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Abstract

The prevalence of carbapenemase-producing Enterobacteriaceae (CPE) is increasing

worldwide. Here we present associated patient data and molecular, epidemiological and

phenotypic characteristics of all CPE isolates in Norway from 2007 to 2014 confirmed at the

Norwegian National Advisory Unit on Detection of Antimicrobial Resistance. All confirmed

CPE isolates were characterized pheno- and genotypically, including by whole genome

sequencing (WGS). Patient data were reviewed retrospectively. In total 59 CPE isolates

were identified from 53 patients. Urine was the dominant clinical sample source (37%) and

only 15% of the isolates were obtained from faecal screening. The majority of cases (62%)

were directly associated with travel or hospitalization abroad, but both intra-hospital trans-

mission and one inter-hospital outbreak were observed. The number of CPE cases/year

was low (2–14 cases/year), but an increasing trend was observed. Klebsiella spp. (n = 38)

and E. coli (n = 14) were the dominant species and blaKPC (n = 20), blaNDM (n = 19), blaOXA-

48-like (n = 12) and blaVIM (n = 7) were the dominant carbapenemase gene families. The CPE

isolates were genetically diverse except for K. pneumoniae where clonal group 258 associ-

ated with blaKPC dominated. All isolates were multidrug-resistant and a significant proportion

(21%) were resistant to colistin. Interestingly, all blaOXA-48-like, and a large proportion of

blaNDM-positive Klebsiella spp. (89%) and E. coli (83%) isolates were susceptible in vitro to

mecillinam. Thus, mecillinam could have a role in the treatment of uncomplicated urinary

tract infections caused by OXA-48- or NDM-producing E. coli or K. pneumoniae. In
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conclusion, the impact of CPE in Norway is still limited and mainly associated with travel

abroad, reflected in the diversity of clones and carbapenemase genes.

Introduction

Carbapenemase-producing Enterobacteriaceae (CPE) have emerged as a global public health

concern during the last two decades [1, 2]. CPE isolates are usually multidrug-resistant (MDR)

or even extensively- or pandrug-resistant (XDR/PDR), resulting in limited antibiotic treat-

ment options [1, 3, 4]. Due to the lack of effective therapy, CPE infections have been associated

with high mortality rates [5, 6]. Currently, colistin and various combination regimens are gen-

erally used for treatment of CPE infections. However, the clinical evidence is mainly based on

case reports and observational retrospective studies [1, 4]. Worryingly, high rates of colistin

resistance among CPE have been observed in certain regions [7, 8]. Although colistin resis-

tance is often mutation-based, plasmid-mediated colistin resistance has now also been

described [9–14], and observed in CPE isolates [11, 15–17].

The main carbapenemases among Enterobacteriaceae include KPC (Ambler class A), the

metallo-β-lactamases NDM, VIM and IMP (Ambler class B), and OXA-48-like enzymes

(Ambler class D) [1]. Certain carbapenemases dominate in specific regions and countries, i.e.

NDM in the Indian subcontinent, KPC in Italy, Portugal, Israel, Greece and the US, and OXA-

48-like in many Mediterranean (e.g. Turkey and Malta) and North African countries as well as

some other European countries (e.g. Belgium, France, Germany and Spain) [7, 18–20]. Specific

clones or clonal groups (CG) are often associated with specific carbapenemases, while other

carbapenemases show a more broad diversity with respect to host genetic backgrounds [2, 21].

The global spread of KPC has mainly been associated with Klebsiella pneumoniae sequence

type (ST) 258 or CG 258 [2, 21, 22]. In contrast, NDM and OXA-48-like enzymes are broadly

distributed in various genetic backgrounds of K. pneumoniae and Escherichia coli and for

blaNDM there is no clear link to a specific plasmid backbone [2, 21]. For blaOXA-48-like there is

molecular evidence supporting an association with a specific internationally epidemic IncL

plasmid backbone [23–25].

The emergence of CPE in the Nordic countries has mainly been associated with single spo-

radic cases associated with import [26–36], and the prevalence is low compared with other

European countries [7, 19]. However, there are indications of local dissemination unrelated to

travel in Denmark [37, 38].

The aim of this study was to analyse the epidemiological, phenotypic and molecular charac-

teristics of CPE isolated in Norway from 2007 to 2014 to understand the molecular epidemiol-

ogy associated with the emergence of CPE in Norway.

Materials and methods

Bacterial strains and demographic data

The study collection consisted of 59 CPE isolates genetically-verified at the Norwegian

National Advisory Unit on Detection of Antimicrobial Resistance from 2007–2014. The crite-

ria for submitting isolates to the Unit included reduced susceptibility to carbapenems accord-

ing to the Norwegian Working Group for Antibiotics (AFA, https://unn.no/fag-og-forskning/

arbeidsgruppen-for-antibiotikasporsmal-og-metoder-for-resistensbestemmelse-afa)/Nordic

Committee on Antimicrobial Susceptibility Testing (NordicAST) guidelines (www.nordicast.

org). In 2012 mandatory reporting of confirmed CPE cases to the Norwegian Surveillance
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System for Communicable Diseases (MSIS) was established. After confirmation at the Advi-

sory Unit, MSIS and the primary lab are notified. The primary laboratory subsequently notifies

the responsible clinician, who also reports data to MSIS. Clinical data were collected from the

laboratory requisition. Multiple isolates from the same patient were included in the analysis if

they were (i) of different species, (ii) the same species, but harboured a different carbapene-

mase gene or (iii) if the isolates were of the same species and harboured the same carbapene-

mase gene, but were identified >1 year apart.

Phenotypic analysis

Species identification was performed using MALDI-TOF MS (Bruker Daltonik GmbH, Bre-

men, Germany). MIC profiling was performed using gradient strips (Liofilchem, Roseto degli

Abruzzi, Italy/bioMérieux, Marcy-l’Étolie, France) and broth microdilution for colistin using

in-house designed premade Sensititre microtiter plates (TREK Diagnostic Systems/Thermo

Fisher Scientific, East Grinstead, UK). Interpretation was according to EUCAST clinical break-

points version 6.0 (www.eucast.org). Non-susceptibility included both the intermediate and

resistant categories. The AmpC Confirm kit (ROSCO Diagnostica, Taastrup, Denmark), ESBL

combination discs (Becton-Dickinson, Franklin Lakes, NJ, USA), KPC, MBL and OXA-48

Confirm kit (ROSCO Diagnostica) and the in-house version of Carba NP test were used for

phenotypic typing of β-lactamases [39, 40].

Molecular analysis

The presence of carbapenemase genes was initially determined by various PCRs for blaKPC,

blaIMI, blaVIM, blaNDM, blaIMP, blaGIM, blaSPM, blaSIM and blaOXA-48-like [41–44]. WGS was per-

formed on all isolates using the MiSeq platform (Illumina, San Diego, CA, USA) according to

the manufacturer’s instructions. Briefly, genomic DNA was purified using the GenElute bacte-

rial genomic DNA kit (Sigma-Aldrich, St. Louis, MO, USA). DNA libraries were prepared

using Nextera/Nextera XT kits (Illumina) followed by paired-end sequencing. Contigs were

assembled using SPAdes [45] through the iMetAMOS extension [46] of the MetAMOS pack-

age [47]. The presence of resistance genes/mutations, carbapenemase genes and single nucleo-

tide polymorphisms (SNP) variations were determined using a customised algorithm that uses

Bowtie 2 to map reads against a locally curated reference database and assembled from publi-

cally accessible databases. The database comprised sequences for all reported carbapenemase

variants. Samtools was used to generate an mpileup file [48] which was then parsed based on

read depth (> 10 reads per base) and base-call agreement (> 90%) to determine the base type

at each nucleotide position relative to the closest reference sequence. Presence of reported car-

bapenemase variants were defined based on 100% identity across the whole length of the corre-

sponding reference gene.

STs of Klebsiella spp., E. coli and Enterobacter cloacae complex were determined from WGS

data using the Klebsiella MLST database (http://bigsdb.pasteur.fr/klebsiella/klebsiella.html),

EnteroBase (http://enterobase.warwick.ac.uk/species/index/ecoli) for E. coli, and the E. cloacae
MLST database (http://pubmlst.org/ecloacae). Core genome MLST (cgMLST) was performed

on K. pneumoniae isolates using 694 loci as previously described [22]. A phylogenetic tree was

constructed based on the concatenated sequence alignments using RAxML [49] and FigTree

(http://tree.bio.ed.ac.uk/software/figtree/).

Genbank accession numbers

WGS data have been deposited at the National Center for Biotechnology Information (NCBI)

under BioProject PRJNA295003.
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Ethical considerations

The study was reviewed and approved by the Regional Committee for Medical and Health

Research Ethics North (reference no. 2016/2122/REK Nord and 2017/146/REK Nord) and the

Data Protection Officer at the University Hospital of North Norway (reference no. 2017/1562).

The need for patient consent was waived by the Regional Committee for Medical and Health

Research Ethics North (reference no. 2017/146/REK nord)

Results

Bacterial isolates

In total 59 CPE were identified from 53 patients of which 44 were hospitalized patients. Sam-

ples from eight patients were taken at general practitioners or in other health care institutions

(e.g. elderly care homes). For one patient no information was obtained. Of the 53 patients,

four had multiple CPE isolates belonging to different species or different STs. One patient had

four blaNDM-1-positive strains of different species (Proteus mirabilis, Providencia stuartii, Citro-
bacter sp. and K. pneumoniae) isolated within a four-month period. Another had blaKPC-2-pos-

itive K. pneumoniae and Enterobacter cloacae complex isolates in the same faecal screening

sample. A third had blaNDM-1-positive E. coli and E. cloacae complex isolates identified in two

different specimens (wound secretion and urine, respectively) within a one-month period.

The fourth patient yielded two blaNDM-1-positive K. pneumoniae strains with unrelated STs

from specimens taken 21 months apart.

Increasing number of CPE identified during the study period from a high

proportion of clinical isolates

CPE isolates were identified in 14 of 22 clinical microbiology laboratories representing all health

regions in Norway. The number of CPE cases per year, diversity of carbapenemase variants and

species increased during the study period (Table 1), but with a trend towards dominance of

NDM and OXA-48-like carbapenemase variants and increasing number of carbapenemase-pro-

ducing E. coli. Fifty-six percent of the patients were male. The patient age ranged from 3–96

Table 1. Time-line and distribution of identified CPEs and carbapenemase variants. No. of isolates in parenthesis.

Year No. of

isolates

No. of

casesa
Klebsiella sp. E. coli Other

Enterobacteriaceae

2007 3 3 KPC-2 (1), VIM-1 (2)

2008 6 6 KPC-2 (6)

2009 2 2 KPC-2 (2)

2010 8 7 KPC-2 (2), KPC-3 (1), VIM-27 (2), NDM-1 (1) NDM-1 (1) KPC-2 (1)

2011 4 4 KPC-2 (2), NDM-1+OXA-181 (1), OXA-48 (1)

2012 16 14 KPC-2 (1), VIM-1 (1), NDM-1 (2), NDM-7 (1), OXA-

245 (1)

VIM-29 (1), NDM-1 (1), NDM-5 (1),

NDM-7 (1), OXA-48 (2)

NDM-1 (3), IMI-9 (1)

2013 8 7 KPC-3 (1), NDM-1 (2), OXA-48 (1), OXA-245 (1) NDM-1 (1),OXA-48 (2)

2014 12 10 KPC-2 (2), NDM-1 (2), OXA-48 (1), OXA-162 (1) VIM-4 (1), NDM-1 (1), IMP-26 (1),

OXA-181 (1)

KPC-2 (1), NDM-1 (1)

Total

2007–

2014

59 53 KPC-2 (16), KPC-3 (2), VIM-1 (3), VIM-27 (2), NDM-

1 (7), NDM-7 (1), NDM-1+OXA-181 (1), OXA-48 (3),

OXA-162 (1), OXA-245 (2)

VIM-4 (1), VIM-29 (1), NDM-1 (4),

NDM-4 (1), NDM-7 (1), IMP-26 (1),

OXA-48 (4), OXA-181 (1)

KPC-2 (2), IMI-9 (1),

NDM-1 (4)

a Patients identified with multiple CPE defined as a single case.

https://doi.org/10.1371/journal.pone.0187832.t001
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years (mean 63 and median 66 years). The majority of CPE were isolated from urine (n = 22,

37%), blood culture (n = 9, 15%) and faecal screening (n = 9, 15%).

Association with travel or hospitalization abroad

Thirty-three patients (62%) had a known history of travel and/or hospitalization abroad

(Table 2). Sixteen patients (30%) reported no travel or hospitalization abroad and for four

patients (8%), no information was obtained. With respect to the non-direct import cases,

eight cases were associated with secondary spread from imported cases. This included six cases

associated with a previously described, small but long-term outbreak of blaKPC-2-positive K.

pneumoniae/E. cloacae complex in 2007–2010 [50]. In addition, two other intra-hospital trans-

missions of blaKPC-2-positive K. pneumoniae [28] and blaVIM-27-positive K. pneumoniae were

observed involving one additional patient in each case.

Bacterial species and carbapenemase diversity

Overall Klebsiella spp. (K. pneumoniae, n = 36; Klebsiella variicola n = 1; Klebsiella quasipneu-
moniae n = 1) were dominant, followed by E. coli (n = 14), E. cloacae complex (n = 4) and sin-

gle isolates of P. stuartii, P. mirabilis and Citrobacter sp. (Table 1 and S1 Table). The most

dominant carbapenemase gene family was blaKPC, found in K. pneumoniae (n = 18) and E. clo-
acae complex (n = 2), followed by blaNDM identified in K. pneumoniae (n = 8), E. coli (n = 6),

E. cloacae complex (n = 1), P. stuartii (n = 1), P. mirabilis (n = 1) and Citrobacter sp. (n = 1).

blaVIM was identified in K. pneumoniae (n = 4), E. coli (n = 2) and K. quasipneumoniae (n = 1)

while blaOXA-48-like was identified in K. pneumoniae (n = 5), E. coli (n = 5) and K. variicola
(n = 1). In addition, we identified one K. pneumoniae isolate harbouring both blaNDM and

blaOXA-48-like and single isolates with blaIMI (E. cloacae complex) and blaIMP (E. coli). With

respect to KPC, KPC-2 (n = 18) was the most predominant allele with the closest KPC-3

(n = 2) variant detected in only two isolates. The remaining carbapenemase genes encoded

three different variants of NDM (NDM-1, n = 16; NDM-7, n = 2; and NDM-5, n = 1), four

OXA-48-like (OXA-48, n = 7; OXA-181, n = 2; OXA-245, n = 2 and OXA-162, n = 1) and four

VIM (VIM-1, n = 3; VIM-27, n = 2; VIM-4, n = 1; and VIM-29, n = 1). The single isolates with

blaIMI and blaIMP encoded IMI-9 and IMP-26, respectively.

Bacterial population structure and linkage to specific carbapenemase

alleles

MLST and cgMLST (Fig 1) showed that K. pneumoniae was dominated by KPC-producing

clonal group (CG) 258, more specifically ST258 (n = 15) and its single locus variants (SLV)

ST855 (n = 1) and ST340 (n = 1). The CG258 cluster comprised 21 isolates and included nearly

all KPC-producers (n = 17) in addition to four ST11 isolates carrying blaNDM-1 (n = 2) or

blaOXA-245 (n = 2) genes. Outside CG258, blaKPC was only identified in one isolate belonging to

ST461. Among the K. pneumoniae isolates cgMLST identified two other clusters represented

by more than one isolate: one representing CG147 and including ST147 with blaVIM-27 (n = 2)

or blaNDM-1 (n = 1) and ST273 with blaVIM-1 (n = 1), and one representing CG17 including

ST17 with blaNDM-1 (n = 2) and ST336 with blaNDM-7 (n = 1). The remaining K. pneumoniae
isolates represented genetically diverse single strains harbouring blaNDM-1 (ST37 and ST101),

blaNDM-1 + blaOXA-181 (ST525), blaOXA-48 (ST187 and ST405), blaOXA-162 (ST14) and blaVIM-1

(ST2134). The K. quasipneumoniae isolate carrying blaVIM-1 belonged to ST1466 and the K.

variicola with blaOXA-48 belonged to ST981.

Ten diverse genetic backgrounds were identified among the E. coli isolates (n = 14). None

of the STs were SLVs or double locus variants (DLVs) of any other. Only ST38 (n = 3) and

Carbapenemase-producing Enterobacteriaceae in Norway
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Table 2. Distribution of isolates according to association with importation.

Country No. of isolates Species Sequence type (ST) Carbapenemase

Greece 7 K. pneumoniae ST258 KPC-2

1 K. pneumoniae ST147 VIM-27

India 1 K. pneumoniae ST11 NDM-1

1 K. pneumoniae ST17 NDM-1

1a K. pneumoniae ST147 NDM-1

1 E. coli ST101 NDM-7

1 E. coli ST131 NDM-1

1 E. coli ST410 NDM-1

Turkey 1 K. pneumoniae ST273 VIM-1

1 K. variicola ST981 OXA-48

1 E. coli ST38 OXA-48

Serbiab 1 K. pneumoniae ST17 NDM-1

1 P. stuartii - NDM-1

1 P. mirabilis - NDM-1

1 Citrobacter sp. - NDM-1

Spain 1 K. pneumoniae ST11 OXA-245

1 K. quasipneumoniae ST1466 VIM-1

1 E. cloacae complex ST635 IMI-9

Morocco 1 K. pneumoniae ST405 OXA-48

1 K. pneumoniae ST11 OXA-245

Thailand 1 E. coli ST405 OXA-48

1 E. coli ST6355 VIM-29

Brazil 1 K. pneumoniae ST855 KPC-2

United Arab Emirates 1 K. pneumoniae ST336 NDM-7

Syria/Jordan 1 E. coli ST410 VIM-4

Jamaica 1 E. cloacae complex ST456 KPC-2

Pakistan 1 E. coli ST617 NDM-1

Romania 1 K. pneumoniae ST525 NDM-1+OXA-181

Sri Lanka 1 K. pneumoniae ST101 NDM-1

USA 1 K. pneumoniae ST258 KPC-3

Unknown 1 K. pneumoniae ST187 OXA-48

2 E. coli ST38 OXA-48

1 E. coli ST95 IMP-26

Norway (no reported overseas travel) 9c, d K. pneumoniae ST258 KPC-2

1 K. pneumoniae ST14 OXA-162

1a K. pneumoniae ST37 NDM-1

1e K. pneumoniae ST147 VIM-27

1c K. pneumoniae ST461 KPC-2

1 K. pneumoniae ST2134 VIM-1

1 E. coli ST410 OXA-181

1 E. coli ST636 NDM-5

1f E. coli ST681 NDM-1

1f E. cloacae complex ST92 NDM-1

1c E. cloacae complex ST484 KPC-2

a Two blaNDM-1-positive K. pneumoniae isolates, one ST147 and one ST37, were isolated from the same patient. The isolates were identified 21 months

apart where the first detection was associated with importation, but not for the second detection.
b All four blaNDM-1-positive isolates were isolated from the same patient.
c Six K. pneumoniae ST258, one K. pneumoniae ST461 and one E. cloacae complex ST484, all blaKPC-2-positive, were associated with a long-term

outbreak [50]. The first case (K. pneumoniae ST258 with blaKPC-2) of the outbreak were associated with import from Greece.
d One blaKPC-2-positive K. pneumoniae ST258 associated with intra-hospital transmission (first case associated with import from Greece)[28].
e The blaVIM-27-positive isolate were associated with a case of intra-hospital transmission (first case associated with import from Greece).
f Both isolates identified from the same patient.

https://doi.org/10.1371/journal.pone.0187832.t002
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ST410 (n = 3) were represented by>1 isolate. All three ST38 isolates carried blaOXA-48, while

the three ST410 strains harboured each a different carbapenemase gene (blaNDM-1, blaVIM-4 or

blaOXA-181). The remaining strains were genetically diverse and carried various carbapenemase

genes/variants: blaNDM-1 (ST131, ST617 and ST681), blaNDM-5 (ST636), blaNDM-7 (ST101),

blaOXA-48 (ST405), blaVIM-29 (ST6355) and blaIMP-26 (ST95).

Fig 1. Phylogenetic tree of K. pneumoniae isolates based on alignment of concatenated sequences of the 694 cgMLST scheme of K. pneumoniae

[22]. The tree was constructed in RAxML [49] and visualized using FigTree (http://tree.bio.ed.ac.uk/software/figtree/). Clonal groups with >1 isolates are

boxed. Sequence type (ST), carbapenemase gene and year of isolation is indicated for each isolate. Isolates associated with the long-term outbreak [50] and

the two occurrences of intra-hospital transmission are labelled *, # and ¤, respectively.

https://doi.org/10.1371/journal.pone.0187832.g001
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The four carbapenemase-producing E. cloacae complex isolates were all of different STs:

ST456 and ST484 both with blaKPC-2, ST92 with blaNDM-1 and ST635 with blaIMI-9. All STs

were defined as singletons (no SLVs) by BURST analysis of the E. cloacae MLST database

(http://pubmlst.org/ecloacae/, last accessed 24.06.2016).

Antimicrobial susceptibility profile and performance of phenotypic

methods for detection of CPE

All isolates were multidrug-resistant (MDR) according to the definitions by Magiorakos et al.
[51]. (Table 3 and S1 Table). One isolate, a blaNDM-1-positive P. stuartii was non-susceptible to

all relevant antimicrobial agents tested. Overall fosfomycin and colistin were the most active

antimicrobial agents with 85% and 79% of the isolates being susceptible when excluding P.

mirabilis and P. stuartii isolates which are intrinsically resistant to colistin [52] (Table 3).

Seven of the twelve colistin-resistant isolates were K. pneumoniae ST258 with blaKPC-2 (n = 6)

or blaKPC-3 (n = 1). The other colistin-resistant isolates included K. pneumoniae ST525 with

blaNDM-1 + blaOXA-181, K. pneumoniae ST147 with blaNDM-1, K. pneumoniae ST336 with

blaNDM-7, E. cloacae complex ST635 with blaIMI-9 and E. cloacae complex ST456 with blaKPC-2.

High levels of non-susceptibility were observed to aminoglycosides (gentamicin, 51%; ami-

kacin, 63%; and tobramycin, 83%), tigecycline (58%) and ciprofloxacin (83%).

With respect to the carbapenems, 41% were susceptible to meropenem, 39% to imipenem

and 3% to ertapenem. All isolates had meropenem and ertapenem MIC values above the

EUCAST screening breakpoint for carbapenemase detection (http://www.eucast.org/

fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_

Table 3. Antimicrobial resistance profiles of CPE isolates according to species and carbapenemase variant.

Percent non-susceptible (I+R)a

Species Carbapenemase TZP MEC CXM CTX CAZ ATM MEM ETP IPM GEN AMK TOB CIP TGC SXT CST FOS

Klebsiella spp. KPC (n = 18) 100 100 100 100 100 100 83 100 50 28 78 83 94 83 72 39 6

VIM (n = 5) 100 100 100 100 100 40 60 100 80 0 40 100 100 40 80 0 0

NDM (n = 9)b 100 11 100 100 100 100 89 100 67 78 89 100 89 56 78 33 11

OXA-48-like (n = 6) 100 0 67 50 67 50 17 100 33 17 0 50 83 83 33 0 33

E. coli VIM/IMP (n = 3) 67 67 100 100 100 100 33 67 67 100 100 100 33 33 100 0 33

NDM (n = 6) 100 17 100 100 100 83 33 100 83 83 83 83 67 0 33 0 0

OXA-48-like (n = 5) 100 0 100 100 100 100 20 100 20 80 0 80 60 20 80 0 0

E. cloacae complex KPC (n = 2) 100 -c 100 100 100 100 100 100 100 50 50 50 100 50 50 50 100

NDM (n = 1) 100 - 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100

IMI (n = 1) 0 - 0 0 0 100 0 100 100 0 0 0 0 100 0 100 0

P. stuartii NDM (n = 1) 100 - - 100 100 100 100 100 100 100 100 100 100 - 100 - 100

P. mirabilis NDM (n = 1) 0 100 100 100 100 100 0 0 100 100 100 100 100 - 100 - 0

Citrobacter spp. NDM (n = 1) 100 - 100 100 100 100 0 100 100 100 100 100 100 100 100 0 0

Totald 95 53 95 93 95 88 59 97 61 51 63 83 83 58 68 21 15

a according to EUCAST clinical breakpoint table v. 6.0. TZP: piperacillin-tazobactam; MEC: mecillinam; CXM: cefuroxime; CTX: cefotaxime; CAZ:

ceftazidime; AZT: aztreonam; MEM: meropenem; ETP: ertapenem; IPM: imipenem; GEN: gentamicin; AMK: amikacin; TOB: tobramycin; CIP:

ciprofloxacin; TGC: tigecycline; SXT: trimethoprim-sulfamethoxazole; CST: colistin; FOS: fosfomycin.
b includes one isolate co-harboring blaNDM-1 and blaOXA-181.
C “-”indicates lack of clinical breakpoint or intrinsic resistance according to EUCAST Expert Rules on Intrinsic Resistance and Exceptional Phenotypes v.3.1

(http://www.eucast.org/).
d calculations excludes species/antibiotic combinations with intrinsic resistance.

https://doi.org/10.1371/journal.pone.0187832.t003
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resistance_mechanisms_v1.0_20131211.pdf) (S1 Table). For imipenem nine isolates had MIC

values below the screening breakpoint. There was no clear correlation between carbapenemase

variant and susceptibility to meropenem and imipenem with the exception that among the

isolates harbouring blaOXA-48-like (excluding the strain with both blaNDM-1 and blaOXA-181)

9/11 and 8/11 were susceptible to meropenem and imipenem, respectively. As expected, a

high level of resistance was observed against other β-lactams (Table 3 and S1 Table). Three

isolates: one K. pneumoniae (blaOXA-48), one K. variicola (blaOXA-48) and the blaIMI-9-posi-

tive E. cloacae complex isolate were susceptible to extended-spectrum cephalosporins (cefo-

taxime, ceftazidime and cefuroxime) and aztreonam. Interestingly, all OXA-48-like-positive

E. coli and Klebsiella spp. as well as 83% and 89% of NDM-positive E. coli and Klebsiella spp.

isolates, respectively were susceptible to mecillinam. Nine (15%) of the isolates tested nega-

tive for carbapenemase-production with the in-house Carba NP test (S1 Table), including

six blaNDM-1-positive isolates (E. coli n = 2, P. stuartii, P. mirabilis, Citrobacter sp. and K.

pneumoniae), two blaOXA-48-like-positive isolates (E. coli and K. pneumoniae) and one E. clo-
acae complex isolate (blaIMI-9). The KPC, MBL and OXA-48 confirm kit correctly identified

the presence of either an MBL or KPC in all relevant isolates except for one blaNDM-1-posi-

tive P. mirabilis strain (S1 Table). The single blaIMI-9-positive E. cloacae complex isolate also

showed significant synergy with boronic acid only. With the exception of the isolate harbour-

ing both blaNDM-1 and blaOXA-181, where synergy was observed between meropenem and dipi-

colinic acid, no synergy was observed with the β-lactamase inhibitors for all blaOXA-48-like-

positive isolates. Moreover, with the exception of two isolates, all blaOXA-48–like-positive

isolates showed no zones of inhibition around the temocillin tablet, which may indicate the

presence of OXA-48-like carbapenemases according to the manufacturer’s guidelines. The

meropenem-meropenem/EDTA gradient strip correctly identified all MBL-positive isolates,

with the exception of the K. pneumoniae strain positive for both blaNDM-1 and blaOXA-181

where the test was inconclusive (S1 Table).

Association with other antibiotic resistance determinants

BlaCTX-M and specifically blaCTX-M-15 were the most common ESBL variants identified and

were mainly associated with K. pneumoniae and E. coli isolates with blaNDM (10/15 isolates) or

blaOXA-48-like (8/11 isolates) and E. coli isolates with blaVIM (2/2 isolates) (S1 Table). BlaCTX-M

were not identified in blaKPC-positive K. pneumoniae isolates. One E. coli isolate with blaOXA-48

harboured both blaCTX-M-14 and blaCTX-M-15. blaCTX-M-15 was also identified in one blaKPC-2-

and one blaNDM-1-positive E. cloacae complex. BlaCMY (n = 12) were the most common plas-

mid-mediated AmpC variants identified with blaCMY-6 particularly associated with blaNDM

(n = 9). The two blaOXA-48-like-positive Klebsiella spp. isolates that were susceptible to extended-

spectrum cephalosporins and aztreonam were negative for ESBL and plasmid-mediated AmpC

genes.

In addition to various genes encoding aminoglycoside-modifying enzymes, the 16S rRNA

methylase genes rmtC and armA, were identified in eight and five isolates, respectively (S1

Table). With the exception of the single isolate of E. coli with blaIMP-26, armA and rmtC were

only associated with isolates harbouring blaNDM-1. In Klebsiella spp. insertional disruption of

mgrB [53] associated with colistin resistance was identified in seven K. pneumoniae isolates (S1

Table). Insertional disruption of mgrB was also observed in two clinically colistin susceptible

(MIC = 1 mg/L) K. pneumoniae isolates. One K. pneumoniae isolate with a disrupted mgrB also

carried a nonsense mutation in pmrB leading to a truncated PmrB. Two colistin-resistant K.

pneumoniae isolates had mutations in pmrA resulting in amino acid substitutions of G53C and

D86E in one, and G53C in the other. In one colistin-resistant Klebsiella spp. isolate (MIC >8
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mg/L) no previously described colistin resistance determinants were identified. The strain had

mutations in pmrA (PmrA E57G) and pmrB (PmrB T246A) compared with the colistin-sus-

ceptible K. pneumoniae strain MGH 78578 [54], but neither mutation has been linked with

colistin resistance and PmrB T246A is commonly found in K. pneumoniae [54]. No mutations

were identified in phoP, phoQ or the mgrB promoter for this isolate. The plasmid-mediated

colistin resistance genes mcr-1 [9], mcr-2 [10], mcr-3 [12], mcr-4 [13] and mcr-5 [14] were not

detected.

All E. coli, K. pneumoniae and E. cloacae complex isolates with high-level ciprofloxacin

resistance (MIC�32 mg/L) harboured mutations in both gyrA and parC (S1 Table). In addi-

tion, various plasmid-mediated quinolone resistance determinants were identified, including

aac(6’)-Ib-cr (n = 24), qnrB1 (n = 8), qnrB4 (n = 1), qnrB19 (n = 2), qnrD (n = 1) and qnrS1
(n = 8).

Discussion

The main objective of this study was to gain a better understanding of the molecular epidemi-

ology associated with the emergence of CPE in Norway. As observed in other Nordic countries

[26, 27, 32–36] the emergence of CPE in Norway is also mainly associated with importation,

highlighting the importance of targeted screening of patients hospitalized abroad and patients

with a recent travel history to a country with a high prevalence of CPE. A relatively low num-

ber of cases (15%) were identified through faecal screening in contrast to Sweden (74,5%) and

France (59.8%) [26, 55]. This difference is most likely due to dissimilarities in the use of tar-

geted screening and that CPE screening in Norway was not fully implemented in the study

period. This could also explain why a higher proportion of CPE cases in Sweden (81%) were

associated with import [26]. Revised recommendations for infection prevention and control,

including indications for screening for CPE, were introduced in Norway in August 2015 and

in the first six months of 2016, 63% of CPE cases were identified through faecal screening. The

occurrence of one long-term outbreak and two separate incidences of secondary transmission

further highlights the importance of rapid implementation of infection prevention and control

measures before confirmation of CPE if patients have risk factors (e.g. hospitalization abroad)

or when an MDR isolate is identified.

The diversity of species and genetic backgrounds observed is probably due to the high

degree of importation from a variety of countries (Table 2). Several studies have shown that

the dissemination of resistance genes among clinical strains of Enterobacteriaceae is often

associated with high-risk clones and the linkage between specific genetic backgrounds and

resistance genes [2, 21, 56]. The cgMLST analysis of K. pneumoniae isolates showed that the

observed epidemiology reflects the current global epidemiology (Fig 1), where blaKPC-2/-3

spread is primarily driven by strains associated with CG258 (and more specifically, ST258). In

contrast, ST11 (a member of CG258, and a single locus variant of ST258) has been shown to be

associated with a diversity of carbapenemase genes including blaKPC, blaNDM, blaVIM and

blaOXA-48-like in different geographical regions [2, 57, 58]. Accordingly, the four ST11 strains in

this study harboured either blaNDM-1 (n = 2) or blaOXA-245 (n = 2). Notably, cgMLST has

shown that ST11 and ST340 represent a genetic sublineage within CG258 [22]. Isolates with

blaNDM and blaVIM belonging to two other globally dispersed high-risk CGs like CG17 and

CG147 [2] were also identified. The identification of blaVIM-1 and blaOXA-48 in K. quasipneu-
moniae and K. variicola, respectively shows that these Klebsiella species also contribute to the

dissemination of carbapenemase genes and infections as both isolates were associated with

infection. K. variicola have been shown to be frequently associated with bloodstream infections

and associated with higher mortality than K. pneumoniae [59].
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All three E. coli ST38 isolates harboured blaOXA-48, which is consistent with previous obser-

vations showing a prevalent linkage of ST38 to blaOXA-48 in a large collection of clinical isolates

from European and North-African countries [23]. In contrast, the three E. coli isolates belong-

ing to ST410 were associated with different carbapenemase genes (blaNDM-1, blaVIM-4 or

blaOXA-181) indicating the ability of this genetic background to maintain different plasmids

and resistance genes. ST410 E. coli isolates have also previously been identified harbouring

blaKPC-2 [60]. The global dissemination of blaNDM has so far not been linked to specific high-

risk clones or epidemic plasmids [21] and this is also reflected among the five blaNDM-positive

E. coli isolates, which belonged to five different genetic backgrounds. However, one strain

belonged to the international high-risk clone ST131 [21] and another to ST101, which has pre-

viously been found to be associated with blaNDM and other carbapenemases in several coun-

tries (e.g. Bangladesh [61], USA [62], Canada [63, 64] and Bulgaria [65]).

CPE frequently exhibit MDR or XDR phenotypes, limiting treatment options [1, 4]. This

was also observed in our strain collection (Table 2 and S1 Table) due to the association with a

wide variety of other acquired resistance genes, including 16S rRNA methylase genes confer-

ring high-level broad-spectrum aminoglycoside resistance [66] and chromosomal mutations/

insertions resulting in ciprofloxacin and colistin resistance (S1 Table). The mechanism(s)

behind colistin resistance in one K. pneumoniae strain and the colistin-resistant E. cloacae iso-

lates remains to be determined. Interestingly, a high prevalence of susceptibility to mecillinam

among OXA-48- and NDM-producing E. coli and K. pneumoniae isolates was observed. Marrs

et al. also showed high levels of in vitro susceptibility to mecillinam among NDM-producing E.

coli and K. pneumoniae isolates from Pakistan [67], suggesting that mecillinam could have a

role in the treatment of uncomplicated urinary tract infections caused by OXA-48- or NDM-

producing E. coli or K. pneumoniae [68].

Rapid identification of CPE is essential for timely implementation of enhanced infection

control measures to reduce transmission of CPE and prevent infections [3]. As observed in

previous studies [69, 70] false-negative results (15%) for carbapenemase production were

observed with the in-house version of the Carba NP test, particularly with NDM- and OXA-

48-like-producing isolates. Identification of OXA-48-like-producers can be particularly chal-

lenging due to their relatively low level of activity against carbapenems and the lack of specific

inhibitors [71]. The relatively high number of false-negative Carba NP results could also be

due to the media used. In our study, colonies for the Carba NP test were harvested from MH

agar and Literacka et al have recently reported that MH agar from different companies were

associated with false-negative results for MBL-producers [72]. High-level resistance to temocil-

lin is a sensitive and specific indicator for the presence of OXA-48-like enzymes [73]. All

blaOXA-48-like–positive isolates in our collection showed high-level resistance (MIC>128 mg/L)

to temocillin, but several isolates harboring blaVIM and blaNDM also had temocillin MIC

>128mg/L showing that testing for synergy with metal chelators (e.g. EDTA or dipicolinic

acid) is necessary to discriminate between isolates with OXA-48 and MBLs.

Conclusions

The low prevalence of clinical CPE in Norway is consistent with the general low level of anti-

microbial resistance compared with other countries. The relatively low level of antibiotic con-

sumption and the use of narrow spectrum antibiotics [74] have probably contributed to this

situation. The low prevalence is also reflected in the epidemiology of Norwegian CPE; mainly

associated with importation, exhibiting a broad diversity of genetic backgrounds and carbape-

nemase variants that mirror the global epidemiology. Only a few cases of secondary spread

also support this notion. In order to limit the infection pressure brought by increasing travel
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and globalization, continued emphasis must be put on diagnostic capabilities, surveillance and

infection control.
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