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Filtered Poisson processes are often used as reference models for intermittent fluc-

tuations in physical systems. Such a process is here extended by adding a noise

term, either as a purely additive term to the process or as a dynamical term in a

stochastic di↵erential equation. The lowest order moments, probability density func-

tion, auto-correlation function and power spectral density are derived and used to

identify and compare the e↵ects of the two di↵erent noise terms. Monte-Carlo stud-

ies of synthetic time series are used to investigate the accuracy of model parameter

estimation and to identify methods for distinguishing the noise types. It is shown

that the probability density function and the three lowest order moments provide

accurate estimations of the model parameters, but are unable to separate the noise

types. The auto-correlation function and the power spectral density also provide

methods for estimating the model parameters, as well as being capable of identifying

the noise type. The number of times the signal crosses a prescribed threshold level

in the positive direction also promises to be able to di↵erentiate the noise type.
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I. INTRODUCTION

Intermittent fluctuations are found in a variety of physical systems such as atmospheric

winds [1], astrophysical plasmas [2, 3], fission chambers [4], diodes and electric circuits

[5, 6] and magnetic confinement experiments [7–11], as well as in fields such as finance [12]

and physiology [13]. In several such systems, treatments of intermittent e↵ects as a super-

position of random variables has been fruitful, see for instance Refs. 14 and 15. In this

contribution, we will focus on a particular reference model for intermittent fluctuations, the

filtered Poisson process (FPP) (also called a generalized shot noise process) [4, 5, 12, 13].

This model consists of a super-position of uncorrelated pulses with a uniform pulse shape

and randomly distributed pulse amplitudes, arriving according to a Poisson process [16, 17].

The FPP has been considered by e. g. Refs. 18–22. In particular, the FPP with exponentially

distributed pulse amplitudes and an exponential pulse shape can be shown to be Gamma

distributed [12, 16–18].

This contribution is primarily motivated by turbulent flows in the scrape-o↵ layer of

magnetically confined plasmas. Evidence points towards these fluctuations being caused by

filamentary structures with excess particles and heat compared to the ambient plasma mov-

ing radially outwards, transporting particles and heat through the scrape-o↵ layer towards

main chamber walls [8, 10, 11]. Recently, the statistical properties of the intermittent fluc-

tuations have been revealed by exceptionally long data time series from numerous tokamak

experiments, and exhibit similar behavior for a wide range of machine parameters [23–28].

The fluctuations have skewed and flattened probability distribution functions (PDFs) resem-

bling Gamma distributions. Conditional averaging reveals that large-amplitude fluctuations

have an exponential pulse shape, exponentially distributed maximum amplitudes and expo-

nentially distributed waiting times between pulses, consistent with a Poisson process [23–28].

The auto-correlation functions and power spectral densities have a universal shape in ac-

cordance with the model for a range of plasma parameters and radial locations in the SOL

[29, 30]. The underlying assumptions as well as the predictions of this model are thus in

good agreement with experimental measurements.

While the Gamma distribution describes large-amplitude fluctuations in the scrape-o↵

layer well, it often fails to describe fluctuations around the mean value of the signal. By

adding an independent, normally distributed random variable to the process, the PDF of
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the resulting process is a convolution of a Gamma distribution and a normal distribution.

This result has been shown to be in excellent agreement with probe measurements from

the Alcator C-Mod and KSTAR tokamaks [26, 31]. Adding a new random variable to the

process may also change other statistical properties of the process, such as its moments,

auto-correlation function, power spectral density and the rate at which the process crosses

a prescribed threshold level. These changes depend on the second-order statistics of the

normally distributed process.

In this contribution, we will extend the reference FPP model by adding normally dis-

tributed noise in two di↵erent ways, either as a purely additive term to the process, mod-

eling measurement noise or other processes unconnected to the dynamics of the FPP, or as

a dynamical noise term in the stochastic di↵erential equation for the reference model, re-

sembling an Ornstein–Uhlenbeck process. We will mainly consider how these di↵erent noise

terms a↵ect the PDF of the resulting signal, its auto-correlation function and its power spec-

tral density. Additionally, we will consider the rate at which the processes cross a certain

threshold level in the positive direction. The goal of this contribution is to find methods

for discriminating the two types of noise and to identify reliable methods for estimating the

model parameters in a given realization of the process.

This contribution is organized as follows: In Sec. II, the pure FPP is considered. In

Sec. III, the two types of noise are considered. The lowest order moments and the PDF of

the FPP with additional noise are discussed in Sec. IV, and the power spectral density and

auto-correlation function of this process are discussed in Sec. V. In order to di↵erentiate

the types of noise and to compare di↵erent methods of parameter estimation, Monte-Carlo

studies of synthetic data are presented in Sec. VI. Sec. VII concludes the contribution. In

Appendix A, a list of symbols and the most important analytical results of this contribution

are collected. Appendix B contains derivations relating to the power spectral densities and

auto-correlation functions discussed.
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II. FILTERED POISSON PROCESS

In this section, we present the FPP to be analyzed in this contribution. This process is

constructed as a super-position of K pulses arriving in a time interval [0, T ]:

�K(t) =
K(T )X

k=1

Ak'

✓
t� tk

⌧d

◆
. (1)

where the pulse duration time ⌧d is taken to be the same for all pulses. The pulse amplitudes

Ak are taken to be exponentially distributed with mean value hAi,

PA(A; hAi) =
1

hAi exp
✓
� A

hAi

◆
, (2)

where A � 0 and h•i here and in the following indicates the average over all random variables.

As an idealization of a pulse with a fast rise and an exponential decay, we use the one-sided

pulse form

'(⌘) = ⇥(⌘) exp(�⌘), (3)

where ⇥ is the Heaviside step function and ⌘ is a dimensionless variable. Compared to

a two-sided exponential pulse function, this simplification does not a↵ect the moments or

PDF of the process, simplifies the auto-correlation and power spectra (see Ref. 27 for the

auto-correlation of this process with finite growth) and allows the formulation of the process

by a simple stochastic di↵erential equation as described below.

The pulses are assumed to arrive according to a Poisson process with constant rate ( see

for example Refs. 19, 20, Ch. 4.1 or 32, p. 562). Thus the (non-negative) number of arrivals

K(T ) is Poisson distributed,

PK(K;T, ⌧w) =
1

K!

✓
T

⌧w

◆K

exp

✓
� T

⌧w

◆
, (4)

where we have taken the mean value to be hKi = T/⌧w. It can be shown that the waiting

time between consecutive pulses is exponentially distributed with mean value ⌧w [20, p. 135],

while the K arrival times tk are independent and uniformly distributed on the interval [0, T ]

[20, p. 140]. The ratio between pulse duration time and average time between pulses,

� =
⌧d

⌧w
, (5)

is in the following referred to as the intermittency parameter.
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FIG. 1: Synthetically generated pure filtered poisson processes with ✓ = 10�2 and various

values of �.

While the FPP is a continuous process, any experimental data or synthetic realization of

the process is discrete. As the time resolution of numerical data may be important for the

noise processes, we also introduce the normalized time step,

✓ =
4t

⌧d
, (6)

where 4t is the time step for synthetically generated signals. Details on the synthetically

generated signals will be discussed in Sec. VI. Some realizations of �K(t) for various values

of � are presented in Fig. 1, where we have used the normalization

e� =
�� h�i
�rms

. (7)

Here and in the following, we will use a tilde to denote a normalized variable with zero mean

and unit standard deviation. For � < 1, pulses arrive rarely and the signal spends large

amounts of time close to zero value, resulting in a strongly intermittent signal. For � > 1,

pulses overlap and the signal begins to resemble random and symmetric fluctuations around

a mean value.

It can be shown that the stationary PDF of the random variable � is a gamma distribution

[16, 17];

P�(�; �, hAi) =
1

hAi�(�)

✓
�

hAi

◆��1

exp

✓
� �

hAi

◆
, (8)

where � > 0 due to the non-negative pulse amplitudes and pulse functions. The lowest

order moments of � are the mean h�i = �hAi, the standard deviation �rms = �

1/2hAi, the
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skewness S� = 2/�1/2 and the flatness F� = 3+6/�, giving a parabolic relationship between

the skewness and flatness moments of � [16, 17],

F� = 3 + 3S�/2. (9)

In Sec. IV it will be shown how additive noise alters this relationship.

It is possible to write the FPP as a stochastic di↵erential equation. In the case of a

one-sided exponential pulse function, it takes the form [33]

⌧d
d�K

dt
= ��K +

KX

k=1

Ak �

✓
t� tk

⌧d

◆
, (10)

where � is the Dirac delta function. The model described by Eq. (10) can be seen as a

train of �-pulses, arriving at times tk with amplitudes Ak. These pulses pass through a filter

causing an exponential decay with characteristic decay time ⌧d, giving the process its name.

We remark that Eq. (10) can be written as

L�K = fK(t), (11)

where L is the linear operator L = 1 + ⌧d d/dt and the forcing is given by

fK(t) =
KX

k=1

Ak�

✓
t� tk

⌧d

◆
. (12)

A Green’s function for the operator L, that is any function fulfilling LG(t; s) = �(t� s), is

given by

G(t� s) = exp

✓
�t� s

⌧d

◆
⇥

✓
t� s

⌧d

◆
. (13)

The solution of Eq. (11) is then the convolution

�K(t) =

Z 1

�1
dsG(t� s)fK(s), (14)

where G(t � s) can be interpreted as the filter which fK(t) passes through. Since both G

and fK are non-zero only for positive arguments, the integration in Eq. (14) could be taken

over the interval [0, t], and this is done in Sec. VI. Here, however, we take the integration

limits to infinity in order to remain consistent with the Fourier transforms, discussed below

and in the appendices.

In Appendix B, the power spectral density (PSD) of the FPP is shown to be

S�(!) = �2
rms

2⌧d
1 + ⌧

2
d!

2
+ 2⇡h�i2�(!). (15)
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The mean value of the signal gives a zero frequency contribution to the PSD, while the

fluctuations around the mean value give rise to a Lorenzian power spectrum. Since the

pulses are uncorrelated, there is no explicit dependence on the average waiting time ⌧w,

apart from contributing to the value of h�i and �rms. Moreover, we see from Eqs. (B6) and

(B12) that the Poisson point process fK(t) provides the zero frequency contribution as well

as a flat contribution independent from the frequency due to the lack of correlation between

the pulses, while the Lorenzian spectrum comes entirely from the filter G(t).

The auto-correlation and power spectral density are Fourier transform pairs under the

Fourier transform over the entire real line. Thus we readily obtain the auto-correlation

function

R�(⌧) = F�1[S�](⌧) =
1

2⇡

1Z

�1

d! e

i!⌧
S�(!) = �

2
rms exp

✓
� |⌧ |
⌧d

◆
+ h�i2, (16)

where F�1[•](⌧) denotes the inverse Fourier transform. We see that the time dependence of

the auto-correlation function comes entirely from the Green’s function G(t), as is expected,

since the pulses are uncorrelated and thus the average time between pulses does not appear

explicitly in the auto-correlation function.

It can be shown that the PSD and auto-correlation function of the normalized variable

e� are given by

Se�(!) =
S�(!)� 2⇡h�i2�(!)

�2
rms

=
2⌧d

1 + ⌧

2
d!

2
, (17)

Re�(⌧) =
R�(⌧)� h�i2

�2
rms

= exp

✓
� |⌧ |
⌧d

◆
. (18)

These expressions are presented in Figs. 2 and 3, respectively. The solid line in Fig. 2

represents the PSD of e�, while the solid line in Fig. 3 represents the auto-correlation function

of e�. The other elements in these figures will be discussed further in Sec. V. From Eq. (18),

it is evident that the e-folding time of Re� is the pulse duration time ⌧d. This corresponds

to ⌧d! = 1 in Fig. 2, giving the approximate frequency where the PSD changes from a flat

spectrum to power law behavior.

III. ADDITIVE NOISE

In this section, we will expand the FPP with two forms of additional noise terms, which

will be referred to as either observational (⌦) or dynamical (�) noise. In the following,
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FIG. 2: Comparison of power spectral densities with ✓ = 10�2 and various values of ✏. The

solid line denotes both Se� and Se� while the broken lines denote Se⌦. The vertical line gives

the Nyquist frequency.
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FIG. 3: Comparison of auto-correlation functions with ✓ = 10�2 and various values of ✏.

The solid line denotes both Re� and Re� while the broken lines denote Re⌦.

the specific realization of the FPP (that is, the pulse amplitudes, arrival times and number

of pulses for a particular realization) plays no role. Thus, for simplicity of notation, the

subscript K will be suppressed in the following.

Observational noise denotes noise unconnected to the FPP. Thus, a noise term is simply

added to a realization of the process �(t);

⌦(t) = �(t) + �N(t), (19)

where N(t) is a normally distributed process with vanishing mean and unit standard devia-
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tion and � is the noise intensity parameter, e↵ectively describing the standard deviation of

the noise process.

In the case of dynamical noise, the noise term is added as random forcing in the stochastic

di↵erential equation (10), and is therefore connected to the pulses:

⌧dd� =

"
��(t) +

KX

k=1

Ak�

✓
t� tk

⌧d

◆#
dt+

p
2⌧d�dW (20)

where W (t) is the Wiener process. It is possible to solve Eq. (20) in the same way as Eq. (10)

was solved, giving

�(t) = �(t) + �Y (t), (21)

where

Y (t) =
p

2/⌧d

Z 1

�1
G(t� s)dW (s) (22)

is an Ornstein-Uhlenbeck process, and the random variable Y is normally distributed with

zero mean and unit standard deviation.

We also introduce a parameter ✏, describing the relative noise level. UsingX as a collective

symbol for both �N and �Y , we define ✏ as

✏ =

✓
Xrms

�rms

◆2

=
�

2

�hAi2
. (23)

Although N(t) and Y (t) have the same probability distributions, they exhibit very di↵erent

dynamical behavior, as illustrated by realizations of the processes presented in Fig. 4. While

N(t) fluctuates rapidly on the sampling time scale around the zero value, Y (t) wanders

around the zero value, with finite temporal correlations. This is quantified in Appendix B 2,

where the auto-correlation functions and power spectral densities of N and Y are derived.

Note that both N and Y are independent of the process �.

Realizations of the processes �, � and ⌦ for di↵erent parameters �, ✏ and ✓ are presented

in Figs. 1, 5 and 6. Realizations of the pure FPP for various � are presented in Fig. 1. For

� < 1, the signal is very intermittent and spends large amounts of time close to zero. For

� > 1, pulse overlap is much more significant, washing out the intermittent features. As

� becomes very large, the signal resembles symmetric fluctuations around the mean value,

and it can be shown that in the limit � ! 1, the filtered Poisson process has a probability

distribution resembling a normal distribution [5, 16, 17, 19].
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FIG. 4: Synthetically generated observational and dynamic noise terms for ✓ = 10�2.

Realizations of the FPP with dynamical noise for various ✏ are presented in Fig. 5. For

very small ✏, there is very little di↵erence between the pure process and the process with

dynamical noise. For larger ✏, the noise process plays a larger role, concealing all but the

largest pulses.

The e↵ect of changing ✓ is clearest for the FPP with observational noise. Realizations

of this process for various values of ✓ are presented in Fig. 6. Here we see that for large

✓, the process resembles a pure FPP. For small ✓ the noise process dominates, even though

its rms-value is 1/10th the rms-value of the FPP in this case. A smaller time step means

more data points in a given time interval and thus more chances for large values of the noise

process. In contrast, the pure FPP itself is much less sensitive to changes in time resolution,

the primary e↵ect being that separate pulses may be counted as one in the computation, if

they are close enough. The FPP with dynamical noise is also less sensitive to ✓ due to the

exponential damping the noise.

IV. MOMENTS AND DISTRIBUTIONS

In this section, we present the lowest order moments and the PDF of the FPP with

additive noise and describe how the model parameters can be estimated from these for a

realization of the process. The probability density function of the stationary process � is

given in Eq. (8), and both N and Y are normally distributed with vanishing mean and unit
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FIG. 5: Synthetically generated filtered Poisson processes with dynamical noise, � = 1,

✓ = 10�2 and various values of ✏.
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FIG. 6: Synthetically generated filtered Poisson processes with observational noise, � = 1,

✏ = 10�1 and various values of ✓.

standard deviation. Thus, we write

 = �+X, (24)

where the random variable X has the probability density function

PX(x; �) =
1p
2⇡�

exp

✓
� x

2

2�2

◆
. (25)

Note thatX has the same distribution as both �N and �Y , while has the same distribution

as both ⌦ and �. In other words, the PDF of the FPP with additional noise is the same for

both types of noise considered here. In this section, we assume continuous random variables
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X and �. It can be shown that the convergence of the moments of � to their true values

depends on ✓. A discussion on this and the estimation of the moments of � in general is

given in Refs. 17 and 34. Under the assumption that � and X are independent, and using

that hXi = 0, the lowest order moments of  are readily calculated as

h i = h�+Xi = �hAi, (26a)

 2
rms =

⌦
[(�+X)� h�i]2

↵
= �hAi2 + �

2
, (26b)

S =

⌦
[(�+X)� h�i]3

↵

 3
rms

=
2�hAi3

�
�hAi2 + �

2
�3/2 , (26c)

F =

⌦
[(�+X)� h�i]4

↵

 4
rms

=
3

�
�hAi2 + �

2
�2
⇥
�hAi4(� + 2) + 2�hAi2�2 + �

4
⇤
. (26d)

Using Eq. (23), we have the moments

h i = �hAi, (27a)

 2
rms = (1 + ✏)�hAi2, (27b)

S =
2

(1 + ✏)3/2�1/2
, (27c)

F = 3 +
6

(1 + ✏)2�
. (27d)

Also in this case, we can find a parabolic relation between the skewness and flatness moments,

F = 3 +
3

2
(1 + ✏)S2

 . (28)

The e↵ect of additional noise is to increase the pre-factor in the parabolic relationship.

The model parameters � and ✏ can be estimated from the moments in a several di↵erent

ways. Using Eqs. (27a) and (27b) to eliminate hAi. The relative fluctuation level  rms/h i

is then related to the model parameters by

 rms

h i =

r
1 + ✏

�

, (29)

clearly showing how the additional noise amplifies the fluctuation level. As the estimators for

lower order moments are more accurate than those for higher order moments, it is reasonable

to assume the most accurate estimators for the model parameters come from using the lowest
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order moments,  rms/h i and S :

✏ =

✓
2

S 

◆1/2✓ rms

h i

◆1/2

, (30a)

� =

✓
2

S 

◆1/2✓ h i
 rms

◆3/2

. (30b)

In experimental fluctuation data time series there can sometimes be reasons not to trust the

mean value of a signal, for example due to externally imposed low frequency noise or trends

[23, 24]. Such problems typically do not a↵ect the large-amplitude fluctuations, leaving the

higher order moments trustworthy. In this case, using the normalization in Eq. (7) and

observing that Se = S and Fe = F , we have

✏ =
2

3

�
Fe � 3

�

S

2
e 

� 1, (31a)

� =
27

2

S

4
e �

Fe � 3
�3 . (31b)

In Sec. VI, it will be shown that estimating the parameters from Eq. (30) is preferable to

using Eq. (31), given that  rms/h i is reliable.

The probability density function of a sum of two independent random variables � and X

is a convolution of their respective probability density functions [32]:

P ( ; �, hAi, �) =
Z 1

�1
d�P�(�; �, hAi)PX( � �; �). (32)

As a consistency check, it should be noted that in the limit ✏ ! 0, P should be the

probability density function of a pure FPP. This is indeed the case, as in this limit � ! 0,

and by definition,

lim
�!0

PX( � �; �) = �( � �),

and the Gamma distribution of the FPP without noise is recovered. Thus, in the following,

we take the case ✏ = 0 to signify a FPP without additive noise.

The expression for the probability density function of e is given in the appendix, Eq. (A9).

In order to illustrate the e↵ect of pulse overlap and additional noise, the PDF for e is shown

for various values of ✏ and � = 1/2, 1 and 5 in Figs. 7, 8 and 9, respectively. Clearly, as ✏

increases beyond unity, the probability distribution changes towards a normal distribution.

For ✏ = 0, the random variable  is non-negative, causing an abrupt halt in the distribution
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FIG. 7: Probability density function of the random variable  for � = 1/2 and various
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FIG. 8: Probability density function of the random variable  for � = 1 and various values

of ✏.

for �  1. This jump does not exist for ✏ > 0. Thus negative values for  , or equivalently,

e < ��1/2, signifies a deviation from a pure FPP.

V. SPECTRA AND CORRELATIONS

The PSD of the sum of two independent random variables is the sum of their respective

PSDs. The power spectra for the FPP with additional noise are derived in Appendix B.

With Eqs. (15) and (B16), the power spectral density of the FPP with dynamical noise is
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FIG. 9: Probability density function of the random variable  for � = 5 and various values

of ✏.

therefore

S�(!) = S�(!) + �

2SY (!) = �
2
rms

2⌧d
1 + ⌧

2
d!

2
+ 2⇡h�i2�(!), (33)

where h�i and �rms are given by Eqs. (27a) and (27b), respectively. We have also used

the relation �

2 = ✏�hAi2. Note that the spectrum in Eq. (33) is identical to that for the

pure FPP. Thus, we conclude that the auto-correlation functions of � and � have the same

functional shape as well, up to the di↵erence in the first two moments.

The power spectral density of the FPP with observational noise is obtained from Eqs. (15)

and (B24):

S⌦(!) = ⌦2
rms

2⌧d
1 + ✏


1

1 + ⌧

2
d!

2
+
✏

2
✓

�
+ 2⇡h⌦i2�(!). (34)

This function is qualitatively di↵erent from the power spectral densities of � and�, although

it converges to both in the limit ✏! 0. These di↵erences are now explored in detail.

Using the normalizations in Eqs. (7) and (17), we can list the power spectral densities of

the rescaled signals e�, e⌦ and e� as

Se�(!) = Se�(!) = 2⌧d
1

1 + ⌧

2
d!

2
(35a)

Se⌦(!) =
2⌧d
1 + ✏


1

1 + ⌧

2
d!

2
+
✏

2
✓

�
. (35b)

The power spectral density of e is presented in Figs. 2 and 10. In Fig. 2, the di↵erence

between e� or e� and e⌦ is presented. Higher ratio of noise signal to FPP decreases the

value of the power spectral density for low frequencies and causes a transition from a power
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FIG. 10: Comparison of power spectral densities with ✏ = 10�2 and various values of ✓.

The solid line denotes Se� and Se� while the broken lines denote Se⌦. The vertical lines give

the Nyquist frequency of the corresponding expressions.

law spectrum to a constant spectrum at higher frequencies. The Nyquist frequency !N for

✓ = 10�2 is indicated by the vertical line,

!N = 2⇡
1

24t
=

⇡

⌧d✓
, (36)

and shows that for small ✏, this transition happens at too high frequencies to be reliablely

observed. In Fig. 10, the power spectral density of e⌦ is presented for ✏ = 10�1 and various

values of ✓. For low frequencies, the di↵erence between Se�(!) and Se⌦(!) is too small to be

of practical use, while the e↵ect of noise for high frequencies can only be observed without

aliasing for very low ✓.

The auto-correlation function of � is given in Eq. (16). Since the power spectral density

of the rescaled processes e� and e� are identical, we conclude that their auto-correlation

functions are as well,

Re�(⌧) = Re�(⌧) = exp

✓
� |⌧ |
⌧d

◆
, (37)

where the auto-correlation of a rescaled random process is

Re (⌧) =
R (⌧)� h i2

 2
rms

.

With the auto-correlation function of N(t) from Eq. (B19), we have that the auto-correlation

function of e⌦ is

Re⌦(⌧) =
1

1 + ✏


exp

✓
� |⌧ |
⌧d

◆
+ ✏

✓
1� |⌧ |

✓⌧d

◆
⇥

✓
1� |⌧ |

✓⌧d

◆�
. (38)
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FIG. 11: Comparison of auto-correlation functions with ✏ = 10�1 and various values of ✓.

The solid line denotes both Re� and Re�, while the broken lines denote Re⌦.

Note that Re⌦(0) = 1 as required by the normalization, while for correlation times longer

than the sampling time, the correlation function of the normalized variable e⌦ has a value of

1/(1 + ✏) times the correlation function of e�. Thus, Eq. (38) can also be written as

Re⌦(⌧) =

8
><

>:

1, ⌧ = 0

1
1+✏ exp

⇣
� |⌧ |

⌧d

⌘
, |⌧ | � 4t

(39)

If there is no appreciable drop from ⌧ = 0 to ⌧ = 4t, and the correlation functions overlap

for ⌧ � 4t, the observational noise is negligible.

As expected, in the limit ✏ ! 0, Re⌦ approaches Re�. In practice, the auto-correlation

function should be better at revealing the presence of observational noise than the power

spectral density, as this di↵erence is largest for small time lags, where the auto-correlation

function is the most accurate. Still, Re�(4t) = exp(�✓) and Re⌦(4t) = exp(�✓)/(1 + ✏),

a di↵erence which may be di�cult to verify in practice for small, but appreciable ✏ (say,

✏ ⇠ 10�1). An example of this is seen in Fig. 3. In this figure, the auto-correlation function

of e is presented as a function of ⌧/⌧d for ✓ = 10�2 and various values of ✏. For large ✏,

both the initial drop and the reduced value of Re⌦ compared to Re� is clear, but this is not

the case for ✏  10�1. The behavior of the auto-correlation of e⌦ for ✏ = 10�1 and varying ✓

is shown in Fig. 11. All functions fulfill Re (0) = 1, and for ⌧ > 4t, all Re⌦ have the same

value.
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VI. PARAMETER ESTIMATION

In this section, we present results from numerical analysis using synthetically generated

time series. The time series are generated following the convolutions in Eqs. (14) and (22),

with integration limits [0, t]. The convolutions are performed by a fast Fourier transform

numerical convolution. All random numbers are generated using a Mersenne Twister. The

time array is constructed as tm = m4t, with m = 0, 1, · · · ,M � 1 and T = 4tM . We

have set ⌧d = 1, so we vary ✓ by varying 4t. The K pulse amplitudes are drawn from

an exponential distribution with hAi = 1, the K arrival times correspond to K integers

{mk}Kk=1 uniformly distributed on [0,M � 1], giving

fK(t) ! fK [m] =
KX

k=1

Ak�mmk
(40)

where �ab is the Kronecker delta function for integers a and b. N [m] is an array of M inde-

pendent and identically distributed normal variables with vanishing mean and unit standard

deviation, while the discrete version of dW is an equally shaped array of independent and

identically distributed normal variables with vanishing mean and standard deviation 41/2
t .

A. Reliability of parameter estimation

The aim of this section is to numerically test and verify results from the prior sections. We

present analysis of parameter estimation for synthetic time series with the goal of separating

the two types of noise, where the analysis is performed on 1000 time series of each type,

each of length M = 106 data points, with parameters close to experimental values (see

Refs. 26–28); � = 2, ✏ = 5 ⇥ 10�2 and ✓ = 2 ⇥ 10�2. This gives time series of duration

T/⌧d = 2⇥ 104.

Given a time series, we can estimate � and ✏ by comparing the estimated PDF for the

time series to the PDF in Eq. (A9), or by comparing the sample estimate of the moments

to the moments in Eqs. (30) or (31). These two methods do not discriminate the nature

of the noise. However, comparing Eqs. (37) and (39), we see that Eq. (39) gives the auto-

correlation function of a filtered Poisson process with observational noise for ✏ > 0 and the

auto-correlation function of a filtered Poisson process with dynamical noise or without noise

for ✏ = 0. Thus Eq. (39) can potentially separate observational from dynamical noise. In
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addition, it gives us an estimate of ✓. The same considerations hold for the power spectral

densities in Eq. (35a) as compared to Eq. (35b). In all the following cases where we fit

synthetic data to an analytical function, the initial values are given as the true parameter

values of the process.

The estimated PDFs of the synthetic signals are presented in Fig. 12. The thick lines give

the average PDF for all synthetic signals, and the thin lines indicate the maximal deviation

from this mean value. Visually, the only reliable di↵erence between the signals is the elevated

tail for negative values of e� and e⌦ compared to e�. In Fig. 13, we present PDFs for the

estimated parameters b� and b✏ from the moments and the PDF of the processes. Here and

in the following, the hat symbol b• indicates an estimated value. The values in Figs. 13a and

13b were obtained by estimating the relative fluctuation level and skewness of the synthetic

data and using Eq. (30). The values in Figs. 13c and 13d were obtained by estimating the

skewness and flatness and using Eq. (31). In Figs. 13e and 13f, the values were obtained

by fitting the function in Eq. (A9) to the estimated PDF of the synthetic data with a least

squares routine under the constraints b� � 10�1 and b✏ � 10�6 to ensure convergence. The

rms-value of the distributions of b� and b✏ are presented in Tables I and II, respectively.

As is evident from Fig. 13, using the three lowest order moments or the PDF of the signal

to estimate the parameters is far preferable to using the estimated skewness and flatness

moments of the signal. Figs. 13c and 13d have far broader distributions than the other

methods of parameter estimation. Due to the significant overlap between the distributions

in Fig. 13d, the presence or absence of noise can be di�cult to determine reliably. For the

underlying parameters used here, Table I shows that the three lowest order moments give

a better estimate for � than the PDF, while Table II shows the reverse for ✏. This result

is likely highly dependent on the estimation methods employed, as well as the properties of

the time series in question. Thus, the authors recommend a full Monte Carlo analysis, as

presented here, in order to determine errors in parameter estimation. As expected, the type

of noise cannot be determined from the moments or PDF of the signal.

The auto-correlation functions of the synthetic signals are presented in Fig. 14a, while

the PSDs are presented in Fig. 14b. Again the thick lines give the average result from

all signals, while the thin lines give the maximal deviation from the average. The PSD

was computed using Welch’s method with 210 data points window size, 50% overlap and

a Hanning window. In both cases, the observational noise gives a clear visual di↵erence
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FIG. 12: Mean probability density functions (thick lines) and the maximal deviations

from the mean (thin lines) of synthetically generated signals for � = 2, ✏ = 5⇥ 10�2,

✓ = 2⇥ 10�2, and 103 samples, each with 106 data points.

(b�/�)rms  rms/h i, S S , F P (e )

� 0.016 0.13 0.019

� 0.017 0.13 0.030

⌦ 0.016 0.13 0.035

TABLE I: Standard deviation of estimated �-values of synthetically generated signals for

� = 2, ✏ = 5⇥ 10�2, ✓ = 2⇥ 10�2, and 103 samples, each with 106 data points.

compared to the pure FPP and the same process with dynamical noise, having an elevated

tail as predicted in Eq. (35b). Note also the slight lifting of the tail in Fig. 14b for � and

�. This is most likely caused by roundo↵ errors near the Nyquist frequency. Changing the

window size or the windowing function does not correct the problem. Direct computation

(b✏/✏)rms  rms/h i, S S , F P (e )

� 0.17 0.64 0.011

� 0.19 0.69 0.077

⌦ 0.19 0.67 0.11

TABLE II: Standard deviation of estimated ✏-values of synthetically generated signals for

� = 2, ✏ = 5⇥ 10�2, ✓ = 2⇥ 10�2, and 103 samples, each with 106 data points.
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FIG. 13: PDFs of the intermittency parameter b�/� and the noise level parameter ✏

estimated from the moments and the PDF of synthetically generated signals. The thin

vertical lines give the true parameters.
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of the periodogram using a fast Fourier transform does not have this problem, although it

presents other problems for parameter estimation. The e↵ect of this lifting of the tail on

parameter estimation is discussed below.

In order to estimate ✓ and ✏, we have fitted the auto-correlation function of the synthetic

signals to the discrete version of Eq. (39):

R[m] =
1

1 + ✏

exp(�✓m), m � 1, (41)

where we ignore the m = 0 contribution, since this equals unity for all processes discussed.

Due to the uncertainties in the auto-correlation function for large time lags, only the first 50

time steps are used. The PSD of the synthetic signals is fitted to the function in Eq. (35b).

In both cases, a non-linear least-squares fit routine with the true values as initial values was

used. In Figs. 14c and 14e the PDFs of b✓ and b✏ from the auto-correlation are presented,

respectively. As ✓ is the same for all three classes of signal, the over-lapping PDFs are

no surprise, and we note the small variation around the true value (b✓rms = 0.015✓ for all

processes). Concerning b✏, the auto-correlation function does indeed separate the observa-

tional noise from the dynamical noise. For the observational noise, the rms-value is low,

b✏rms = 0.046✏, and the auto-correlation function can be used to estimate the noise level. The

PDFs of b✓ and b✏ from the PSD are presented in Figs. 14d and 14f, respectively. Again the

rms-values of all parameters is small, 1� 2% of the original parameters, with the exception

of the ✏–parameter in Fig. 14f for � and �, with b✏rms = 0.0012✏. In these figures, we have a

clear bias in both b✓ and b✏. This is most likely created by the lifting of the tail of the power

spectral density estimate, as discussed above. An elevated tail signifies observational noise,

so an artificial elevated tail leads to an over-estimation of ✏, as seen in Fig. 14f. This leads

to a bias in the estimation of ✓, as seen in Fig. 14d. Eliminating this bias by restricting the

fit range is not recommended, as this will compromise the accuracy in separating the PSDs.

As this bias is reproducible, it does not present a significant problem for parameter estima-

tion, and the power spectral density could be used as a sanity check for the auto-correlation

function.
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FIG. 14: Results from the auto-correlation function and power spectral density of

synthetically generated signals with � = 2, ✏ = 5⇥ 10�2, ✓ = 2⇥ 10�2 and samples with

106 data points. The thin vertical lines give the true parameters.
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B. Level crossing statistics

Another measure which would intuitively separate the two types of noise is the number of

upwards crossings above a certain threshold level per unit time, or the rate of level crossings.

This quantity has been explored in Refs. 6, 17, 35–37 for the pure FPP, in Refs. 38 and 39

for a gamma distributed random process and in Refs. 40 and 41 for atmospheric plasma.

The rate of level crossings above a threshold  as a function of the threshold is presented

in Fig. 15 for the synthetic data discussed in the previous section. The thick lines give the

mean values for the given threshold, while the thin lines represent the minimal and maximal

value for all synthetic time series generated. The threshold is in units of signal rms-value

above signal mean value. In agreement with intuition, the FPP with observational noise

crosses the threshold much more frequently than the two others due to the rapid fluctuations

around the mean value of the pure FPP at any amplitude triggering spurious crossings. The

di↵erence between the pure FPP and the FPP with dynamical noise is largest for small

threshold values, where the number of threshold crossings is largest. Note that while � has

its maximum number of level crossings for e = 0, this is down-shifted for the processes with

noise, since the noise does not contribute to the mean value of the process. While we know

of no theoretical estimate for the rate of level crossings for a FPP with noise, this value can

still be found from synthetic signals, generated by estimating � and ✏ from the PDF of a

measurement signal and ✓ from its auto-correlation function. Comparing the true rate of

level crossings to the rate of level crossings for synthetic signals with di↵erent types of noise

could separate the noise types.

VII. DISCUSSION AND CONCLUSIONS

Motivated by previous analysis of measurement data from magnetically confined plas-

mas, we have here investigated a FPP with normally distributed noise included as either

observational or dynamical noise. The PDF, PSD and auto-correlation function of the pure

FPP have been presented. These have also been extended to include noise, showing how

the gamma probability distribution of the FPP moves towards a normal distribution as the

influence of noise increases and how dynamical noise gives the same auto-correlation and

PSD as the pure FPP. The model including noise has a PDF in accordance with recent
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FIG. 15: Mean rate of level crossings (thick lines) and the maximal deviation from the

mean (thin lines) for synthetically generated time series with � = 2, ✏ = 5⇥ 10�2 and

✓ = 2⇥ 10�2.

measurements [26, 31] and a parabolic relation between the skewness and flatness moments,

as found in a variety of experiments on magnetized plasmas [23, 24, 26–28, 31, 42]. In sev-

eral of these investigations, the comparison made to the parabolic relation for the pure FPP

could be improved by including the noise parameter [23, 24, 27, 31]. The model also has

an approximately exponentially decaying auto-correlation function and a power law PSD,

in accordance with measurements from the scrape-o↵ layer of a range of fusion plasmas

[26–28, 43–45]. While measurement noise may always be present to some extent, the degree

of noise can be quantified by the power spectrum. Any additional noise present in the PDF

may then be due to dynamical noise.

Using synthetically generated time series with experimentally relevant parameters, we

have shown that the PDF of the FPP with additional noise is indeed capable of separating

a process with noise from a noise-less process, and the sample variance of the estimated

parameters provide an indication of the error of estimation. In addition, it was shown that

estimating the intermittency parameter and the noise parameter from the estimated relative

fluctuation level and skewness of the process is comparable in accuracy to estimating the

parameters from the estimated PDF of the process, while using the estimated skewness and

flatness gives a much worse estimate. It was furthermore shown that the auto-correlation

function can provide an estimate of the characteristic decay time of the FPP, and is also ca-

pable of separating the types of noise. In the case of observational noise, the auto-correlation
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function can also provide an estimate of the noise level, but can not do this in the case of

dynamical noise. The PSD has comparable capabilities to the auto-correlation function, but

care must be taken in its use, in particular in the case of marginal sampling frequency. Lastly,

the rate of level crossings was proposed as another way to di↵erentiate the types of noise.

This method takes advantage of the visual di↵erences in the noise demonstrated in Fig. 4,

and was shown to be capable of detecting both the presence of noise and di↵erentiating the

types of noise.

It should be noted that the results presented here were not a parameter scan, and some

of the conclusions may depend on the model parameters and especially the duration of

the signal. For instance, from Fig. 6, it is evident that the rate of level crossings for e⌦ is

dependent on ✓. In applying the methods from this contribution to experimental data, one

should carry out a full Monte Carlo analysis as presented here, using parameters estimated

from the PDF and auto-correlation function of the data set.

In this contribution, we have presented an extension of a reference model for intermittent

fluctuations in physical systems. Its main application will be for analysis of fluctuation data

time series from probe measurements in the scrape-o↵ layer of magnetically confined plas-

mas, although it is su�ciently general to be applicable elsewhere. The previous analysis of

experimental data demonstrate that significant noise levels can be present, and the extension

of the FPP presented here is indeed necessary in order to reliably estimate the underlying

parameters of the process. While the noise itself may be insignificant for the large-amplitude

fluctuations, the inclusion of the noise parameter has a large e↵ect on the rate of level cross-

ings and may a↵ect the correlation functions and spectra of the process. This model has no

built-in long range correlations, interaction between pulses or other non-stationary e↵ects,

meaning it could serve as a useful null hypothesis for investigations of such e↵ects.

ACKNOWLEDGEMENTS

This work was supported with financial subvention from the Research Council of Norway

under grant 240510/F20. Discussions with H. L. Pécseli and F. C. Geisler are gratefully

acknowledged.



27

Appendix A: List of symbols and results

1. Time series

� The filtered Poisson process.

N Normally distributed, uncorrelated noise with vanishing mean and unit standard deviation.

Y An Ornstein-Uhlenbeck process with vanishing mean and unit standard deviation.

X A collective term for either �N or �Y , where � is a noise intensity parameter.

⌦ Denotes �+ �N .

� Denotes �+ �Y .

 Denotes �+X, it is a collective term for both � and ⌦.
We use the normalization

e• =
•� h•i
•rms

. (A1)

2. Moments and probability density functions

The PDF of � is a gamma distribution with shape parameter � and scale parameter hAi,

given by Eq. (8). Denoting the mean of the process  by h i, its standard deviation by

 rms, its skewness by S and its flatness by F , we have

h i = �hAi, (A2)

 2
rms = (1 + ✏)�hAi2, (A3)

S =
2

(1 + ✏)3/2�1/2
, (A4)

F = 3 +
6

(1 + ✏)2�
. (A5)

where ✏ = X

2
rms/�

2
rms. Setting ✏ = 0 in the above equation gives the moments of �.

With the PDFs of � and X given in Eqs. (8) and (25), and using �2 = ✏�hAi2, we have

P ( ; �, hAi, ✏) = 2��/2(�✏)�/2�1hAi�1 exp

✓
�  

2

2�✏hAi2
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where M(a, b; z) is the confluent hypergeometric function of the first kind, for parameters a

and b and argument z [46]. Using the normalization in Eq. (7), we have that

e = (1 + ✏)�1/2

✓
 

�

1/2hAi � �

1/2

◆
. (A7)

We then have

Pe (
e
 ) = (1 + ✏)1/2�1/2hAiP 

⇣
�

1/2hAi
h
(1 + ✏)1/2 e + �

1/2
i⌘

, (A8)

giving
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i2◆

+
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M

✓
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2
,

3

2
;
1

2✏

h
(1 + ✏)1/2 e + (1� ✏)�1/2

i2◆
)
. (A9)

This expression is independent of hAi due to the normalization of  . Comparing this

distribution to a realization of the process gives � and ✏ as fit parameters. In the limit of

vanishing ✏, this expression reduces as expected to a Gamma distribution for  .

3. Power spectral densities

The PSD of a random process �(t) is defined as

S�(!) = lim
T!1

⌦
|FT [�](!)|2

↵
, (A10)

where

FT [�K ](!) =
1p
T

TZ

0

dt exp(�i!t)�(t) (A11)

is the Fourier transform of the random variable over the domain [0, T ]. Analytical functions

which fall rapidly enough to zero [such as the Greens function G given in Eq. (13)] have the

Fourier transform

F [G](!) =

1Z

�1

dsG(s) exp(�i!s) (A12)
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and the inverse transform

G(⌧) = F�1[F [G](!)](⌧) =
1

2⇡

1Z

�1

d! exp(i!⌧)F [G](!). (A13)

We thus have the relevant PSDs,

S�(!) = �2
rms

2⌧d
1 + ⌧

2
d!

2
+ 2⇡h�i2�(!), (A14)

S�(!) = �2
rms

2⌧d
1 + ⌧

2
d!

2
+ 2⇡h�i2�(!), (A15)

S⌦(!) = ⌦2
rms

2⌧d
1 + ✏


1

1 + ⌧

2
d!

2
+
✏

2
✓

�
+ 2⇡h⌦i2�(!). (A16)

4. Auto-correlation functions

The auto-correlation of a random variable � is the inverse Fourier transform of its PSD,

R�(⌧) = F�1[S�(!)](⌧), where the inverse Fourier transform is given by Eq. (A13). We

thus have

R�(⌧) = �
2
rms exp

✓
� |⌧ |
⌧d

◆
+ h�i2, (A17)

R�(⌧) = �
2
rms exp

✓
� |⌧ |
⌧d

◆
+ h�i2, (A18)
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1 + ✏
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exp

✓
� |⌧ |
⌧d

◆
+ ✏

✓
1� |⌧ |

✓⌧d

◆
⇥

✓
1� |⌧ |

✓⌧d

◆�
+ h⌦i2. (A19)

Appendix B: Derivation of the power spectral density and auto-correlation function

Results for the autocorrelation function and PSD of a white noise process or Ornstein-

Uhlenbeck process are numerous in the literature, see for instance Refs. 32, 47, and 48. The

same results for filtered Poisson processes are also readily available, see e. g. Refs. 5, 17,

20, and 22. For completeness, we present full derivations in this appendix.

1. Power spectral density of the filtered Poisson process

To find the PSD of the FPP, we start from Eq. (14), and take the Fourier transform

FT [�K ](!) =
1p
T

TZ

0

dt exp(�i!t)�K(t) =
1p
T

TZ

0

dt exp(�i!t)

1Z

�1

dsG(s)fK(t� s). (B1)
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where we have exchanged the functions in the convolution given by Eq. (14). A change of

variables u(t) = t� s gives

FT [�K ](!) =

1Z

�1

dsG(s) exp(�i!s)
1p
T

T�sZ

�s

du fK(u) exp(�i!u). (B2)

Note that G(s) is only non-zero for positive s and is negligible after a few ⌧d. Moreover,

since no pulses arrive for negative times, fK(u) = 0 for u < 0. Assuming T/⌧d � 1, we can

therefore approximate the limits of the second integral in Eq. (B2) as u 2 [0, T ], and the

two integrals become independent. This gives

FT [�K ](!) = F [G](!)FT [fK ](!), (B3)

where

F [G](!) =

1Z

�1

dsG(s)e�i!s
. (B4)

The power spectral density (PSD) of the stationary process � is thus

S�(!) = lim
T!1

⌦
|FT [�K ](!)|2

↵
=
⌦
|F [G](!)|2

↵
lim
T!1

⌦
|FT [fK ](!)|2

↵
, (B5)

where S�(!) is independent of K, since the average is over all random variables. The Fourier

transform of the Green’s functions F [G](!) is easily computed as (i! + 1/⌧d)�1, giving

⌦
|F [G](!)|2

↵
=

⌧

2
d

1 + ⌧

2
d!

2
. (B6)

We also readily find the Fourier transform of the forcing,

FT [fK ](!) = T

�1/2
KX

k=1

Ak exp(�i!tk). (B7)

Multiplying this expression with its complex conjugate and averaging over all random vari-

ables gives

⌦
|FT [fK ](!)

2|
↵
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1X

K=0
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dAKPA(AK)AkAl exp(i!(tl � tk)). (B8)
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In this equation, there are K terms where k = l and K(K� 1) terms where k 6= l, for which

all events are independent. Summing over all these terms, we have

⌦
|FT [fK ](!)

2|
↵
=

1X

K=0

PK(K;T, ⌧w)

2

4K
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(B9)

giving

⌦
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↵
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1X
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
2
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hAi21� cos(!T )

!

2
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where we have used that for an exponentially distributed variable, hAni = n!hAin. Thus,

averaging over all K and using hKi = T/⌧w and hK(K � 1)i = T

2
/⌧

2
w gives

⌦
|FT [fK ](!)|2

↵
=

2

⌧w
hAi2 + 2

⌧

2
w

hAi21� cos(!T )

T!

2
. (B11)

The second term in this equation resembles a Dirac delta function in the limit T ! 1.

With the appropriate normalization
R1
�1 d! �(!) = 1 this gives

lim
T!1

⌦
|FT [fK ](!)|2

↵
=

2

⌧w
hAi2 + 2⇡

⌧

2
w

hAi2�(!), (B12)

which together with Eq. (B6) gives the PSD of the FPP as

S�(!) = 2�hAi2 ⌧d

1 + ⌧

2
d!

2
+ 2⇡�2hAi2�(!)

= �2
rms

2⌧d
1 + ⌧

2
d!

2
+ 2⇡h�i2�(!). (B13)

2. Power spectral density and auto-correlation function of the noise processes

Since Y (t) is constructed as a convolution in the same way as the FPP, we have an

analogue of Eq. (B5) for this process:

SY (!) =
⌦
|F [G](!)|2

↵
lim
T!1

⌦
|FT [dW ](!)|2

↵
. (B14)

With Eq. (B6) and the relation
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we have the power spectral density for the Ornstein-Uhlenbeck process,

SY (!) =
2⌧d

1 + ⌧

2
d!

2
. (B16)

The power spectral density of Y (t) is therefore Lorentzian with the same parameter as for

the PSD of �(t), implying that the auto-correlation function of Y (t) is also an exponentially

decaying function with the same rate as the auto-correlation function of �(t):

RY (⌧) = exp

✓
� |⌧ |
⌧d

◆
. (B17)

For observational noise we require that N(t) is a unit-less variable. One way of realizing

such a process is by using integrated increments of the Wiener process:

N(t) =
1

41/2
t

t+4tZ

t

dW (s), (B18)

where 4t is the sampling time (in this case, each sample N [n] = N(n4t), n = 0, 1, 2, . . .

is normally and independently, identically distributed with zero mean and unit standard

deviation). In this case, the most direct route to the power spectral density is via the

auto-correlation function. We find that

RN(⌧) =

✓
1� |⌧ |

4t

◆
⇥(4t � |⌧ |), (B19)

giving

SN(!) =

1Z

�1

d⌧ exp(�i!⌧)RN(⌧) = 2
1� cos(4t!)

4t!
2

. (B20)

Using the normalized sampling time ✓ from Eq. (6), this expression can be written as

SN(!) = 2
⌧d

✓

1� cos(✓ ⌧d!)

⌧

2
d!

2
. (B21)

For small ✓, the cosine function can be expanded around 0, and we have

lim
✓!0

SN(!)

⌧d✓
= 1. (B22)

In this limit, N(t) approaches white noise, which has a flat power spectrum. Since we have

demanded Nrms =
R1
�1 d!SN(!)2 = 1, the higher resolution granted by ✓ ! 0 means the

total power of N is divided among a greater number of frequencies, reducing the power per

frequency.
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Since 4t is the smallest time we will observe, it makes more sense to use the i.i.d. random

sequence N [n] and to translate the auto-correlation to discrete time:

RN [n] =

8
><

>:

1 , n = 0

0 , n � 1
. (B23)

The discrete Fourier transform corresponding to F [•](!) is then

SN(!) = 4t

1X

n=�1
exp(�i!n)RN [n] = ⌧d✓. (B24)

Intuitively, this corresponds to the case where we don’t see the e↵ects of ✓, that is the regime

✓ ⌧ 1. Since this is also the spectral density we will observe for a realization of the process

N(t), we will use Eq. (B24) when discussing the power spectral density of ⌦(t).
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