzyme.	219	

2.2.2 Structural	analysis	of	3-substituted	benzoic	acids	220	
To	 evaluate	 the	 binding	 poses	 of	 our	 fragments,	 enzyme-fragment	 complexes	 for	 x-ray	221	
crystallographic	 analysis	 were	 prepared.	 Rewardingly,	 33	 out	 of	 49	 fragments	 were	222	
successfully	soaked	with	OXA-48	and	yielded	crystal	structures	with	resolution	high	enough	223	
to	warrant	placement	of	the	inhibitor	in	the	electron	density	(Table	1).	In	addition,	a	crystal	224	
structure	 of	 OXA-48	 in	 complex	 with	 the	 substrate	 imipenem	 was	 obtained	 to	 better	225	
understand	substrate	binding	and	to	compare	substrate	and	fragment	binding	interactions.	226	

The	 crystal	 structure	 of	 the	 acyl-enzyme	 complex	 of	 OXA-48	 with	 imipenem	 (Fig.	 2A)	227	
revealed	a	conformation	close	to	previously	observed	conformations	with	OXA-13	(PDB-ID:	228	
1h5x).	 In	 the	 complex	 the	 ring-opened	 imipenem	 was	 bound	 to	 OXA-48	 covalently	 with	229	
continuous	electron	density	from	the	hydroxyl	group	of	Ser70.	There	was	an	ionic	bond	from	230	
the	carboxylate	group	of	imipenem	to	the	guanidine	group	of	Arg250.	The	carbonyl-group	of	231	
the	now	ring-opened	β-lactam	ring	was	positioned	 in	 the	oxyanion-hole	 forming	hydrogen	232	
bonds	 to	 the	main	 chain	 amides	 of	 Tyr211	 and	 Ser70.	 The	 6α-hydroxyethyl	 group	 (R1)	 of	233	
imipenem	was	positioned	towards	the	hydrophobic	residues	Trp105,	Val120	and	Leu158	and	234	
in	the	following	discussion	this	region	will	be	called	the	R1	site.	The	amidine	group	(R2)	was	235	

O
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situated	 in	 the	 cleft	 defined	by	 Ile102,	 Tyr211,	 Leu247	and	Thr213	and	 this	 region	will	 be	236	
called	 the	 R2	 site.	 The	 R1	 and	 R2	 side	 chains	 of	 imipenem	 (Fig.	 2A)	 had	 the	 same	 overall	237	
directions	 as	 the	 pyridinyl	 substituents	 in	 the	 two	 overlapping	 binding	 conformations	238	
observed	with	our	initial	hit	3-pyridin-4-ylbenzoic	acid	1	(19).		239	

In	 all	 our	 structures	 of	 OXA-48	 in	 complex	 with	 fragments,	 an	 ionic	 bond	 between	 the	240	
carboxylate	group	of	the	fragments	and	the	guanidine	group	of	Arg250	was	observed,	which	241	
resembled	the	interaction	of	the	carboxylate	group	of	imipenem	or	the	sulfamate	group	of	242	
avibactam	with	Arg250.(17,22)	In	some	cases,	the	carboxylate	group	was	oriented	in	such	a	243	
way	that	also	Thr209	 (fragments	9b,	28,	35),	Lys208	 (fragment	34)	or	both	 (fragment	26a)	244	
participated	in	binding.		245	

Another	 common	 feature	 found	 in	 almost	 all	 crystal	 structures,	 except	 for	 fragments	21a	246	
and	26b,	was	a	p-p	 stacking	 interaction	of	 the	3-aryl	 substituents	attached	 to	 the	benzoic	247	
acid	scaffold	with	Tyr211.	This	is	consistent	with	the	binding	of	imipenem,	where	the	R2	side	248	
chain	was	oriented	towards	Tyr211	(Fig.	2C).	The	importance	of	Tyr211	as	a	non-polar	patch	249	
that	contributes	 in	binding	substrate	side-chains	has	been	recognised	before	(23).	We	also	250	
observed	this	interaction	with	our	unsubstituted	pyridyl	benzoic	acids	previously.	(19)	251	

	252	

					 																	 																												 	253	

Figure	2:	The	crystal	structure	of	imipenem	in	complex	with	OXA-48	(A)	shows	that	the	two	254	
side	chains	of	imipenem	extends	in	separate	directions.	The	carbapenem	substrates	of	OXA-255	
48	have	small	R1	side	chains.	We	were	however	able	to	fit	larger	groups	in	the	R1	site	like	the	256	
N-acetamide	 substituted	 phenyl	 ring	 in	 compound	 21a	 (B).	 Yet,	 most	 of	 the	 tested	 3-257	
substituted	 benzoic	 acids	 bind	 towards	 the	 larger	 R2	 site,	 like	 the	 quinolin-7-yl	 substituted	258	
compound	28	(C).	259	

The	weaker	binding	 fragments	 (3a+b,	4a–c,	5,	6a–c,	8a–c,	9b,	11b,	12a,	13,	14,	17,	24)	all	260	
bound	in	nearly	the	same	conformation	with	the	ionic	bond	of	the	benzoic	acid	and	Arg250	261	
and	the	p-p	stacking	interaction	with	Tyr211	as	major	interactions.	In	these	structures,	the	3-262	
aryl	substituent	on	the	benzoic	acid	was	directed	towards	the	R2	pocket	(Fig.	2C).	Only	minor	263	
conformational	differences	were	observed	as	described	in	the	following.	To	help	the	reader	264	
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in	the	following	discussion,	we	will	describe	the	fragments	by	the	identity	of	the	Ar	groups	265	
(Table	 1),	 as	 the	 structural	 differences	 of	 the	 fragments	 relate	 to	 this	 group	 i.e.	 3-(2-266	
methyl)phenylbenzoic	acid	3a	will	be	described	as	2-methylphenyl	substituted	fragment.		267	

The	methylphenyl	 substituted	 fragments	 3a	 (IC50	 (µM)/LE:	 90/0.35)	 and	 3b	 (IC50	 (µM)/LE:	268	
170/0.33)	had	similar	conformations,	however,	the	2-methyl	group	in	3a	was	facing	towards	269	
the	hydrophobic	Cβ	of	Ser244	explaining	the	more	favourable	binding.	Fragments	4a–c	(IC50	270	
(µM)/LE:	50/0.38,	110/0.35	and	470/0.29,	respectively)	also	had	very	similar	conformations,	271	
but	again	we	saw	that	more	 favourable	van	der	Waals	 interactions	gave	higher	affinity	 for	272	
the	2-hydroxyphenyl	substituted	4a.	The	4-hydroxy	 isomer	4c	had	an	unfavourable	solvent	273	
exposure	of	the	hydroxyl	group.	Adding	a	methylene	bridge	yielding	3-hydroxymethylphenyl	274	
5	 (IC50	 (µM)/LE:	900/0.25)	did	not	 lead	 to	any	 favourable	 interactions.	The	methoxyphenyl	275	
fragments	 6a–c	 (IC50	 (µM)/LE:	 250/0.30,	 360/0.28	 and	 150/0.31)	 shared	 the	 canonical	 R2	276	
binding	 pose.	 The	 methoxy	 group	 of	 the	 2-substituted	 6a	 appeared	 more	 shielded	 from	277	
solvent	exposure	than	in	6b	and	6c,	yet	the	methoxy	group	did	not	seem	to	make	any	strong	278	
contacts.	 The	 weak	 inhibition	 seen	 with	 methyl	 thioether	 7	 (IC50	 (µM)/LE:	 400/0.28)	279	
corresponded	 to	 the	 results	 observed	 with	 the	 methoxy	 ethers	 6.	 The	 fluorophenyl	280	
substituted	 8a–c	 (IC50	 (µM)/LE:	 130/0.34,	 130/0.34	 and	 360/0.30)	 had	 nearly	 identical	281	
binding	 poses.	 The	 4-substituted	 8c	 gave	 the	 highest	 IC50	 value,	 most	 likely	 due	 to	 the	282	
solvent	 exposed	 fluorine.	 The	 2-substituted	 8a	 seemed	 more	 favourable	 based	 on	 the	283	
decreased	 solvent	 exposure	 of	 the	 fluorine	 atom,	 however,	 the	 difference	 to	 8b	 was	284	
negligible	only	observed	by	SPR.		285	

The	 methoxyacetylphenyl	 esters	 9a+b	 (IC50	 (µM)/LE:	 210/0.27	 and	 260/0.26)	 showed	 no	286	
clear	additional	 interactions	 in	 the	complex	structures	with	OXA-48,	and	 the	methyl	group	287	
appeared	 to	 be	 unfavourably	 exposed	 to	 the	 solvent.	 The	 corresponding	 4-acetylphenyl	288	
substituted	 10	 (IC50	 (µM)/LE:	 380/0.27)	 and	 carbamoylphenyl	 substituted	 11a+b	 (IC50	289	
(µM)/LE:	260/0.28	and	180/0.29)	gave	generally	weak	 inhibition	 indicating	 that	a	 carbonyl	290	
group	attached	to	the	aromatic	ring	was	not	contributing	to	binding.	No	complex	structures	291	
are	 available	 for	 10	 and	 11a,	 but	 the	 complex	 structure	 of	 4-carbamoylphenyl	 11b	was	292	
similar	 in	 conformation	 to	 the	 esters	9a+b.	 Slightly	 tighter	 binding	was	observed	with	 the	293	
meta-substituted	 sulfone	12a	 (IC50	 (µM)/LE:	120/0.29),	which	also	 shares	 the	 same	overall	294	
conformation.	295	

The	4-aminophenyl	 substituent	of	13	 (IC50	 (µM)/LE:	330/0.30)	did	not	appear	 to	make	any	296	
interaction	 with	 the	 enzyme,	 and	 the	 inhibition	 was	 weak.	 The	 complex	 structure	 of	 the	297	
corresponding	N,N-dimethyl-4-aminophenyl	substituted	14	(IC50	(µM)/LE:	390/0.27)	showed	298	
that	the	two	methyl	groups	are	solvent	exposed,	and	this	is	reflected	in	the	poor	inhibition	299	
by	this	compound.	Similar	to	the	complex	structure	of	14,	the	methyl	4-sulfonamidophenyl	300	
group	of	17	(IC50	(µM)/LE:	370/0.24)	was	seemingly	pushed	out	of	the	active	site	and	appears	301	
completely	 exposed	 to	 the	 solvent.	 The	 larger	 phenyl	 4-sulfonamidophenyl	 substituted	302	
fragment	 18	 (IC50	 (µM)/LE:	 60/0.24)	 showed	 lower	 IC50	 values	 probably	 driven	 by	 the	303	
increase	in	hydrophobicity,	and	no	complex	structure	was	obtained.	304	
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The	corresponding	4-acetamidophenyl	21b	(IC50	(µM)/LE:	450/0.25)	showed	weak	inhibition,	305	
likely	due	to	the	solvent	exposure	of	the	hydrophobic	methyl	group.	The	3-acetamidophenyl	306	
containing	 fragment	 21a	 (Figure	 3),	 however,	 showed	 a	 10-fold	 increased	 inhibition	 (IC50	307	
(µM)/LE:	 	35/0.33).	The	complex	structure	of	OXA-48	with	 fragment	21a	 revealed	 that	 the	308	
carbonyl	 of	 the	 acetyl	 formed	 a	 hydrogen	 bond	 to	 the	 guanidine	 group	 of	 Arg214,	which	309	
directs	the	3-acetamidophenyl	substituent	to	the	R1	site	(Fig.	2B)	and	lead	to	a	T-shaped	π-π-310	
stacking	interaction	of	the	3-acetamidophenyl	substituent	with	Trp105.	The	π-π	stacking	of	311	
the	3-acetamidophenyl	substituent	to	Tyr211	normally	observed	with	these	fragments	was	312	
not	observed;	instead	Tyr211	interacted	with	the	benzoic	acid	by	T-shaped	π-π-stacking.	The	313	
interaction	of	 an	 acetamide	with	Arg214	has	been	described	previously	 for	 the	 avibactam	314	
analogue	FPI-1523	in	complex	with	OXA-48	(PDB-ID:	5fas)	(22).	315	

316	
Figure	3:	Compound	21a	was	one	of	the	most	potent	3-substituted	benzoic	acid	derivatives	317	
we	found.	The	IC50-value	(A)	was	determined	to	be	35	µM,	while	the	Kd	was	found	to	be	100	318	
µM	 (B).	 The	 crystal	 structure	 of	 the	 complex	 OXA-48:21a	 with	 an	 omit-type	 polder-map	319	
(2.5σ)	 (C)	 and	 its	 2D-representation	 (D)	 shows	 that	 the	 carbonyl	 of	 the	 acetamido-group	320	
forms	a	hydrogen	bond	with	the	guanidine	of	Arg214.	The	interaction	with	Arg214	causes	the	321	
B-ring	to	move	away	from	Tyr211,	introducing	a	new	interaction	with	Trp105.	322	

Encouraged	by	the	results	for	fragment	21a,	we	designed	a	series	of	fragments	incorporating	323	
a	 hydrocarbon	 linker	 between	 the	 phenyl	 ring	 and	 the	 amino,	 sulfonamido	 or	 acetamido	324	
groups	of	13,	18	and	21.	The	amines	15	and	16,	the	sulfonamides	19	and	20,	the	amides	22,	325	
23a+b	 and	 the	 acetate	 24	 are	 more	 flexible,	 thus,	 increasing	 the	 potential	 of	 hydrogen	326	



-12-	
	

bonding.	 However,	 none	 of	 these	 fragments	 showed	 substantially	 improved	 binding	 (IC50:	327	
110–1000;	LE:	0.19–0.30).	Moreover,	the	crystal	structures	of	the	amides	22,	23a+b	and	the	328	
acetate	 24	 (IC50	 (µM)/LE:	 230/0.24,	 520/0.22	 and	 250/0.25)	 did	 not	 show	 any	 specific	329	
interactions	for	the	functional	groups.	330	

In	 fragments	 26a	 and	 26b	NH-tetrazole	 substituted	 phenyl	 rings	 were	 investigated	 as	 Ar	331	
substitutents.	 Introducing	 the	 weakly	 acidic	 tetrazol-5-ylphenyl	 substituent	 in	 either	 3-332	
position	26a	 (IC50	 (µM)/LE:	60/0.30)	or	4-position	26b	 (IC50	 (µM)/LE:	36/0.30)	yielded	good	333	
binding	for	both	fragments.	However,	the	binding	poses	for	the	two	compounds	were	very	334	
different.	The	3-tetrazol-5-ylphenyl	substituted	26a	bound	in	two	alternate	positions.	The	π-335	
π-stacking	with	Tyr211	was	maintained	for	both	conformations,	but	the	tetrazoles	appeared	336	
completely	solvent	exposed	with	no	interactions	with	the	enzyme.	The	4-tetrazol-5-ylphenyl	337	
substituted	 26b	 formed	 a	 hydrogen	 bond	 with	 the	 guanidine	 group	 of	 Arg214	 (Fig.	 4),	338	
interrupting	the	π-π-stacking	with	Tyr211.	Fragment	26b	occupied	the	R1	site	rather	than	the	339	
more	common	R2	site.	340	

	341	

Figure	4:	The	IC50-value	of	compound	26b	(A)	was	determined	to	be	36	µM,	while	the	KD	was	342	
found	to	be	70	µM	(B).	The	crystal	structure	of	the	complex	OXA-48:26b	with	an	omit-type	343	
polder-map	 (2.5σ)	 (C)	 and	 a	 2D-representation	 of	 the	 protein:compound	 complex	344	
interactions.	(D).	345	
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	346	

Figure	5:	The	IC50-value	of	compound	28	(A)	was	determined	to	be	240	µM,	while	the	KD	was	347	
found	to	be	160	µM	(B).	The	crystal	structure	of	 the	complex	OXA-48:28	with	an	omit-type	348	
polder-map	 (2.5σ)	 (C)	 and	 a	 2D-representation	 of	 the	 protein:compound	 complex	349	
interactions.	(D).	350	

A	number	of	heterocyclic	aryl	substituents	were	also	evaluated	(fragments	25,	28–35).	With	351	
some	exceptions	of	 the	pyridinyls	29	 and	35	 (IC50	 (µM)/LE:	170/0.33	and	35/0.42)	most	of	352	
these	 fragments	 showed	 only	 weak	 inhibition.	 The	 quinolin-7-yl	 substituted	 fragment	 28	353	
(IC50	 (µM)/LE:	 	240/0.30)	did	maintain	 the	overall	 conformation	of	 the	previous	R2	binding	354	
fragments	(Figure	5),	and	so	did	the	corresponding	naphtalen-2-yl	substituted	fragment	27	355	
(IC50	 (µM)/LE:	 110/0.29).	 In	 the	 same	manner	 the	 indol-5-yl	 substituted	 fragment	34	 (IC50	356	
(µM)/LE:		310/0.27)	did	show	acceptable	binding,	yet	no	specific	interaction	except	for	the	π-357	
stacking	 with	 Tyr211.	 In	 our	 previous	 paper,	 we	 investigated	 pyridin-4-yl	 and	 pyridin-3-yl	358	
substituted	fragments	(19)	,	and	both	inhibited	OXA-48	with	the	same	potency	(IC50	(µM)/LE:	359	
250/0.32).	The	pyridin-2-yl	 substituted	 fragments	35	 (IC50	 (µM)/LE:	 	35/0.41)	showed	a	10-360	
fold	 improvement	 in	 binding	 (Fig.	 6A	 and	 B).	 In	 the	 crystal	 structure,	 two	 alternative	361	
conformations	were	observed	(Fig.	6C).	One	conformation	was	the	canonical	with	π-stacking	362	
of	 the	 pyridinyl	 ring	 with	 Tyr211	 occupying	 the	 R2	 site	 (Fig.	 6E),	 but	 in	 the	 other	363	
conformation	 the	 pyridinyl	 ring	 was	 orientated	 to	 the	 R1	 site.	 The	 second	 conformation	364	
showed	a	hydrogen	bond	from	the	protonated	N	atom	in	the	pyridine	ring	to	the	backbone	365	
carbonyl	of	Tyr117,	which	 represents	a	unique	 interaction	 for	 the	 fragments	 in	 the	 library	366	
(Fig.	6D).	Only	the	protonated	pyridinyl-nitrogen	would	be	able	to	form	hydrogen	bonds	to	367	
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the	Tyr117	mainchain,	which	may	explain	the	slower	on/off-rates	observed	for	fragment	35	368	
in	the	SPR-experiments	(Fig.	6B).		369	

In	the	discussion	above	most	fragments	were	identified	as	R2	binders	with	fragment	4a	(IC50	370	
(µM)/LE:	50/0.38)	being	the	strongest	binder	among	them.	For	R2	binders,	the	edge-to-face	371	
π-π-stacking	with	Tyr211	appears	to	be	an	important	interaction	in	accordance	with	previous	372	
analyses	 (23).	 Fragment	 35	 showed	 the	 best	 ligand	 efficiency	 (IC50	 (µM)/LE:	 35/0.42),	 but	373	
could	 not	 be	 classified	 as	 a	 R1	 or	 R2	 binder	 as	 both	 binding	 pockets	 showed	 useful	374	
interactions	(Fig.	6C–E).	Only	two	R1	binders	–	fragments	21a	and	26b	-	were	identified,	both	375	
showing	hydrogen	bonds	with	Arg214	as	cause	for	the	fragments	orientation	towards	the	R1	376	
site.	377	

	378	

Figure	 6:	 Compound	35	 bound	 in	 the	 two	 alternate	 conformations.	 The	 IC50-value	 (A)	was	379	
determined	to	be	35	µM,	while	the	KD	was	found	to	be	159	µM	(B).	The	crystal	structure	of	380	
the	complex	OXA-48:35	with	an	omit-type	polder-map	(2.5σ)	(C)	and	a	2D-representation	of	381	
the	 protein:compound	 complex	 interactions.	 (D	 for	 green	 colored	 conformation,	 E	 for	382	
magenta	colored	conformation).		383	

2.2.3 NMR	studies	384	
In	 order	 to	 evaluate	 the	 fragment-enzyme	 binding	 in	 solution,	 a	 13C	 NMR	 experiment	 for	385	
OXA-48	was	developed	based	on	previous	studies	 (24,25).	OXA	enzymes	can	be	selectively	386	
carbamylated	 with	 bicarbonate	 at	 an	 active	 site	 lysine	 to	 provide	 the	 corresponding	387	
carbamic	acid	(24,26,27).	For	OXA-48	the	carbamylated	residue	is	Lys73,	which	is	situated	in	388	
the	 R1	 site	 (Fig.	 2B).	 By	 using	 13C-labeled	 sodium	bicarbonate	 (NaH13CO3),	 a	 13C	 atom	was	389	
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introduced	 in	 the	 R1	 site	 of	OXA-48,	which	 can	 be	 used	 as	 a	 reporter	 probe	 for	 fragment	390	
binding	in	13C	NMR	studies.		391	

Fragments	binding	in	the	R1	site	were	expected	to	change	the	local	environment	of	the	13C	392	
labelled	Lys73,	which	results	 in	a	change	of	the	13C	chemical	shift	of	Lys–NH–13CO2H,	while	393	
ligands	binding	in	the	R2	site	are	further	than	~9	Å	away	from	the	Lys73	carbamic	acid,	and	394	
are	therefore	not	expected	to	directly	affect	the	13C	chemical	shift.		395	

NMR	 experiments	 were	 performed	 by	 equilibrating	 OXA-48	 with	 13C-labeled	 sodium	396	
bicarbonate	followed	by	the	addition	of	 inhibitor	2	and	selected	fragments	21a,	28	and	35	397	
with	known	binding	modes	from	X-ray	analysis.	The	results	are	shown	in	Fig.	7.	The	13C	NMR	398	
spectrum	of	OXA-48	after	equilibration	with	NaH13CO3	showed	the	carbamate	resonance	at	399	
163.95	 ppm	 as	 a	 broad	 signal	 (Fig.	 7E),	 which	 is	 in	 good	 agreement	 with	 the	 reported	400	
chemical	 shift	 for	 carbamylated	 OXA-48	 (28).	 In	 addition,	 two	 unassigned	 signals	 were	401	
observed	at	 164.04	ppm	similar	 to	 the	 results	 reported	 for	 carbamylation	of	OXA-58	 (27).	402	
Here	 the	 authors	 speculated	 that	 the	 unassigned	 signal	 may	 be	 related	 to	 a	 second	403	
carbamylation	site	(27).		404	

On	 addition	 of	 R1	 binding	 fragment	 21a	 and	 inhibitor	 2,	 the	 13C	 chemical	 shifts	 of	 the	405	
carbamate	signal	were	consistently	deshielded	 in	both	experiments	 (δ	=	164.25,	Dd =	0.28	406	
ppm,	Fig.	7E	and	7F).	These	findings	support	that	the	compounds	bind	competitively	in	the	407	
active	 site.	 Moreover,	 the	 observed	 chemical	 shift	 perturbation	 indicates	 that	 the	408	
compounds	occupy	the	R1	site	as	found	in	the	crystal	structures.		The	R2	binding	fragment	28	409	
showed	 a	 similar	 deshielding	 of	 the	 carbamate	 signal	 though	 at	 a	 smaller	 amplitude	 (δ	 =	410	
164.13,	Dd =	0.16	ppm,	Fig.	7D)	supporting	that	the	fragment	binds	in	the	active	site,	while	411	
fragment	35,	which	was	identified	as	R1	or	R2	binder,	only	slightly	affected	the	chemical	shift	412	
(δ	 =	 164.00,	 Dd =	 0.04	 ppm,	 Fig.	 7C).	 The	 observed	 chemical	 shift	 perturbations	 for	413	
fragments	28	 and	35	may	 indicate	 that	 fragment	28	 has	an	effect	on	carbamylated	Lys73,	414	
while	 fragment	35	 do	not	 interact	with	 the	R1	 site,	which	 is	 not	 consistent	with	 the	X-ray	415	
structures.	However,	a	more	detailed	study	of	the	NMR	conformations	would	be	needed	to	416	
be	conclusive	about	the	binding	poses	in	solution.		417	

The	small	amplitudes	of	the	observed	chemical	shift	perturbations	indicated	that	the	effect	418	
is	not	caused	by	direct	hydrogen	bonding	of	the	carbamic	carbonyl,	for	which	a	Dd of	several	419	
ppm	 would	 be	 expected,	 even	 for	 a	 µM	 binder	 (29).	 This	 was	 supported	 by	 the	 crystal	420	
structures	of	OXA-48	 indicating	that	the	Lys73	carbamic	acid	was	preoccupied	 in	hydrogen	421	
bonding	 to	 Trp157	 and	 was	 not	 affected	 by	 ligand	 binding.	 The	 observed	 consistent,	 but	422	
rather	subtle,	deshielding	of	the	Lys73	carbamic	acid	(δ	=	164.25,	Dd =	0.28	ppm,	Fig.	7E	and	423	
7F)	 for	 our	 R1	 binding	 fragments	 can	 possibly	 be	 explained	 by	 an	 anisotropic	 magnetic	424	
deshielding	 by	 the	 edge	 of	 the	 aromatic	 rings	 of	 these	 fragments,	which	were	 positioned	425	
roughly	5	Å	away	from	the	reporter	carbon	for	R1	binding	fragments.	Moreover,	amplitude	426	
of	 the	chemical	 shift	perturbation	observed	with	R1	binding	 fragments	21a	 and	 inhibitor	2	427	
(Fig.	 7E	 and	 7F)	 were	 in	 line	 with	 the	 reported	 changes	 observed	 for	 OXA	 enzymes	 on	428	
coordination	with	inhibitors	like	β-hydroxyisopropylpenicillanates	(24),	cyclic	boronates	(25)	429	
and	avibactam	(28).	430	
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	431	

Figure	7:	13C	NMR	of	the	buffer	alone	including	13C	labeled	bicarbonate	(A);	OXA-48	without	432	
13C	labeled	bicarbonate	(B),	OXA-48	with	13C	labeled	bicarbonate	and	fragment	35	(C);	OXA-433	
48	with	13C	 labeled	bicarbonate	and	fragment	28	 (D);	OXA-48	with	13C	 labeled	bicarbonate	434	
and	 fragment	 21a	 (E);	 OXA-48	with	 13C	 labeled	 bicarbonate	 and	 3,5-di(4-pyridinyl)benzoic	435	
acid	2	 (F)	 and	OXA-48	with	 13C	 labeled	bicarbonate	 and	no	 fragment	 (G).	 Two	unassigned	436	
signals	were	observed	at	164.1	ppm,	and	are	believed	to	originate	in	a	second	carboxylated	437	
site	of	OXA-48.		438	

2.3 Inhibitor	activity	and	structural	analysis	of	3,5-disubstituted	benzoic	acids.	439	
In	an	attempted	to	design	more	potent	inhibitors	from	our	fragments,	the	mono-substituted	440	
benzoic	acids	were	evaluated	for	a	merging	approach	(Fig.	8).	By	overlaying	X-ray	structures,	441	
promising	combinations	showing	orthogonal	binding	poses	were	identified	and	some	of	the	442	
combined	structures	were	prepared	and	evaluated	with	good	results.	443	

	444	

Figure	8:	Strategy	for	substitution	of	the	Ar1	and	Ar2	groups	in	the	focused	fragment	library	of	445	
3-substituted	benzoic	acids	analogues.		446	

An	 overlay	 of	 fragment	 21a	 as	 well	 as	 26b	 with	 several	 R2	 binders	 identified	 the	447	
combinations	 of	 fragments	21a/28,	21a/1	 and	26b/35	 as	 interesting	 partners	 (Fig.	 9).	 The	448	
combination	21a/1	and	21a/28	were	synthetically	feasible	and	gave	compounds	39	and	40	449	
(Scheme	2),	respectively.	In	addition,	the	symmetrical	3,5-disubstituted	benzoic	acids	36–38	450	
representing	the	symmetrical	combinations	of	fragments	21a,	21b	and	28	were	included	in	451	
this	study	(Scheme	1).	452	
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	453	

Figure	9:	Superimpositions	of	 the	binding	poses	observed	 for	21a/28	 (A),	21a/1	 (B,	1:	PDB-454	
ID:5dva)	 and	 26b/35	 (C)	 showing	 some	 of	 the	 possible	 combinations	 for	 3,5-disubstituted	455	
benzoic	acids.	456	

The	3,5-disubstituted	compounds	36–40	were	evaluated	for	their	 inhibitory	activity	against	457	
OXA-48	 as	 measured	 by	 their	 IC50,	 Kd	 and	 LE	 and	 complex	 structures	 with	 OXA-48	 and	458	
compounds	36,	38	and	40	were	obtained	(Table	2).	The	merged	compounds	37,	38	and	39	459	
(IC50	 (µM)/LE:	 110/0.19,	 48/0.21,	 100/0.22)	 failed	 to	 adequately	 maintain	 the	 binding	460	
interactions	as	the	IC50	values	were	at	a	similar	level	as	the	corresponding	mono-substituted	461	
fragments	28,	1	and	21a	 (IC50	 (µM)/LE:	240/0.33,	250/0.32	and	35/0.33).	When	comparing	462	
the	 IC50	values	of	compounds	36,	37	and	40	 (IC50	 (µM)/LE:	2.9/0.27,	48/0.21	and	2.9/0.27)	463	
with	 the	 corresponding	 fragments	 21a,	 21b	 and	 28	 (IC50	 (µM)/LE:	 35/0.33,	 450/0.26,	464	
240/0.3),	 a	 10-fold	 decrease	 of	 the	 IC50	 value	 was	 observed.	 Nevertheless,	 the	 improved	465	
binding	was	associated	with	a	decrease	in	LE	showing	that	the	fragment-enzyme	interactions	466	
are	 less	efficient	with	 the	merged	compounds.	The	reduction	 in	LE	probably	 relates	 to	 the	467	
rigid	structure	of	the	merged	compounds	allowing	for	little	conformational	freedom.	Overall,	468	
the	strongest	 inhibitors	 in	 this	 study	are	compounds	36	and	40	with	 IC50	values	of	2.9	µM	469	
and	LE	of	0.27.	470	

Table	2.	Inhibitor	activities	of	3,5-disubstituted	benzoic	acids	analogues	against	OXA-48	(IC50,	471	
KD	and	LE).	472	

	

	 	 	

	

Ar1	 Ar2	 ID	 IC50	
(μM)	

KD	
(μM)	 LEa	

	 	
36*	 2.9	 20	 0.27	

	 	
37	 48	 70	 0.21	

	 	
38*	 110	 70	 0.19	

	 	
39	 100	 70	 0.22	

	 	
40*	 2.9	 49	 0.27	
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*	X-ray	structure	of	fragment-enzyme	complex	available.	a	LE = − log-. IC1./HeavyAtomCount	473	

	474	

Figure	10:	Compound	36	maintained	the	 interaction	with	Arg214	as	we	observed	for	the	3-475	
substituted	benzoic	acid	derivate.	The	IC50-value	(A)	was	determined	to	be	2.9	µM,	while	the	476	
KD	was	found	to	be	30	µM	(B).	For	the	higher	concentrations	of	compound	36	some	unspecific	477	
binding	 was	 observed.	 The	 crystal	 structure	 of	 the	 complex	 OXA-48:36	 with	 an	 omit-type	478	
polder-map	 (2.5σ)	 (C)	 and	 its	 2D-representation	 (D)	 shows	 one	 of	 the	 acetamide-groups	479	
interacted	with	the	guanidine	group	of	Arg214,	while	the	other	group	was	solvent	exposed.		480	

The	 structural	 analysis	 of	 the	 OXA-48	 complexes	 with	 36,	 38	 and	 40	 showed	 that	 the	481	
interaction	 of	 the	 carboxylic	 acid	 with	 Arg214	 is	 maintained.	 For	 compound	 36,	 a	 near	482	
perfect	overlay	was	obtained	with	the	complex	structure	of	 fragment	21a	 showing	that	all	483	
interactions	seen	with	the	fragments	were	preserved	in	the	larger	compound	(Fig.	10).	The	484	
second	 3-N-acetamidophenyl	 group	 forms	 a	 not	 previously	 observed	 hydrogen	 bond	with	485	
Ser244.	 In	the	SPR	sensorgrams	some	concentration	dependent	aggregation	was	observed.	486	
(30)	487	

Interestingly,	 the	 conformation	 of	 compound	 38	 in	 complex	 with	 OXA-48	 was	 changed	488	
compared	 with	 the	 mono-substituted	 fragment	 28.	 In	 the	 OXA-48:38	 complex,	 one	489	
quinolinyl	 group	 bound	 in	 the	 R1	 site	 similar	 to	 fragment	21a.	 The	 other	 quinolinyl	 group	490	
positions	 itself	 in	 a	 conformation	 similar	 to	 the	 alternative	 conformation	 observed	 with	491	
fragment	35	(Fig.	6).	No	specific	interactions	were	observed,	but	this	conformation	shielded	492	
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the	hydrophobic	quinoline	ring	from	solvent	exposure	by	burying	the	compound	deep	in	the	493	
hydrophobic	cleft.	494	

The	complex	structure	of	the	unsymmetrical	compound	40	 (Fig.	11)	that	was	composed	of	495	
the	quinoline	ring	of	fragment	28	and	the	3-N-acetamidophenyl	substituent	of	fragment	13a	496	
shared	 the	 key	 interactions	 of	 both	mono-substituted	 fragments	 validating	 our	 approach,	497	
with	an	IC50	of	2.9	µM.	498	

3 Conclusion	499	
A	targeted	fragment	library	consisting	of	49	diversely	3-substituted	benzoic	acid	derivatives	500	
was	 prepared	 and	 biochemically	 analysed	 for	 their	 inhibitory	 activity	 against	 OXA-48.	501	
Enzyme-fragment	complexes	for	crystallographic	studies	were	obtained	for	33	fragments.	By	502	
systematically	changing	the	substituent-groups	of	the	benzoic	acid	derivatives	we	were	able	503	
to	 identify	 inhibitory	 fragments	with	 IC50	 <	 40	µM	 (21a,	 26b,	 35).	 Based	on	 the	 structural	504	
information,	fragments	could	be	classified	according	to	their	preferred	binding	pocket.	Most	505	
fragments	 were	 orientated	 towards	 the	 R2	 site	 induced	 by	 a	 π-π-stacking	 with	 Tyr221.	506	
Unfortunately,	no	further	interactions	in	the	R2	site	could	be	identified	from	our	library.	The	507	
strongest	binding	fragments	21a	and	26b	were	binding	in	the	R1	site	due	to	a	hydrogen	bond	508	
to	Arg214	and	 for	 fragment	35	 a	hydrogen	bond	 to	 the	 carbonyl	backbone	of	 Tyr117	was	509	
observed.	By	overlaying	the	complex	crystal	structures	of	fragments	1,	21a,	26b,	28	and	35,	510	
the	design	of	 five	new	3,5-disubstituted	 inhibitors	evolved.	The	strongest	3,5-disubstituted	511	
inhibitors	36	 and	 40	 showed	 IC50	 values	 as	 low	 as	 2.9	 µM,	 thus	 have	 improved	 inhibitory	512	
potential.	The	complex	crystal	structures	of	36	and	40	revealed	that	the	interactions	of	the	513	
individual	fragments	were	mainly	retained	in	the	merged	structures.	In	addition,	for	inhibitor	514	
36	a	previously	not	observed	hydrogen	bond	from	the	3-N-acetamidophenyl	group	in	the	R2	515	
site	to	Ser244	was	found,	which	is	interesting	as	we	otherwise	found	few	interactions	in	this	516	
region.	Future	work	will	 focus	on	the	evaluation	of	fragments	with	 increased	flexibility	e.g.	517	
by	 introducing	 a	 CH2	 or	 heteroatom	 linker	 bridging	 the	 aromatic	 ring	 systems	 to	 further	518	
explore	the	active	site.	519	



-20-	
	

	520	

Figure	11:	Compound	40	maintained	the	 interaction	with	Arg214	as	we	observed	for	the	3-521	
substituted	benzoic	acid	derivate.	The	IC50-value	(A)	was	determined	to	be	2.9	µM,	while	the	522	
KD	was	found	to	be	49	µM	(B).		The	crystal	structure	of	the	complex	OXA-48:40	with	an	omit-523	
type	 polder-map	 (2.5σ)	 (C)	 and	 its	 2D-representation	 (D)	 shows	 that	 the	 acetamide-group	524	
interacted	with	the	guanidine	group	of	Arg214,	while	the	quinoline-ring	was	partially	solvent	525	
exposed.	526	

4 Experimental	527	

4.1 Synthesis	528	

4.1.1 Synthesis	of	3-substituted	benzoic	acids	(complete	data	for	all	procedures	and	compounds	is	529	
found	in	the	Supporting	Information)	530	

4.1.1.1 General	procedure	A	–	Aqueous	conditions:	531	
The	halo	aryl	(1.0	equiv)	was	dissolved	in	a	mixture	of	water:dioxane	(1:1).	The	boronic	acid	532	
or	 ester	 (1.5	 equiv)	 and	 potassium	 phosphate	 (5.0	 equiv)	 were	 added.	 The	 solution	 was	533	
degassed	by	vacuum/Argon	cycles	(10	times)	before	addition	of	PdCl2(PPh3)2	(10	mol%)	and	534	
further	 degassed	 (5	 times).	 The	 resulting	 mixture	 was	 stirred	 at	 95	 °C	 under	 argon	535	
atmosphere	 for	 16-20	hours.	 The	 reaction	mixture	was	 filtered	 through	Celite	 and	diluted	536	
with	 water	 (approx.	 30	 mL)	 before	 washing	 with	 chloroform	 (3	 x	 30	 mL).	 If	 not	 stated	537	
otherwise,	 the	aqueous	phase	was	concentrated	under	 reduced	pressure	and	applied	 to	a	538	
C18	 precolumn	 before	 purification	 on	 a	 10	 g	 or	 60	 g	 C18	 column	 with	 a	 gradient	 of	539	
acetonitrile	in	water	(10-100%)	to	yield	the	desired	product.	540	
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4.1.1.2 General	procedure	B	–	Anhydrous	conditions:	541	
The	 halo	 aryl	 (1.0	 equiv)	 was	 dissolved	 in	 anhydrous	 THF.	 The	 aryl	 boronic	 acid	 or	 aryl	542	
boronic	 ester	 (1.5	 equiv)	 and	 inorganic	 base	 (5.0	 equiv)	 were	 added.	 The	 solution	 was	543	
degassed	 by	 vacuum/Argon	 cycles	 (10	 times),	 before	 addition	 of	 a	 palladium	 catalyst	 (10	544	
mol%)	and	further	degassed	(5	times).	The	resulting	mixture	was	stirred	at	75–90	°C	under	545	
an	 inert	atmosphere	for	16-20	hours.	The	reaction	mixture	was	filtered	through	Celite	and	546	
diluted	with	water	 (approx.	 30	mL)	 before	washing	with	 ethyl	 acetate	 (3	 x	 30	mL).	 If	 not	547	
stated	otherwise,	the	aqueous	phase	was	concentrated	under	reduced	pressure	and	applied	548	
to	 a	 C18	 precolumn	 before	 purification	 on	 a	 10	 g	 or	 60	 g	 C18	 column	with	 a	 gradient	 of	549	
acetonitrile	in	water	(10–80%)	to	yield	the	desired	molecule.	550	

4.1.2 Screening	of	catalysts	(for	results	see	Table	SI1)	551	

4.1.2.1 General	procedure:	552	
3-Bromo-5-iodobenzoic	 acid	 (0.03–0.06	 mmol,	 1.0	 equiv.)	 was	 dissolved	 in	 the	 indicated	553	
solvent	(0.5–1	mL/0.01	mmol	substrate).	The	boronic	acid	or	ester	(1.5	equiv.)	and	base	(5.0	554	
equiv.)	 were	 added.	 The	 solution	 was	 degassed	 by	 vacuum/Ar	 cycles	 (10	 times)	 before	555	
addition	of	the	palladium	catalyst	and	further	degassed	(5	times).	The	resulting	mixture	was	556	
stirred	at	 the	 indicated	 temperature	under	an	 inert	atmosphere	 for	 the	 indicated	 reaction	557	
time.	The	crude	reaction	mixture	was	analysed	by	HRMS	to	determine	the	ratio	of	 int-39	 :	558	
disubstituted	38	:	starting	material.	The	reaction	mixture	was	filtered	through	Celite	bed	and	559	
diluted	with	water	(approx.	30	mL)	before	washing	with	chloroform	(3	x	30	mL).	The	aqueous	560	
phase	was	 concentrated	 under	 reduced	 pressure	 and	 applied	 to	 a	 C18	 precolumn	 before	561	
purification	on	a	60	g	C18	column	with	a	gradient	of	acetonitrile	in	water	(0–5%	over	15	min)	562	
to	yield	the	product.		563	

4.1.3 Synthesis	of	symmetrical	3,5-disubstituted	benzoic	acid	derivatives	564	

4.1.3.1 3,5-Di(3-acetamidophenyl)benzoic	acid	36:		565	
3-Bromo-5-iodobenzoic	acid	(0.30	mmol,	100	mg,	1.0	equiv),	3-acetamidophenylboronic	acid	566	
(0.45	mmol,	816	mg,	1.5	equiv),	potassium	phosphate	(1.5	mmol,	324	mg,	5.0	equiv)	were	567	
dissolved	 in	 a	 mixture	 of	 water/dioxane	 (1:1).	 The	 solution	 was	 degassed	 by	 vacuum/Ar	568	
cycles	(10	times)	before	addition	of	Pd2(dba)3•CHCl3	(15	mg,	5	mol%),	and	XPhos	(7.2	mg,	5	569	
mol%)	and	further	degassed	(5	times).	The	resulting	mixture	was	stirred	at	60	°C	for	20–24	570	
hours.	The	reaction	mixture	was	filtered	through	Celite	bed	and	diluted	with	water	(approx.	571	
30	mL)	before	washing	with	chloroform	(3	x	30	mL).	The	aqueous	phase	was	concentrated	572	
under	reduced	pressure	and	applied	to	a	C18	precolumn	before	purification	on	a	60	g	C18	573	
column	with	a	gradient	of	acetonitrile	 in	water	 (0–5%	over	15	min)	 to	provide	36	 (60	mg,	574	
54%)	as	white	powder.	1H	NMR	(400	MHz,	methanol-d4)	δ	8.21	(s,	2H),	7.90	(t,	J	=	1.7	Hz,	1H),	575	
7.81	(t,	J	=	1.7	Hz	,	2H),	7.68	(d,	J	=	8	Hz,	2H),	7.43	(s,	1H),	7.49-7.46	(m,	2H),	7.43-7.39	(m,	576	
2H),	2.16	(s,	6H).	13C	NMR	(101	MHz,	methanol-d4)	δ	175.0,	171.8,	142.9,	142.3,	140.5,	132.2,	577	
130.4,	 128.2,	 128.1,	 123.9,	 120.3,	 119.7,	 24.0.	 HRMS	 (ESI):	 Calcd.	 for	 C23H19N2O4	 [M-H]-	578	
387.1350;	found	387.1342.	UPLC:	purity	=	97.5	%	579	



-22-	
	

4.1.3.2 3,5-di(4-acetamidophenyl)benzoic	acid	37:		580	
3,5-Dibromobenzoic	 acid	 (1.01	mmol,	 300	mg,	 1.0	 equiv),	 3-acetamidophenylboronic	 acid	581	
(0.81	mmol,	178	mg,	0.75	equiv),	potassium	phosphate	(3.76	mmol,	0.80	g,	3.5	equiv)	and	582	
PdCl2(PPh3)2	(0.11	mmol,	77	mg,	10	mol%)	were	stirred	in	a	mixture	of	water/dioxane	(1:1)	583	
for	 24	 hours	 at	 95	 °C	 under	 argon	 atmosphere.	 The	 crude	 reaction	 mixture	 was	 filtered	584	
through	Celite	and	diluted	with	water	(approx.	30	mL)	before	washing	with	chloroform	(3	x	585	
30	mL).	The	aqueous	phase	was	concentrated	under	reduced	pressure	and	applied	to	a	C18	586	
precolumn	before	purification	on	a	60	g	C18	column	with	a	gradient	of	acetonitrile	in	water	587	
(0–100	%	over	12	minutes).	The	fractions	were	analysed	by	MS	and	fractions	containing	37	588	
were	 combined.	 The	 product	 was	 purified	 by	 reverse-phase	 automated	 flash	589	
chromatography	before	being	subjected	to	purification	by	HPLC,	to	yield	37	(0.09	mmol,	34	590	
mg,	11%)	as	a	white	solid.	1H	NMR	(400	MHz,	methanol-d4)	δ	8.24	(s,	2H),	7.98	(d,	J	=	7.8	Hz,	591	
2H),	7.85	(d,	J	=	7.9	Hz,	2H),	7.68-7.66	(m,	2H),	7.63-7.60	(m,	2H),	7.57-7.53	(m,	1H),	2.16	(s,	592	
6H).	 13C	 NMR	 (101	 MHz,	 methanol-d4)	 δ	 175.2,	 171.7,	 142.0,	 140.2,	 139.4,	 137.9,	 131.7,	593	
128.4,	128.2,	127.6,	127.4,	123.3,	121.4,	116.2,	23.9.	HRMS	(ESI):	Calcd.	for	C23H19N2O4	[M-594	
H]-	387.1350;	found	387.1340.	UPLC:	purity	>99.5	%	595	

4.1.3.3 3,5-diquinolin-6-ylbenzoic	acid	38:	596	
3,5-Dibromobenzoic	 acid	 (0.11	 mmol,	 33	 mg,	 1.0	 equiv),	 6-quinolinylboronic	 acid	 pinacol	597	
ester	(0.23	mmol,	60	mg,	2.0	equiv),	potassium	phosphate	(0.58	mmol,	125	mg,	5.0	equiv)	598	
were	dissolved	 in	 tert-butanol.	 The	 solution	was	degassed	by	vacuum/Ar	cycles	 (10	 times)	599	
before	addition	of	XPhos-Pd	G2	(5	mol%,	5	mg)	and	further	degassed	(5	times).	The	resulting	600	
mixture	 was	 stirred	 at	 60	 °C	 for	 20–24	 hours.	 The	 reaction	mixture	 was	 filtered	 through	601	
Celite	bed	and	diluted	with	water	(approx.	30	mL)	before	washing	with	chloroform	(3	x	30	602	
mL).	 The	 aqueous	 phase	was	 concentrated	 under	 reduced	 pressure	 and	 applied	 to	 a	 C18	603	
precolumn	 before	 purification	 by	 C18	 RP	 flash	 chromatography	 with	 a	 gradient	 of	604	
acetonitrile	 in	 water	 (0–5%	 over	 15	 min)	 to	 yield	 38	 (0.08	 mmol,	 29	 mg,	 65%)	 as	 white	605	
powder.	1H	NMR	(400	MHz,	methanol-d4)	δ	8.87-8.86	(m,	2H),	8.52	(s,	1H),	8.50	(s,	1H),	8.46	606	
(m,	2H),	8.38	(m,	2H),	8.29-8.26	(m,	3H),	8.18	(s,	1H),	8.16	(s,	1H),	7.61-7.58	(dd,	J	=	8.3,	4.2	607	
Hz,	2H).	13C	NMR	(101	MHz,	methanol-d4)	δ	174.4,	151.1,	148.0,	141.5,	140.5,	138.6,	130.6,	608	
130.1,	129.5,	128.7,	126.9,	122.8.	HRMS	(ESI):	Calcd.	for	C25H15N2O2	[M-H]–	375.1139;	found	609	
375.1133.		UPLC:	purity	=	99.1	%	610	

4.1.4 Synthesis	of	unsymmetrical	3,5-disubstituted	benzoic	acid	derivatives	611	

4.1.4.1 3-(3'-Acetamidophenyl)-5-pyridin-4-ylbenzoic	acid	39:	attempted	synthesis	from	3,5-612	
dibromobenzoic	acid	613	

3,5-Dibromobenzoic	 acid	 (1.01	mmol,	 300	mg,	 1.0	 equiv),	 3-acetamidophenylboronic	 acid	614	
(0.81	mmol,	178	mg,	0.75	equiv),	potassium	phosphate	(3.76	mmol,	0.80	g,	3.5	equiv)	and	615	
PdCl2(PPh3)2	(0.11	mmol,	77	mg,	10	mol%)	were	stirred	in	a	mixture	of	water/dioxane	(1:1)	616	
for	 24	 hours	 at	 95	 °C	 under	 argon	 atmosphere.	 The	 crude	 reaction	 mixture	 was	 filtered	617	
through	Celite	and	diluted	with	water	(approx.	30	mL)	before	washing	with	chloroform	(3	x	618	
30	mL).	The	aqueous	phase	was	concentrated	under	reduced	pressure	and	applied	to	a	C18	619	
precolumn	 before	 purification	 by	 C18	 RP	 flash	 chromatography	 with	 a	 gradient	 of	620	
acetonitrile	 in	water	 (10–100	%	over	12	minutes).	The	 fractions	were	analysed	by	MS	and	621	
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fractions	 containing	 int-39	were	 combined	and	 reacted	with	pyridin-4-ylboronic	 acid	 (0.97	622	
mmol,	 119	 mg,	 1.2	 equiv),	 potassium	 phosphate	 (4.05	 mmol,	 0.86	 g,	 5.0	 equiv)	 and	623	
PdCl2(PPh3)2	 (0.08	 mmol,	 56	 mg,	 10	 mol%).	 The	 product	 was	 purified	 by	 reverse-phase	624	
automated	flash	chromatography	before	being	subjected	to	purification	by	HPLC,	to	yield	39	625	
(0.12	mmol,	39	mg,	15%)	as	a	white	solid.	 1H	NMR	(400	MHz,	methanol-d4)	δ	8.22	 (s,	1H),	626	
7.92	(d,	 J	=	7.6	Hz,	1H),	7.76	(s,	2H),	7.68-7.60	(m,	3H),	7.46-7.33	(m,	4H),	2.14	(s,	3H).	 13C	627	
NMR	(101	MHz,	methanol-d4)	δ	175.3,	171.7,	143.0,	141.5,	140.4,	139.8,	130.3,	129.7,	129.3,	628	
129.3,	128.9,	123.7,	120.1,	119.6,	23.9.	UPLC:	purity	=	97.9% 629	

4.1.4.2 3-Bromo-5-(quinolin-6-yl)	benzoic	acid	int-40:	630	
3-Bromo-5-iodobenzoic	acid	(0.15	mmol,	50	mg,	1.0	equiv),	6-quinolinylboronic	acid	pinacol	631	
ester	 (0.22	 mmol,	 58	 mg,	 1.5	 equiv)	 and	 potassium	 phosphate	 (0.76	 mmol,	 162	 mg,	 5.0	632	
equiv)	 were	 dissolved	 in	 a	mixture	 of	 water/dioxane	 (1:1).	 The	 solution	was	 degassed	 by	633	
vacuum/Ar	cycles	(10	times)	before	addition	of	Pd2(dba)3•CHCl3	(5	mol%,	7.5	mg),	and	SPhos	634	
(5	mol%,	3.1	mg)	and	further	degassed	(5	times).	The	resulting	mixture	was	stirred	at	60	°C	635	
for	 20–24	 hours.	 The	 reaction	mixture	was	 filtered	 through	 a	 Celite	 bed	 and	 diluted	with	636	
water	(approx.	30	mL)	before	washing	with	chloroform	(3	x	30	mL).	The	aqueous	phase	was	637	
concentrated	under	reduced	pressure	and	applied	to	a	C18	precolumn	before	purification	on	638	
a	60	g	C18	column	with	a	gradient	of	acetonitrile	in	water	(0–5%	over	20	min).	Product	int-639	
40	(0.07	mmol,	23	mg,	45%)	was	obtained	as	a	white	powder.	1H	NMR	(400	MHz,	methanol-640	
d4)	δ	8.92-8.91	(m,1H),	8.49-8.46	(m,	1H),	8.35	(s,	1H),	8.28	(s,	2H),	8.10	(s,	2H),	8.02-8.01	(m,	641	
1H),	7.97-7.96	 (m,1H),	7.59-7.56	 (dd,	 J	 =	8.3,	4.2	Hz,	1H).	 13C	NMR	 (101	MHz,	DMSO-d6)	δ	642	
166.6,	 150.8,	 147.2,	 143.6,	 140.6,	 136.8,	 136.5,	 131.7,	 131.1,	 129.6,	 128.5,	 128.2,	 127.4,	643	
126.5,	 125.8,	 121.9,	 121.7;	 HRMS	 (ESI):	 Calcd.	 for	 C16H9

79BrNO2	 [M-H]–	 325.9822;	 found	644	
325.9822.	645	

4.1.4.3 3-(3'-Acetamidophenyl)-5-quinolin-6-ylbenzoic	acid	40:	646	
3-Bromo-5-(quinolin-6-yl)	 benzoic	 acid	 int-40	 (0.039	 mmol,	 13	 mg,	 1.0	 equiv),	 3-647	
acetamidophenylboronic	acid	(0.55	mmol,	10	mg,	1.5	equiv)	and	potassium	phosphate	(0.20	648	
mmol,	 0.42	 g,	 5.0	 equiv)	 were	 dissolved	 in	 tert-butanol.	 The	 solution	 was	 degassed	 by	649	
vacuum/Ar	cycles	 (10	times)	before	addition	of	Xphos-Pd	G2	(5	mol%,	1.5	mg)	and	further	650	
degassed	(5	times).	The	resulting	mixture	was	stirred	at	60	°C	for	20–24	hours.	The	reaction	651	
mixture	 was	 filtered	 through	 Celite	 bed	 and	 diluted	 with	 water	 (approx.	 30	 mL)	 before	652	
washing	with	chloroform	(3	x	30	mL).	The	aqueous	phase	was	concentrated	under	reduced	653	
pressure	and	applied	to	a	C18	precolumn	before	purification	on	a	60	g	C18	column	with	a	654	
gradient	of	acetonitrile	 in	water	 (0–5%	over	20	min).	Product	40	 (0.023	mmol,	9	mg,	90%)	655	
was	obtained	as	white	powder.	1H	NMR	(400	MHz,	methanol-d4)	δ	8.87-8.83	(m,	1H),	8.56-656	
8.45	(m,	1H),	8.41-8.39	(m,	1H),	8.35-8.20	(m,	3H),	8.18-8.11	(m,	1H),	8.08	(t,	J	=	1.8	Hz,	1H),	657	
7.87-7.86	(m,	1H),	7.72-7.68	(m,	1H),	7.62-7.56	(m,	1H),	7.56-7.49	(m,	1H),	7.46-7.42	(m,	1H),	658	
2.17	(s,	3H).	13C	NMR	(101	MHz,	DMSO-d6)	δ	174.7,	171.8,	151.2,	148.2,	142.8,	142.5,	141.4,	659	
140.8,	 140.7,	 140.5,	 138.8,	 130.8,	 130.4,	 130.3,	 129.7,	 128.6,	 128.5,	 128.5,	 127.0,	 123.9,	660	
123.0,	 120.3,	 119.7,	 23.9.	 HRMS	 (ESI):	 Calcd.	 for	 C24H18N2O3	 [M-H]-	 381.1245;	 found	661	
381.1243.UPLC:	purity	=	96.4	%	662	
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4.2 Protein	production	663	
For	the	biochemical	assay	OXA-48	was	expressed	with	the	native	signal-peptide	and	purified	664	
from	the	periplasm	as	described	earlier.(31)	For	surface	plasmon	resonance	assays,	nuclear	665	
magnetic	resonance	and	crystallization	a	His-tagged	construct	was	used.(19)		666	

4.3 Biochemical	assay	667	
All	 experiments	 were	 performed	 using	 a	 Spectramax	 M2e	 at	 25	 °C	 in	 100	 mM	 sodium	668	
phosphate	 (pH	 7.0)	 supplemented	 with	 50	 mM	 NaHCO3	 and	 0.2	 mg/ml	 bovine	 serum	669	
albumin	 (BSA).	 Velocities	 from	 the	 linear	 range	 were	 determined	 in	 the	 SoftMax	 Pro	670	
software	(Molecular	Devices).	All	experiments	were	done	with	a	sample	volume	of	100	μL.	671	
IC50 values	 were	 determined	 for	 all	 compounds	 in	 competition	 with	 25	 µM	 of	 the	672	
chromogenic	substrate	nitrocefin.	  The	log10 of	the	inhibitor	concentrations	to	the	response	673	
with	bottom	and	top	constant	based	on	controls	were	fitted	nonlinearly	in	GraphPad	Prism	6	674	
(GraphPad	Software)	to	determine	the	IC50 value.		675	

4.4 Surface	plasmon	resonance	676	
All	 SPR	experiments	were	performed	on	a	Biacore	T200	at	 25	 °C.	 The	data	were	analyzed	677	
using	Biacore	T200	Evaluation	Software	2.0	(GE	Healthcare).	The	sensorgrams	were	double	678	
reference	subtracted	using	a	reference	surface	and	blank	injections.	 The	final	running	buffer	679	
included	 50	mM	HEPES	 pH	 7.0,	 50	mM	K2SO4,	 0.5%	 Tween-20,	 50	mM	NaHCO3,	 and	 2.5%	680	
DMSO.	The	enzyme,	tOXA-48,	was	diluted	to	25	μg/mL	in	10	mM	MES	pH	5.5.	The	enzyme	681	
was	immobilized	to	a	level	of	around	5000	RU	on	a	CM5	chip	using	standard	amine	coupling.	682	

Compounds	were	tested	with	10	dilutions	from	400	µM	to	10.5	µM,	with	30	s	injection	and	683	
60	 s	 dissociation	 time.	 Compounds	 exhibiting	 kinetic	 behavior	 had	 the	 dissociation	 time	684	
extended	to	300	s.	Seven	startup	cycles	with	buffer	were	performed.	Solvent	correction	was	685	
performed	every	48th	cycle	and	a	positive	control	was	included	every	24th	cycle	with	3.5-Di(4-686	
pyridinyl)benzoic	 acid	 as	 the	 control	 (19).	 Affinities	were	 calculated	 from	 the	 steady-state	687	
affinity	model	with	a	constant Rmax adjusted	by	the	control	and	the	molecular	weight	of	the	688	
compound.	689	

4.5 13C	nuclear	magnetic	resonance	690	
A	 solution	 of	 NaH13CO3	 in	 D2O	 (50	 mM)	 was	 prepared.	 The	 NaH13CO3/D2O-mixture	 was	691	
added	to	1	mM	OXA-48	in	50	mM	sodium	phosphate	and	50	mM	sodium	bicarbonate	pH	6.5	692	
in	a	1	 :	9	 ratio	of	bicarbonate	 to	enzyme.	Compounds	were	diluted	 from	a	150	mM	stock	693	
solution	in	100%	DMSO	to	a	final	concentration	of	3.75	mM	(2.5%	DMSO).	Sample	volumes	694	
of	500	µL	were	used.	We	performed	 the	experiment	at	37	 °C	with	a	Bruker	Avance	 III	HD	695	
with	 an	 inverse	 detected	 TCI	 probe	 with	 cryogenic	 enhancement	 for	 1H,	 13C	 and	 2H,	696	
operating	at	599.90	MHz	for	protons	and	150.86	MHz	for	carbon.	10	000	scans	at	30°	pulse	697	
angle	 with	 2	 s	 relaxation	 delay	 were	 collected	 using	 1D	 13C	 NMR	 with	 power-gated	698	
decoupling	of	protons	(zgpg30	using	waltz16).	699	

4.6 Crystallization	and	data	processing	700	
Crystals	of	OXA-48	was	grown	 from	hanging	drops	 containing	0.1	M	HEPES	pH	7.5,	 8-11%	701	
PEG	 8000	 and	 4-8%	 1-butanol	 as	 previously	 described.(17)	 Compounds	 were	 diluted	 to	702	
3.75mM	in	the	cryo	solution	with	0.1M	HEPES	pH	7.5,	10%	PEG	8000,	5%	1-butanol,	and	25%	703	
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ethanediol,	usually	overnight.	The	exception	was	the	crystal	soaked	in	imipenem.	Imipenem	704	
was	added	to	saturation	in	the	cryosolution,	and	the	crystal	was	just	given	a	quick	soak.		705	

Crystals	were	flash	cooled	in	liquid	nitrogen.	X-ray	diffraction	data	were	collected	at	BL	14.1	706	
and	BL14.2	at	BESSY	(Berlin,	Germany)	(32)	and	at	ID23	and	ID30	at	ESRF	(Grenoble,	France).	707	
In	most	cases	the	structures	were	solved	by	refining	against	the	protein-atoms	of	previous	708	
structures	(P212121	PDB	ID:	5DVA	and	P21	PDB	ID:	5DTK),	but	in	cases	where	the	unit	cells	709	
were	to	different	PHASER	was	used	with	chain	A	from	PDB	ID:	5dtk	as	the	search	model	for	710	
molecular	replacement.	In	most	cases	images	were	collected	autoprocessed	using	the	tools	711	
at	 the	beamlines,(33-37)	but	 in	some	cases	we	 found	 it	useful	 to	 reprocess	using	DIALS	or	712	
XDS	together	with	AIMLESS.(38-40)		713	

The	 compounds	 were	 built	 into	 difference	 density	 maps	 after	 initial	 refinement	 in	714	
phenix.refine,(41)	with	waters	 deleted	 from	 the	 active	 site.	 Restraints	 for	 the	 compounds	715	
were	 prepared	 using	 the	 GRADE	 Web	 Server.(42)	 Omit	 maps	 were	 calculated	 using	 the	716	
phenix.polder-tool	which	excludes	bulk-solvent	from	the	volume	surrounding	the	ligand.(43)	717	
Figures	were	made	using	PyMOL.(44)	Ligand-interaction	diagrams	were	prepared	using	the	718	
Maestro-suite	from	Schrödinger	Release	2016-3	(Schrödinger,	LLC,	New	York).	719	

Acknowledgement:	720	

This	study	was	supported	by	The	National	Graduate	School	in	Structural	Biology	(BioStruct)	721	
and	 The	 Norwegian	 Research	 Council	 (FRIMEDBIO	 project	 number	 213808).	 Provision	 of	722	
beam	 time	 at	 BL14.1	 and	BL14.2,	 Bessy	 II,	 Berlin,	Germany,	 and	 the	MX	beamlines	 at	 the	723	
European	Radiation	Facility	(ESRF),	Grenoble,	France	are	highly	valued.		724	

PDB	accession	codes:	725	

Coordinates	 and	 structure	 factors	 for	 all	 OXA-48	 complexes	 are	 deposited	 in	 the	 Protein	726	
Data	Bank.	Accession	numbers	are	 listed	with	reference	to	the	complexed	compound.	PDB	727	
IDs:	 imipenem:	 5QB4;	 3a:	 5QA4;	 3b:	 5QA5;	 4a:	 5QA6;	 4b:	 5QA7;	 4c:	 5QA8;	 5:	 5QA9;	 6a:	728	
5QAA;	6b:	5QAB;	6c:	5QAC;	8a:	5QAD;	8b:	5QAE;	8c:	5QAF;9a:	5QAG;	9b:	5QAH;	12a:	5QAI:	729	
13:	5QAJ;	14:	5QAK;	11b:	5QAL;	17:	5QAM;	19a:	5QAN;	19b:	5QAO;	21a:	5QAP;	21b:	5QAQ;	730	
23a:	5QAR;	23b:	5QAS;	24:	5QAT;	26a:	5QAU;	26b:	5QAV;	27:	5QAW;	28:	5QAX;	32:	5QAY;	731	
34:	5QAZ;	35:	5QB0;	36:	5QB1;	38:	5QB2;	40:	5QB3.	732	

Supplementary	material:	733	

Supplementary	 material	 containing	 synthetic	 procedures	 and	 analytical	 data	 for	 all	734	
compounds	 and	 biophysical,	 biochemical	 and	 structural	 analysis	 of	 OXA-48:compound	735	
complexes.	736	

References:	737	

1.	 Guillard,	 T.,	 Pons,	 S.,	 Roux,	D.,	 Pier,	 G.	 B.,	 and	 Skurnik,	 D.	 (2016)	 Antibiotic	 resistance	 and	738	
virulence:	 Understanding	 the	 link	 and	 its	 consequences	 for	 prophylaxis	 and	 therapy.	739	
Bioessays	38,	682-693	740	



-26-	
	

2.	 Chen,	L.,	Todd,	R.,	Kiehlbauch,	J.,	Walters,	M.,	and	Kallen,	A.	(2017)	Notes	from	the	Field:	Pan-741	
Resistant	 New	 Delhi	 Metallo-β-Lactamase-Producing	 Klebsiella	 pneumoniae	 -	 Washoe	742	
County,	Nevada,	2016.	MMWR	Morb.	Mortal.	Wkly.	Rep.	66,	33-33	743	

3.	 O’Neill,	 J.	 (2016)	 Tackling	 Drug-Resistant	 Infections	 Globally:	 final	 report	 and	744	
recommendations.	Review	on	Antimicrobial	Resistance,	London,	UK	745	

4.	 Bush,	K.,	and	Bradford,	P.	A.	(2016)	β-Lactams	and	β-Lactamase	Inhibitors:	An	Overview.	CSH	746	
Perspect.	Med.	6	747	

5.	 Hall,	 B.	 G.,	 and	 Barlow,	M.	 (2004)	 Evolution	 of	 the	 serine	 β-lactamases:	 past,	 present	 and	748	
future.	Drug	Resist.	Update.	7,	111-123	749	

6.	 Poirel,	L.,	Naas,	T.,	and	Nordmann,	P.	(2010)	Diversity,	Epidemiology,	and	Genetics	of	Class	D	750	
β-Lactamases.	Antimicrob.	Agents	Chemother.	54,	24-38	751	

7.	 Bush,	 K.,	 and	 Jacoby,	 G.	 A.	 (2010)	 Updated	 functional	 classification	 of	 β-lactamases.	752	
Antimicrob.	Agents	Chemother.	54,	969-976	753	

8.	 Naas,	 T.,	 Oueslati,	 S.,	 Bonnin,	 R.	 A.,	 Dabos,	M.	 L.,	 Zavala,	 A.,	 Dortet,	 L.,	 Retailleau,	 P.,	 and	754	
Iorga,	 B.	 I.	 (2017)	 Beta-lactamase	 database	 (BLDB)	 –	 structure	 and	 function.	 Journal	 of	755	
Enzyme	Inhibition	and	Medicinal	Chemistry	32,	917-919	756	

9.	 Ambler,	R.	P.	(1980)	The	structure	of	β-lactamases.	Philos.	Trans.	R.	Soc.,	B	289,	321-331	757	
10.	 Golemi,	 D.,	Maveyraud,	 L.,	 Vakulenko,	 S.,	 Samama,	 J.-P.,	 and	Mobashery,	 S.	 (2001)	 Critical	758	

involvement	of	a	carbamylated	lysine	in	catalytic	function	of	class	D	β-lactamases.	Proc.	Natl.	759	
Acad.	Sci.	U.	S.	A.	98,	14280-14285	760	

11.	 Poirel,	 L.,	 Potron,	A.,	 and	Nordmann,	 P.	 (2012)	OXA-48-like	 carbapenemases:	 the	phantom	761	
menace.	J.	Antimicrob.	Chemoth.	67,	1597-1606	762	

12.	 Drawz,	 S.	 M.,	 and	 Bonomo,	 R.	 a.	 (2010)	 Three	 decades	 of	 β-lactamase	 inhibitors.	 Clin.	763	
Microbiol.	Rev.	23,	160-201	764	

13.	 Buynak,	 J.	 D.	 (2006)	 Understanding	 the	 longevity	 of	 the	 β-lactam	 antibiotics	 and	 of	765	
antibiotic/β-lactamase	inhibitor	combinations.	Biochem.	Pharmacol.	71,	930-940	766	

14.	 Antunes,	N.,	and	Fisher,	J.	(2014)	Acquired	Class	D	β-Lactamases.	Antibiotics	3,	398	767	
15.	 Liscio,	 J.	 L.,	 Mahoney,	 M.	 V.,	 and	 Hirsch,	 E.	 B.	 (2015)	 Ceftolozane/tazobactam	 and	768	

ceftazidime/avibactam:	two	novel	β-lactam/β-lactamase	inhibitor	combination	agents	for	the	769	
treatment	of	resistant	Gram-negative	bacterial	infections.	Int.	J.	Antimicrob.	Agents	46,	266-770	
271	771	

16.	 Ehmann,	D.	E.,	Jahić,	H.,	Ross,	P.	L.,	Gu,	R.-F.,	Hu,	J.,	Durand-Réville,	T.	F.,	Lahiri,	S.,	Thresher,	772	
J.,	Livchak,	S.,	Gao,	N.,	Palmer,	T.,	Walkup,	G.	K.,	and	Fisher,	S.	L.	(2013)	Kinetics	of	Avibactam	773	
Inhibition	against	Class	A,	C,	and	D	β-Lactamases.	J.	Bio.	Chem.	288,	27960-27971	774	

17.	 Lahiri,	S.	D.,	Mangani,	S.,	Jahic,	H.,	Benvenuti,	M.,	Durand-Reville,	T.	F.,	De	Luca,	F.,	Ehmann,	775	
D.	 E.,	 Rossolini,	 G.	M.,	 Alm,	 R.	 A.,	 and	 Docquier,	 J.	 D.	 (2015)	Molecular	 Basis	 of	 Selective	776	
Inhibition	and	Slow	Reversibility	of	Avibactam	against	Class	D	Carbapenemases:	A	Structure-777	
Guided	Study	of	OXA-24	and	OXA-48.	ACS	Chem.	Biol.	10,	591-600	778	

18.	 Shields,	R.	K.,	Chen,	L.,	Cheng,	S.	J.,	Chavda,	K.	D.,	Press,	E.	G.,	Snyder,	A.,	Pandey,	R.,	Doi,	Y.,	779	
Kreiswirth,	 B.	 N.,	 Nguyen,	 M.	 H.,	 and	 Clancy,	 C.	 J.	 (2017)	 Emergence	 of	 Ceftazidime-780	
Avibactam	 Resistance	 Due	 to	 Plasmid-Borne	 bla(KPC-3)	 Mutations	 during	 Treatment	 of	781	
Carbapenem-Resistant	Klebsiella	pneumoniae	Infections.	Antimicrob.	Agents	Chemother.	61	782	

19.	 Lund,	B.	A.,	Christopeit,	T.,	Guttormsen,	Y.,	Bayer,	A.,	and	Leiros,	H.	K.	S.	(2016)	Screening	and	783	
Design	of	 Inhibitor	 Scaffolds	 for	 the	Antibiotic	Resistance	Oxacillinase-48	 (OXA-48)	 through	784	
Surface	Plasmon	Resonance	Screening.	J.	Med.	Chem.	59,	5542-5554	785	

20.	 Congreve,	M.,	Carr,	R.,	Murray,	C.,	and	Jhoti,	H.	(2003)	A	‘Rule	of	Three'	for	fragment-based	786	
lead	discovery?	Drug	Discov.	Today	8,	876--877	787	

21.	 Lukyanov,	 S.	 M.,	 Bliznets,	 I.	 V.,	 Shorshnev,	 S.	 V.,	 Aleksandrov,	 G.	 G.,	 Stepanov,	 A.	 E.,	 and	788	
Vasil'ev,	A.	A.	(2006)	Microwave-assisted	synthesis	and	transformations	of	sterically	hindered	789	
3-(5-tetrazolyl)pyridines.	Tetrahedron	62,	1849-1863	790	

22.	 King,	A.	M.,	King,	D.	T.,	French,	S.,	Brouillette,	E.,	Asli,	A.,	Alexander,	 J.	A.	N.,	Vuckovic,	M.,	791	
Maiti,	S.	N.,	Parr,	T.	R.,	Brown,	E.	D.,	Malouin,	F.,	Strynadka,	N.	C.	J.,	and	Wright,	G.	D.	(2016)	792	



-27-	
	

Structural	 and	 Kinetic	 Characterization	 of	 Diazabicyclooctanes	 as	 Dual	 Inhibitors	 of	 Both	793	
Serine-β-Lactamases	and	Penicillin-Binding	Proteins.	ACS	Chem.	Biol.	11,	864-868	794	

23.	 Leonard,	D.	A.,	Bonomo,	R.	A.,	and	Powers,	R.	A.	(2013)	Class	D	β-Lactamases:	A	Reappraisal	795	
after	Five	Decades.	Acc.	Chem.	Res.	46,	2407-2415	796	

24.	 Maveyraud,	L.,	Golemi-Kotra,	D.,	Ishiwata,	A.,	Meroueh,	O.,	Mobashery,	S.,	and	Samama,	J.-P.	797	
(2002)	High-Resolution	X-ray	Structure	of	an	Acyl-Enzyme	Species	for	the	Class	D	OXA-10	β-798	
Lactamase.	J.	Am.	Chem.	Soc.	124,	2461-2465	799	

25.	 Cahill,	S.	T.,	Cain,	R.,	Wang,	D.	Y.,	Lohans,	C.	T.,	Wareham,	D.	W.,	Oswin,	H.	P.,	Mohammed,	J.,	800	
Spencer,	J.,	Fishwick,	C.	W.	G.,	McDonough,	M.	A.,	Schofield,	C.	J.,	and	Brem,	J.	(2017)	Cyclic	801	
Boronates	Inhibit	All	Classes	of	β-Lactamases.	Antimicrob.	Agents	Chemother.	61	802	

26.	 Li,	J.,	Cross,	J.	B.,	Vreven,	T.,	Meroueh,	S.	O.,	Mobashery,	S.,	and	Schlegel,	H.	B.	(2005)	Lysine	803	
carboxylation	in	proteins:	OXA-10	β-lactamase.	Proteins	61,	246-257	804	

27.	 Verma,	V.,	Testero,	S.	A.,	Amini,	K.,	Wei,	W.,	Liu,	J.,	Balachandran,	N.,	Monoharan,	T.,	Stynes,	805	
S.,	 Kotra,	 L.	 P.,	 and	 Golemi-Kotra,	 D.	 (2011)	 Hydrolytic	 Mechanism	 of	 OXA-58	 Enzyme,	 a	806	
Carbapenem-hydrolyzing	Class	D	β-Lactamase	 from	Acinetobacter	baumannii.	 J.	 Bio.	 Chem.	807	
286,	37292-37303	808	

28.	 Lohans,	C.	T.,	Wang,	D.	Y.,	Jorgensen,	C.,	Cahill,	S.	T.,	Clifton,	I.	J.,	McDonough,	M.	A.,	Oswin,	809	
H.	 P.,	 Spencer,	 J.,	 Domene,	 C.,	 Claridge,	 T.	 D.	W.,	 Brem,	 J.,	 and	 Schofield,	 C.	 J.	 (2017)	 13C-810	
Carbamylation	 as	 a	 Mechanistic	 Probe	 for	 the	 Inhibition	 of	 Class	 D	 β-Lactamases	 by	811	
Avibactam	and	Halide	Ions.	Org.	Biomol.	Chem.	15,	6024.	812	

29.	 Asakawa,	N.,	Kuroki,	S.,	Kurosu,	H.,	Ando,	I.,	Shoji,	A.,	and	Ozaki,	T.	(1992)	Hydrogen-bonding	813	
effect	on	carbon-13	NMR	chemical	shifts	of	L-alanine	residue	carbonyl	carbons	of	peptides	in	814	
the	solid	state.	J.	Am.	Chem.	Soc.	114,	3261-3265	815	

30.	 Giannetti,	A.	M.,	Koch,	B.	D.,	 and	Browner,	M.	F.	 (2008)	Surface	plasmon	 resonance	based	816	
assay	 for	 the	 detection	 and	 characterization	 of	 promiscuous	 inhibitors.	 J.	Med.	 Chem.	 51,	817	
574-580	818	

31.	 Lund,	B.	A.,	Leiros,	H.	K.,	and	Bjerga,	G.	E.	(2014)	A	high-throughput,	restriction-free	cloning	819	
and	screening	strategy	based	on	ccdB-gene	replacement.	Microb.	Cell	Fact.	13,	38	820	

32.	 Mueller,	U.,	Förster,	R.,	Hellmig,	M.,	Huschmann,	F.	U.,	Kastner,	A.,	Malecki,	P.,	Pühringer,	S.,	821	
Röwer,	 M.,	 Sparta,	 K.,	 Steffien,	 M.,	 Ühlein,	 M.,	 Wilk,	 P.,	 and	 Weiss,	 M.	 S.	 (2015)	 The	822	
macromolecular	 crystallography	 beamlines	 at	 BESSY	 II	 of	 the	 Helmholtz-Zentrum	 Berlin:	823	
Current	status	and	perspectives.	Eur.	Phys.	J.	Plus	130,	141	824	

33.	 Gabadinho,	 J.,	 Beteva,	 A.,	 Guijarro,	 M.,	 Rey-Bakaikoa,	 V.,	 Spruce,	 D.,	 Bowler,	 M.	 W.,	825	
Brockhauser,	S.,	Flot,	D.,	Gordon,	E.	J.,	Hall,	D.	R.,	Lavault,	B.,	McCarthy,	A.	A.,	McCarthy,	J.,	826	
Mitchell,	 E.,	Monaco,	 S.,	Mueller-Dieckmann,	 C.,	 Nurizzo,	 D.,	 Ravelli,	 R.	 B.	 G.,	 Thibault,	 X.,	827	
Walsh,	M.	A.,	Leonard,	G.	A.,	and	McSweeney,	S.	M.	(2010)	MxCuBE:	a	synchrotron	beamline	828	
control	 environment	 customized	 for	 rnacromolecular	 crystallography	 experiments.	 J.	829	
Synchrotron.	Radiat.	17,	700-707	830	

34.	 Incardona,	M.	 F.,	 Bourenkov,	 G.	 P.,	 Levik,	 K.,	 Pieritz,	 R.	 A.,	 Popov,	 A.	 N.,	 and	 Svensson,	O.	831	
(2009)	EDNA:	a	framework	for	plugin-based	applications	applied	to	X-ray	experiment	online	832	
data	analysis.	J.	Synchrotron.	Radiat.	16,	872-879	833	

35.	 Delageniere,	S.,	Brenchereau,	P.,	Launer,	L.,	Ashton,	A.	W.,	Leal,	R.,	Veyrier,	S.,	Gabadinho,	J.,	834	
Gordon,	E.	J.,	Jones,	S.	D.,	Levik,	K.	E.,	McSweeney,	S.	M.,	Monaco,	S.,	Nanao,	M.,	Spruce,	D.,	835	
Svensson,	O.,	Walsh,	M.	 A.,	 and	 Leonard,	G.	 A.	 (2011)	 ISPyB:	 an	 information	management	836	
system	for	synchrotron	macromolecular	crystallography.	Bioinformatics	27,	3186-3192	837	

36.	 Bourenkov,	 G.	 P.,	 and	 Popov,	 A.	 N.	 (2010)	Optimization	 of	 data	 collection	 taking	 radiation	838	
damage	into	account.	Acta	Cryst.	Section	D	66,	409-419	839	

37.	 Sparta,	K.	M.,	Krug,	M.,	Heinemann,	U.,	Mueller,	U.,	and	Weiss,	M.	S.	(2016)	XDSAPP2.	0.	J.	840	
Appl.	Cryst.	49,	1085-1092	841	

38.	 Waterman,	D.	G.,	Winter,	G.,	Gildea,	R.	J.,	Parkhurst,	J.	M.,	Brewster,	A.	S.,	Sauter,	N.	K.,	and	842	
Evans,	G.	(2016)	Diffraction-geometry	refinement	in	the	DIALS	framework.	Acta	Cryst.	Section	843	
D	72,	558-575	844	



-28-	
	

39.	 Evans,	P.	R.,	and	Murshudov,	G.	N.	(2013)	How	good	are	my	data	and	what	is	the	resolution?	845	
Acta	Cryst.	Section	D	69,	1204-1214	846	

40.	 Kabsch,	W.	(2010)	XDS.	Acta	Cryst.	Section	D	66,	125-132	847	
41.	 Afonine,	 P.	 V.,	 Grosse-Kunstleve,	 R.	 W.,	 Echols,	 N.,	 Headd,	 J.	 J.,	 Moriarty,	 N.	 W.,	848	

Mustyakimov,	M.,	 Terwilliger,	 T.	 C.,	 Urzhumtsev,	 A.,	 Zwart,	 P.	 H.,	 and	Adams,	 P.	 D.	 (2012)	849	
Towards	 automated	 crystallographic	 structure	 refinement	 with	 phenix.refine.	 Acta	 Cryst.	850	
Section	D	68,	352-367	851	

42.	 Smart,	O.	S.,	Womack,	T.	O.,	 Sharff,	A.,	 Flensburg,	C.,	Keller,	P.,	Paciorek,	W.,	Vonrhein,	C.,	852	
and	Bricogne,	G.	(2014)	grade,	version	1.102.	Global	Phasing	853	

43.	 Liebschner,	 D.	 (2016)	 phenix.polder	 -	 A	 tool	 for	 calculating	 difference	 maps	 around	 atom	854	
selections	by	excluding	the	bulk	solvent	mask.	The	Phenix	Project,	Berkeley,	California	855	

44.	 Schrodinger,	LLC.	(2015)	The	PyMOL	Molecular	Graphics	System,	Version	1.8.			856	

	857	


