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Abstract

The internal variability of most Earth surface temperatures has a power spectral
density well described by a power law, S(f) ∼ f−β, and we typically observe
0 < β < 1. This characterizes variability exhibiting long-range dependence (LRD),
which has no characteristic time scale. However, there is no consensus about the
physical mechanisms behind this property, and the topic of this thesis is to explore
where it comes from.

In Paper I, the spectral characteristics of detrended instrumental temperature
records and temperatures simulated in climate models are studied. The persis-
tence, as measured by β, is found to be stronger for sea than for land, and increas-
ing with the degree of spatial averaging. An interpretation of the increase with
spatial averaging is that high-frequency variability is averaged out to a larger de-
gree than low-frequency variability. Paper II presents a spatiotemporal model with
this property, and more specifically, it predicts that global β is twice the value of
the local β on a uniform sphere. For temperatures in observation data and climate
models, there are some regional differences in the spectral characteristics, but on
average they are consistent with the model.

Paper III demonstrates how LRD in global temperature can be explained by
a linear multibox energy balance model (EBM). In linear models, temperatures
can be described as a response function convolved with the forcing. For the multi-
box EBM, the response function consists of a sum of exponential responses, which
with the parameters estimated, is well approximated by a power-law response.
Only three boxes, implying three response times, are needed to approximate the
power-law response on scales from months to centuries. When driven by white
noise forcing, a power-law response gives a process exhibiting LRD, which is well
approximated by the sum of Ornstein-Uhlenbeck processes obtained for the expo-
nential responses.

This thesis also puts these concepts into the context of simple climate models
in general. The findings of multiple and long response times means that we can
expect continued responses to past forcing for a long time into the future – longer
than predicted from simple models that do not include interaction with the deep
ocean.
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Chapter 1

Introduction

When analyzing surface temperatures, for instance through their power spectral
densities (PSDs), we observe that temperatures are varying on all time scales.
The amplitude of the low-frequency variability relative to the high-frequency vari-
ability is stronger than expected for white noise, characteristic of a red-noise pro-
cess. While the exact form of the red-noise spectra is somewhat loosely defined,
it is commonly considered as the spectrum resulting from an Ornstein-Uhlenbeck
(OU) stochastic process. Observed temperature spectra often differ from this, even
if excluding externally forced changes, and are better described by a power law
S(f) ∼ f−β on scales from months to centuries. Since we observe no typical time
scale of variability in such spectra, they are often called scaling or scale invari-
ant. Sometimes they are also named 1/f noises or pink noises, because a typical
exponent for many of the spectra is β ≈ 1.

The spectral properties of a stochastic process are closely related to the tempo-
ral correlations. For a time series with a power-law spectrum the autocorrelation
function (ACF) is also decaying as a power law. Hence positive temporal corre-
lations are expected for all time lags, giving the process infinitely long memory.
This property is called long-range dependence (LRD), or sometimes long-range
memory (LRM). It has been observed in a wide range of geophysical records since
H. E. Hurst first observed it in his studies of the river Nile (Hurst, 1951; Hurst
et al., 1965). For this reason it is also often referred to as the Hurst effect, and
the process is characterised by the Hurst exponent.

Even though this statistical property is shared by many different geophysical
quantities, the physical mechanism behind it is not necessarily the same for all.
Furthermore, the scaling property observed for one quantity over one range of
time scales, e.g. weather scales, could have a different explanation from scaling
observed on another range of time scales, e.g. decadal scales. In this thesis,
the focus will be on the long-range dependence in surface temperatures on time
scales from months to centuries. There is no consensus about the exact physical
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2 CHAPTER 1. INTRODUCTION

mechanism behind this, but the lack of a characteristic time scale is commonly
explained by the existence of numerous time scales, hence we cannot point out one
that is characteristic. The atmospheric variability has one typical time scale, sea
ice another, ocean circulation yet another, etc. But as we will get back to later,
completely different hypotheses have also been proposed.

1.1 Scaling from response model

Rypdal and Rypdal (2014) hypothesised that the multitude of response times
may be approximated mathematically as a scale-invariant power-law response,
and demonstrated that such a response function can well describe the response
to known external forcings, such as solar, volcanic and anthropogenic forcing. In
addition, it can reproduce the long correlations and power-law spectra observed
for the random temperature fluctuations by incorporating these into the model as
the response to a white-noise stochastic forcing.

Underlying this hypothesis is also the hypothesis that the temperature response
is linear. That is, the total temperature response may be split up into a linear com-
bination of internal variability and the expected linear response to various external
forcings. The assumption of linearity of the response is often used when analyz-
ing output from complex climate models, despite our knowledge about nonlinear
mechanisms in the climate system. However, as Box (1979) stated, All models are
wrong but some are useful. In this context the linear power-law response is a useful
approximation to the full response for small enough responses.

Simple response models, like this power-law response, are powerful tools to
analyse past and future temperature projections. Contrary to the complex climate
models that require several months of computation time on a supercomputer, a
single response function can be used to compute global temperature projections
in just a few seconds. Other response models have also been used previously, so
what is new about the power-law response hypothesis is the mathematical form of
the response.

The simplest linear response model we can derive from physical principles has
a single exponential response. It can predict the expected temperature change
in the historical period (∼1850 - today) reasonably well, but fails to predict the
decadal-millennial scale changes that become more apparent in long temperature
simulations with idealized forcing scenarios. It also fails to well describe the resid-
ual temperature variability as a stochastic process generated by the same response
function. The problems associated with this simple response can be solved by
adding some more physical complexity, and hence more parameters to the model.
Another way of resolving these problems is to simply replace the exponential re-
sponse by a power-law response. This way we get a response model with better
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abilities to describe the data that does not need additional parameters. However,
there is no obvious physical mechanism leading to the power-law response, and the
model fails to conserve energy due to the divergence when we let t→ 0 or t→∞.

1.2 Searching for the origin of LRD

Even though the power-law response model can explain the observed internal vari-
ability of the climate system, can we be sure that this is the best explanation of the
LRD? And even if it is, we also need to investigate what the best physical expla-
nation of the power-law response is. To begin our search for the origin of LRD, we
started by analyzing the differences between LRD observed for local temperatures
and LRD observed for global temperatures on time scales from months to cen-
turies (Fredriksen and Rypdal, 2016). Maybe the spatial pattern could give some
hints. The differences in the variability between land temperatures and sea surface
temperatures indicated that the long correlations must arise in the ocean, which
is also supported by our knowledge of the small heat capacity of air compared
to water. The atmosphere is not capable of building up large enough reservoirs
of heat to generate the multidecadal variability of the size observed in unforced
climate variability.

What we also discovered, is that the most important contributions to the spec-
trum of global temperature is not the spectra of all local temperatures, but rather
the sum of all cross-spectra between local temperatures. However, local temper-
atures with high spectral values also contribute with high cross-spectral values.
After averaging, we end up with a spectral exponent β that is higher for global
temperature than it is on average for local temperatures. An explanation of this
is that short-lasting fluctuations also have generally shorter spatial extent, while
the longer-lasting fluctuations generally have a larger spatial extent. Hence the
high-frequency variability will have more spatial degrees of freedom than the low-
frequency variability, and be averaged out to a larger degree. The dependence of
the spatial extent on the frequency leads to a frequency-dependent spatial corre-
lation length – a feature that is captured by the spatio-temporal model by North
et al. (2011). The temporal variations in this model are however characterised by
an exponential response, and are hence not consistent with a LRD description.

After the success in Rypdal (2012) and Rypdal and Rypdal (2014) of replacing
the exponential response in global temperature by a power-law response, we were
inspired to try it in North’s spatio-temporal model as well. We kept the same
model for the spatial transport, but changed the temporal characteristics such
that we obtained LRD in time. This turned out to also impact the form of the
spatial correlations in the model. The results were published in Rypdal et al.
(2015), and one of the major implications of this model is that it predicts that
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Figure 1.1: The three blue boxes show how we split up the ocean column in paper III.
The green box is the atmosphere over land, that exchanges heat with the
light gray box representing the atmosphere over ocean. TO,1, TO,2, TO,3
and TL denote the temperature deviations from equilibrium in each of the
boxes and F (t) the surface forcing.

local temperatures have a spectral exponent equal to half the exponent for global
temperature. This is close to what we observe on average.

With this paper, we found a way to model why global temperature is more
persistent than local temperatures, but we were still lacking a simple way of mod-
elling why sea surface temperatures (SST) are more persistent than land surface
temperatures (LST). Although the idea that a long-range dependent process could
be an approximation to a sum of multiple OU processes was known, we were also
lacking a more specific explanation of how the multiple OU processes arise. So we
decided to write a paper that demonstrates how we can get OU processes with sev-
eral different time scales from simple box models (Fredriksen and Rypdal, 2017).
We also demonstrated how the boxes could be constructed in order to explain the
difference in the persistence between SST and LST (see Figure 1.1). By approxi-
mating the heat capacity of the land box by zero, the lower persistence of land is
explained by a component instantly responding to the forcing.

1.3 Outline

Chapter 2 gives an overview of different simple climate models that are useful in
order to understand where long-range dependence comes from. The assumption of
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linearity is also discussed, necessary for describing LRD as something arising from
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Chapter 2

Simple climate models

To understand global temperature change, a simple climate model is sufficient
– if more energy goes into the climate system than out, the total energy and
hence the global temperature must change. To go into more detail on how the
temperature changes locally and to study other processes we do of course need to
add more complexity to the model, which is why we have developed a wide range of
model complexities, from Simple Climate Models (SCMs), through Earth System
Models of Intermediate Complexity (EMICs) and up to the most sophisticated
Earth system models (ESMs). This chapter will discuss various simple climate
models, and how models with LRD fit into this framework.

2.1 Models for global temperature

2.1.1 Energy balance models

The rate of change of energy, and hence temperature, is determined by the differ-
ence between energy going in and energy going out of the climate system;

dQ

dt
= Ein − Eout (2.1)

where Ein is determined by the amount of solar radiation reaching the Earth and
what fraction of it that is absorbed. Eout is the energy emitted by the Earth. If
the Earth was a perfect black body it follows from Stefan-Boltzmann’s law that
Eout = σT 4. This is a good description if T is the temperature at the point in
the atmosphere where radiation can freely escape to space, but this temperature is
lower than at the surface. If letting T denote the surface temperature, Eout can be
approximated by εσT 4, where the emissivity ε < 1 accounts for greenhouse gases
in the atmosphere. An alternative approximation Eout = A+BT was proposed by
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Budyko (1969) and Sellers (1969). When we have energy balance, we can find a
stable equilibrium state close to today’s temperature, but other states also exist.
Some hundred million years ago, the Earth was in a state with a temperature so
low that oceans were frozen to a depth of several kilometers.

If we linearize the temperature perturbation around today’s equilibrium state,
the energy balance model reduces to

dQ

dt
= N(t) = −λ ∆T (t) + F (t) (2.2)

where the forcing F (t) represents radiative perturbations to the equilibrium state
we linearized around, −λ∆T (t) the Earth’s adjustment to this perturbation, and
N(t) is the net energy imbalance. The time it takes to adjust the temperature to
a new equilibrium temperature ∆Teq = F/λ depends on λ and how dQ

dt
relates to

d∆T
dt

.
The simplest way to express a change of the energy content is ∆Q = C∆T ,

where C is the average heat capacity of Earth’s surface. This results in what we
call the one-box model, which is a single ordinary differential equation (ODE) for
∆T

C
d∆T

dt
= −λ ∆T (t) + F (t) (2.3)

For this model to fit well with the temperature change we observe, C must be
the heat capacity of a surface layer with depth approximately corresponding to
the mixed layer of the ocean. However, this layer may also exchange heat with the
deeper layers of the ocean, so we may also need a term in dQ

dt
that describes this

energy exchange.

2.1.2 Vertical one-dimensional model

One way of including energy exchange with the deep ocean is to add a heat flux
γ∆T down into the deep ocean (Gregory and Mitchell, 1997; Raper et al., 2002).
With this term, the deep ocean is treated as a non-interactive reservoir, and the
form of Eq. (2.3) remains the same. If we are interested in the temperature response
on centennial time scales, the deep ocean is also responding, and should be treated
as an interactive part that can also have an impact on the heat uptake. It could
for instance be included in the model by letting the heat exchange take the form
κ(∆T1−∆T2), where ∆T1 and ∆T2 correspond to the temperature changes in the
upper and deeper layer of the ocean. Then we also need an equation describing the
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temperature evolution of the deep ocean, resulting in a system of coupled ODEs:

C1
d∆T1

dt
= −λ ∆T1 + κ(∆T1 −∆T2) + F (t)

C2
d∆T2

dt
= −κ(∆T1 −∆T2)

This two-box model has been studied by various authors (Held et al., 2010; Rypdal,
2012), and found to fit well with the long-term global temperature response seen in
complex climate models (Geoffroy et al., 2013). Some also included an atmospheric
box in addition to these two ocean boxes (Grieser and Schönwiese, 2001; Dickinson,
1981). The surface temperature response resulting from a linear system of coupled
ODEs is given by a sum of exponential responses to the forcing, whose time scales
are minus the inverse of the real part of the eigenvalues of the linear system.
Furthermore, the ocean can also be split up into even more boxes, resulting in
additional time scales, e.g. like in Fredriksen and Rypdal (2017) and Li and Jarvis
(2009).

An alternative to describing the vertical structure of the ocean as boxes is to
use a continuous model. The simplest continuous models describe transport as
heat conduction, resulting in a diffusion model (Lemke, 1977; Fraedrich et al.,
2004). The diffusion model is not meant to describe a purely diffusive transport,
but is rather a parametrization of more complex turbulent processes that lead to
a transport. Some of the diffusion models also include advective terms describing
upwelling and downwelling (Hoffert et al., 1980; Meinshausen et al., 2011), resulting
in a simplified model for ocean circulation, where water is upwelling across the
world ocean and returning to the deep ocean by downwelling in polar areas.

The net global effect of upwelling and downwelling is estimated by Hoffert et al.
(1980) to be an upwelling velocity of 4 m/yr, taking into account that the upwelling
happens over a much larger area than the downwelling. The resulting equation for
the global mean potential temperature is the upwelling-diffusion equation

∂T

∂t
= K

∂2T

∂z2
+ w

∂T

∂z
(2.4)

They also find that the stationary vertical profile of the potential temperature

T (z) = T0 + T1e
−z/z∗ (2.5)

well describes observations, with a characteristic depth z∗ of the temperature pro-
file. This model can successfully reproduce the surface temperature change in the
atmosphere-ocean general circulation model (AOGCM) HADCM2 under different
forcing scenarios (Raper and Cubasch, 1996; Raper et al., 2001). The structure of
the heat uptake of the deeper ocean is not well reproduced though. Furthermore,
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Gregory (2000) criticizes the use of this simplified model as a physical explanation
of the heat uptake during climate changes. He finds that in HADCM2, the major-
ity of the heat exchange happens in the Southern Ocean, where the advective pro-
cesses transport heat downwards and diffusive processes transport heat upwards.
These processes are the reverse of what is assumed in the global upwelling-diffusion
model.

Because of the reduced computing time of the simple models, and their assumed
realistic surface temperature response, they have been widely used by the IPCC.
When tuned to complex models, many quick realizations emulating the complex
models can be produced. This provides important sources for uncertainty estima-
tion and for making long future projections. In the latest report (IPCC, 2013), the
MAGICC model is used (Meinshausen et al., 2011). This is an upwelling-diffusion
model that includes downwelling in polar areas, separate between the two hemi-
spheres and between land and ocean, in addition to including a simple carbon
cycle.

When discretizing a continuous model, as is often done in numerical solutions,
it practically becomes a multibox model. If we let the heat capacity of each box
be along the diagonal in the diagonal matrix C, and temperature changes in the
different boxes are collected into the vector ∆T, we may describe the temperature
change as

C
d∆T

dt
= H(∆T, t) + F(t) (2.6)

where the forcing F(t) acts on all surface boxes, and H may in general be a vector of
nonlinear functions. To get a very accurate representation of reality, other variables
than temperature may also have to be included in the system of equations. Our
goal, however, is to find a simple representation that can describe the temperature
evolution with reasonable accuracy. So from this general system, we make the
simplification that the temperature changes can be parametrized only in terms of
a forcing and a linear function of other temperature changes in the system, such
that we may write this as a linear system

C
d∆T

dt
= A∆T + F(t) (2.7)

where the matrix A contains coefficients Aij that determine the mean interaction
between box i and j in the system on the time scales of interest. In a diffusion
model where the boxes are aligned vertically, the matrix A is tridiagonal because
we only include dependence on the box above or below. This is the case in the
3-box model studied in Fredriksen and Rypdal (2017), but note that any linear
interaction between two boxes could be included, for instance to model upwelling
and downwelling. That would result in a less sparse matrix, but in all cases where
A can be diagonalized, the solution is given by a sum of exponential responses
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convolved with the forcing. The surface temperature in a system of N boxes can
thus be given by:

∆T (t) =

∫ t

−∞

N∑
k=1

bke
−(t−s)/τkF (s)ds (2.8)

where λk = −1/τk are the eigenvalues of A. In the other boxes we have solutions
on the same form, just with other values of bk. The general form of the response
function means that there may also be different matrices giving rise to the same
response function, that is, different choices of ocean dynamics may result in the
same surface temperature response. Hence the response function in Fredriksen
and Rypdal (2017) is more general than the physics we derived it from, and the
translation into parameters Ci and κi describing heat capacities and heat conduc-
tivities should be considered an example of how the physics behind the response
can be parametrized. To determine the most correct physical model of surface
temperature response, it is necessary to also consider the temperature change in
the deeper parts of the ocean.

2.1.3 Impulse response models

The sum of exponential Green’s function in Eq. (2.8) may be generalized to be
any Green’s function G:

∆T (t) =

∫ t

G(t− s)F (s)ds (2.9)

The corresponding differential equation can be written as

Lt∆T (t) = F (t) (2.10)

where Lt is the linear differential operator corresponding to the Green’s function
G(t).

By making this generalization, it may be harder to keep track of the physical
interpretation of Lt, but it may still result in a valuable tool if the amount of
parameters that needs to be estimated from data is reduced. When determining
a suitable Green’s function, idealistic forcing scenarios are commonly used, such
that the shape of the response can be seen as clearly as possible. Complex climate
models are often forced by an instant doubling or quadrupling of the CO2 con-
centration, implying that F (t) is a step-function and the temperature response is
just the integral of the Green’s function. A suitable function can then be fitted
to the temperature response to determine the parameters in the model. Alterna-
tively, one can compute a Green’s function only determined by data, without any
parameters (Good et al., 2011; Hansen et al., 2011; Ragone et al., 2015; Lucarini
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et al., 2016). Unless smoothed or ensemble averaged, such a Green’s function will
look noisy due to the influence from internal fluctuations.

Several Green’s functions have been suggested for describing the temperature
response (Rypdal, 2012), and it has been demonstrated that the choice impacts
attribution studies (Rypdal, 2015). It is also crucial for future projections of
temperature how strong the delayed responses are. The power-law response studied
by Rypdal (2012) and Rypdal and Rypdal (2014) implies that that the delayed
responses will be important, resulting in a continued temperature rise for a long
time, even if we kept the forcing level constant from now on.

When making temperature projections for the next century, it was previously
common to prescribe the concentration of CO2 and let the climate models compute
the temperature response to that. In todays ESMs, a carbon cycle is often included
as an interactive part, so the emission scenarios are prescribed, and the model
computes both the CO2 concentration and the following temperature response.
The relation between emissions and atmospheric concentration is determined by
how fast carbon is removed from the atmosphere, and can also be expressed as a
response model. Just as for the temperature, there may be multiple time scales
involved in this response – the biological processes on land could for instance
respond on a quite different scale than carbon transport to the deep ocean. Linear
impulse response models could possibly provide good approximations to these
perturbations in CO2 concentration (Hasselmann et al., 1997; K. Rypdal, 2016).
The response functions for CO2 used by Hasselmann et al. (1997), Joos et al. (2013)
and Meinshausen et al. (2011) consist of a sum of exponential responses, which
for suitable choices of the parameters, may be close to the power-law response
suggested by K. Rypdal (2016).

2.1.4 Stochastic models

The forcing term in the expressions above does not necessarily include only deter-
ministic forcings, like solar, aerosol, and greenhouse gases. It can also include a
stochastic part. The stochastic forcing is often taken to be a white noise (e.g. like
in Rypdal and Rypdal (2014), Fredriksen and Rypdal (2017)), and the response
to this is meant to describe internal fluctuations in the temperature.

Stochastic climate modelling was first introduced by Hasselmann (1976). The
idea was that we have a set of hydrodynamic equations, where ui and vi are in
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general nonlinear functions,

dxi
dt

= ui(x,y) (2.11)

dyi
dt

= vi(x,y) (2.12)

(2.13)

The variables xi describe fast processes like weather, and the variables yi describe
slow climatic variables such as sea surface temperature, ice coverage, etc., that are
constants in a weather model. The time-scale separation between the climate and
weather variables (τy >> τx) allows us to reduce this system to

dyi
dt

= 〈vi(x,y)〉+ v′i (2.14)

where v′i = vi(x,y) − 〈vi〉, and the angle brackets denote ensemble average over
the variables x for a fixed y0. According to Hasselmann (1976), the time-scale
separation enables statistical closure through the application of the Central Limit
Theorem, whereby the response of a system is completely determined statistically by
the second moments of the input if the forcing consists of a superposition of a large
number of small, statistically independent pulses of time scale short compared with
the response time of the system. Hence, we may think of internal surface temper-
ature fluctuations on climatic scales as one of the variables yi that is being driven
by the stochastic weather variability v′i. If we approximate 〈vi(x,y)〉 as a linear
function of y, and we model the weather fluctuations as a white noise/increments
of a Brownian motion (dB), the temperature response is a linear response to the
weather forcing:

∆T (t) =

∫ t

G(t− s)dB(s). (2.15)

This is similar to the deterministic response in Eq. (2.9), except that we now have
a stochastic integral.

If the surface temperature was disconnected from all other climate variables,
we could consider the solution to that single equation, resulting in an exponential
Green’s function, and a ∆T that is an OU process. Or alternatively discretized to
an autoregressive process of order 1 (AR(1)). AR(1) is a commonly used model
for internal temperature fluctuations, likely because it is the simplest stochastic
model with memory, but we should keep in mind that it neglects all interaction
between climate variables. When the surface temperature equation is linearly
dependent on other climate variables, e.g. deeper ocean temperatures as discussed
before, the internal variability is instead a multivariate AR(1) process. The surface
temperature response is thus a sum of exponential responses to the white noise
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forcing, which becomes a sum of AR(1) processes. If this sum is such that it can
be well approximated by a power-law response, it can instead be modelled as a
long-memory process.

Examples of long-memory processes are the fractional Gaussian noise (fGn)
and the fractionally integrated autoregressive moving average (FARIMA) process.
These processes are mathematically very similar, and are characterized by the
asymptotic power-law tail of the ACF: C(τ) ≈ τ−α and corresponding power-law
PSD: S(f) ∝ f−β. One way of formulating a long-memory process is, although
mathematically not well defined (Rypdal and Rypdal, 2014),

XfGn(t) =

∫ t

−∞
(t− s)β/2−1dB(s) (2.16)

We note from this that any point in the process is dependent on all past points of
dB, but this infinitely long memory should be considered a mathematical ideal-
ization that could be cut off at some point. Cutting the memory is necessary for
the system to conserve energy. But for practical purposes, it will not make a big
difference if the memory is cut or not, as long as we cut on a long enough time
scale. So even though a process like an fGn in theory is unphysical, it can be con-
sidered a good approximation to the multi-scale processes in the climate system.
The main advantage of using this approximation is the reduction in the number
of parameters, compared to using a full multivariate autoregressive process that
describe all important mechanisms. With many free parameters, a multivariate
process may produce a reasonable response function with several different choices
of the parameters, and it can therefore be difficult to know if we have the most
physically correct parameters without observation data for all other mechanisms.

Figure 2.1 shows an example of both a single OU process and an fGn. The OU
process in (a) shows variability with a characteristic time scale of τ = 4.3 years,
while the fGn in (c) includes variability on both longer and shorter scales. The
time scales of variability become more apparent when studying the PSDs in (b)
and (d). The expected PSD of an OU process is

S(f) ∝ 1

(2πf)2 + (1/τ)2
, (2.17)

and is shown by the black curve in the figure. We note that this spectrum has a
characteristic mode when the two terms in the denominator are of the same size,
that is, at frequency f ≈ 1/(2πτ). At lower frequencies, the spectrum becomes
constant/white, and at higher frequencies we have S(f) ∝ 1/f 2. The parameters
used are estimated by Rypdal and Rypdal (2014) with a maximum likelihood
routine, which finds the Green’s function that best describe both deterministic
and stochastic part of global temperature simultaneously. The resulting time scale
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Figure 2.1: Examples of stochastic models for temperature, generated with the param-
eters estimated for global temperature by Rypdal and Rypdal (2014). (a)
Realization of an OU process with time scale τ = 4.3 years and standard
deviation σT = 0.15. In (b) the gray curve is the periodogram of the time
series in (a) and the black curve is the expected PSD of this process. (c)
Realization of an fGn with β = 0.75 and σT = 0.13, and (d) is the estimated
and expected PSD of (c).

of 4.3 years is consistent with the response time of the mixed layer in the ocean.
In Figure 2.1(b) we observe that this corresponds to a a characteristic mode in
the spectrum of the stochastic part around the frequency f ≈ 1/(2π · 4.3) yr−1 ≈
1/27 yr−1. Hence the information we have about the periods of the PSD is zoomed
in a factor of 2π compared to the response times observed in the time domain. This
means that if we have information about e.g. a deep ocean response time of about a
few centuries, the corresponding mode in the spectrum will be seen at a millennial
scale.

The introduction of stochastic climate models by Hasselmann (1976) was part
of a series of papers, followed by a paper by Lemke (1977) who studied examples of
such models. The models included mechanisms for heat exchange with the deeper
oceans, leading to spectra remarkably close to power laws for frequencies higher
than f ≈ 1/100 yr−1. This paper provides an early demonstration of how power-
law spectra on scales from months to centuries can arise. The notion of long-range
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dependence of temperature fluctuations and associated use of fGns as statistical
temperature models became known much later though, around mid-90s.

2.2 Spatially dependent models

So far I have discussed models for global temperature, called zero-dimensional
models since there are no spatial coordinates, and one-dimensional models with
one spatial coordinate for the vertical ocean column. In other one-dimensional
climate models, the only spatial coordinate is the latitude. Papers studying these
models are Budyko (1969) and Sellers (1969). In one-dimensional models with no
vertical coordinate, we consider only a surface layer with average heat capacity C,
and the heat uptake per unit area could be described by

C
∂T

∂t
= (Ein − Eout) +D

∂

∂y
(1− y2)

∂T

∂y
, (2.18)

where y ∈ (0, 1) is the cosine of the polar angle θ ∈ (−π/2, π/2). The incoming
energy will now depend on latitude due to the higher albedo at high latitudes, and
the last term is a poleward heat transport described mathematically as a diffusion
term. In reality this transport is due to ocean currents, large convective cells and
turbulent transport in the atmosphere.

By including a zonal coordinate, we obtain a two-dimensional model, for in-
stance as in North et al. (2011):

C
∂T

∂t
= −BT +D∇2T +BF (x, y, t), (2.19)

where T is the temperature anomaly at a point on the surface. B is the feed-
back parameter, D∇2T is horizontal diffusion, and F (x, y, t) is the forcing. North
and coworkers have published papers on similar models over several decades, some
studying the response to deterministic forcing (Kim et al., 1992), and others fo-
cusing on the statistical properties of stochastically forced models (North and
Cahalan, 1981; Kim and North, 1991, 1992). A review of these and other EBMs
in the literature until 1981 is found in North et al. (1981).

Some of these models include interaction with a deep ocean (e.g. Kim and
North (1992)), while others consider only a surface layer (Kim and North, 1991;
North et al., 2011). In the former case Kim and North (1992) present spectra with
a 1/f shape, while in the latter case, the temporal characteristics are analogous
of an AR(1) process. By modifying the response in North et al. (2011), Rypdal
et al. (2015) obtained a model with power-law spectra for both local and global
temperatures. This model has only horizontal spatial coordinates, but we can
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think of it as also indirectly including a vertical dimension whose impact is baked
into the power-law response.

This model can well describe the average characteristics of surface temperature
fluctuations, but assumes a uniform Earth and does not model the spatial differ-
ences of the characteristic variability. We observe for instance large differences
between land and sea, and between tropics and mid/high latitudes (Fredriksen
and Rypdal, 2016).

2.3 Linearity, feedbacks and sensitivity

Linearity of a model implies that the temperature response to a combination of
different forcing agents can be split up into a sum of the response to each of them.
This hypothesis has been tested for several models, and is found to be good for
both GCMs (Meehl et al., 2004; Geoffroy et al., 2013) and for EMICs (Eby et al.,
2013). Even though climate processes contain nonlinearities, a linear approxima-
tion is desirable due to the great simplifications made if the contributions from
the nonlinear parts of the response are small enough to be neglected. To check if
the response is best described as linear or nonlinear, the only well-posed scientific
hypothesis we can formulate is that the response is linear (K. Rypdal and M. Ryp-
dal, 2016). The reason is that the linearity hypothesis is falsifiable, contrary to the
hypothesis of a nonlinear response. The latter is however verified if the linearity
hypothesis is falsified.

The linearity hypothesis has been used quite extensively without being falsified,
and is therefore likely to be a good description of the temperature response. Just
as a linear function can be a good approximation to any continuous function within
some range, it may not be surprising that a linear temperature response can be
a good approximation to the full response in a certain range. Hence the question
that needs to be answered is rather in what range is a linear response a good
approximation?

Hasselmann et al. (1993, 1997) argues that linearity of the response may only
be valid up to a doubling of CO2, corresponding to a temperature change up to
3C. They claim this limitation is due to the temperature feedback on the CO2

model (increasing temperature decreases the CO2 solubility of sea-water and thus
increases the atmospheric retention factor). To go beyond this range Hooss et al.
(2001) suggested a nonlinear extension of the impulse response model through
explicit treatment of what they consider to be the climate system’s dominant
nonlinearities: CO2 chemistry in ocean water, CO2 fertilization of land biota, and
sublinear radiative forcing.

Step-forcing experiments like sudden doubling or quadrupling of the CO2 con-
centration are commonly used to find the linear response function though (Hansen
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et al., 2011; Geoffroy et al., 2013; Proistosescu and Huybers, 2017), with seem-
ingly successful results. Perhaps because CO2 is prescribed rather than being an
interactive part of the model. Processes resulting in important nonlinear responses
may not even be captured properly by the ESMs. In addition to the nonlinearities
mentioned by Hooss et al. (2001), tipping points, like a shutdown of the over-
turning circulation, ice sheet collapses, etc. are examples of nonlinear responses
relevant for future climate states. Knowledge of such processes far beyond our
current climate state are difficult to model, as the only data we have about them
are paleodata, with high uncertainty.

In the global energy balance model Eq. (2.2) we assumed a constant feedback
parameter. This assumption has been tested using data from climate models
with constant forcing to plot N(t) vs. ∆T (t), a so-called Gregory plot, after
Gregory et al. (2004). λ can be found by making a linear fit to these data, but for
many models a linear fit is poor (Andrews et al., 2012, 2015; Armour, 2017). The
equilibrium climate sensitivity is the reciprocal of λ, and is found to increase with
time/timescale. This non-constancy of the climate feedbacks are often associated
with non-linear behaviour (Good et al., 2011). However, it does not necessarily
imply nonlinear feedbacks if the time dependence arises from a spatial dependence
of the feedback parameter (Armour et al., 2013).

Proistosescu and Huybers (2017) suggest a linear response model for global
temperature consisting of three exponential responses, and decompose the radia-
tive response in the same way. The proportionality factor between each mode
of the radiative response and temperature response becomes a distinct feedback
parameter for each characteristic time scale. With this time-scale dependent feed-
back parameter they are able to explain the nonlinear relation between the top-
of-atmosphere energy flux and the global temperature. For our three-box model
(Fredriksen and Rypdal, 2017) to be consistent with this we can choose three boxes
connected to the surface instead of being vertically aligned.

Having several boxes connected to the surface results in a mathematically sim-
ilar response function for global temperature, as having boxes aligned vertically.
But if we require a time-scale dependent radiative response that is still restricted
to the linear feedback assumption, we need several boxes in the surface layer with
distinct feedback parameters. In this case, the radiative response in the energy
balance equation for global temperature may not be well approximated as a linear
function of global temperature, that is, the approximation

∑
k fkλk∆Tk ≈ λG∆TG

may not hold. Here fk is the fraction of the surface covered by box k, with temper-
ature ∆Tk and feedback parameter λk. The subscript G refers to globally averaged
quantities. Despite the time-scale/spatial dependence of the linear feedback pa-
rameter, we note that the global temperature response could still be described in
terms of one linear response model consisting of a superposition of different modes.
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Figure 2.2: The effect of changing the feedback parameter while keeping all other pa-
rameters constant. The other model parameters are as estimated for global
temperature on time scales 1, 10 and 100 years in paper III, and the set of
feedback parameters used for these four curves is (0.8, 1.0, 1.2, 1.4).

The only example of a spatially dependent λ used by Fredriksen and Rypdal
(2017), is the distinction between land and sea surface. We find that with our
two different feedback parameters for land (L) and ocean (O), the global radiative
response can be very well approximated as proportional to the global temperature,
fLλL∆TL + fOλO∆TO ≈ λG∆TG. Hence, our results suggest that the box configu-
ration resulting in

∑
k fkλk∆Tk 6≈ λG∆TG might instead be found within the ocean

surface, consistent with the findings of the slow warming in the Eastern Equatorial
Pacific and Southern Ocean being the primary reason of the time-dependence of
the sensitivity (Proistosescu and Huybers, 2017).

Part of the spatial dependence of λ could be due to the different atmospheric
feedback mechanisms in different regions, while other parts of the spatial depen-
dence could arise due to a time-scale dependence of λ. The latter becomes apparent
due to differences in mixing processes of the water, resulting in differences in ef-
fective thermal inertia and time scales of response. Thus, in regions dominated
by slow responses, long-term feedbacks will be weighted more in the linear regres-
sion between radiative response and temperature response. This spatial variation
of response times may also be related to the findings that the time-varying λ is
caused by evolving spatial patterns of warming (Andrews et al., 2015). It may
also explain why feedback parameters determined by regression between N and T
for internal variability differ from feedback parameters determined from forced re-
sponses, since the patterns of internal temperature change could differ from those
of forced changes (see Gregory and Andrews (2016) and references therein).

Since λ is often observed to be changing with time, and in addition varying
among models, it is useful to take a closer look into how different λ’s affect the
response function. We will also look into how the internal variability can be
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affected, assuming it is generated by the same response function. Figure 2.2 (a)
shows the response function for a unit-step forcing for four different values of λ.
The highest value of λ corresponds to the lowest value of the climate sensitivity,
and hence the bottom curve. Also in the spectrum of the stochastic part in (b),
the highest value of λ corresponds to the bottom curve. From this spectrum we
observe that a variation of λ leads to a change in the slope of the spectrum, but
probably only detectable above centennial scales.

The response functions plotted in Figure 2.2 (a) have a slower response for
the first ≈ 40 years than the CMIP5 step responses plotted in Fredriksen and
Rypdal (2017). Low transient responses in observation data could be a result of
low data coverage in certain areas (Richardson et al., 2016), particularly in polar
areas, where climate models show amplified responses. Currently, that is my main
hypothesis for the discrepancy between CMIP5 step responses and our estimated
step response, although some other hypotheses were also suggested in Fredriksen
and Rypdal (2017).

Hansen et al. (2011) on the other hand, suggest that climate models mix heat
too fast, and hence respond too slowly. This may seem contradicting to our results
of an initially weaker response in observations than models. However, if normal-
izing the CMIP5 response functions plotted in Fredriksen and Rypdal (2017) by
their climate sensitivity, the resulting step responses are higher than the slowly
responding climate model shown in Figure 5 of Hansen et al. (2011). They are
more comparable to their suggested intermediate response in the same figure.

We must however keep in mind that response functions showing fractions of
new equilibrium temperature also depend on the climate sensitivity, even though
they are normalized, and interpretations of these plots must be done with care.
Figure 2.3 demonstrates what happens if the responses plotted in Figure 2.2 are
normalized by their climate sensitivity. In this plot the lower values of the response
are only due to a higher sensitivity. The estimated values of climate sensitivity
are therefore also a possible explanation of why the CMIP5 step-responses with
parameters from Geoffroy et al. (2013) differ from the estimated model response
in Hansen et al. (2011).

The issues with the large uncertainty of the climate sensitivity, and a possible
time variation, could hopefully be better constrained in the future as we get more
and better observations of ocean heat uptake and energy imbalance on top of the
atmosphere.
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Figure 2.3: The responses in Figure 2.2 normalized by their equilibrium climate sensi-
tivity. The response with the highest sensitivity is now the bottom curve.
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Chapter 3

Long-range dependence in surface
temperatures

No known physical principles imply that we can expect scale invariance in the
climate system. It is hence no reason to make this assumption about the tempera-
tures a priori. It is rather something we can infer after analyzing the temperature
fluctuations for a limited range of time scales, and is just an approximation to
more complex dynamics.

3.1 Motivation

Let us start by looking into the motivation for studying LRD in temperatures.
The first geophysical quantity observed to have this property was the discharges
of the river Nile analyzed by Hurst (1951) and Hurst et al. (1965). Hurst (1951) also
mentioned a few other geophysical examples, followed by even more by Mandelbrot
and Wallis (1969). One of the reasons this property is particularly interesting, is
that it implies an infinitely long dependence between the values of a time series.
In addition it is connected to fractals or self-similarity, that is, if we zoom in or out
on the time series and maybe stretch it in one direction, we will observe the same
structure as originally. Mandelbrot and Van Ness (1968) proposed the fractional
Gaussian noise (fGn) that could be used to model this phenomenon.

According to Mandelbrot and Wallis (1969), another significance of the so-
called Hurst’s law in geophysics, is that it may wipe out the distinctions between
fields studying atmospheric fluctuations on different scales: turbulence (seconds
- minutes), meteorology (days - weeks), macrometeorologists (a few years), cli-
matologists (centuries) and paleoclimatologists (>centuries). They think these
distinctions are similar to classifying bits of rock into sand, pebbles, and stones.

25
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3.2 Observations

Some of the first studies of instrumental temperatures in this context were done
by Bodri (1994, 1995). A few years before this, Fluegeman and Snow (1989)
performed a similar study of an oxygen isotope record from a Pacific sediment
core. They found that on a time span from millennia to two million years, this
temperature proxy is fractal. Further, they suggested that if the Hurst exponent
(or fractal dimension) of temperatures on these long scales is the same as found in
modern data on shorter scales, we have reason to think that the fluctuations on
intermediate time scales could also be described by the same exponent. It could
be a nice tool to extrapolate what temperature variability looks like on time scales
that are not resolved by a data set.

These first studies of LRD in temperatures were followed by a large amount
of studies attempting to see if all temperatures have this property or not, using
various methods. And what Hurst exponent (or other related scaling exponent)
that best describe the data. Examples include Pelletier (1997); Koscielny-Bunde
et al. (1998); Monetti et al. (2003); Blender and Fraedrich (2003); Fraedrich and
Blender (2003); Vyushin et al. (2012).

To test if LRD processes like an fGn is the best description of the data, it must
also be tested against other stochastic models. Several studies have therefore
compared the fGn to an AR(1). These two processes can both be described by
two parameters, the overall variance and a measure of the persistence. If testing
against other processes we must add a penalty for eventual extra parameters, for
instance by applying the Akaike or Bayesian Information Criteria (AIC/BIC). The
result of these studies is that in many areas, particularly in mid/high latitudes and
globally, temperatures are best described by an fGn, while in some areas they are
better described by an AR(1). Most of the temperatures are however somewhere
in between these two classes of processes (Vyushin et al., 2012; Løvsletten and
Rypdal, 2016).

In studies estimating the Hurst exponent, it is found that the value is not the
same everywhere. Although there are large regional differences in the estimates
for sea surface temperature, they generally show more persistence than land tem-
peratures, which are close to a white noise (Pelletier, 1997; Monetti et al., 2003;
Fraedrich and Blender, 2003; Fredriksen and Rypdal, 2016). It is also found that
averaging temperatures over a larger area results in more persistence, because
high-frequency fluctuations are averaged out to a larger degree than low-frequency
fluctuations, that tend to have a larger spatial extent (Fredriksen and Rypdal,
2016).

In addition to the spatial dependence of the Hurst exponent, a timescale de-
pendence is also observed. Since each time series covers only up to a few orders of
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magnitude of time scales, composite spectra consisting of several different records
are needed to cover the spectrum at all time scales of interest. Such spectra ap-
pear in e.g. Pelletier and Turcotte (1999); Huybers and Curry (2006); Lovejoy and
Schertzer (2013). They typically show a power-law behaviour f−β with β ≈ 2 on
weather scales, and β ∈ (0, 1) for frequencies between 1/100 yr−1 to 1 yr−1, where
the value will depend on location and degree of spatial averaging for the record.
On frequencies lower than 1/100 yr−1, paleodata typically give β ∈ (1, 2) before
the spectra flatten out again on multimillennial scales.

3.3 Estimation methods

One characteristic of LRD is the power-law form of the PSD; S(f) ∼ f−β. In a
plot with logarithmic axes such a power law is seen as a straight line with slope
−β, which can be estimated using linear regression. In addition to the PSD, there
are several other methods that measure the fluctuation level as a function of time
scale, which are also applied to assess if time series exhibit LRD. Examples include
detrended fluctuation analysis (DFA) (Peng et al., 1994; Kantelhardt et al., 2001),
variogram, wavelet variance (Malamud and Turcotte, 1999), etc. Common to them
all, is that if we have a time series exhibiting LRD, the fluctuation level F varies
with time scale τ as F ∼ τα. The scaling exponents obtained from the different
methods will all be related, and they quantify how persistent the variability is. If
applied to a time series that exhibits perfect scaling properties, all the different
methods result in similar estimates of the scaling exponent. However, deviations
from scaling can result in different outcomes using different methods.

DFA is a particularly popular method for determining scaling exponents, and
has been applied in the study of several temperature datasets (Koscielny-Bunde
et al., 1998; Blender and Fraedrich, 2003; Rybski et al., 2008; Vyushin et al.,
2009). The DFA of order N can remove polynomial trends in a time series up
to order N − 1. This is particularly useful for studying only the natural part of
the variability in instrumental records. DFA also produces a fluctuation function
that is quite smooth, so the power-law form becomes more apparent than in noisy
estimates of the PSD. To understand why, we will take a look at how it relates to
the power spectral density Su(ω),

F2[K] =

∫ π

1/K

Su(ω)

2(1− cosω)
dω, (3.1)

where K is the window size where the fluctuation level is measured (Heneghan
and McDarby, 2000). We note that the fluctuation function at time scale K is a
weighted sum of the power on all frequencies higher than the frequency correspond-
ing to this time scale. Hence, both the noise and deviations from the power-law
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form, are to some degree smoothed out. For instance, in the case where we have a
pure sinusoidal signal and get a spike in the spectrum, Hu et al. (2001) show that
the fluctuation function flattens out for scales larger than the periodicity of the
signal and has a constant steep slope depending on the order of the DFA on small
scales. Therefore, DFA has a high spectral leakage compared to the estimates of
the spectrum.

DFA is not the only method that produces a smoothed measure of the fluc-
tuation level, actually most of the methods do that to some degree. Fredriksen
and Rypdal (2016) performed a log-binning to smooth the periodogram, partly
to get rid of the noise, but also because it is desirable to have a measure where
all scales are weighted equally when determining the scaling exponent. For the
wavelet variance we can have different degrees of smoothing, depending of the
choice of mother wavelet. This becomes apparent in Fig. 3.2, where the wavelet
variance is computed using both the Mexican hat wavelet and the Morlet wavelet.
The wavelet analysis measures the fluctuation level both as a function of time and
time scale/frequency, but analogous to the uncertainty principle in quantum me-
chanics, we cannot have good resolution of both of these quantities simultaneously.
A good frequency resolution means poor time resolution and vice versa (Torrence
and Compo, 1998).

Contrary to DFA, most of these methods smooth the fluctuation level over a
smaller range in frequency-space. The long range of smoothing in DFA may result
in conclusions of LRD up to longer scales than is actually the case, or maybe even
some false positive conclusions of LRD. It may be a good idea to compare results
from different methods before drawing any conclusions.

3.4 Different explanations

Suggested explanations of long-range dependence in temperature records focus
mostly on time scales from months to centuries, which is also my focus here. By
comparing a climate model coupled to the deep ocean to a model that has only
a mixed layer, Fraedrich and Blender (2003) find that only the model with the
deep ocean coupling can produce LRD on time scales longer than about 15 years.
This study suggests therefore that we need the deep ocean to explain the long
memory, consistent with other studies demonstrating how simple ocean models
can reproduce the observed spectra.

Different types of simple ocean models are discussed in Chapter 2. Older
studies, such as Lemke (1977) show the resulting spectra without mentioning the
connection to LRD, since this concept was not well known at the time. This
connection is only made in more recent studies, as in diffusion models explanations
in Pelletier (1997) and Fraedrich et al. (2004), where the atmosphere over an ocean
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is inspired by the analogous case of a metallic film over a substrate (van Vliet et al.,
1980).

Pelletier (1997) and Pelletier and Turcotte (1999) describe transitions in tem-
perature spectra on all time scales analyzed in terms of diffusion models, even
the transition on millennial scales. The latter may be stretching the use of linear
models too far, unless extending what we interpret as forcing. The thermal bipo-
lar seesaw model is an example of a possible linear response mechanism between
the temperature in the Southern Ocean and North Atlantic (Stocker and Johnsen,
2003), with a characteristic time scale on the order of 1000 years. This equili-
bration time scale could fit with the observed transition to a white spectrum at
millennial scales. However, to describe what forces the large fluctuations observed
on these scales we probably need nonlinear responses to temperature changes.
For instance are Dansgaard-Oeschger events observed in ice ages associated with
changes in ocean circulation and sea ice cover in the North Atlantic (Dokken et al.,
2013), which may again depend on temperature changes.

Nonlinear mechanisms are also important on weather scales, and are actually
necessary for making the weather equations chaotic, such that weather practically
becomes a random process on monthly scales. Alternative hypotheses of the scaling
observed on monthly to centennial scales also invoke nonlinear mechanisms. Huy-
bers and Curry (2006) suggest that there could be a nonlinear transfer of energy
from the seasonal cycle up to frequencies of 1/100 yr−1, but without specifying
the physics. Lovejoy and Schertzer (2013) also suggest a nonlinear mechanism
based on an idea that low-frequency weather, or their so-called macroweather, can
be explained by a turbulent cascade of energy transfer, similarly as they explain
scaling on weather scales. On scales longer than 10-100 years, we have a transi-
tion into a steeper spectrum that they call the climate regime. They claim this
is due to external climate forcings and new slow climate processes becoming more
important (Lovejoy et al., 2013).

In the industrial era the response to anthropogenic forcing results in much more
power on frequencies below 1/10 yr−1 than expected from a power law extended
from the higher frequencies. And as we will go further into in the following section,
during the last ice age we observe a similar increase in the slope of the spectrum
below frequencies of about 1/100 yr−1, as a result of a more variable climate state.
If we look at proxies that go even further back in time, see e.g. Fig. 1 in Shao and
Ditlevsen (2016), we observe that the size of the fluctuations depends on what part
of the time series we look at. In contrast, the Holocene temperature fluctuations
seem to be quite stationary, that is, we expect to have about the same type of
variability at all times throughout the record.

The steeper slope of the spectrum observed for frequencies below ∼ 1/100 yr−1

is a result of a nonstationary process, like a time-varying external forcing or a
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state-dependent variability. It must hence be interpreted with great care, as the
spectrum does not represent the expected amplitude of fluctuations everywhere in
the time series.

3.5 Distinguishing Holocene and Late Quaternary
climate

In the majority of the Holocene, spectra of proxies show that centennial to millennial-
scale fluctuations are within the uncertainties of what can be expected from a single
power-law spectrum (Nilsen et al., 2016). In glacial climates on the other hand,
Nilsen et al. (2016) and Shao and Ditlevsen (2016) demonstrate that there is a
higer scaling exponent from centennial to millennial scales.

To illustrate why, I will use a wavelet analysis, which can give us insight into
the fluctuation level as a function of time (t) in addition to the time scale (∆t). I
will consider the GRIP ice core data from Greenland, plotted in the upper panel
of Figure 3.1. The bottom panel shows the squared magnitude of the continuous
wavelet transform

W (t,∆t) =
1√
∆t

∫ ∞
−∞

x(t′)ψ

(
t− t′

∆t

)
dt′ (3.2)

where x(t) is a signal and ψ is the mother wavelet. It is a small wave package
that we slide along the time series, and rescale by the time scale ∆t. I define here
∆t such that it corresponds to the periods (= 1/frequencies) in the spectrum. By
comparing the two panels in Figure 3.1, we observe that the time points with the
most power correspond to the abrupt changes in the time series. Even though the
changes happen over a short time interval, they increase the power of fluctuations
on all scales analyzed.

The white curves in the figure show the limits of what time scales the time
series can resolve. The bottom curve is a localized Nyquist frequency = 2·time
resolution, increasing as we go back in time because the resolution becomes poorer.
Everything below this line has low power due to interpolation of the time series.
Methods that only study fluctuations as a function of time scale do not take into
account this time variation of the resolution, and get a bias towards lower power
on the shortest scales if the time series is interpolated to obtain even sampling.
Figure 9 of Nilsen et al. (2016) demonstrates how this may affect the spectrum.
Methods designed for analyzing unevenly sampled time series also exist, but these
may have other biases (Rehfeld et al., 2011).

One way to overcome this issue is to use the wavelet variance as an estimate
for the fluctuation level at each time scale, by averaging the wavelet power over
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only the time points where we have good enough resolution to estimate the actual
fluctuation level. The two panels of Figure 3.2 show the results for different choices
of the mother wavelet. The Mexican hat has good time resolution, but poorer time
scale resolution. It is the other way around for the Morlet wavelet.

We can see from both Figure 3.1 and 3.2 that there is little power in the
Holocene. The increased power in the ice age is due to dynamics specific for that
climate state, because it is associated with abrupt changes in sea ice in North
Atlantic – an ice-free area in the Holocene. If removing the abrupt changes, M.
Rypdal and K. Rypdal (2016) demonstrate that also ice-age temperatures can be
described as a 1/f process as in the Holocene. This indicates that as long as
we are not close to these tipping points, the dynamics of the ice age may also
be described by a linear model. And when approaching a tipping point, we may
detect early-warning signals of one or more parameters that are slowly changing
before the abrupt change happens (M. Rypdal, 2016).

Although there is a clear distinction between Holocene and ice-age tempera-
tures in this Greenland ice core, it may not be the case everywhere. In the EPICA
core from Antarctica for instance, this distinction is less clear. Hence one could ask
what time series are the most representative of the two climate states? There may
be different problems with each of the proxies, for instance whether they really
are good proxies for temperature, or if the proxy contains noise or is smoothed.
Furthermore, there is also the possibility that even on the long time scales resolved
by the proxies, the fluctuations may differ from one location to another, and are
perhaps not well representing global climate.
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Figure 3.1: Upper panel: The δ18O temperature proxy from the GRIP ice core. Bottom
panel: Wavelet power of the time series above computed using the Mexican
hat wavelet.

Figure 3.2: This figure shows the wavelet variance computed using the wavelet coeffi-
cients within the boundaries plotted in Figure 3.1. In the left figure the
Mexican hat wavelet is used, while in the right figure the Morlet wavelet is
used.
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3.6 Impacts

For a process with LRD, we have a scaling relation F (a · τ) = (a · τ)α = aατα.
This means that if we rescale τ by a factor a, the fluctuation level will be rescaled
by a factor aα. Hence, if we know the fluctuation level at one scale, we can easily
predict the level at other scales as well.

One useful application of this is a statistical description of the centennial scale
internal variability as predicted from observed variability on shorter scales, which
can have an impact on trend-significance studies. In many local temperature
records, trends are less significant when testing against a LRD process rather than
a simple AR(1) process (Franzke, 2012; Løvsletten and Rypdal, 2016). The reason
is that we expect stronger fluctuations on long scales from an LRD process than
an AR(1) process. On a global scale however, the global warming trend becomes
more apparent as the locally large internal fluctuations are averaged out. Even
with a LRD model, Løvsletten and Rypdal (2016) find a highly significant trend
with p-value p < 10−4.

Because the probability of detecting a trend is reduced when using models
exhibiting LRD, this hypothesis may seem unnecessary, and in favor of climate
change deniers (Mann, 2011). With the low agreement about why we should
expect LRD I understand the concern, and we take this as motivation for our
studies. Several previous studies can be criticized for applying statistical models
uncritically, or just attempting to describe statistical properties without exploring
how they are generated. In order to understand how the signal (driven by external
forcing) should be distinguished from the noise, the LRD hypothesis should be
combined with knowledge about the underlying physics. As noted by Benestad
et al. (2016), incautious use of only statistical models may lead to inaccurately
treating forced signals as noise, and result in amplified estimates of the noise
levels.

The description of LRD as the output from a linear impulse response model
with a power-law response provides insight into the expected response to any forc-
ing and future scenarios. In addition, this response model can easily be explained
in terms of a simple linear EBM (Fredriksen and Rypdal, 2017). The future conse-
quences of this response to anthropogenic forcing is demonstrated by Rypdal and
Rypdal (2014) and K. Rypdal (2016), and show that a long-memory response also
leads to long responses to anthropogenic forcing, resulting in a long warming in
the pipeline. Compared to simple exponential models that neglect the slowly re-
sponding components, a power-law response implies that we must reduce emissions
more drastically to reach the goals set in the Paris agreement.



34CHAPTER 3. LONG-RANGE DEPENDENCE IN SURFACE TEMPERATURES



Chapter 4

Concluding remarks

In our temperature analyzes we find that most records dominated by internal
variability, both instrumental and from climate models, can be well described
as scale-invariant. The scaling exponent is increasing with the degree of spatial
averaging, and is higher for sea than for land. In the literature studying LRD there
are various hypotheses of how this property can arise, resulting in some skepticism
of why we need the long-memory models rather than the more commonly used
AR(1) processes.

Rypdal (2012) and Rypdal and Rypdal (2014) demonstrated how these statisti-
cal processes may arise from an impulse-response model with a power-law response
– a useful description both for interpretation of the origin of these processes and
their implications for responses to external forcing. In the literature published
before one started studying LRD in temperatures, we find various ocean mod-
els corresponding to response functions closely resembling what we get from the
power-law impulse response model. Hence, we can conclude that a long-memory
response is not really something new, the physical models including it have just
not been well connected to the concept of LRD in statistical models. The use of
fGns and classification of time series as long-range dependent seems initially to be
rooted in an interest in the fractal structure of time series, more than in physical
principles.

The global power-law response is also well approximated by multibox energy
balance models (Fredriksen and Rypdal, 2017). Three time scales are sufficient
to approximate infinitely many scales over a range of 2 − 3 orders of magnitude,
ranging from months to centuries. The stochastic model resulting from this is a
sum of three AR(1) processes, not as far away from more widely accepted models
after all.
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