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Abstract

This deliverable reports our early energy models for data structures and algorithms
based on both micro-benchmarks and concurrent algorithms. It reports the early results
of Task 2.1 on investigating and modeling the trade-off between energy and performance
in concurrent data structures and algorithms, which forms the basis for the whole
work package 2 (WP2). The work has been conducted on the two main EXCESS
platforms: (1) Intel platform with recent Intel multi-core CPUs and (2) Movidius
embedded platform.
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Executive Summary

Computing technology is currently at the beginning of the disruptive transition from petas-
cale to exascale computing (2010 - 2020), posing a great challenge on energy efficiency. High
performance computing (HPC) in 2020 will be characterized by data-centric workloads that,
unlike those in traditional sequential/parallel computing, are comprised of big, divergent,
fast and complex data. In order to address energy challenges in HPC, the new data must be
organized and accessed in an energy-efficient manner through novel fundamental data struc-
tures and algorithms that strive for the energy limit. Moreover, the general application- and
technology-trend indicates finer-grained execution (i.e. smaller chunks of work per compute
core) and more frequent communication and synchronization between cores and uncore com-
ponents (e.g. memory) in HPC applications. Therefore, not only concurrent data structures
and memory access algorithms but also synchronization is essential to optimize the energy
consumption of HPC applications. However, previous concurrent data structures, memory
access algorithms and synchronization algorithms were designed without energy consump-
tion in mind. The design of energy-efficient fundamental concurrent data structures and
algorithms for inter-process communication in HPC remains a largely unexplored area and
requires significant efforts to be successful.

Work package 2 (WP2) aims to develop interfaces and libraries for energy-efficient inter-
process communication and data sharing on the new EXCESS platforms integrating Movidius
embedded processors. In order to set the stage for these tasks, WP2 needs to investigate
and model the trade-offs between energy consumption and performance of data structures
and algorithms for inter-process communication, which is Task 2.1. The energy models are
developed in close cooperation with WP1 to ensure that they will be compatible with the
energy modeling method of WP1.

The early result of Task 2.1 (PM1 - PM36) on investigating and modeling the trade-off
between energy and performance in concurrent data structures and algorithms, as avail-
able by project month 12, are summarized in this report. The main contributions are the
following:

• An improved and extended energy model for the CPU-based platform based on the
model presented in EXCESS D1.1 [49]. This model decomposes the power into static,
active and dynamic power, while classifying CPU-based platform components into three
groups: CPU, main memory and uncore (e.g. shared cache, IMC, PCU, HA, etc.) (cf.
Sec. 3.1). The experiment results confirm that static power is constant while active
power depends on the frequency, the number of socket and not on the operations.
Dynamic power is decomposed into dynamic CPU, dynamic memory and dynamic
uncore power. Dynamic CPU power depends on the frequency and the operation type.
It also shows almost linear behaviors to the number of threads. Dynamic power of
memory and uncore components relate to the locality and bandwidth requirement of
the implementations.

• A new power model for the Movidius Myriad platform that is able to predict power con-
sumption of our micro-benchmarks with ±4% margin of measured power consumption
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on the real platform (cf. Sec. 3.2). The new power model confirms the experimental
power analysis of concurrent data structures such as concurrent queues: the dynamic
power consumption is proportional to the number of SHAVE (Streaming Hybrid Ar-
chitecture Vector Engine) processors used.

• A case study on how to choose the most suitable implementations for a multi-variant
shared data structure in a certain application and context; and the prediction of
the energy efficiency of different queue implementations through two metrics, namely
throughput and power (cf. Sec. 4.1). The case study shows that the energy-efficiency
is mainly ruled by the contention on the queue, which impacts both throughput and
memory power dissipation.

• Implementation and evaluation of several different concurrent queue designs for the
Myriad1 platform using three synchronizations primitives: mutex, message passing over
shared variables and SHAVE FIFOs (a set of registers accessed in a FIFO pattern)(cf.
Sec. 4.2). The valuations are performed on three metrics: execution time, power
consumption and energy per operation. In terms of execution time, the implementation
using mutex with two locks is the fastest and most scalable since it provides maximum
concurrency. In terms of power, SHAVE FIFOs communication method is the most
energy efficient. In terms of energy per operation, SHAVE FIFO implementation also
consume the least energy.

• Investigation of the energy consumption and performance of concurrent data structures
such as concurrent search trees (cf. Sec. 5). Based on our investigation, we have
developed new locality-aware concurrent search trees called ∆Trees that are up to
140% faster and 80% more energy efficient than the state-of-the-art (cf. Sec. 5.6 and
Sec. 5.7).
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1 Introduction

1.1 Purpose

In order to address energy challenges in HPC and embedded computing, data must be orga-
nized and accessed in an energy-efficient manner through novel fundamental data structures
and algorithms that strive for the energy limit. Due to more frequent communication and
synchronization between cores and memory components in HPC and embedded computing,
not only concurrent data structures and memory access algorithms but also synchronization is
essential to optimize the energy consumption. However, previous concurrent data structures,
memory access algorithms and synchronization algorithms were designed without consider-
ing energy consumption. Although there are existing studies on the energy utilization of
concurrent data structures demonstrating non-intuitive results on energy consumption, the
design of energy-efficient fundamental concurrent data structures and algorithms for inter-
process communication in HPC and embedded computing is not yet widely explored and
becomes an challenging and interesting research direction.

EXCESS aims to investigate the trade-offs between energy consumption and performance
of concurrent data structures and algorithms as well as inter-process communication in HPC
and embedded computing. By analyzing the non-intuitive results, EXCESS devises a com-
prehensive model for energy consumption of concurrent data structures and algorithms for
inter-process communication, especially in the presence of component composition. The
new energy-efficient technology will be delivered through novel execution models for the
energy-efficient computing paradigm, which consist of complete energy-aware software stacks
(including energy-aware component models, programming models, libraries/algorithms and
runtimes) and configurable energy-aware simulation systems for future energy-efficient ar-
chitectures.

The goal of Work package 2 (WP2) is to develop interfaces and libraries for inter-process
communication and data sharing on EXCESS new platforms integrating Movidius embedded
processors, along with investigating and modeling the trade-offs between energy consump-
tion and performance of data structures and algorithms for inter-process communication.
WP2 also concerns supporting energy-efficient massive parallelism through scalable concur-
rent data structures and algorithms that strive for the energy limit, and minimizing inter-
component communication through locality- and heterogeneity-aware data structures and
algorithms.

The first objective of WP2 (Task 2.1) is to investigate and model the trade-off between
energy and performance in concurrent data structures and algorithms. In order to model
energy and performance, the analysis is conducted for non-intuitive results and their trade-
offs to devise comprehensive models for energy consumption of concurrent data structures
and algorithms of inter-process communication. The energy models are developed in close
cooperation with WP1, ensuring that they will be compatible with the modeling method of
WP1.

This report summarizes the early results of Task 2.1 on investigating and modeling the
consumed energy of concurrent data structures and algorithms. The work of Task 2.1 forms
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the theoretical basis for the whole work package.

1.2 Concurrent Data Structures and Algorithms for Inter-process
Communication

Concurrent data structures are the data sharing side of parallel programming. Data struc-
tures give the means to the program to store data but also provide operations to the program
to access and manipulate these data. These operations are implemented through algorithms
that have to be efficient. In the sequential setting, data structures are crucially important for
the performance of the respective computation. In the parallel programming setting, their
importance becomes even more crucial because of the increased use of data and resource
sharing for utilizing parallelism. In parallel programming, computations are split into sub-
tasks in order to introduce parallelization at the control/computation level. To utilize this
opportunity of concurrency, subtasks share data and various resources (dictionaries, buffers,
and so forth). This makes it possible for logically independent programs to share various
resources and data structures. A subtask that wants to update a data structure, say add
an element into a dictionary, that operation may be logically independent of other subtasks
that use the same dictionary.

Concurrent data structure designers are striving to maintain consistency of data struc-
tures while keeping the use of mutual exclusion and expensive synchronization to a minimum,
in order to prevent the data structure from becoming a sequential bottleneck. Maintaining
consistency in the presence of many simultaneous updates is a complex task. Standard imple-
mentations of data structures are based on locks in order to avoid inconsistency of the shared
data due to concurrent modifications. In simple terms, a single lock around the whole data
structure may create a bottleneck in the program where all of the tasks serialize, resulting in
a loss of parallelism because too few data locations are concurrently in use. Deadlocks, pri-
ority inversion, and convoying are also side-effects of locking. The risk for deadlocks makes
it hard to compose different blocking data structures since it is not always possible to know
how closed source libraries do their locking. It is worth noting that in graphics processors
(GPUs) locks are not recommended for designing concurrent data structures. GPUs prior
to the NVIDIA Fermi architecture do not have writable caches, so for those GPUs, repeated
checks to see if a lock is available or not require expensive repeated accesses to the GPU’s
main memory. While Fermi GPUs do support writable caches, there is no guarantee that
the thread scheduler will be fair, which can make it difficult to write deadlock-free locking
code. OpenCL explicitly disallows locks for these and other reasons.

Lock-free implementations of data structures support concurrent access. They do not
involve mutual exclusion and make sure that all steps of the supported operations can be
executed concurrently. Lock-free implementations employ an optimistic conflict control ap-
proach, allowing several processes to access the shared data object at the same time. They
suffer delays only when there is an actual conflict between operations that causes some op-
erations to retry. This feature allows lock-free algorithms to scale much better when the
number of processes increases.
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An implementation of a data structure is called lock-free if it allows multiple processes/threads
to access the data structure concurrently and also guarantees that at least one operation
among those finishes in a finite number of its own steps regardless of the state of the other
operations. A consistency (safety) requirement for lock-free data structures is linearizability
[44], which ensures that each operation on the data appears to take effect instantaneously
during its actual duration and the effect of all operations are consistent with the object’s
sequential specification. Lock-free data structures offer several advantages over their block-
ing counterparts, such as being immune to deadlocks, priority inversion, and convoying, and
have been shown to work well in practice in many different settings [73, 69]. They have been
included in Intel’s Threading Building Blocks Framework [46], the NOBLE library [69, 70],
the Java concurrency package [53] and the Microsoft .NET Framework [61]. They have also
been of interest to designers of languages such as C++ [21].

The focus here is on concurrent implementations of common abstract data types, such as
queues, stacks, other producer-consumer collections, dictionaries and priority queues, which
can act as a communication “glue” in parallel applications. Moreover, practical lock-free
protocols/algorithms are preferred due to their desirable qualities in terms of performance
and fault-tolerance [73, 69]. For each of these abstract data types there exist a considerable
number of proposed protocols/algorithms in the literature, see, e.g., the surveys in [43, 15].
As each implementation of an abstract data type has different qualities depending on how
it is actually used, e.g. its contents; the level of concurrent accesses to it; the mix of read
or update operations issued on it etc., it makes good sense to view them as multi-variant
“components”. However, a concurrent shared data structure does not match the notion
of a component in the EXCESS component model defined in EXCESS D1.2 [48] since an
EXCESS component is a computational entity while a concurrent shared data structure
is a data storage and communication entity. Hence, multi-variant concurrent shared data
structures need to enter the framework as something different from components. There are a
number of ways concurrent shared data structures can be used in the EXCESS programming
model and runtime system:

• As internal communication medium, “glue”, inside component implementations. The
variant selection for the concurrent shared data structure can then either be performed
inside the component implementation or the component implementation itself treated
as a template and expanded into one actual component implementation for each variant
of the data structure available. In the latter case variant selection for the data structure
would reduce to component variant selection.

• As parameters to components. In the EXCESS component model parameters to com-
ponents are used to pass data in and out of components. Concurrent shared data
structures can be used in this role and would support concurrent updates of the data
structure from the inside and/or outside of the component during its execution. This
use could be integrated in a similar way to the smart containers discussed in EXCESS
D1.2 [48].

• As part of the implementation of the runtime system itself.
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To select the most suitable data structure implementation for a given situation is not an
easy problem as many aspects of the subsequent use of it impacts the time and energy costs
for operations on the data structure. For example, superior operation throughput at high
contention (a common selling point of new algorithms for concurrent shared data structures)
from which usually (due to system static power) also follows superior energy efficiency in that
state does not necessarily translate to superior energy efficiency at lower levels of contention
as the empirical case study in Section 4.1.6 below indicates.

In EXCESS D1.1 [49] we determined a number of energy-affecting factors for System A,
an Intel server system. Below follows a discussion of each of these factors in the context of a
concurrent shared data structure used as communication “glue” in a parallel computation.

General

• Execution time. The time spent executing operations on the data structure depends
on the number of calls to execute and the duration of each operation/call. The latter is
often difficult to predict as it may depend on many aspects of the state of the system
and the data structure, such as the algorithm for the operation combined with the
current state(/contents) of the data structure (cf. time complexity of sequential data
structure operations) and the interference from other concurrent operations on the
data structure.

• Number of sockets used. Determined by the scheduling of the tasks using the data
structure.

• Number of active cores. Determined by the scheduling of the tasks using the data
structure.

Functional units

• Instruction types. Depends among other things on the algorithm for the operation
combined with the current state(/contents) of the data structure and the interference
from other concurrent operations on the data structure as these may activate different
code-paths.

• Dependency between operations. Depends among other things on the algorithm for
the operation combined with the current state(/contents) of the data structure and
the interference from other concurrent operations on the data structure as these may
activate different code-paths.

• Branch prediction. Failed predictions depend among other things on the algorithm for
the operation combined with the current state(/contents) of the data structure and the
interference from other concurrent operations on the data structure. The last may be
particularily difficult since values are changed outside the current instruction sequence.

• Clock frequency. Determined by the system configuration.
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Memory

• Resource contention. Resource contention in the memory hierarchy can be either ac-
cidental, such as cache line eviction due to the limited size of the cache or due to
placement policy restrictions forcing otherwise independent cache lines to content for
a particular slot, or deliberate as is often the case in shared data structure implemen-
tations where code running on different cores tries to touch the same cache lines at the
same time.

• Number of memory requests. Depends among other things on the algorithm for the
operation combined with the current state(/contents) of the data structure and the in-
terference from other concurrent operations on the data structure as these may activate
different code-paths and force retries.

• Level of memory request completion. Interference from concurrent operations introduce
additional cache line invalidations and, hence, cache misses.

• Locality of memory references. Interference from concurrent operations introduce ad-
ditional cache line invalidations and coherence traffic.

As can be seen above, for concurrent shared data structures several of these factors are
affected by the concurrent operations on/dynamic state of the data structure. This means
that to estimate the time and energy cost for one operation this state must be known or
estimated. As a first approach we will consider concurrent shared data structures in a “steady
state”, that is, exposed to an unchanging mix of operations issued by an unchanging set of
tasks at an unchanging rate. In this case we can then assign average time and energy costs
to operations based on the total throughput and power use. Empirical data for a selection
of such “steady states” on a particular system can be collected with micro-benchmarks.

For the initial work on energy efficiency prediction for concurrent shared data structures
we have picked some commonly used collection data types as case studies. These are con-
current producer/consumer collections, such as queues, and concurrent search trees. Most
of the data structure implementations that we use are part of the NOBLE library [69] which
is described in Section 4.1.5 below.

1.3 Micro-benchmarking

In general, micro-benchmarking is conducted to discover targeted properties of a specific
system. A micro-benchmark in this work context is a small piece of code designed to measure
the performance or energy of basic operations of hardware or software systems.

The micro-benchmarks are developed by a loop over a low-level operation (e.g. xor,
mul) with N iterations. This description of micro-benchmarks can be represented as EBNF-
inspired formal notation (op)N which means the body op of a loop is executed with N
iterations. In order to analyze experimental results, micro-benchmarks must work with a
fixed size data-set, perform a constant amount of work per iteration and run for a reasonable
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amount of time. In this work package, micro-benchmarks are used to find out the key
features and properties of the components that affect energy efficiency of the systems. From
the measurement results of micro-benchmarks, the parameters in a proposed analytic energy
model are derived.

Micro-benchmarking is a common method used for performance and energy modeling of
a given computer system described at an abstract level. It can work directly on the a specific
component and does not require detailed simulation. Micro-benchmarking can be applied
to different systems since its code is portable. By using the micro-benchmarking method,
offline predictors of the energy model are built to predict energy and performance and to
support energy optimization.

1.4 Metrics

We rely on two original metrics:

• Throughput: it is a natural metric, used extensively in the performance analysis of
data structures, and which measures the number of operations that has been done on
the data structure per second.

• Power.

The experiments consist of running a benchmark on the data structure during a given
time. Then we count the number of successful operations, which gives the throughput. As
we work under a constant execution time, power and energy are equal within a multiplicative
factor that is the execution time.

However, another metric is studied in this deliverable, so that we are able to evaluate
the energy efficiency of different implementations of the same data structure: the energy per
operation. This metric can be useful in the following case: we are given a workload that
needs to be executed on a given platform, and there is no time requirement. Then, in terms
of energy savings, the implementation that uses the minimum energy per operation is the
best implementation.

In our case, the energy per operation is obtained by simply dividing the power by the
throughput.

Finally, if we are interested in the bi-criteria problem that mixes energy and performance
(i.e. where we aim at optimizing both energy and performance), we can plot the energy per
operation according to the throughput. By doing this we can also trace the Pareto-optimal
frontier for this bi-criteria problem (we eliminate every point such that there exists another
point that is better both in terms of energy per operation and throughput).

In this deliverable, we model the two original metrics, namely throughput and power,
and derive the other ones from those two.

1.5 Overview and Contributions

As a first step to investigate the energy and performance trade-offs in concurrent data struc-
tures, we have developed a new power model for the Movidius Myriad platform that is able
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to predict power consumption of our micro-benchmarks with ±4% margin of measured power
consumption on the real platform (cf. Sec. 3.2). The new power model confirms the experi-
mental power analysis of concurrent data structures such as concurrent queues: the dynamic
power consumption is proportional to the number of SHAVE processors used.

We have performed micro-benchmarks on CPU as well, where we have decomposed power
(CPU power, memory power and uncore power) into several parts, namely static, active
and dynamic part. In this decomposition, we are able to split the dependencies of power
dissipation according to the kind of operation, locality of operands, number of active cores
and sockets.

This micro-benchmark study is a preliminary step towards the modeling of performance
and power dissipation of several concurrent queue implementations. We define parameters
that rule the behavior of the queues, and show how to extrapolate both throughput and
power values, by relying on only a few measurements.

Moreover, we have analyzed the feasibility of porting concurrent data structures onto low
energy embedded platforms (cf. Sec. 4). We have selected a few synchronization mechanisms
from the HPC domain that could easily be replicated on a Movidius Myriad MPSoC and
analyzed the performance when used to implement concurrent FIFO queues. This work has
been continued to investigate the energy consumption of these synchronization mechanisms
and we have then proceeded to determine energy-performance trade-offs.

On Intel platform, we have investigated the energy consumption and performance of
concurrent data structures such as concurrent search trees (cf. Sec. 5). Based on our
investigation, we have developed new concurrent search trees called ∆Trees that are up to
140% faster and 80% more energy efficient than the state-of-the-art concurrent search trees.

The remaining of the report is organized as follows. Section 2 describes the methodology
to measure the consumed energy for two EXCESS platforms, namely CPU-based and Mo-
vidius. Section 3 presents energy models that can be used to predict the power consumed
on each platform. In section 4, the performance and energy-efficiency of concurrent queue
data structures are investigated on CPU-based and Movidius platforms. The investigation
results are supported by experimental evaluations. Section 5 analyzes the performance and
energy-efficiency of concurrent tree data structures and introduces a novel locality-aware
concurrent search tree. The conclusions and future work are provided in section 6.

2 EXCESS Platforms and Energy Measurement Method-

ology

In this section we summarize the EXCESS systems and the energy measurement methodology
used for the experiments in this report. A summary is given here as these systems have
previously been described in EXCESS D1.1 [49] and D5.1 [71].

• System A: An Intel multicore CPU server (located at Chalmers);

• System B: Movidius Myriad1 MV153 development board and simulator (evaluated
at Movidius and UiT).
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Figure 1: Deployment of energy measurement devices for System A.

2.1 System A: CPU-based platform

2.1.1 System description

• CPU: Intel(R) Xeon(R) CPU E5-2687W v2

– 2 sockets, 8 cores each

– Max frequency: 3.4GHz, Min frequency: 1.2GHz, frequency speedstep by DVFS:
0.1-0.2GHz. Turbo mode: 4.0GHz.

– Hyperthreading (disabled)

– L3 cache: 25M, internal write-back unified, L2 cache: 256K, internal write-back
unified. L1 cache (data): 32K internal write-back

• DRAM: 16GB in 4 4GB DDR3 REG ECC PC3-12800 modules run at 1600MTrans-
fers/s. Each socket has 4 DDR3 channels, each supporting 2 modules. In this case 1
channel per socket is used.

• Motherboard: Intel Workstation W2600CR, BIOS version: 2.000.1201 08/22/2013

• Hard drive: Seagate ST10000DM003-9YN162 1TB SATA

2.1.2 Measurement methodology for energy consumption

The energy measurement equipment for System A at CTH, described in Section 2.1.1, is
shown in Figure 1 and outlined below. It has previously been described in detail in EXCESS
D1.1 [49] and D5.1 [71].

The system is equipped with external hardware sensors for two levels of energy monitoring
as well as built in energy sensors:
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• At the system level using an external Watts Up .Net [23] power meter, which is con-
nected between the wall socket and the system.

• At the component level using shunt resistors inserted between the power supply unit
and the various components, such as CPU, DRAM and motherboard. The signals
from the shunt resistors are captured with an Adlink USB-1901 [1] data acquisition
unit (DAQ) using a custom utility.

• Intel’s RAPL energy counters are also available for the CPU and DRAM components.
A custom utility based on the PAPI library [14, 79] is used to record these counters
and other system state parameters of interest.

For the work presented in this report the component level hardware sensors and the
RAPL energy counters have mainly been used.

2.2 System B: Movidius Embedded Platform (Myriad1)

2.2.1 Myriad1 Platform Description

The Myriad1 platform developed by Movidius contains a total of 8 separate SHAVE (Stream-
ing Hybrid Architecture Vector Engine) processors (see Figure 2), each existing on solitary
power islands.

The SHAVE processor contains a mix of RISC, DSP, VLIW and GPU features and
supports the following data types: (float) f16/32, (unsigned) u8/16/32, and (int) i8/16/32.
The SHAVE architecture uses Very Long Instruction Words (VLIWs) as input. The processor
is designed to provide a platform that excels in multimedia and video processing. Each
SHAVE has its own Texture Management Unit (TMU).

SHAVE also contains wide and deep register files coupled with a Variable-Length Long
Instruction-Word (VLLIW) for code-size efficiency. As shown in Figure 2 VLLIW pack-
ets control multiple functional units which have SIMD capability for high parallelism and
throughput at a functional unit and processor level.

Functional Units of SHAVE

• Integer Arithmetic Unit (IAU) Performs all arithmetic instructions that operate on
integer numbers, accesses the IRF.

• Integer Arithmetic Unit (IAU) Performs all arithmetic instructions that operate on
integer numbers, accesses the IRF.

• Scalar Arithmetic Unit (SRF) Performs all Scalar integer/floating point arithmetic
and interacts with the SRF or IRF depending on what values are used.

• Vector Arithmetic Unit (VAU) Performs all Vector integer/floating point arithmetic
and interacts with the VRF.
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• Load Store Unit (LSU) There are 2 of these (LSU0 & LSU1) and they perform any
memory IO instructions. This means that it interacts with the 128kB CMX memory
tile located in the SHAVE.

• Control Move Unit (CMU) This unit interacts with all register files, and allows for
comparing and moving between the register files.

• Predicated Execution Unit (PEU) Performs operations based on condition code reg-
isters.

• Branch Repeat Unit (BRU) Manages instructions involving any loops, as well as
branches.

• Instruction Decoding Unit (IDC) This unit takes a SHAVE variable-length instruction
as input and decodes it to determine which functional units are being utilised by the
inputted instruction.

• Debug Control Unit (DCU) Used for monitoring the execution of the program, takes
note of interrupts and exceptions.

Register Files

• Integer Register File (IRF) Register file for storing integers from either the IAU or
the SAU. Can hold up to 32 words which are each 32-bits wide.

• Scalar Register File (SRF) Register file for storing integers from either the SAU. Can
hold up to 32 words which are each 32-bits wide.

• Vector Register File (VRF) Register file for storing integers from either the VAU. Can
hold up to 32 words which are each 128-bits wide.

The additional blocks in the diagram are the Instruction DeCode (IDC) and Debug
Control Unit (DCU). An instruction fetch width of 128-bits and 5-entry instruction pre-
fetch buffer guarantee that at least one instruction is ready taking account of branches. Data
and instructions reside in a shared Connection MatriX (CMX) memory block which can be
configured in 8kB increments to accommodate different instruction/data mixes depending
on the workload. The CMX also includes address-translation logic to allow VLLIW code to
be easily relocated to any core in the system.

In the 65nm System-on-Chip (SoC), eight SHAVE processors are combined with a software-
controlled memory subsystem and caches which can be configured to allow a large range of
workloads to be handled, providing exceptionally high sustainable on-chip bandwidth to
support data and instruction supply to the 8 processors. Data is moved between periph-
erals, processors and memory via a bank of software-controlled DMA engines. The device
supports 8, 16, 32 and some 64-bit integer operations as well as fp16 and fp32 arithmetic
and is capable of aggregate 1 TOPS/W maximum 8-bit equivalent operations in a low-cost
plastic BGA package with integrated 128Mbit or 512Mbit Mobile DDR2 SDRAM.
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Figure 2: SHAVE Instruction Units

As power efficiency is paramount in mobile applications, in addition to extensive clock
and functional unit gating and support for dynamic clock and voltage scaling for dynamic
power reduction, the device contains a total of 11 power-islands: one for each SHAVE, one
for the CMX RAM, one for the RISC and peripherals and one always-on domain. This
allows very fine-grained power control in software with minimal latency to return to normal
operating mode, including maintenance of SRAM-state eliminating the need to reboot from
external storage.

2.2.2 Measurement methodology

An extensive effort has been made to measure Myriad1 performance in a semi-automated
way in order to produce better power estimates.

The Power Measurements tests were introduced in order to have an insight into the
power consumed by Myriad1 in several basic cases in order to be able both to decompose the
Myriad1 power consumption into power components and characterize power consumption
in such basic operations of Myriad1. The tests set were devised to characterize the power
consumed when running SHAVE code without DDR data accesses.

The modifications were made to the MV153 to bypass the on-board voltage regulator
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Figure 3: Power Supply Modification

Figure 4: Bench setup for MV153 Power Measurement Schematic
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Figure 5: Bench setup for MV153 Power Measurement

which down-regulates the 5V wall PSU to the 1.2V core voltage required by Myriad1 allowing
an external bench power-supply to be used in its place as shown in Figure 3.

The schematic for the connection of the Power Supply Unit (PSU), multimeters and
MV153 for power measurement are shown in Figure 4. Note the standard DC wall supply is
required in addition to the bench PSU in order to supply the other elements of the system.

The bench setup consists of a modified MV153 board, a DC step down converter down-
regulating the 5V wall PSU to the 1.2V core voltage and one HAMEG multimeter measuring
all the voltage, current and consumed power values as shown in Figure 5.

2.3 Significant Synchronization Hardware Differences Between the
Two Systems

To synchronize processes efficiently, multi-/many-core systems usually support certain syn-
chronization primitives. This section discusses the fundamental synchronization primitives,
which typically read the value of a single memory word, modify the value and write the new
value back to the word atomically. Different architectures support different synchronization
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primitives in hardware.

2.3.1 Fundamental synchronization primitives

The definitions of the primitives are described in Figure 6, where x is a memory word,
v, old, new are values and op can be operators add, sub, or, and and xor. Operations
between angle brackets 〈〉 are executed atomically.

TAS(x) /* test-and-set, init: x← 0 */
〈oldx← x; x← 1; return oldx; 〉

FAO(x, v) /* fetch-and-op */
〈oldx← x; x← op(x, v); return oldx; 〉

CAS(x, old, new) /* compare-and-swap */
〈 if(x = old) {x← new; return(true); }
else return(false); 〉

LL(x) /* load-linked */
〈return the value of x so that
it may be subsequently used
with SC 〉

SC(x, v) /* store-conditional */
〈 if (no process has written to x
since the last LL(x)) {x← v;
return(true)};
else return(false); 〉

Figure 6: Synchronization primitives

Synchronization power The primitives are classified according to their synchronization
power or consensus number [57], which is, roughly speaking, the maximum number of pro-
cesses for which the primitives can be used to solve a consensus problem in a fault tolerant
manner. In the consensus problem, a set of n asynchronous processes, each with a given
input, communicate to achieve an agreement on one of the inputs. A primitive with a con-
sensus number n can achieve consensus among n processes even if up to n − 1 processes
stop [74].

According to the consensus classification, read/write registers have consensus number
1, i.e. they cannot tolerate any faulty processes in the consensus setting. There are some
primitives with consensus number 2 (e.g. test-and-set (TAS) and fetch-and-op (FAO)) and
some with infinite consensus number (e.g. compare-and-swap (CAS) and load-linked/store-
conditional (LL/SC)). It has been proven that a primitive with consensus number n cannot
implement a primitive with a higher consensus number in a system of more than n pro-
cesses [57]. For example, the test-and-set primitive, whose consensus number is two, cannot
implement the compare-and-swap primitive, whose consensus number is unbounded, in a sys-
tem of more than two processes. Most modern general purpose multiprocessor architectures
support compare-and-swap (CAS) in hardware. compare-and-swap (CAS) is also the most
popular synchronization primitive for implementing both lock-based and nonblocking con-
current data structures. For many non-blocking data structures a primitive with a consensus
number n is needed.
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The Myriad platform, as many other embedded platforms, avails test-and-set (TAS)
registers which have consensus number 2 and not compare-and-swap (CAS). These Test-and-
Set registers can be used to create spin locks, which are commonly referred as ”mutexes”.
Spin-locks are used to create busy-waiting synchronization techniques: a thread spins to
acquire the lock so as to have access to a shared resource.

The Myriad platform also avails a set of registers that can be used for fast SHAVE
arbitration. Each SHAVE has its own copy of these registers and its size is 4x64 bit words.
An important characteristic is that they are accessed in a FIFO pattern, so each one of them
is called a “SHAVE’s FIFO”. Each SHAVE can push data to the FIFO of any other SHAVE,
but can read data only from its own FIFO. A SHAVE writes to the tail of another FIFO
and the owner of the FIFO can read from any entry. If a SHAVE attempts to write to a
full FIFO, it stalls. Finally, the LEON processor cannot access the FIFOs. SHAVE FIFOs
can be utilized to achieve efficient synchronization between the SHAVEs. Also, they provide
an easy and fast way for exchanging data directly between the SHAVEs (up to 64 bits per
message), without the need to use shared memory buffers.

Analysis of experiments on the Myriad platform shows that the mutex implementation
is a fair lock with round-robin arbitration. But most scalable designs for concurrent data
structures require , a hardware primitive that has unbounded consensus number. Because of
the lack of support of strong synchronization primitives, from the embedded hardware side,
we had to come with new algorithmic designs for the data structures under consideration
fitting the capabilities of the embedded systems area.

3 Energy Models for EXCESS Platforms

3.1 Energy Models for CPU-based Platforms

3.1.1 General Power Model

The power model that is presented in EXCESS D1.1 [49] decomposes the total power into
static, socket activation and dynamic power, as recalled in Equation 1. In this equation, f
is the clock frequency, soc the number of activated sockets on the chip, op is the considered
operation and thr is the number of active cores; the active power is proportional to the
number of active sockets, while the dynamic power is proportional to the number of active
cores.

For modeling power consumption of data structures, we need to estimate the dynamic
component which depends on the frequency, number of active cores, locality and amount
of memory requests together with the instruction type as is also mentioned in D1.1 [49].
Therefore, we improve the model with an additional parameter loc to represent the locality
of operands for instructions that can transfer data between memory and registers, such a
move from L1, L2, last level cache, main memory or remote memory. This parameter was
not included in D1.1 because we consider only the total power in which loc parameter plays
a negligible role. For fine-grained analysis, we include this parameter in our model.
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{
P (f, op, soc, loc, thr) = Pstat + Pactive(f, soc) + Pdyn(f, op, loc, thr)
Pactive(f, soc) = soc × Pactive(f)

(1)

Static Active Dynamic

CPU P
(C)
stat P

(C)
active P

(C)
dyn

Memory P
(M)
stat P

(M)
active P

(M)
dyn

Uncore P
(U)
stat P

(U)
active P

(U)
dyn

Table 1: Power views

As another improvement to the previous power model, we decompose the power into two
orthogonal bases, each base having three dimensions. On the one hand, we define the model
basis by separating the power into static, active and dynamic power, such that the total
power is computed by:

P = Pstat + Pactive + Pdyn .

On the other hand, the measurement basis corresponds to the components that actually
dissipates the power, i.e. CPU, memory and uncore. The power dissipation measurement is
done through Intel’s RAPL energy counters read via the PAPI library [14, 79]. These counters
reflect this discrimination by outputting the power consumption along three dimensions:

• power consumed by CPU, which includes the consumption of the computational cores,
and the consumption of the first two level of caches;

• power consumed by the main memory;

• remaining power, called “uncore”, which includes the ring interconnect, shared cache,
integrated memory controller, home agent, power control unit, integrated I/O module,
config agent, caching agent and Intel QPI link interface.

Also, total power is obtained by the sum:

P = P (C) + P (M) + P (U).

This latter additional orthogonal dimension will provide a better perspective for modeling
power consumption of data structures, especially for the dynamic component. Table 1 sums
up both dimensions.

In this section, we study each dimension, in each base, so that we are able to express the
power dissipation from any perspective:

P =
∑

X∈{C,M,U}

(
P

(X)
stat + P

(X)
active + P

(X)
dyn

)
.
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3.1.2 Power Components Derivation

By definition, only the dynamic component of power is dependent on the type of instruction
or more generally the executing program. In order to obtain dynamic component Pdyn , we
first have to determine static Pstat and socket activation Pactive costs. This was done in D1.1
but the derivation process was not described in detail. Therefore, we will explain it briefly
in this subsection.

In D1.1, a large variety of instructions were examined with respect to their power and
energy consumption. We have observed a linear relation between the number of threads and
power for instructions that do not lead to data transfer between the memory hierarchy and
registers. For instance, addition operates on two registers and do not lead to data transfer.
Data transfer is done via move instructions before or after addition instruction if required.
So, the locality parameter loc is only valid for instructions that is dependent on the locality
of data, like variants of the move instruction. These operations are also prone to variability
due to cache and memory states which can also change with the interaction between threads.
Briefly, P

(M)
dyn and P

(U)
dyn is significant only for the instructions that lead to data transfer in

the memory hierarchy. Also the loc parameter is only meaningful for P
(M)
dyn and P

(U)
dyn . For

derivation of Pstat and Pactive , we just use the instructions that operate on the registers

because the P
(M)
active and P

(U)
active parts can be neglected for these instructions. We refer to these

instructions as opreg and utilize them to obtain static and socket activation costs for each
component (CPU, memory, uncore) of the orthogonal decomposition. A bunch of instructions
belonging to opreg is executed repeatedly for some time interval with varying number of
threads for each frequency. We formulate the derivation process as, for all X ∈ {C,M,U}:

Pdyn(f, op, loc, thr) =P
(M,U)
dyn (f, op, loc, thr) + P

(C)
dyn (f, op, thr)

P
(M,U)
dyn (f, opreg , loc, thr) = 0

P
(C)
dyn (f, opreg , thr) = thr × P (C)

dyn (f, opreg)

P
(X)
dyn (f, opreg) =

1

2

(
P (X)(f, opreg , soc, loc, 16)− P (X)(f, opreg , soc, loc, 14)

)
P

(X)
active(f) =P (X)(f, opreg , 2, loc, 10)− P (X)(f, opreg , 1, loc, 8)− P (X)

dyn (f, opreg)× 2

P
(X)
stat () =P (X)(f, opreg , soc, loc, thr)− soc × P (X)

active(f)− thr × P (X)
dyn (f, opreg)

Using above equations, we verified that P
(X∈{C,M,U})
stat is approximately constant according

to instruction type, pinning, number of threads and frequency thus we take the mean of the
values of Pstat over the whole space to find Pstat . We apply the same approach to find

P
(X∈{C,M,U})
active which only depends on frequency, and not on the operation. Having obtained

Pstat and P
(X)
active , we extract P

(X∈{C,M,U})
dyn for “all” types of instructions, thread, pinning and

frequency setting, by removing the static and active part from the total power.
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Figure 7: Dynamic CPU power for micro-benchmarks

3.1.3 Dynamic CPU Power

Having determined and excluded static and socket components, we obtain the dynamic power
component for each instruction, thread count, pinning and frequency setting. In the micro-
benchmarks of D1.1, a large variety of instructions are surveyed. Among them, we pick
a small set of instructions that can be representative for data structure implementations,
namely Compare-and-Swap, pause, floating point division, addition together with vector ad-
dition. Compare-and-Swap can be representative for the retry loops and divisions/additions
can be used to represent the parallel work which determines the contention on the data
structures. The decomposition of dynamic power in terms of CPU, memory and uncore
components for these instructions are illustrated in Figures 7, 8 and 9.

Based on the observation that P
(C)
dyn shows almost linear behavior with respect to number

of threads, we model the convex P
(C)
dyn as:

P
(C)
dyn (f, op) = (A× fα +B)

Each instruction might provide different power behavior as illustrated in Figure 7, there-
fore we find A, B, α for each instruction separately. B could be different for each instruction
because of the activation of different functional units, this is also why we included this
constant in P

(C)
dyn .

To obtain A, B and α, we proceed in the following way. We are given an operation op,
and we consider the executions of this operation with 16 threads on 2 sockets. Let v(freq)

be the vector of frequencies where we want to estimate the dynamic power (we dispose F

different frequencies, expressed in 10−1 GHz, such that v
(freq)
1 = 12 and v

(freq)
F = 34). We

note v(meas) the vector of dynamic powers that have been computed from the measurements
through the process described above, and v(est)(A,B, α) the vector of estimated dynamic
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powers. More especially, for all i ∈ {1, . . . , F}:

v
(meas)
i = P

(C)
dyn (v

(freq)
i , op)

v
(est)
i (A,B, α) =

(
A×

(
v

(freq)
i

)α
+B

)
The Euclidean norm of a vector v is denoted ‖v‖.

We solve the following minimization problem, with the help of the Matlab “fminsearch”
function:

min
A,B,α

∥∥v(meas) − v(est)(A,B, α)
∥∥

Table 2 provides the values for power constants and exponent for selected instructions.

3.1.4 Dynamic Memory and Uncore Power

In the micro-benchmarks, we observe that many instructions do not lead to an increase
in dynamic memory and uncore power because the operands of the instructions, except
Compare-and-Swap, presumably reside in the core. On the other hand, Compare-and-Swap
lead to an increase in memory and uncore power only when the threads are pinned to different

A α B
cas 0.001392 1.6415 0.0510

fpdiv 0.001038 1.7226 0.0585
add 0.001004 1.8148 0.0912

avx-add 0.001130 1.7828 0.0894
pause 0.000854 1.7920 0.0736

Table 2: Instruction power coefficients
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Figure 8: Dynamic memory power for micro-benchmarks
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Figure 9: Dynamic uncore power for micro-benchmarks
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Figure 10: Throughput for array traversal benchmark

sockets. The resulting ping-pong of the updated cache line between sockets is responsible for
this effect. As mentioned in D1.1, Compare-and-Swap micro-benchmarks are indeed prone to
unfairness among threads. When Compare-and-Swap is executed repeatedly by all threads
on the same cache line without any work in between Compare-and-Swap attempts, the thread
which gets the ownership of cache line succeeds repeatedly while others starve. This fact
decreases the transfer rate of the cache line between local caches. Due to this, we introduce 3
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Figure 11: Step-like power for array traversal benchmark

different Compare-and-Swap micro-benchmarks looping on 1, 3 and 50 shared variables that
are aligned to different cache lines. By doing so, we aim at increasing the traffic between
cores and sockets together with the amount of memory accesses. Figures 8 and 9 provide the
P

(U)
dyn and P

(M)
dyn values. It can be observed that all parameters including number of threads,

frequency, pinning play a role for Compare-and-Swap. As a remark for the provided figures,
threads are pinned using a dense mapping strategy that leads to inter-socket communication
only after 8 threads.

P
(U)
dyn and P

(M)
dyn do not increase when threads are pinned to same socket. In this case, the

intra-socket communication between threads takes place via the ring interconnect without
introducing a memory access. Thus, absence of increase in memory power is reasonable.
However, one might expect an increase in uncore power for these cases because RAPL un-
core power presumably includes LLC and ring interconnect power. We do not observe this
probably because the main components that attached to the ring are not used. The increase
of uncore and memory power can be observed when threads are pinned to different sockets,
due to remote memory accesses which uses important uncore components such as the QPI
link interface and home agent. An interesting observation regarding memory power is that
it shows a step function behavior. We think that this is because of the RAPL power capping
algorithm which determines a power budget based on memory bandwidth, as presented in
the work of David et al. [20]. The RAPL algorithm specifies a power cap for a time win-
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Figure 12: Memory power for array traversal benchmark

dow depending on the memory bandwidth requirements of previous time intervals and sets
the memory in a power state that is expected to maximize energy efficiency. Based on the
amount of memory accesses, it jumps between states finding a trade-off between bandwidth
and power. The finite number of states leads to the step-like power curves in Figure 8. Thus,
the memory power seems to be determined by the amount of memory accesses per unit of
time which is dependent on frequency, number of threads and the amount of shared variables
for our Compare-and-Swap experiments.

To justify this observation, we use a benchmark which stresses the main memory. We
allocate a huge contiguous array and align each element of the array to a separate cache line.
In addition, we force the array to be allocated in the memory module residing in the first
socket. Thus, we can regulate remote and local memory accesses by pinning strategies. We
pin all threads either to first or second socket. We also change the number of threads, fre-
quency and interleave varying amount of pause operations between array accesses to change
the bandwidth requirements of the benchmark. Threads access independent portions of the
array with a stride. The hardware prefetcher increases the performance remarkably when
adjacent cache lines are accessed while traversing the array and a stride of page size can be
used to disable the hardware prefetcher. We run the same experiment both with a stride
of 64 Bytes, which is the size of a cache line, and 4096 kBytes which is the page size, to
reveal effect of prefetching. As provided in Figure 10, the system reaches its peak bandwidth
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Figure 13: Uncore power for array traversal benchmark

more rapidly when the prefetcher is activated and attains better bandwidth. Moreover, the
bandwidth difference between completely remote and local accesses is noticeable. Another
point is that frequency does not influence the maximum achievable bandwidth. This fact
means that there is opportunity for energy savings with DVFS for memory-bounded regions
of applications. We also observe the step-like power behavior, due to the RAPL algorithm,
with this benchmark in Figure 11.

In Figure 12, dynamic memory power consumption is shown for the array traversal bench-
marks. From the analysis of the results, it can be deduced that the memory power is strongly
correlated with the number of bytes accessed per second. There is no clear impact of the
number of threads and frequency to the memory power except their indirect effect on band-
width. In contrast, access stride has a direct, though limited, impact on the memory power
together with its indirect impact as it increases the bandwidth. By accessing data with a
stride of a cache line, we possibly make use of the open page mode of DRAM which could be
influential in terms of energy efficiency due to avoidance of bit-line precharge and row access
cost. But, we still observe a linear relation between throughput and memory power for both
strides. In addition, remote or local accesses do not provide a noticeable difference for mem-
ory power. On the other hand, it is observed that uncore power depends on the frequency,
presumably due to the traffic on the ring interconnect and components attached to it such as
the Home Agent and Integrated Memory Controller. Furthermore, remote memory accesses
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increase the uncore power consumption because they use the QPI link interface which adds
an additional cost compared to local memory accesses as shown in Figure 13. All these
observations regarding memory and uncore power will shed light to the analysis and model-
ing of data structures in Section 4. One major source of differences in power consumption
between different implementations is the memory and uncore consumption, which is related
to locality and bandwidth requirements of the implementations.

3.1.5 Summary of Micro-Benchmarking for Power Modeling on CPU

Figure 14 recalls the main achievements of the micro-benchmark study on CPU, where d is
the amount of memory accessed per unit of time in the main memory or through QPI link.

Static Active Dynamic

CPU P
(C)
stat () soc × P (C)

active(f) n×
(
A(op)× fα(op) +B(op)

)
Memory P

(M)
stat () d× P (M)

dyn (op, loc)

Uncore P
(U)
stat () d× P (U)

dyn (op, loc)

Static Active Dynamic

CPU P
(C)
stat (f, op, soc, loc, n) P
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Dependency
removal

Figure 14: Dependency shrinking

3.2 Energy Models for Movidius Embedded Platforms

3.2.1 Description of Microbenchmarks

Regarding the assembly files used in the test execution process, a fixed number of instructions
in the loop was established for all the tests, meaning that each assembly file contains six
instructions in the loop that is infinitely repeated. This convention was made in order to keep
a continuity and a consistency of tests, by giving an insight in measuring the consumption
on different SHAVE units, enabling to make comparisons between SHAVE units.

The assembly files used in the testing process contain code that test the instruction power
decode and the instruction fetch. The majority of tests use pseudo-realistic data, by pseudo-
realistic data we understand having as many non-zero values as possible and avoiding data
value repetition at different offsets.
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Below are the used test cases as micro-benchmarks for Movidius platform.

• SauMul, SauXor: SAU operations - with instruction fetch and different data values
(XOR-MUL)

• IauMul, IauXor: IAU operations - with instruction fetch and different data values
(XOR-MUL)

• VauMul, VauXor: VAU operations - with instruction fetch and different data values
(XOR-MUL)

• CmuCpss, CmuCpivr: CMU operations — with instruction fetch and different data
values (CPSS - CPIVR)

• SauXorCmuCpss: SAU & CMU — with instruction fetch and different data values
(SAU.XOR ‖ CMU.CPSS)

• SauXorCmuCpivr: SAU & CMU — with instruction fetch and different data values
(SAU.XOR ‖ CMU.CPIVR)

• SauXorIauXor, IauXorCmuCpss: SAU & IAU — with instruction fetch and different
data values (SAU.XOR ‖ IAU.XOR & IAU.XOR ‖ CMU.CPSS)

• SauXorVauXor, SauXorVauMul: SAU & VAU — with instruction fetch and different
data values (SAU.XOR ‖ VAU.XOR & SAU.XOR ‖ VAU.MUL)

• SauXorCmuIauXor: SAU & IAU & CMU — with instruction fetch and different data
values (SAU.XOR ‖ CMU.CPIS ‖ IAU.XOR)

3.2.2 Movidius Power Model and Its Sanity Check

The experiments are conducted for benchmarks with single unit and multiple units. Each
benchmark is tested by running Myriad1 with 1, 2, 4, 6 and 8 SHAVE cores.

From the experiment results, we observe that the power consumption of Movidius Myr-
iad1 platform is ruled by the following model:

P = P stat + #{active SHAVE} × (P act + P dyn
SHAV E) (2)

The operands in the formula are explained as below. The static power P stat is the needed
power when the Myriad1 processor is on. The P act is the power consumed when a SHAVE
core is on. Therefore, this active power is multiplied with the number of used SHAVE core
when the benchmark is run with several cores.

The dynamic power P dyn
SHAV E of each SHAVE is the power consumed by all working

operation units working on SHAVE. As described in the previous section, each SHAVE core
has several components, including LSU, PEU, BRU, IAU, SAU, VAU, CMU, etc. Different
arithmetic operation units have different P dyn values. In this power model, we focus on the
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experiments with the benchmarks performing different arithmetic operations such as IAU,
VAU, SAU and CMU.

The dynamic power P dyn of each SHAVE is the power consumed by all working operation
units. As described in the previous section, each SHAVE core has several components,
including LSU, PEU, BRU, IAU, SAU, VAU, CMU, etc. Different arithmetic operation
units have different P dyn values. In this power model, we focus on the experiments with the
benchmarks performing different arithmetic operations such as IAU, VAU, SAU and CMU.

When adding one more SHAVE, we can identify the sum of SHAVE P act and P dyn which
is the power level difference of the two runs (with one SHAVE core and with two SHAVE
corer). Given the sum of P act and P dyn, P stat is derived from the formula. Then, the average
value of P stat from all micro-benchmarks experimental results is computed:

P stat = 62.63 mW (3)

Then for each operation unit, we obtain the two parameters P dyn
op and P act by using the

actual power consumption of the benchmark for individual units and multiple units.
P dyn

(IauXor) = P stat + #{active SHAVE} × (P act + P dyn
(IauXor))

P dyn
(SauXorIauXor) = P stat + #{active SHAVE} × (P act + P dyn

(SauXorIauXor))

P dyn
(SauXor) = P stat + #{active SHAVE} × (P act + P dyn

(SauXor))

(4)

Then, the average value of P act among all operation units is calculated.

P act = 51.4 mW (5)

At this point, we also have the P dyn
op of every arithmetic unit op. Applying the model

to calculate the consumed energy, the results showed the deviation from the measured data,
especially the benchmarks running a single arithmetic unit. We attribute this difference to
the inter-operation cost when more than one unit of the SHAVE core work in a combination.
This inter-operation cost is also mentioned in the model suggested by Movidius in EXCESS
deliverable D4.1. The P dyn of SHAVE running multiple units is then computed by the
formula below:

P dyn
SHAV E =

∑
i

P dyn
i (op) + max

i
{Oi(op)} (6)

The combined P dyn is the sum of P dyn of each unit, plus the highest inter-operational
cost Oi among the units in the combination. By using the highest inter-operation cost, P dyn

after computed is more accurate than using the sum of inter-operation cost from all units in
the combination. E.g. P dyn

(SauXorIauXor)) = P dyn
(SauXor) + P dyn

(IauXor) + max(OSauXor, OIauXor).

Given the P stat and P act, the P dyn
op of an operation unit is computed based on the actual

power consumption of the benchmark using a single unit(e.g. SauXor, IauXor, etc.). Then,
its inter-operational cost is computed based on the actual power consumption when this unit
works in a combination with other units.

The Table 3 lists the inter-operational cost of each unit when it works in a combination
with other units.
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Operation Unit P dyn
op (mW) Oop(mW)

SauXor 3.05 1.15
SauMul 6.97 1.83
VauXor 17.57 13.12
VauMul 32.78 11.62
IauXor 4.53 1.07
IauMul 3.98 4.42
CmuCpss 1.00 4.60
CmuCpivr 6.41 5.69

Table 3: Inter-operational cost (in mW) of SHAVE operation units

From Equations 3, 5 and 6, the complete model for Movidius Myriad1 is derived as
follows:

P = P stat+#{active SHAVE}×(P act)+#{active SHAVE}×

(∑
i

P dyn
i (op) + max

i
{Oi(op)}

)
(7)

Applying this formula to different combinations of operation units in the SHAVE core,
we plot the relative error of this model in the Figure 15. The relative error is the difference
between the actual power consumption measure by device and the predicted power consump-
tion computed through Equation 7, then divided by the actual power consumption. Under
this model, the relative error varies within ±4%. This model is not only applicable for a
single unit but also the combination of two or three units.

4 Modeling Energy Consumption of Concurrent Queue

Implementations

4.1 Concurrent Queues on CPU-based Platform

Concurrent FIFO queues and other producer/consumer collections are fundamental data
structures that are key components in applications, algorithms, run-time and operating
systems. The Queue abstract data type is a collection of items in which only the earliest
added item may be accessed. Basic operations are Enqueue (add to the tail) and Dequeue
(remove from the head). Dequeue returns the item removed. The data structure is also
known as a “first-in, first-out” or FIFO buffer.

4.1.1 Objective and Process

As explained in Section 1.2, we aim at predicting the energy efficiency of different queue
implementations through several metrics. We have seen in D1.1 [49] that the energy efficiency
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Figure 15: Relative error of Myriad1 power prediction

Implementations ●a0 ●a1 ●a2 ●a3 ●a5 ●a6

Figure 16: Key legend of the graphs

is strongly related to both performance of the considered algorithm and power dissipation
of the architecture. Hence we naturally decompose this blurry notion of energy-awareness,
or energy efficiency, into these two dimensions.

We study the problem by modeling the behavior of the implementations, from both the
performance and the power point of view. In both cases, we run the implementations on some
problem inputs, and measure performance and power dissipation so that we can instantiate
the parameters of the model. Then, once the model is instantiated we are able to predict
the queue implementation’s energy efficiency on any problem instance.

On the one hand, the performance-related metric that we use in this deliverable is
throughput, which represents the number of successful operations per unit of time (here,
per second). We consider the dequeuing of an element from the queue as the successful oper-
ation, and the measurement is a simple counter of successful operations. On the other hand,
the power dissipation measurement is done through Intel’s RAPL energy counters read via
the PAPI library [14, 79], as explained in Section 3.1.1.

Finally, we combine those two metrics into an energy-efficiency-related one: energy con-
sumed per successful operation, which is the ratio between power dissipation and throughput.

We dispose of a framework in which we have implemented the most well-known queue
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algorithm of the literature. We consider the following implementations of queues, which are
described in some detail in Section 4.1.5 below:1

• a0. Lock-free and linearizable queue by Michael and Scott [60],

• a1. Lock-free and linearizable queue by Valois [76],

• a2. Lock-free and linearizable queue by Tsigas and Zhang [72],

• a3. Lock-free and linearizable queue by Gidenstam et al. [29],

• a5. Lock-free and linearizable queue by Hoffman et al. [45],

• a6. Lock-free and linearizable queue by Moir et al. [62].

We use the same legend for all the graphs in this section, except from Figure 18. It is depicted
in Figure 16. The idea here is to use as little knowledge as possible about the algorithms
to predict their behaviors, so that if a new algorithm is implemented its behavior can be
predicted as well, without changing the model that we present in the following sections.

We run a simple benchmark composed of the two functions described in Figure 17. Half
of the threads are assigned to be enqueuers while the remaining ones are dequeuers. We
disable multi-threading and map separate threads into separate cores, also the number of
threads never exceeds the number of cores. In addition, the mapping is done in the following
way: when adding an enqueuer/dequeuer pair, they are both mapped on the most filled but
non-full socket.

The parallel work shall be seen as a processing activity, pre-processing for the enqueuers
before it enqueues an element, and post-processing on an element of the queue for the
dequeuers. This activity is presumed to be computation-intensive, that is why we coded it
in the benchmark as a sequence of floating point divisions.

As explained previously in Section 1.2, the benchmark represents an application that uses
the queue in a steady-state manner; however, the behavior of the queue is likely to differ
from one application to the other, according to the amount of work in the parallel section;
also, in the experiments, this amount of work will be part of the variables.

Two more clarifications are necessary. On the one hand, when we speak about implemen-
tations of the queues, we actually refer to the different implementations of enqueuing and
dequeuing functions, along with their memory management schemes. On the other hand, the
slowest of the two function calls (enqueue and dequeue) is the bottleneck of performance and
hence determines the throughput of the queue. Also when we reason about the “retry-loop”
in the following, we imply “retry-loop of the slowest function call”. Notice that only half of
the threads are competing for this operation.

We conclude this introduction by defining some parameters that we use extensively in
the next subsections. We denote by n the number of running threads that call the same

1The a0, a1, etc., designations refer to the micro-benchmark’s naming of the algorithms. Algorithm a4
is a single-producer/single-consumer queue that is unsuitable for our purposes and has therefore been left
out.
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operation, and by f the clock frequency of the cores (we only consider the case where all
cores share the same clock frequency, even if an asymmetric setting of the frequencies between
the sockets could be of interest). We note pw the amount of work in the parallel section,
and cw the amount of work in one try of the retry-loop in the considered implementation.

More generally, an exponent “(off)” refers to an inter-socket execution, while “(on)” refers
to an intra-socket one; a subscript “lc” denotes an execution in low-contention state.

In the following subsections all experiments and their underlying predictions are done on
Chalmers’ platform, which is described in Section 2.1.1. We run the implementations within
a set of three frequencies {1.2 GHz, 2.3 GHz, 3.4 GHz}, for all possible even total numbers
of threads, from 2 to 16, i.e. for n ∈ {1, . . . , 8}.

1: procedure Enqueuer
2: Initialization()
3: while execution time < t do
4: Parallel Work()
5: Enqueue()

1: procedure Dequeuer
2: Initialization()
3: while execution time < t do
4: res ← Dequeue()
5: if res 6= Null then
6: Parallel Work()

Figure 17: Queue benchmark

4.1.2 Throughput

We start this section by underlining some interactions between what we called “work” previ-
ously, and the actual execution time of those pieces of code according to different parameters.
Then we describe the throughput model under two distinct states that the queue can expe-
rience, and finally, we exhibit our results.

Preliminaries First of all, we have seen that the parallel section is full of computations,
thus the amount of work in it is actually the number of bunches of 10 floating point divisions
that we operate; those operations are perfectly scalable, meaning that the time tPS spent in
a given parallel section is proportional to pw

f
.

In order to obtain a stable execution time, which is linear with the number of bunches of
divisions despite compiler and runtime optimizations, we have used CPUID and RDTSCP
assembly primitives. As a consequence, the multiplicative factor that correlates tPS and
pw/f depends on the number of threads that are running on the platform. Finally, the time
spent in a parallel section can be computed thanks to:

tPS =
pw

λ× f
, (8)

where λ depends on the number of threads.
The execution time of dequeue and enqueue operations is more problematic, for three

main reasons. Primo, because of the lock-free nature of the implementations. From a high-
level perspective, those two functions calls are both retry-loops: the thread reads a data,
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then works with this version of the data, modifies it, and finally tries to operate a Compare-
and-Swap on it. If the Compare-and-Swap fails, then it reads it again, and re-iterates the
process. It exits the function when the Compare-and-Swap is a success. As the number of
retries is unknown, the time spent in the function call is not straightforwardly computable.
This behavior leads us to distinguish two cases: low-contention case, where we are ensured
that no retry-loop will fail, and high-contention case, where the threads will generally fail
one or several times before succeeding. Secundo, in the high-contention case, the threads
compete for accessing a shared data, and they wait for some time before actually being able
to access data. We name this as the expansion, as it leads to an increase in the execution time
of one try of the retry-loop. Tertio, the time before obtaining the data changes, depending
whether the data is located in the same socket. This last pathology is however benign, if we
look at the following experiment.
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Figure 18: Execution time of Compare-and-Swap

We envision the approximation where the retry-loop is a mixed sequence of Compare-and-
Swap and other shared memory accesses, which is supposedly not too far from the reality.
We have measured the execution time of a Compare-and-Swap operation, on the one hand
when the data is initially located in the same socket as the requester, and on the other hand
when the data is in the other socket. In Figure 18, we plot the execution time according to
the clock frequency. On-socket, the cost can be fitted with a function f 7→ a/f , while the
cost of an off-socket access is fitted by f 7→ a′/f + b′. In other words, the off-socket access
includes a non-scalable component that the QPI link is responsible for.

As a consequence, in the low-contention case, i.e. when we know that the function call
contains only one single try of the retry-loop and that there is no expansion, if we assume
that cw is the equivalent of the number of Compare-and-Swap inside the retry-loop, we have:{

tRL = cw × a
f
, if there are not more than 8 cores, and

tRL = cw ×
(
b′ + a′

f

)
, otherwise.

(9)
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Low Contention We study in this section the low-contention case, i.e. when (i) the
threads does not suffer from expansion and (ii) a success is obtained with a single try of the
retry-loop. As it appears on the scheme in Figure 19, we have a cyclic execution, and the
length of the shortest cycle is tPS + tRL. Within each cycle, every thread performs exactly
one successful operation, thus the throughput is easy to compute thanks to:

T =
n

tPS + tRL

. (10)

This model includes two parameters: λ, which depends only on the number of threads n,
and cw (through Equation 9), which depends only on the implementation. The constants of
Equation 9 can indeed be determined beforehand.

We determine λ by running anyone of the implementations with a very large parallel work
pw∞, at a given frequency f0, for every number of threads. We note tPS,∞ the execution
time of the parallel section of size pw∞ at the frequency f0, we measure the throughput
T∞ and approximate the Equation 10 with T∞ = n

tPS,∞
, since the execution time of the

parallel section tPS,∞ is such that tPS,∞ � tRL. Therefore, for each thr , we can obtain λ from
Equation 8, with the following equation:

λ =
T∞
n
× pw∞

f0

.

Concerning the amount of work cw in the retry-loop, we have observed that the model
is very sensitive to cw , which is why we consider that the amount of work in the retry-loop
differs from an intra-socket to an inter-socket execution. We note cw

(on)
lc the former one and

cw
(off)
lc the latter one. Those two values are obtained by running each implementation in

low-contention state. In other words, we pick an amount of parallel work pw lc, which is big
enough so that the queue is lowly congested. At frequency f0, we run the implementation
once with n0 threads such that 2n0 > 8 (leading to the throughput measurement T (off)

lc ),

and once with n1 threads such that 2n1 ≤ 8 (leading to the throughput measurement T (on)
lc ).

Then the system in Equation 9 implies that:

T (on)
lc =

n0

pw lc

λ× f0

+ cw
(on)
lc ×

a

f0

T (off)
lc =

n1

pw lc

λ× f0

+ cw
(off)
lc ×

(
b′ +

a′

f0

) , hence


cw

(on)
lc =

n0 × f0

a× T (on)
lc

− pw lc

a× λ

cw
(off)
lc =

1

b′ + a′/f0

×

(
n1

T (off)
lc

− pw lc

λ× f0

)
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Finally, given a frequency f , a parallel work pw , and number of threads n, the evaluation
of the throughput in low-contention state is done thanks to:

T =
n

pw

λf
+
a× cw

(on)
lc

f

if 2n < 9

T =
n

pw

λf
+ cw

(off)
lc × (b′ + a′/f)

if 2n > 8

(11)

Retry
Loop Parallel Work

Cycle

Thread 0

Thread 1

Thread 2

Figure 19: Cyclic execution under low contention

High Contention In the preliminaries, we have explained why the evaluation of the
throughput is complex when contention is high: because of the expansion that changes
the execution time of one try of the retry-loop, and because the number of tries before a
success in the retry-loop is variable.

However, in previous studies, we have seen that the throughput is approximately linear
with the expected number of threads that are in the retry-loop at a given time. In addition,
this expected number is almost proportional to the amount of work in the parallel section.
As a result, a good approximation of the throughput, in high-congestion cases, is a function
that is linear with the amount of work in the parallel section.

There remains that the way the threads interfere in the chip, hence the relation between
the slope of this straight line and the different parameters, is very dependent on the archi-
tecture. That is why, for each frequency, each number of threads and each implementation,
we interpolate this line by measuring the throughput for two small amounts of work in the
parallel section.

Frontier We now have to estimate when the queue is highly congested and when it is
not. We recall that, generally speaking, long parallel sections lead to a low-congested queue
since threads are most of the time processing some computations and do not try to access to
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the shared data. Reversely, when the parallel section is short, the ratio of time that threads
spend in the retry-loop is higher, and gets even higher because of both expansion and retries.

That being said, there exists a simple lower bound on the amount of work in the parallel
section, such that there exists an execution where the threads are never failing in their retry-
loop. Let us note tRL,LC the execution time of the retry-loop in low-contention case (we recall
that we are able to compute this value as we know the amount of work in the retry-loop),
and its relation with the clock frequency. We plot in Figure 20 an ideal execution with n = 3
threads and tPS = (n−1)× tRL,LC. In this execution, all threads always succeed at their first
try in the retry-loop. Nevertheless, if we make the parallel section shorter, then there is not
enough parallel potential any more, and the threads will start to fail: the queue enters the
high-congested state.

Thread 0

Thread 1

Thread 2

Figure 20: Critical contention

This lower bound (tPS = (n − 1) × tRL,LC) is actually a good approximation for the
critical point where the queue switches its state. Altogether, we evaluate the throughput in
the following way:

• If the execution is intra-socket, i.e. if 2n ≤ 8, then

– if tPS ≥ (n− 1)× t(on)
RL,LC, use Equation 10

– if tPS < (n− 1)× t(on)
RL,LC, use Equation 11;

• If the execution is inter-socket, i.e. if 2n > 8, then

– if tPS ≥ (n− 1)× t(off)
RL,LC, use Equation 10

– if tPS < (n− 1)× t(off)
RL,LC, use Equation 11.

Results The throughput prediction is plotted in Figure 21 (we recall that the key can be
found in Figure 16, page 36). Points are measurements, while lines are predictions. We
will follow this rule for all comparisons between prediction and measurement. In the actual
execution, the queue goes through a transient state when the amount of work in parallel
section is near the critical point, but the prediction is not so far from it.



D2.1: Models for energy consumption of data structures and algorithms 43

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●
●●

●

●

●●●

● ●
●

●

●
●●

●

●

●
●●

● ●
●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●
●
●

● ●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●●●

● ●

●

●

●

●●

●

●

●
●
●

● ●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●
●●

● ●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●●●

● ●

●

●

●

●●

●

●

●
●
●

● ●

●

●

●

●●

●

●

●
●
●

● ●

●

●

●

●●

●

●

●
●●

● ●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●●●

● ●

●

●

●

●●

●

●

●
●
●

● ●

●

●

●

●●

●

●

●
●
●

●
●

●●
●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●●
●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●●
●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

● ●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

● ●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

● ●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●●●

●
●

●

●

●

●●

●
●

●●●
●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●●

●
●

●●●

●
●

●

●
●

●●

●

●

●●●

●
●

●

● ●

●●

●

●

●●●

●
●

●

●

●

●●

●
●

●●●
●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●●

●
●●●●

●
●

●

● ●

●●

●

●

●●●

●
●

●

● ●

●●

●

●

●●●

●
●

●

●
●

●●
●

●
●●● ●

●

●
●

●

●●

●
●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●●

● ●●●●
●

●

●

●
●

●●

●

●

●●●

●
●

●

● ●

●●

●

●

●●●

●
●

●

● ●

●●

●
●

●●● ●
●

●
●

●

●●

● ●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

● ●●●●
●

●

●

●
●

●●

●

●

●●●

●
●

●

●
●

●●

●
●

●●●

●
●

●

● ●

●●
●

●

●●● ●
●

●
●

●

●●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●
● ●●●●

●
●

●

●
●

●●

●
●

●●●

●
●

●

●
●

●●

● ●●●●

●
●

●

● ●
●●

●
●

●●● ●
●

●
●

●

●●

●
●

●●●
●

●

●

●

●

●●

●

●

●●
●

●
●

●

● ●

●●
● ●●●● ●

●
●

●
●

●●

● ●●●●

●
●

●

●

●

●●

●
●

●●●

●

●

●

● ●

●●
●

●
●●● ●

●

●
●

●

●●

●
●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●
● ●●●●

●
●

●

●
●

●●

●
●

●●●

●

●

●

●

●

●●

● ●●●●

●

●

●

● ●

●●
●

●
●●● ●

●
●

●

●

●●

●

●

●●●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●●
● ●●●● ●

●

●

●
●

●●

● ●●●●

●

●

●

●
●

●●

● ●
●●●

●

●

●

● ●
●●

● ●●●● ●

●
●

●
●

●●
●

●

●●● ●

●

●

●

●

●●

●

●

●
●●

●

●

●

● ●
●●● ●●●● ●

●
●

●
●

●●

●
●

●●●
●

●

●

●

●

●
●

● ●●●●

●

●

●

● ●

●
●

●
●

●●● ●

●

●
●

●

●
●

●

●

●●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●
●

● ●●●● ●
●

●

●
●

●
●

● ●●●●

●

●

●

●
●

●
●

●
●

●●●

●

●

●

● ●
●

●
● ●●●●

●

●
●

● ●

●
●

●

●

●●● ●

●

●

●

●

●
●

●

●

●
●●

●

●

●

● ●
●

●
● ●●●● ●

●
●

●
●

●
●

●
●

●●●

●

●

●

● ●

●
●

●
●

●●●
●

●

●

● ●
●

●
● ●●●●

●

●
●● ●

●
●

●

●

●●● ●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

● ●
●●● ●●●● ●

●
●

● ●

●
●

●
●

●●●
●

●

●

0e+00

1e+06

2e+06

3e+06

4e+06

0e+00

2e+06

4e+06

6e+06

8e+06

0.0e+00

3.0e+06

6.0e+06

9.0e+06

1.2e+07

1.2 G
H

z
2.3 G

H
z

3.4 G
H

z

10 1000 10 1000 10 1000 10 1000 10 1000 10 1000 10 1000 10 1000
Parallel work

T
hr

ou
gh

pu
t

Figure 21: Throughput

Let us summarize the measurements that are needed to instantiate the model, and note
M the number of measurements, decomposed into groups Mi. We denote by N , F and A
the cardinality of the sets of all possible numbers of respectively threads, frequencies and
implementations where we want to predict the throughput.

• λ is found by running only one implementation, for all number of threads, hence
M1 = N measurements.

• For low-contention case, for every implementation, for two different number of threads
we run the benchmark to obtain cw

(on)
lc and cw

(off)
lc , thus M2 = 2A measurements.

• For high-contention case, for every implementation, every frequency and every number
of threads, we launch two runs, leading to M3 = 2AFN measurements.

In total, we need M =
∑

iMi = N+2A+2AFN runs. In our case, with three frequencies,
six implementations, 8×2 threads, and one second per run, it represents around 300 seconds.

4.1.3 Power Given Throughput Measurement

Power Model We use here the same power model that we have exposed in Section 3.1.
We recall that we decompose the power into two orthogonal basis, each base having three
dimensions. On the one hand, we define the model base by separating the power into static,
active and dynamic power, such that the total power is computed by:

P = Pstat + Pactive + Pdyn .
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On the other hand, the measurement base corresponds to the hardware that actually dissi-
pates the power, i.e. CPU, memory and uncore. Also, power is obtained by the sum:

P = P (C) + P (M) + P (U).

In this section, we study each dimension, in each base, so that we are able to express the
power dissipation from any perspective:

P =
∑

X∈{C,M,U}

(
P

(X)
stat + P

(X)
active + P

(X)
dyn

)
.

Thanks to the micro-benchmarking of Section 3.1, we know already all static and active
powers, therefore the whole point of this section will be to determine the dynamic power of
CPU, memory, and uncore.

On the other hand, the power model was only tailored for micro-benchmarking. However,
in this more involved case of power modeling of data structures, we take a single step further
towards a more realistic application: we can see both pairs parallel section- enqueue, and
dequeue - parallel section as two operations at a higher level, and we keep the steady-state
property, which is important in micro-benchmark philosophy.
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Figure 22: CPU power

CPU Power We have seen in D1.1 [49] that in Chalmers’ platform, most of the power
is dissipated in the CPU. Additionally, in Section 3.1, we have successfully modeled the
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dynamic power of CPU for several operations thanks to the generic formula:

P
(C)
dyn = n× (A× fα +B) ,

where A, B and α are three numbers that depend only on the operation that is executed on
the CPU.

We rely on these observations to model the dynamic power of CPU for more complex
applications, especially in this deliverable for the queue implementations. We recall that
the parallel section is filled with floating point divisions and our assumption such that the
retry-loop can be viewed approximately as a sequence of Compare-and-Swap has not been
checked yet. On the other side, we remark that both Compare-and-Swap and floating point
divisions are modeled with a similar α, which is around 1.7 = α0. As a consequence, we
consider now the queue at a higher level and view it as a single complex operation that we
can model through:

P
(C)
dyn = n× (A× fα0 +B) ,

where A and B have to be determined. One can notice that we have kept the linearity
according to the number of threads; this is because all threads in the queue implementation
have the same behavior, exactly in the same way as in the micro-benchmark case.

In order to instantiate these parameters, at two frequencies f0 and f1, for a given work in
the parallel section and a given number of threads, and for every implementation, we measure
the CPU power and extract the dynamic parts p0 and p1. Then we solve the system:{

p0 = n0 (B + A× fα0
0 )

p1 = n0 (B + A× fα0
1 )

, which leads to


A =

p1 − p0

fα0
1 − fα0

0

B =
p0 × fα0

1 − p1 × fα0
0

fα0
1 − fα0

0

.

The prediction and measurements are plotted in Figure 22.

Memory Power As the retry-loop, which is particular to each implementation, is mainly
composed of memory operations, the main difference between the various implementations
in terms of power happens in the dynamic power of memory.

Generally speaking, we have shown show in Section 3.1 that the power dissipation of the
memory is due to both accesses to main memory and remote accesses to memory. Those
accesses are characterized by the amount of data d that is accessed remotely per second, and
dynamic power dissipation is considered as proportional to this amount. As in Section 3.1.4,
we notice that the data structure does not imply accesses to main memory, hence the power
dissipation in memory is only due to remote accesses, which only appear when the threads
are spread across sockets.

As the parallel section is full of pure computations, communications can only take place
in the retry-loop. We make one last assumption: the amount of data that are accessed per
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Figure 23: Memory consumption
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Figure 24: Memory power based on measured throughput

second in a retry-loop depends on the implementation, but given an implementation, once
a thread is in the retry-loop, it will always try to access to the same amount of data per
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second. When the queue is highly congested, if a thread fails then it will retry and will access
the data in the same way as the previous try; and if there is expansion, then the thread will
still try to access the data for the whole time it is in the retry-loop. As a consequence, the
amount of data that are accessed remotely, hence the dynamic power of memory, is strongly
related with the ratio r of the time spent in the retry-loop over the time spent in the parallel
section. The dynamic power of memory can be computed by:

P
(M)
dyn = ρ× n× r,

where ρ is a number depending only on the implementation, and represents the memory
access intensity in the retry-loop. We have again n as a multiplicative factor since all the
threads have the same behavior.

Now we rely on the structure of the benchmark and on the throughput to compute this
ratio. We do not know how many retries are necessary for a thread to successfully exit
the retry-loop; however, we know that the thread performs exactly one parallel section per
successful operation. As the throughput T is the number of successful operations per second,
the ratio is found by:

1− r =
T × pw

n× λ× f
. (12)

We still have indeed that T = n/(tPS + tRL). This leads to:

1− r =
tPS

tPS + tRL

=
tPS × T

n
,

and Equation 12 is derived from the expression of the time spent in the parallel section of
Equation 8.

In Figure 23, we plot:

P (M) − P (M)
stat

r × n
,

where P (M) is the measured power dissipated by the memory and r is computed through
Equation 12. Firstly we remark that the ideas in the model are not contradicted by the graph:
everything is almost constant, and the power dissipated by the memory seems to be ruled
indeed by the considered ratio. A priori, this ratio should depend on the implementation,
but we observe that there is no clear trend, and implementations are very close to each other.
This means that all implementations behave in a similar way concerning the amount of data
accessed remotely per second.

That is why we only need, if the throughput is known, to run the benchmark for a given
implementation, a given size of parallel section, with a given n, at a given frequency f , in
order to find the unique ρ, common to all implementations.

The comparison between the measured and the estimated power is plotted in Figure 24.
Two noticeable observations should be added: first, as in the micro-benchmark experiments,
we remark some steps in the measured power, but we prefer to keep a continuous estimate.
Second, we see that implementations a1 and a5 sometimes consume memory power even for
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intra-socket execution. This could be due to the fact that these versions implement reference
counting in their memory management, which could lead to the use of main memory due to
overly long chains of unreclaimed nodes.

Uncore Power We predict the uncore power in the same way as the memory power, except
that we have an additive component which is linear with the number of threads. This linear
component is due to the RDTSCP utilization in the parallel section, and the remaining part
may be related to the ring utilization when the threads access the shared data, both inter-
and intra-socket.

Briefly, we take the uncore measurement, from which we subtract the static uncore power
and the linear component, then operate in the same way and find a new constant ρ′.

Results are pictured in Figure 25, where we notice that, even if the behavior is similar,
the amplitude of uncore power variations is relatively smaller than the memory power, and
almost negligible in front of CPU power.

pw=1 pw=2 pw=3 pw=4 pw=5 pw=7 pw=10 pw=20 pw=50 pw=150 pw=500

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●
●●

●
●

●

●

●
●

● ● ●●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
● ●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●●

●

●
●

●●● ●●
●

●
● ●● ●

●
●

●

●●●● ●

●
●

●
● ●

●
●

●

●

●

●●
●● ●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●
●

●

●

● ●
●

●

●

●● ● ●● ●
● ●

●

●

●● ●
●

●

●

●

● ●

●

●

●

●
●

●
●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

24.8

25.2

25.6

24.5

25.0

25.5

26.0

25.0

25.5

26.0

26.5

27.0

1.2 G
H

z
2.3 G

H
z

3.4 G
H

z

4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16
Number of threads

U
nc

or
e 

po
w

er
 (

W
at

t)

Figure 25: Uncore power

Total Power In terms of number of measurements, estimating the power dissipation is not
costly: we can choose a parallel section and n not less than 4, then run each implementation
at two different frequencies. This enables the prediction of CPU power, and we can use one
of those measurements to predict the memory and uncore powers. Altogether, we only need
M = 2A measurements. We plot the comparison of total power in Figure 26 to appreciate
the quality of the estimation.
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Figure 26: Total power

4.1.4 Complete Prediction
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Figure 27: Memory power based on estimated throughput
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Figure 28: Energy per operation
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Figure 29: Energy per operation

We plot in Figure 27 the estimate of the memory power dissipation when we use the
predicted throughput while computing the ratio in Equation 12, instead of the measured
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throughput. It shows that the throughput prediction is good enough, since there is no clear
difference in the memory power, and we do not need to rely on the throughput measurement.
This is an important property since otherwise, we should have run the benchmark for each
value of the variables and measure the throughput, in order to be able to compute the ratio,
and then the memory power.

In Figures 28 and 29 is represented the energy per operation. Except from the patho-
logical case with pw = 20, the prediction is accurate. This mistake in estimation occurs
because the implementations a1 and a5 have a long transient behavior between high and
low contention cases, and the throughput is harder to estimate in this range.

4.1.5 Description of the Implementations

NOBLE [69, 70] Most of the implementations that we use are part of the NOBLE library.
The NOBLE library offers support for non-blocking multi-process synchronization in shared
memory systems. NOBLE has been designed in order to: i) provide a collection of shared
data objects in a form which allows them to be used by non-experts, ii) offer an orthogonal
support for synchronization where the developer can change synchronization implementa-
tions with minimal changes, iii) be easy to port to different multi-processor systems, iv) be
adaptable for different programming languages and v) contain efficient known implementa-
tions of its shared data objects. The library provides a collection of the most commonly used
data types. The semantics of the components, which have been designed to be the very same
for all implementations of a particular abstract data type, are based on the sequential seman-
tics of common abstract data types and adopted for concurrent use. The set of operations
has been limited to those which can be practically implemented using both non-blocking
and lock-based techniques. Due to the concurrent nature, also new operations have been
added, e.g. Update which cannot be replaced by Delete followed by Insert. Some operations
also have stronger semantics than the corresponding sequential ones, e.g. traversal in a List
is not invalidated due to concurrent deletes, compared to the iterator invalidation in STL.
As the published algorithms for concurrent data structures often diverge from the chosen
semantics, a large part of the implementation work in NOBLE, besides from adoption to
the framework, also consists of considerable changes and extensions to meet the expected
semantics.

The various lock-free concurrent queue algorithms that we include in this study are briefly
described below.

Tsigas-Zhang [72] Tsigas and Zhang [72] presented a lock-free extension of [51] for any
number of threads where synchronization is done both on the array elements and the shared
head and tail indices using CAS , and the ABA problem is avoided by exploiting two (or more)
null values. In [72] synchronization is done both directly on the array elements and the shared
head and tail indices using CAS2, thus supporting multiple producers and consumers. In

2The Compare-And-Swap (CAS) atomic primitive will update a given memory word, if and only if the
word still matches a given value (e.g. the one previously read). CAS is generally available in contemporary
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order to avoid the ABA problem when updating the array elements, the algorithm exploits
using two (or more) null values; the ABA problem is due to the inability of CAS to detect
concurrent changes of a memory word from a value (A) to something else (B) and then again
back to the first value (A). A CAS operation can not detect if a variable was read to be A
and then later changed to B and then back to A by some concurrent processes. The CAS
primitive will perform the update even though this might not be intended by the algorithm’s
designer. Moreover, for lowering the memory contention the algorithm alternates every other
operation between scanning and updating the shared head and tail indices.

Valois [76] Valois [76, 77] makes use of linked list in his lock-free implementation which
is based on the CAS primitive. He was the first to present a lock-free implementation of a
linked-list. The list uses auxiliary memory cells between adjacent pairs of ordinary memory
cells. The auxiliary memory cells were introduced to provide an extra level of indirection so
that normal memory cells can be removed by joining the auxiliary ones that are adjacent
to them. His design also provides explicit cursors to access memory cells in the list directly
and insert or delete nodes on the places the the cursors point to.

Michael-Scott [60] Michael and Scott [60] presented a lock-free queue that is more ef-
ficient, synchronizing via the shared head and tail pointers as well as via the next pointer
of the last node. Synchronization is done via shared pointers indicating the current head
and tail node as well via the next pointer of the last node, all updated using CAS . The tail
pointer is then moved to point to the new element, with the use of a CAS operation. This
second step can be performed by the thread invoking the operation, or by another thread
that needs to help the original thread to finish before it can continue. This helping behavior
is an important part of what makes the queue lock-free, as a thread never has to wait for
another thread to finish. The queue is fully dynamic as more nodes are allocated as needed
when new items are added. The original presentation used unbounded version counters,
and therefore required double-width CAS which is not supported on all contemporary plat-
forms. The problem with the version counters can easily be avoided by using some memory
management scheme as e.g. [59].

Moir-et-al. [62] Moir et al. [62] presented an extension of the Michael and Scott [60] lock-
free queue algorithm where elimination is used as a back-off strategy to increase scalability
when contention on the queue’s head or tail is noticed via failed CAS attempts. However,
elimination is only possible when the queue is close to empty during the operation’s invoca-
tion.

Hoffman-Shalev-Shavit [45] Hoffman et al. [45] takes another approach in their design
in order to increase scalability by allowing concurrent Enqueue operations to insert the new
node at adjacent positions in the linked list if contention is noticed during the attempted

systems with shared memory, supported mostly directly by hardware and in other cases in combination with
system software.
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insert at the very end of the linked list. To enable these ”baskets” of concurrently inserted
nodes, removed nodes are logically deleted before the actual removal from the linked list, and
as the algorithm traverses through the linked list it requires stronger memory management
than [59], such as [28] or [41] and a strategy to avoid long chains of logically deleted nodes.

Gidenstam-Sundell-Tsigas [29] Gidenstam et al. [29] combines the efficiency of using
arrays and the dynamic capacity of using linked lists, by providing a lock-free queue based
on linked lists of arrays, all updated using CAS in a cache-aware manner. In resemblance to
[51][27][72] this algorithm uses arrays to store (pointers to) the items, and in resemblance to
[72] it uses CAS and two null values. Moreover, shared indices [27] are avoided and scanning
[72] is preferred as much as possible. In contrast to [51][27][72] the array is not static or
cyclic, but instead more arrays are dynamically allocated as needed when new items are
added, making the queue fully dynamic.

4.1.6 Towards Realistic Applications: Mandelbrot Set Computation

Mandelbrot Set Description As a simple case-study of parallel applications that use
concurrent data structures for communication we have used an application that computes
and renders an image of the Mandelbrot set [58] in parallel using the producer/consumer
pattern. The program, also used as part of the evaluation in [68], uses a shared collection
data structure for communication between the program’s two major phases:

• Phase 1 consists of computing the number (with a maximum of 255) of iterations for
a given set of points within a chosen region of the image. The results for each region
together with its coordinates are then put in the collection data structure.

• Phase 2 consists of, for each computed region stored in the collection, computing the
RGB values for each contained point and draw these pixels to the resulting image. The
colors for the corresponding number of iterations are chosen according to a rainbow
scheme, where low numbers are rendered within the red and high numbers are rendered
within the violet spectrum.

Phase 1 is performed in parallel with phase 2, i.e., like a pipeline. Half of the threads
perform phase 1 and the rest perform phase 2. The application is implemented in C, and
renders a 32-bit color image of 8192 times 8192 pixels of the Mandelbrot set. The size of
each square region is chosen to be one of 16 × 16 (i.e., 16 by 16), 8 × 8, 4 × 4, or 2 × 2
pixels which also determines the number of work units and, hence, the level of contention on
the shared collection. The whole image is divided into a number (equal to half the number
of threads) of larger row-oriented parts3, where each producer thread (i.e., phase 1) work
sequentially on the regions contained within its own part. The consumer threads (i.e., phase

3Due to the nature of the Mandelbrot set, this way of deciding each part might not be fair in respect of
workload per thread. As can be seen in the experimental results, this partition pattern causes 3 parts to
take longer time than 2 parts in parallel, because the total execution time depends on the slowest part.
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Figure 30: Mandelbrot using 16× 16 pixel regions.
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Figure 31: Mandelbrot using 8× 8 pixel regions.
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Figure 32: Mandelbrot using 4× 4 pixel regions.
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Figure 33: Mandelbrot using 2× 2 pixel regions.
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2) render the regions got from the collection in the order that they were obtained, until the
producer threads have finished and the collection is empty. The application uses a dense
pinning strategy, pinning the producers and then the consumers to consecutive cores, e.g.
when 16 threads are used the producers are pinned to cores on the first socket while the
consumers are pinned to cores on the second socket. This is just one of many possible ways
to divide the work and pin threads, it remains as future work to explore other ways.

In this application the shared data structure used for communication only need to offer
one Add operation that adds an element to the collection and one TryRemove operation that
removes and returns one element from the collection. The minimal semantic requirements
are that at most one TryRemove returns each Added element and that a surplus of TryRemove
operations eventually (e.g. after all Adds have been issued) returns all Added elements.

Any linearizable concurrent queue, stack or bag data structure meets these requirements
and could be used as the shared collection. There are even some non-linearizable data
structures that could meet them.

The following concurrent shared collection data structures, most of which are described
in Section 4.1.5, have been considered:

• a0. Lock-free and linearizable bag by Sundell et al. [68].

• a1. Lock-free and linearizable queue by Michael and Scott [60].

• a2. Lock-free and linearizable queue by Valois [76].

• a3. Lock-free and linearizable queue by Tsigas and Zhang [72].

• a4. Lock-free and linearizable queue by Hoffman et al. [45].

• a5. Lock-free and linearizable queue by Moir et al. [62].

• a6. Lock-free and linearizable stack by Michael [59].

• a7. Lock-free and linearizable stack by Hendler et al. [40].

• a8. Lock-free EDTree (a.k.a. pool or bag) by Afek et al. [2].

Each implementation has been run at each of the 4 work unit sizes (2 × 2, 4 × 4, 8 × 8
and 16× 16 pixels) and with 2, 6, 8, 9, 10, 12, 14 and 16 threads on the EXCESS server at
Chalmers. The results are presented in Figures 30 to 33 in order of decreasing work unit size,
i.e. increasing contention. For each case the following metrics are shown (clockwise starting
from the top left): i) throughput in pixels per second; ii) total system power in Watts; iii)
total system power normalized by a1 power; and iv) total energy in Joules consumed per
pixel.

As mentioned above the method used to divide the Mandelbrot set into regions does
not share the work equally among the producer threads which results in the decreases in
throughput for 6 and 9 threads.
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When the work units are large, such as in Figure 30, the difference in throughput between
the different collection implementations is very small indeed for any number of threads. The
work load is dominated by independent parallel computation and consequently the level of
contention on the collection is low. There is, however, a somewhat larger difference in energy
per pixel. This difference is interesting as it ought to be directly related to properties of the
collection implementation as all implementations carry out the same total amount of parallel
work and a very similar number of successful collection operations per second. Moreover,
the lowest energy per pixel costs are achieved by the implementation, a2, which is among
the worst at high contention (compare with Figure 33). In this particular application the
producers do a larger part of the total work than the consumers which can lead to the shared
collection becoming empty at times. However, the cost is not distributed equally across all
work units – some are cheaper for the producers than others. Consumers finding the shared
collection empty will retry the TryRemove operation in a tight loop. This could could be
one reason for the difference in power as the effort needed to determine that the collection is
empty varies among the different algorithms. E.g. for a1 and a2 this just requires reading
a small number of pointers (2 to 3), which however invokes memory barriers, while for a0 it
entails scanning through (while invoking few memory barriers) at least one block of pointers
per thread using the data structure.

When the work units are small, such as in Figure 33, there are large differences in
throughput from 4 threads and up. This together with the fact that the total system power
for the different implementations (at the same number of threads) is even more close together
than when using larger work units the differences in energy per pixel varies considerably. Here
the contention level on the collection is higher, above 8 threads where the throughput of the
less scalable implementations flatten or decrease it can be considered high. In this case all
but one of the implementations have their energy per pixel sweetspot at less than or equal
to 8 threads (i.e. when using cores in only one socket). Implementation a0 (the bag) is the
only one that delivers the lowest energy per pixel when using all cores of the machine. It is
worth noting that the bag data type has a potential to use less synchronization than a queue
or stack data type that must enforce an (illusion of) total order among all their elements.

From this case-study some observations can be made about the problem of making an
informed selection of implementation for a multi-variant shared data structure in a certain
application and context:

• the semantic requirements of the application must be known (naturally) but should
also not be overstated as that would limit the choices of implementation;

• the required throughput of data structure operations (and their mix) needs to be
predicted (bounded) from the parallel work-load to estimate the level of contention
(which if too high would further bound the achievable throughput of data structure
operations); and that, consequently,

• a good prediction of achievable data structure operation throughput for each imple-
mentation and for a certain state will be needed to do that.
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Simplified implementation As mentioned above, realistic applications introduce vari-
ety of additional parameters that hardens the estimation of throughput and power. The
Mandelbrot application has two main differences from synthetic tests. In the first place,
the parallel sections are composed of a mixture of computations and memory accesses. It is
hard to estimate the memory access delays and intensity which are important for our model.
These metrics are used to determine the parallel section size and the bandwidth requirements
which are used to obtain the memory power consumption.

Another complexity regarding the Mandelbrot application is the unequal load balance
among producer threads. Even though the problem domain is decomposed into equally sized
chunks, some radians require less work than others because they diverge rapidly and require
less iterations before determining that they do not belong to the Mandelbrot set. This fact
creates variability in the parallel section size which does not occur in the synthetic tests.
There are some ways to eliminate this load balance problem. One very simple way is to force
each thread to iterate until maximum count even after determining that the point does not
belong to the Mandelbrot set. However, this is not an ideal approach since it leads to waste
of resources. Instead, one can decompose the domain in an interleaved manner to obtain a
better load balance.

For now, we apply the simple approach and leave the interleaved decomposition as future
work. Having obtained load balance with simple modifications, we make use of synthetic
applications to predict power and throughput values for the Mandelbrot application. We
determine the parallel section size and extrapolate the Mandelbrot power and throughput
metrics from the corresponding synthetic application.

Mandelbrot Prediction There are slight differences between the simplified Mandelbrot
implementation that we consider in this paragraph and the synthetic benchmarks that we
have analyzed in the previous subsection. Those differences have an impact on power dissi-
pation through two main components:

• CPU power. What is considered as parallel section in Mandelbrot differs from the
synthetic test since the operations that reside in this parallel section are of a different
nature: only floating point divisions for synthetic benchmark, and a complete mixture
of arithmetic and memory operations for Mandelbrot. The dynamic CPU power that
we have measured and extrapolated in synthetic test is then no longer valid for the
new application.

• Memory power. Again, as some memory operations take place inside the parallel
section, the amount of remote accesses per unit of time in the whole program changes;
and we have seen that this metric impacts directly the memory power dissipation.

Because of those variations between the synthetic test and the new application, we need to
measure the power dissipation of memory and CPU for some more values of the parameters.
This requirement of new power measurements comes however naturally in the process; we
cannot expect to be able to predict the power dissipation of any application that uses a
queue without having any knowledge about the characteristics of the application according
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to power. We are then able to extract from those power measurements both power dissipation
of the retry-loop (which is correlated to the queue implementation) and power dissipation
of the parallel section (which depends on the application that actually uses one of the queue
implementations).

Concerning the CPU power dissipation, we do not reconsider the assumption that it
mostly depends on the CPU power dissipated in the parallel section, i.e. there is no clear
difference of CPU power in the different queue implementations that we have studied in this
deliverable. However, contrary to the floating point division case in synthetic benchmark,
we do not know what is the relation between frequency and CPU power. We then still rely
on the following equation:

P (C) = P
(C)
stat + soc × P (C)

active + n× P (C)
dyn (f, prog), which is equivalent to

P
(C)
dyn (f, prog) =

1

n
×
(
P (C) − P (C)

stat − soc × P (C)
active

)
Hence, we choose a pattern and a queue implementation, and for each value of the

frequency, we run the application and obtain the corresponding value of dynamic CPU
power.

Regarding the memory consumption, we rely on a simple memory consumption model, in
order to estimate the intensity of remote accesses in the parallel section. In the Mandelbrot
application, the number of cache misses in a given parallel section is expected to depend on
the pattern that is used; more precisely, it should be roughly proportional to the size of the
subregion (2 × 2, 4 × 4 pixels, . . . ) that is used in the application. We recall that (i) the

memory power is computed through P (M) = P
(M)
stat +P

(M)
dyn , where P

(M)
dyn is proportional to the

number of accesses to remote or main memory per unit of time, (ii) the ratio of time spent
in the retry-loop is r = 1 − (T pw)/(nλf), (iii) in the synthetic benchmark, i.e. without
memory accesses in the parallel section, thanks to memory power measurements, we have
instantiated the value of ρ, such that the dynamic memory power is P

(M)
dyn = ρnr.

Now, for the parallel section of the Mandelbrot application, which contains memory
accesses, we define ρ′, such that ρ′n would be the dynamic memory power if there were
only parallel sections and no retry-loop. As the application spends r% of the time in the
parallel section, and (1−r)% in the retry-loop, the dynamic memory power can be computed
through:

P
(M)
dyn = ρ× n× (1− r) + ρ′ × n× r.

Then, we run the application only once to obtain the value of ρ′.

The results are presented in Figure 34, where dashed lines and points are the actual
measurements, and plain lines are predictions. The key is again the one represented in
Figure 16, on page 36.
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Figure 34: Prediction on Mandelbrot simple implementation
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4.2 Concurrent Queues on Movidius Embedded Platform

As described in Section 2.3 the Myriad platform avails a number of different options for
synchronizing SHAVEs and the LEON processor. Based on these we propose a number of
different concurrent queue implementations and evaluate them experimentally with respect
to performance and power consumption.

4.2.1 Concurrent Queue Implementations

In this section we describe the concurrent queue implementations we evaluated on Myriad
platform in the context of this work. Concurrent queues are used in a wide range of applica-
tion domains, especially in the implementation of path-finding and work-stealing algorithms.
The queue is implemented as a bounded cyclic array, accessed by all SHAVE cores. SHAVEs
request concurrently access to the shared queue for inserting and removing elements.

Table 4 summarizes all different queue implementations we developed and evaluated on
the platform. We used three different kinds of synchronization primitives: mutexes, message
passing over shared variables and SHAVEs’ FIFOs. Mutexes and SHAVEs’ FIFOs were de-
scribed in Section 2.3. With respect to the shared variables, we implemented communication
buffers between the processors, used to exchange information for achieving synchronization.
To reduce the cost of spinning on shared variables, we allocated these buffers in processor
local memories, to avoid the congestion of the Myriad main buses.

The queue implementations can be divided in two basic categories: Lock based and
Client-Server.

Lock-based Implementations The lock-based implementations of the concurrent queue
utilize the Mutex registers provided by the Myriad architecture. We implemented two dif-
ferent lock-based algorithms: In the first one, a single lock is used to protect the critical
section of the enqueue() function and a second one to protect the critical section of the
dequeue(). Therefore, simultaneous access to both ends of the queue can be achieved. The
second implementation utilizes only one lock to protect the whole data structure.

Client-Server Implementations The Client-Server Implementations are based on the
idea that a server arbitrates the access requests to the critical sections of the application
and executes them. Therefore, the clients do not have direct access to the critical section.
Instead, they provide the server with the required information for executing the critical
section. This set of implementations is an adaptation of the Remote Core Locking algorithm
(RCL) [63][56]. In Myriad platform the role of the server can be played either by LEON or
a SHAVE core, as shown in Table 4. The SHAVEs are the clients, requesting access to the
shared data from the server.

To maximize the efficiency of the Client-Server implementations, each SHAVE allocates
the elements to be enqueued in its local CMX slice. Although the CMX is much smaller in
comparison with the DDR memory, it provides much smaller access time for the SHAVEs
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Figure 35: Client-Server Implementation: The server maintains the order of the allocated
elements by storing their addresses in a FIFO.

than, for example, with the DDR. The server allocates the queue in a CMX slice, since
DRAM is much smaller.

We implemented two versions of the Client-Server synchronization algorithms. In the
first one, the server maintains the FIFO order of the queue by storing the addresses of the
allocated elements in a FIFO manner. In an enqueue, the client allocates the element in its
local CMX slice and then sends the address of the element to the server, which pushes the
address in the queue. In the dequeue case, the client sends a dequeue message to the server
and waits for the server to respond with the address of the dequeued element.

Figure 35 illustrates this implementation with only two clients: Client0 enqueues element
e5 in CMX0 and sends the address to the server. The server pushes the address in the
queue and notifies the client that the enqueue has finished with an enq fin message. Client1
requests a dequeue and the server responds with the address of the e0 element.

We evaluated this algorithm by designing several alternatives: In the first one, the server
is the LEON processor and in the second is a SHAVE. In Table 4 these are displayed as
Leon–Srv–addr and SHAVE–Srv–addr respectively. Also, we experimented with both shared
variables and SHAVEs’ FIFOs synchronization primitives.

The main advantage of this algorithm is that it reduces the stalling of the clients, espe-
cially during the enqueue operations. The client sends the address to the server and then
can proceed with other calculations, without waiting for the server to respond. This applies
especially in the case where the SHAVE FIFO synchronization primitive is used. The client
stalls only when the server’s FIFO is full. Additionally, the fact that the element allocation
takes place only in local memories reduces both the execution time and the power consump-
tion. Another parameter that affects the efficiency of the algorithm is the synchronization
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Figure 36: Client-Server Implementation: The server maintains FIFO order of the allocated
objects by pointing to the first and the last enqueued elements.

primitive used. We expect SHAVEs’ FIFOs primitive to be efficient both in terms of per-
formance and power consumption, since it avoids memory accesses during the exchange of
information between the clients and the server. However, the main disadvantage in this case
is that it can be only implemented using a SHAVE as a server.

In the second Client-Server implementation we altered the queue structure as follows: The
server, instead of managing a queue to store object addresses, utilizes two pointers: head
and tail that point at the first and the last element allocated respectively. Additionally, each
element has a next pointer which points to the next element, keeping in this way the FIFO
order. All these pointers are managed by the server, in order to improve the application
parallelism by allowing the clients to perform tasks only outside the critical section.

When a client allocates an object in its local queue stored in CMX memory, it sends the
address to the server, as in the first implementation. When the server receives the address,
first it updates the next pointer of the last element to point to the newly allocated element.
Then, it updates the tail pointer to point to the new element. (This is the same that happens
in a singly linked list FIFO data structure). In the dequeue, as soon as the server receives
the request, it sends to the client the address of the element pointed by the head and then
updates the head, using the next pointer of the dequeued element.

To illustrate this algorithm, Figure 36 shows an example. Initially, five elements exist in
the queue. e0 is the first allocated and e4 is the last one. Therefore, head points to e0 and
tail to e4. Client0 allocates element e5 an element in CMX0 and sends the address to the
server. The server sets the next pointer of e4 to point to e5 and updates the tail pointer to
e5 as well. Then, it sends an enq fin message to Client0. Client1 requests a dequeue. The
server receives the message, updates the head pointer and sends the address of e0 to the
client.
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Synchronization Primitive
Mutex Shared Var SHAVE FIFO

no server Y - -
Leon-srv-addr - Y -
SHAVE-srv-addr - Y Y
Leon-srv-h/t - - -
SHAVE-srv-h/t - Y Y

Table 4: Concurrent Queue Implementations: (”Y” indicates the ones that are evaluated in
this work.)

In comparison with the Leon–Srv–addr or SHAVE–Srv–addr, this implementation con-
sumes less memory space. Therefore, the space available in each local CMX slice is affected
only by the number of allocated elements of the corresponding client, unlike the previous
implementation where the queue of stored addresses reduced the available memory of the
slice where it was allocated. It is important to mention that each client accesses only its
local CMX slice during the enqueue and the dequeue operations. Only the server makes
inter-slice accesses. The disadvantage of this implementation is that it cannot be efficiently
implemented using LEON as a server, since it accesses the next pointers of each element
with high cost. The implementation was designed using both shared variables and SHAVEs’
FIFOs for communication between the server and the clients. In Table 4 is displayed as
SHAVE-srv ht.

4.2.2 Experimental Evaluation

The concurrent queue implementations were evaluated using a synthetic benchmark, which
is composed by a fixed workload of 20,000 operations and it is equally divided between the
running SHAVEs. In other words, in an experiment with 4 SHAVEs each one completes 5,000
operations, while in an experiment with 8 SHAVEs, each one completes 2,500 operations. In
the implementations where a SHAVE is utilized as a server, we run the experiments using
up to 6 clients (to have the same number of enqueuers and dequeuers).

All algorithms were evaluated in terms of time performance, for the given fixed workload,
which is expressed in number of execution cycles. More specifically, in Myriad platform the
data flow is controlled by LEON. SHAVEs start their execution when instructed to do so by
LEON and then LEON waits for them to finish. The number of cycles measured is actually
LEON cycles from the point that SHAVEs start their execution until they all finish. This
number represents accurately the execution time. Power consumption was measured using
a shunt resistor connected at the 5V power supply cable. Using a voltmeter attached to
the resistor’s terminals we calculated the current feeding the board and therefore the power
consumed by the Myriad platform.

We performed two sets of experiments for evaluating the behavior of the designs: dedi-
cated SHAVEs and random operations. In the “dedicated SHAVEs” experiment each SHAVE
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performs only one kind of operations. In other words, half of the SHAVEs enqueue and half
dequeue elements to / from the data structure. “Random operations” means that each
SHAVE has equal probability to perform either an enqueue or a dequeue each time it pre-
pares its next operation.

Execution Time Evaluation In this subsection we present the experimental results for
performance. mtx-2-locks is the lock-based queue implementation with 2 locks, while mtx-1-
lock is the same implementation with a single lock. leon-srv-addr refers to the Client-Server
implementation, where the server is LEON and stores the addresses of the objects in a queue,
while SHAVE-srv-addr is the same implementation where a SHAVE is the server. leon-srv-ht
and shave-srv-ht refers to the Client-Server implementation where the server (LEON and a
SHAVE respectively) manages a head and a tail pointer to maintain the FIFO order. Finally,
“shared-var” means that the communication is achieved using a shared buffer (i.e. shared
variables) and “sf” means that the communication is made through the SHAVEs’ FIFOs.

Figure 37 and Figure 38 show the execution time of dedicated SHAVEs and random
operations respectively. We notice that the mtx-2-locks implementation is the fastest one
in the case of 8 SHAVEs and seems to scale well. This is expected, since it provides the
maximum possible concurrency. It requires about half the number of execution cycles in
comparison with the mtx-1-lock.

The SHAVEs’ FIFOs implementations perform well, especially in the case of 4 SHAVEs in
the random operations experiment (28.3% in comparison to the mtx-2-locks). The utilization

Figure 37: Execution cycles for different synchronization algorithms, when half of the
SHAVEs perform enqueue and half dequeue operations.
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Figure 38: Execution cycles for different synchronization algorithms, when the SHAVEs
perform randomly enqueue and dequeue operations.

of SHAVEs’ FIFOs for communication seems to be very efficient in terms of execution time.
On the other hand, shared variables provide much lower execution time: For example, shave-
srv-addr-shared-var leads to 53.3% more execution cycles in comparison with the shave-srv-
addr-sf in the dedicated SHAVEs experiment with 6 SHAVEs. Also, the implementations
where the server maintains a head and tail pointer performs slightly better in most cases in
comparison with the one where the server stores the addresses of the elements (up to 16.7%
in random operations for the 6 SHAVEs experiment).

In most implementations, we notice a very large drop in the execution time from 2 to 4
SHAVEs, due to the increase of concurrency. In other words, in the 2 SHAVEs experiments
there are time intervals where no client requests access to the shared data. However, in
case of 4 clients or more, there is always a SHAVE accessing the critical section. Since
the workload is fixed, there is a large drop in the execution time compared to the 2 client
experiment. However, since access to the critical section is serialized, the execution time drop
for more than 4 SHAVEs is much smaller (e.g. in case of mtx-2-locks) or even non-existent
(e.g. in mtx-1-lock).

Finally, in all experiments where a SHAVE is utilized as a server there is an increase in
execution time from 4 to 6 SHAVEs. The reason for that is the overhead added by inter-slice
accesses, which is larger than the decrease in execution time due to increased concurrency.
The utilization of LEON as a server using shared variables for communication (i.e. leon-
srv-addr-shared-var) is inefficient since two overheads are accumulated: LEON is accessing
variables in the CMX memory (which is more costly in comparison with SHAVEs) and the
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Figure 39: Power consumption for different synchronization algorithms, when half of the
SHAVEs perform enqueue and half dequeue operations.

spinning on shared variables for achieving communication.

Power Consumption Evaluation As previously stated, power consumption was mea-
sured using a shunt resistor connected to the power supply of the platform. Figure 39 and
Figure 40 show the power consumption for dedicated SHAVEs and random operations. For
the 8 SHAVEs experiment the most power efficient implementation is the lock-based with a
single lock (6.25% in dedicated SHAVEs in comparison with the mtx-2-locks). However, for
a smaller number of clients, the SHAVEs’ FIFOs implementations are the most power effi-
cient. Indeed, power consumption drops up to 6.8% for 6 SHAVEs in the dedicated SHAVEs
experiment.

We notice that the lock-based implementation with a single lock consumes less power
than the 2-lock implementation. This is due to the fact that the power consumption is
affected by the number of SHAVEs accessing the memory concurrently. In the single lock
implementation only one SHAVE accesses the memory for performing operations. However,
in the 2-locks implementation there are 2 SHAVEs which perform operations concurrently,
while the rest are spinning on the locks. Therefore, the 2-lock algorithm consumes more
power.

Spinning on a lock consumes very low power, because mutexes are hardware implemented.
Microbenchmarking experiments show that 8 SHAVEs spinning on a lock concurrently, con-
sume about 20% less power in comparison with the case where 8 SHAVEs access the memory
concurrently. In fact, this is the case with the shared variables synchronization primitive.
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Figure 40: Power consumption for different synchronization algorithms, when the SHAVEs
perform randomly enqueue and dequeue operations.

All shared variable implementations consume a lot of power, because spinning on a memory
location is energy inefficient, even if the spinning takes place in a local CMX slice.

SHAVEs’ FIFOs communication method is the most energy efficient. When a SHAVE
tries to write in a full FIFO or read from an empty FIFO stalls, until the FIFO gets non-

Figure 41: Normalized energy per operation of the synchronization algorithms, when half of
the SHAVEs perform enqueue and half dequeue operations.
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Figure 42: Normalized energy per operation of the synchronization algorithms, when the
SHAVEs perform randomly enqueue and dequeue operations.

full or non-empty respectively. Microbenchmarking experiments we performed show that 8
SHAVEs stalling in a FIFO consume about 28% less power than spinning on a mutex. Indeed,
stalling in FIFOs is common in our experiments, where the contention is high. The fact that
this synchronization algorithm avoids spinning on memory locations and set SHAVEs to stall
mode makes it very power efficient.

Energy per operation Evaluation To evaluate in more depth the synchronization al-
gorithms, we present the energy per operation results in Figure 41 and Figure 42 for the
dedicated and the random operations experiments respectively. The results are normalized
to the mtx-2-locks calculated values. We notice that the RCL implementations that uti-
lize the SHAVE’s FIFOs for communication between the clients and the server consume in
almost all cases less energy per operation than the mtx-2-locks. In the random operation
experiment, shave-srv-ht-sf consumes 33% less energy per operation in comparison with the
mtx-2-locks. Indeed, when utilizing SHAVEs FIFOs instead of memory buffers for arbitra-
tion between the SHAVEs, the energy consumption is low. The shared buffer communication
scheme is proven to be inefficient in terms of energy consumption. For instance, leon-srv-
addr-shared-var consumes more than two times energy per operation in comparison with the
mtx-2-locks.

Discussion The mutex synchronization primitive is indeed efficient for the concurrent
queue implementation in terms of both performance and power consumption (especially
in the Myriad platform, where mutexes are hardware implemented and very optimized).
However, our results show that RCL implementations provide very promising results for the
queue implementations and in most cases perform similar to the lock-based ones. We expect
that in future MPSoCs, where the number of cores will increase even further, client-server
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implementations will become even more efficient.
The reason that the RCL implementations seem an attractive alternative to the lock-

based ones is the fact that they transfer computational overhead of the critical sections
from the cores, which are the queue workers (clients) to another dedicated core that plays
the role of the server. The computational overhead of inserting and removing elements
to / from the queue is transferred from the clients to the server. Therefore, while the
server executes the critical section, the clients can proceed with other computations, thus
increasing the parallelism and reducing the application execution time. Furthermore, by
minimizing the communication overhead between the clients and the server (e.g. by utilizing
the SHAVE’s FIFOs), the results are very satisfactory. On the other hand, in the lock-based
implementations, the computational overhead of accessing the queue elements is handled
by the workers. However, in this case, simultaneous accesses to the data structure can
be achieved, which is obviously not possible in the RCL algorithm. However, with these
experiments we show that the RCL algorithm should be evaluated in embedded systems
along with the lock-based solutions, especially in applications that use data structures which
allow relatively low level of parallelism.
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5 Analysis of Energy Consumption of Concurrent Search

Trees: ∆Trees

5.1 Introduction

Concurrent trees are fundamental data structures that are widely used in different contexts
such as load-balancing [22, 36, 66] and searching [3, 12, 13, 18, 24, 25]. Most of the existing
highly-concurrent search trees are not considering the fine-grained data locality. The non-
blocking concurrent search trees [13, 25] and Software Transactional Memory (STM) search
trees [3, 12, 18, 24] have been regarded as the state-of-the-art concurrent search trees. They
have been proven to be scalable and highly-concurrent. However these trees are not designed
for fine-grained data locality. Prominent concurrent search trees which are often included in
several benchmark distributions such as the concurrent red-black tree [24] by Oracle Labs
and the concurrent AVL tree developed by Stanford [12] are not designed for data locality
either. It is challenging to devise search trees that are portable, highly concurrent and
fine-grained locality-aware. A platform-customized locality-aware search trees [50, 65] are
not portable while there are big interests of concurrent data structures for unconventional
platforms [37, 34]. Concurrency control techniques such as transactional memory [42, 38]
and multi-word synchronization [39, 33, 52] do not take into account fine-grained locality
while fine-grained locality-aware techniques such as van Emde Boas layout [64, 78] poorly
support concurrency.

5.1.1 I/O model

One of the most cited memory models is is the two-level I/O model of Aggarwal and Vitter
[4]. In their seminal paper, Aggarwal and Vitter postulated that the memory hierarchy
consists of two levels, a main memory with size M (e.g. DRAM) and a secondary memory
of infinite size (e.g. disks). Data is transferred in B-sized blocks between those two levels
of memory and CPUs can only access data which are available in the main memory. In the
I/O model, an algorithm time complexity is assumed to be dominated by how many block
transfers are required.

The simplicity and feasibility of this model has made this model popular. However to use
this model, an algorithm has to know the B and M parameters in advance. The problem is
that these parameters are sometimes unknown and most importantly not portable between
platforms. For this I/O model, B-tree [5] is an optimal search tree [17].

Concurrent B-trees [9, 16, 30, 31] are optimised for a known memory block size B (e.g.
page size) to minimise the number of memory blocks accessed during a search, thereby
improving data locality. In reality there are different block sizes at different levels of the
memory hierarchy that can be used in the design of locality-aware data layout for search trees.
For example in [50, 65], Intel engineers have come out with very fast search trees by crafting
a platform-dependent data layout based on the register size, SIMD width, cache line size,
and page size. Namely, existing concurrent B-trees limits its spatial locality optimisation to
the memory level with block size B, leaving access to other memory levels with a different
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block size unoptimised.
For example in this I/O model, a traditional B-tree that is optimised for searching data in

disks (i.e. B is page size), where each node is an array of sorted keys, is optimal for transfers
between a disk and RAM (cf. Figure 44c). However data transfers between RAM and last
level cache (LLC) is no longer optimal. For searching a key inside each B-sized block in
RAM, the transfer complexity is Θ(log(B/L)) transfers between RAM and LLC, where L
is the cache line size. Note that a search with optimal cache line transfers of O(logLB) is
achievable by using the van Emde Boas layout [11].

5.1.2 Ideal-cache model

The ideal-cache model was introduced by Frigo et. al. in [26], which is similar to the I/O
model except that the block size B and memory size M are unknown. This paper has coined
the term cache-oblivious algorithms. Using same analysis of the Aggarwal and Vitter’s two-
level I/O model, an algorithm is categorised as cache-oblivious if it has no variables that need
to be tuned with respect to hardware parameters, such as cache size and cache-line length in
order to achieve optimality, assuming that I/Os are performed by an optimal off-line cache
replacement strategy.

Cache-oblivious algorithms by default have the optimal temporal locality, mainly because
of the unknown M . Thus, cache-oblivious algorithms mainly concentrate on optimising
spatial locality. Because it is optimal for an arbitrary size of the two levels of memory,
a cache-oblivious algorithm is also optimal for any adjacent pair of available levels of the
memory hierarchy. Therefore without knowing anything about memory level hierarchy and
the size of each level, a cache-oblivious algorithm can automatically adapt to multiple levels
of the memory hierarchy.

Empirical results have showed that a cache-oblivious algorithms are often outperform
the basic RAM algorithms but not always as good as the carefully tuned (cache-aware)
algorithms. However cache-oblivious algorithms perform better on multiple levels of memory
hierarchy and are more robust despite changes in memory size parameters compared to the
cache-aware algorithms [11].

It is important to note that in the ideal-cache model, B-tree is no longer optimal because
of the unknown B. Instead, the trees that are described in the seminal paper [78] by Peter
van Emde Boas, are optimal. The van Emde Boas (vEB) tree is an ordered dictionary data
type which implements the idea of a recursive structure of priority queues. The efficient
structure of the vEB tree arranges data in a recursive manner so that related values are
placed in contiguous memory locations (cf. Figure 43). This work has inspired many cache-
oblivious data structures such as cache-oblivious B-trees [6, 7, 8] and cache-oblivious binary
trees [10]. These researches have demonstrated that vEB layout is suitable for cache oblivious
algorithms as it lowers the upper bound on memory transfer complexity.

For example in a system where block size B = 3, a search tree with Breadth First
Search layout (or BFS tree for short) (cf. Figure 44a) with height 4 will need to do three
memory transfers to locate the key in leaf-node 13 in top-down traversing. The first two
levels with three nodes (1, 2, 3) will fit within a single block transfer, while the other
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Figure 43: Static van Emde Boas (vEB) layout: a tree of height h is recursively split at
height h/2. The top subtree T of height h/2 and m = 2h/2 bottom subtrees B1;B2; . . . ;Bm

of height h/2 are located in contiguous memory locations in the order of T ;B1;B2; . . . ;Bm.

two levels need to be loaded in two separate memory transfers, where each of the transfer
contains (6, 7, 8) and (13, 14, 15) nodes, respectively. Therefore, required memory transfers
is (log2N − log2B) = log2N/B ∼ log2N for N � B.

However, for a vEB tree with the same height, the required memory transfers is only two.
As seen in Figure 44b, locating the key in leaf-node 12 requires only (1, 2, 3) nodes transfer
followed by (10, 11, 12) nodes transfer. This means the transfer complexity is now reduced
to log2N

log2B
= logB N , simply by crafting an efficient data structure so that nearby nodes are

located in adjacent memory locations. If B = 1024, traversing a BFS tree requires 10x more
I/Os than a vEB tree.

So far the vEB layout is shown to have log2B less I/Os for two-level memory. On
commodity machines where exists multiple-level memory, the vEB layout is outright efficient.
In a typical machine having three levels of cache (with 64B cache line size), a RAM (with
4KB page size), and a disk; vEB tree can deliver up to 640x less I/Os than BFS tree,
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Figure 44: Illustration of required memory transfers in searching for key 13 in (a) BFS tree
layout and (b) vEB tree layout. An example of multiple levels of memory is shown in (c).
Bx is the block size B between levels of memory.

assuming node size is 4 bytes (Figure 44c).
However, while proven to perform well in searching, vEB trees poorly support concurrent

update operations. Inserting or deleting a node in a tree may result in relocating a large part
of the tree in order to maintain the vEB layout. The work in [8] has discussed this problem
but a feasible implementation hasn’t been reported yet [9]. We would like to refer the readers
to [11, 26] for a more comprehensive overview of the I/O model and the ideal-cache model.

We introduce ∆Tree family, novel locality-aware concurrent search trees. ∆Tree is an
unbalanced locality-aware concurrent search tree of ∆Nodes whose Search, Insert, and Delete
are non-blocking to each other, but Insert and Delete may be occasionally blocked by main-
tenance operations within a ∆Node. ∆Node is a fixed size tree-container with the van Emde
Boas layout (cf. Figure 45(left)).

BalancedDT is a balanced ∆Tree with pointer-less ∆Nodes, enabling ∼200% more keys
to fit in a ∆Node, resulting in 90% improvement in performance and 2x improvement in
energy efficiency compared to ∆Tree.

HeterogeneousBDT is a ”heterogeneous” BalancedDT where its inner ∆Nodes are leaf-
oriented but its leaf ∆Nodes are not, enabling 100% more keys fitting in the leaf ∆Nodes,
resulting in 20% improvement in performance and 50% improvement in energy efficiency
compared to BalancedDT.

5.2 Overview on the van Emde Boas layout

We propose a modification to the original (static) van Emde Boas (vEB) layout to support
high concurrency and fast update operations. This effort results in cache-oblivious concurrent
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search trees in the form of a dynamic vEB layout. We first define the following notations
that will be use to elaborate more on the idea:

• bi (unknown): block size in terms of the number of nodes at level i of the memory
hierarchy (like B in the I/O model [4]), which is unknown as in the cache-oblivious
model [26]. When the specific level i of the memory hierarchy is irrelevant, we use
notation B instead of bi in order to be consistent with the I/O model.

• UB (known): the upper bound (in terms of the number of nodes) on the block size bi
of all levels i of the memory hierarchy.

• ∆Node: the largest recursive subtree of a van Emde Boas-based search tree that con-
tains at most UB nodes (cf. dashed triangles of height 2L in Figure 45). ∆Node is a
fixed-size tree-container with the vEB layout.

• ”level of detail” k is a partition of the tree into recursive subtrees of height at most 2k.

• Let L be the level of detail of ∆Node. Let H be the height of a ∆Node, we have
H = 2L. For simplicity, we assume H = log2(UB + 1).

• N, T : size and height of the whole tree in terms of basic nodes (not in terms of ∆Nodes).

5.2.1 Static van Emde Boas (vEB) layout

The conventional static van Emde Boas (vEB) layout has been introduced in cache-oblivious
data structures [6, 7, 8, 10, 26]. Figure 43 illustrates the vEB layout. Suppose we have a
complete binary tree with height h. For simplicity, we assume h is a power of 2, i.e. h = 2k.
The tree is recursively laid out in the memory as follows. The tree is conceptually split
between nodes of height h/2 and h/2+1, resulting in a top subtree T and m1 = 2h/2 bottom
subtrees B1, B2, · · · , Bm of height h/2. The (m1 + 1) top and bottom subtrees are then
located in consecutive memory locations in the order of subtrees T,B1, B2, · · · , Bm. Each
of the subtrees of height h/2 is then laid out similarly to (m2 + 1) subtrees of height h/4,
where m2 = 2h/4. The process continues until each subtree contains only one node, i.e. the
finest level of detail, 0.

The main feature of the vEB layout is that the cost of any search in this layout is
O(logB N) memory transfers, where N is the tree size and B is the unknown memory block
size in the I/O model [4] or ideal-cache [26] model. Namely, its search is cache-oblivious.
The search cost is the optimal and matches the search bound of B-trees that requires the
memory block size B to be known in advance. Moreover, at any level of detail, each subtree
in the vEB layout is stored in a contiguous block of memory.

Although the static vEB layout is helpful for utilising data locality, it poorly supports
concurrent update operations. Inserting (or deleting) a node at position i in the contiguous
block storing the tree may restructure a large part of the tree. For example, inserting new
nodes in the full subtree B1 (a leaf subtree) in Figure 43 will affect the other subtrees
B2, B3, · · · , Bm by by rebalancing existing nodes between B1 and the subtrees in order to



D2.1: Models for energy consumption of data structures and algorithms 76

have space for new nodes. Even worse, we will need to allocate a new contiguous block of
memory for the whole tree if the previously allocated block of memory for the tree runs
out of space [10]. Note that we cannot use dynamic node allocation via pointers since at
any level of detail, each subtree in the vEB layout must be stored in a contiguous block of
memory.

5.2.2 Relaxed cache-oblivious model and dynamic vEB layout
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... ...
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≤ UB
H = 2L

≤ B
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T ≥ logN
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≤ B
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Figure 45: (left): New dynamic vEB layout. (right): Search using dynamic vEB layout.

In order to make the vEB layout suitable for highly concurrent data structures with
update operations, we introduce a novel dynamic vEB layout. Our key idea is that if we
know an upper bound UB on the unknown memory block size B, we can support dynamic
node allocation via pointers while maintaining the optimal search cost of O(logB N) memory
transfers without knowing B (cf. Lemma 5.1).

We define relaxed cache oblivious algorithms to be cache-oblivious (CO) algorithms with
the restriction that an upper bound UB on the unknown memory block size B is known
in advance. As long as an upper bound on all the block sizes of multilevel memory is
known, the new relaxed CO model maintains the key feature of the original CO model [26]:
First, temporal locality is exploited perfectly as there is no constraints on cache size M
in the model. With this an optimal offline cache replacement policy can be assumed. In
practice, the Least Recently Used (LRU) policy with memory of size (1 + ε)M , where ε > 0,
is nearly as good as the optimal replacement policy with memory of size M [67]; Second,
analysis for a simple two-level memory are applicable for an unknown multilevel memory (e.g.
registers, L1/L2/L3 caches and memory). Namely, an algorithm that is optimal in terms
of data movement for a simple two-level memory is asymptotically optimal for an unknown
multilevel memory. This feature enable designing algorithms that can utilise fine-grained
data locality in deep memory hierarchy of modern architectures. In practice, although the
exact block size at each level of the memory hierarchy is architecture-dependent (e.g. register
size, cache line size), obtaining a single upper bound for all the block sizes (e.g. register size,
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cache line size and page size) is easy. For example, a page size obtained from the operating
system is such an upper bound.

Figure 45 illustrates the new dynamic vEB layout based on the relaxed cache oblivious
model. Let L be the coarsest level of detail such that every recursive subtree contains at
most UB nodes. Namely, let H and S be the height and size of such a balanced subtree
then H = 2L and S = 2H < UB. The tree is recursively partitioned into level of detail L
where each subtree represented by a triangle in Figure 45, is stored in a contiguous memory
block of size UB. Unlike the conventional vEB, the subtrees at level of detail L are linked
to each other using pointers, namely each subtree at level of detail k > L is not stored in
a contiguous block of memory. Intuitively, since UB is an upper bound on the unknown
memory block size B, storing a subtree at level of detail k > L in a contiguous memory
block of size greater than UB, does not reduce the number of memory transfers, provided
there is perfect alignment. For example, in Figure 45, a travel from a subtree A at level of
detail L, which is stored in a contiguous memory block of size UB, to its child subtree B at
the same level of detail will result in at least two memory transfers: one for A and one for
B. Therefore, it is unnecessary to store both A and B in a contiguous memory block of size
2UB. As a result, the memory transfer cost of any search in the new dynamic vEB layout
is intuitively the same as that of the conventional static vEB layout (cf. Lemma 5.1) while
the dynamic vEB supports highly concurrent update operations.

T1

T3
U

Figure 46: Depiction of a DeltaNode U . Triangles Tx represent the ∆Nodes.

Let ∆Node be a subtree at level of detail L, which is stored in a contiguous memory
block of size UB and is represented by a triangle in Figure 45.

Lemma 5.1. A search in a complete binary tree with the new dynamic vEB layout needs
O(logB N) memory transfers, where N and B is the tree size and the unknown memory block
size in the ideal cache model [26], respectively.

Proof. (Sketch) Figure 45 illustrates the proof. Let k be the coarsest level of detail such that
every recursive subtree contains at most B nodes. Since B ≤ UB, k ≤ L, where L is the
coarsest level of detail at which every recursive subtree contains at most UB nodes. That
means there are at most 2L−k subtrees along the search path in a ∆Node and no subtree of
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depth 2k is split due to the boundary of ∆Nodes. Namely, triangles of height 2k fit within a
dashed triangle of height 2L in Figure 45.

Due to the property of the new dynamic vEB layout that at any level of detail i ≤ L,
a recursive subtree of depth 2i is stored in a contiguous block of memory, each subtree of
depth 2k within a ∆Node is stored in at most 2 memory blocks of size B (depending on the
starting location of the subtree in memory). Since every subtree of depth 2k fits in a ∆Node
(i.e. no subtree is stored across two ∆Nodes), every subtree of depth 2k is stored in at most
2 memory blocks of size B.

Since the tree has height T , dT/2ke subtrees of depth 2k are traversed in a search and
thereby at most 2dT/2ke memory blocks are transferred.

Since a subtree of height 2k+1 contains more than B nodes, 2k+1 ≥ log2(B + 1), or
2k ≥ 1

2
log2(B + 1).

We have 2T−1 ≤ N ≤ 2T since the tree is a complete binary tree. This implies log2N ≤
T ≤ log2N + 1.

Therefore, the number of memory blocks transferred in a search is 2dT/2ke ≤ 4d log2N+1
log2(B+1)

e =

4dlogB+1N + logB+1 2e = O(logB N), where N ≥ 2.

5.3 ∆Tree implementation

Figure 46 illustrates a ∆Tree U . U uses the dynamic vEB layout presented in Section 5.2.2.
The ∆Tree consists of |U | ∆Nodes of fixed size UB each of which contains a leaf-oriented
binary search tree (BST) Ti, i = 1, . . . , |U |. ∆Node’s internal nodes are put together in
cache-oblivious fashion using the vEB layout.

The ∆Tree U acts as a dictionary of abstract data types. It maintains a set of values which
are members of an ordered universe [25]. The ∆Tree U provides the following operations:
insertNode(v, U), which adds value v to the set U , deleteNode(v, U) for removing a
value v from the set, and searchNode(v, U), which determines whether value v exists in
the set. We use the term update operation for either insert or delete operation. We assume
that duplicate values are not allowed inside the set and a special value, for example 0, is
reserved as an indicator of an Empty value.

5.3.1 Data structures

The implementation of ∆Tree utilises the data structures defined in Figure 47. The topmost
level of ∆Tree is represented by a struct universe (line 20) that only contains a pointer to
the root of the topmost ∆Node.

Each ∆Node that forms the ∆Tree is represented by the struct ∆Node (line 12). Each
∆Node has an associated mirror. This structure consists of a field opcount, which is a
counter that indicates how many insert/delete threads that are currently operating within
that ∆Node; field locked that indicates whether a ∆Node is currently locked by maintenance
operations: when it is set to true, no insert/delete threads are allowed to get in. The root
pointer serves as the root of a ∆Node, while the pointer mirror references root of the
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1: Struct node n:
2: member fields:
3: tid ∈ N, if > 0 indicates the node is root of a

∆Node with an id of tid (Ttid)
4: value ∈ N, the node value, default is empty
5: mark ∈ {true, false}, a value of true indicates a logically

deleted node
6: left, right ∈ N, left / right child pointers
7: isleaf ∈ true, false, indicates whether the

node is a leaf of a ∆Node, default is true

8: Struct triangle S:
9: member fields:

10: nodes , a group of pre-allocated node n {n1, n2, . . . , nUB}
11: buffer , an array of value with a length

of the current number of threads

12: Struct ∆Node T :
13: member fields:
14: locked , indicates whether a ∆Node is locked
15: opcount , a counter for the active update operations
16: root , pointer the root node of the ∆Node (Sx.n1)
17: rootbuffer , pointer the buffer of the ∆Node (Sx.buffer)
18: mirror , pointer to root node of the ∆Node’s mirror

(Sx′ .n1)
19: mirrorbuffer , pointer to buffer of the ∆Node’s mirror

(Sx′ .buffer)

20: Struct universe U :
21: member fields:
22: root, pointer to the root of the topmost ∆Node (T1.root)

Figure 47: ∆Tree’s data structures.
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∆Node’s mirror. Also there is rootbuffer and mirrorbuffer pointers that reference the
∆Node’s buffer and the mirror’s buffer, respectively.

Each node structure (line 1) contains field value, which holds a value that will guide
the search or a data value at a leaf-node. Field mark is used to indicate whether a value is
logically deleted. A true value of isleaf indicates a leaf node (as in the leaf-oriented tree),
and false otherwise. Field tid is a unique identifier of a corresponding ∆Node and it is used
to let a thread know whether it has moved between ∆Nodes.

5.3.2 Function specifications

1: function searchNode(v, U)
2: lastnode, p← U.root
3: while p 6= end of tree & p.isleaf 6= TRUE do
4: lastnode← p
5: if p.value < v then
6: p← p.left
7: else
8: p← p.right

9: if lastnode.value = v then
10: if lastnode.mark = FALSE then . lastnode is not deleted
11: return TRUE
12: else
13: return FALSE
14: else
15: Search (last visited ∆Node’s rootbuffer) for v
16: if v is found then
17: return TRUE
18: else
19: return FALSE

Figure 48: ∆Tree’s wait-free search algorithm.
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1: function insertNode(v, U)
2: t← U.root
3: return insertHelper(v, t)

4: function deleteNode(v, U)
5: t← U.root
6: return deleteHelper(v, t)

7: function deleteHelper(v, node)
8: success← TRUE
9: if Entering new ∆Node Tx then
10: T ′

x ← getParent∆Node(Tx)
11: decrement(T ′

x.opcount)
12: waitandcheck(Tx.locked, Tx.opcount)

13: if (node.isleaf = TRUE) OR (!node.left &
!node.right) then

14: if node.value = v then
15: if CAS(node.mark, FALSE, TRUE) !=

FALSE) then
16: success← FALSE . already deleted!
17: decrement(Tx.opcount)
18: else
19: if (node.left.value&node.right.value=empty)

then
20: decrement(Tx.opcount)
21: mergeNode(parentOf(Tx)) ←

TRUE
22: else
23: success←deleteHelper(v, node) .

re-try

24: else
25: Search (Tx.rootbuffer) for v
26: if v is found in Tx.rootbuffer .idx then
27: Tx.rootbuffer .idx ← empty . buffered

delete
28: else
29: success← FALSE
30: decrement(Tx.opcount)

31: else
32: if v < node.value then
33: success←deleteHelper(v, node.left) . go

left
34: else
35: success←deleteHelper(v, node.right) .

go right

36: return success
37: function insertHelper(v, node)
38: success← TRUE
39: if Entering new ∆Node Tx then
40: T ′

x ← getParent∆Node(Tx)
41: decrement(T ′

x.opcount)
42: waitandcheck(Tx.locked, Tx.opcount)

43: if node.left & node.right then
44: if v < node.value then
45: if (node.isleaf = TRUE) then . insert to

the left:
46: if CAS(node.left.value, empty, v) =

empty then
47: node.right.value← node.value
48: node.right.mark ← node.mark
49: node.isleaf ← FALSE
50: decrement(Tx.opcount)
51: else
52: success←insertHelper(v, node) .

re-try

53: else
54: success←insertHelper(v, node.left) .

go left

55: else if v > node.value then
56: if (node.isleaf = TRUE) then . insert to

the right:
57: if CAS(node.left.value, empty,

node.value) =
empty then

58: node.right.value← v
59: node.left.mark ← node.mark
60: atomic { node.value← v
61: node.isleaf ← FALSE }
62: decrement(Tx.opcount)
63: else
64: success←insertHelper(v, node) .

re-try

65: else
66: success ←insertHelper(v, node.right)

. go right

67: else if v = node.value then
68: if (node.isleaf = TRUE) then
69: if node.mark = FALSE then . is

deleted?
70: success← FALSE . value exist!
71: decrement(Tx.opcount)
72: else
73: Goto 57 . goto insert right

74: else
75: success←insertHelper(v, node.right) .

go right

76: else
77: if v already in Tx.rootbuffer then
78: success← FALSE
79: decrement(Tx.opcount)
80: else put v inside Tx.rootbuffer . buffered

insert
81: if TAS(Tx.locked) then . Acquired

maintenance lock
82: decrement(Tx.opcount)
83: spinwait(Tx.opcount) . Waits updates

to finish
84: . . . do rebalance(Tx) or expand(node)

. . .
85: return success

Figure 49: ∆Tree’s update algorithms and their helper functions.
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Operation searchNode(v, U) (cf. Figure 48) is going to walk over the ∆Tree (Figure
48, lines 3–8) to find whether the value v exists in U . This particular operation is guaranteed
to be wait-free (cf. Lemma 5.2), and it returns true whenever v has been found, or false
otherwise (Figure 48, line 10). Operation insertNode(v, U) (cf. Figure 49, line 37) inserts
value v at a leaf of ∆Tree, provided v does not yet exist in the tree (Figure 49, line 70).
Following the nature of a leaf-oriented tree, a successful insert operation will replace a leaf
with a subtree of three nodes [25] (cf. Figure 50a and pseudocode in Figure 49, line 46 &
57). deleteNode(v, U) (cf. Figure 49, line 7) simply mark the leaf that contains value v
as deleted (Figure 49, line 15), instead of physically removing the leaf or changing its parent
pointer (as in [25]).

Lemma 5.2. ∆Tree search operation is wait-free.

Proof. (Sketch) The proof can be served based on these observations on Figure 48:

1. SearchNode and invoked SearchBuffer (line 15) don’t wait for any locks.

2. The number of iterations in the while loop (line 3) is bounded by the height of the
tree, O(N).

3. SearchBuffer time complexity is bounded by the buffer size, which is a constant.

Therefore the SearchNode time is bounded by O(N).

There is a difference between inserting to the left (Figure 49, lines 46–49) and inserting
to the right (Figure 49, lines 57–61) because an insert to the right will need to change the
value of the root of the new subtree in order to guide the tree search. And it’s not necessary
to do that when inserting a value to the left.

Maintenance functions Apart from the basic operations, three maintenance ∆Tree oper-
ations are invoked in certain cases of inserting and deleting a node from the tree. Operation
rebalance(Tv.root) (cf. Figure 49 line 84) is responsible for rebalancing a ∆Node after
an insertion. Figure 50a illustrates the rebalance operation. Whenever a new node v is to
be inserted at the last level H of ∆Node T1, the ∆Node is rebalanced to a complete BST
by setting a new depth for all leaves (e.g. a, v, x, z in Figure 50a) to logN + 1, where N is
the number of leaves. In Figure 50a, right after the rebalance operation, tree T1 becomes
balanced and its height reduces from 4 to 3.

We also define expand(l) operation (cf. Figure 49 line 84), that will be responsible for
creating a new ∆Node and connecting it to the parent of a leaf node l (cf. Figure 50b).
Expanding will be triggered only if after insertNode(v, U), leaf l will be at the last level of
a ∆Node and rebalancing will no longer reduce the current height of the subtree Ti stored in
the ∆Node. For example if expanding is taking place at a node l located at the bottom level
of the ∆Node (Figure 50b, node l contains value v), or depth(l) = H, then a new ∆Node
(T2 for example) will be referred by the parent of node l. Namely, the parent of l swaps one
of its pointer that previously points to l, into the root of the newly created ∆Node, T2.root.
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Figure 50: (a)Rebalancing, (b)Expanding, and (c)Merging operations on ∆Tree.



D2.1: Models for energy consumption of data structures and algorithms 84

Operation merge(Tx.root) (cf. Figure 49 line 21) is for merging Tx with its sibling after
a node deletion. For example in Figure 50c, T2 is merged into T3. Then the pointer of T3’s
grandparent that previously points to the parent of both T3 and T2 is replaced by a pointer
to T3. Merge operation is invoked provided that a particular ∆Node, where a deletion has
taken place, is filled less than 2t of its capacity (where t = 1/2H) and all values of that
∆Node and its siblings could be fitted into a ∆Node.

To minimise block transfers required during tree traversal, the height of the tree should
be kept minimal. These auxiliary operations are the unique feature of ∆Tree in the effort of
maintaining a small height.

These insertNode and deleteNode operations are linearisable to other searchN-
ode, insertNode and deleteNode operations (cf. Lemma 5.3 and 5.4). Both of the
operations are using single word CAS (Compare and Swap) and ”leaf-checking” (cf. Figure
49, line 15 & 19 for delete and 46 & 57 for insert) to achieve that.

Lemma 5.3. For a value that resides on the leaf node of a ∆Node, searchNode operation
(Figure 48) has the linearisation point to deleteNode at line 10 and the linearisation point
to insertNode at line 9. For a value that stays in the buffer of a ∆Node, searchNode
operation has the linearisation point at line 16.

Proof. (Sketch) It is trivial to demonstrate this in relation to deletion algorithm in Figure
49 since only an atomic operation is responsible for altering the mark property of a node
(line 15). Therefore deleteNode has the linearisation point to searchNode at line 15.

For searchNode interaction with an insertion that grows new subtree, we rely on the
facts that:

1. a snapshot of the current node p is recorded on lastnode as a first step of searching
iteration (Figure 48, line 4);

2. v.value change, if needed, is not done until the last step of the insertion routine for
insertion of v > node.value and will be done in one atomic step with node.isleaf
change (Figure 49, line 60); and

3. isleaf property of all internal nodes are by default true (Figure 47, line 7) to guarantee
that values that are inserted are always found, even when the leaf-growing (both left-
and-right) are happening concurrently.

Therefore insertNode has the linearisation point to searchNode at line 46 when
inserting a value v smaller than the leaf node’s value, or at line 57 otherwise.

A search procedure is also able to cope well with a ”buffered” insert, that is if an insert
thread loses a competition in locking a ∆Node for expanding or rebalancing and had to
dump its carried value inside a buffer (Figure 49, line 80). Any value inserted to the buffer
is guaranteed to be found. This is because after a leaf lastnode has been located, the search
is going to evaluate whether the lastnode.value is equal to v. Failed comparison will cause
the search to look further inside a buffer (Tx.rootbuffer) located in a ∆Node where the
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leaf resides (Figure 48, line 15). By assuring that the switching of a root ∆Node with its
mirror includes switching Tx.rootbuffer with Tx.mirrorbuffer , we can show that any new
values that might be placed inside a buffer are guaranteed to be found immediately after the
completion of their respective insert procedures. The ”buffered” insert has the linearisation
point to searchNode at line 80.

Similarly, deleting a value from a buffer is as trivial as exchanging that value inside
a buffer with an empty value. The search operation will failed to find that value when
doing searching inside a buffer of ∆Node. This type of delete has the linearisation point to
searchNode at the same line it’s emptying a value inside the buffer (line 27).

Lemma 5.4. In the absence of maintenance operations, the linearisation point of ∆Tree’s
insertNode to deleteNode is in line 46 and 57 of Figure 49. Linearisation points of
deleteNode operations to insertNode are in line 15 of Figure 49.

Proof. (Sketch) In a case of concurrent insert operations (Figure 49) at the same leaf node
x, insert threads that need to ”grow” the node (for illustration, cf. Figure 50) are going
to do CAS(x.left, empty, . . .) (line 46 and 57) as their first step. This CAS is the only
thing needed since the whole ∆Node structure is pre-allocated and the CAS is an atomic
operation. Therefore, only one thread will succeed in changing x.left and proceed populating
the x.right node. Other threads will fail the CAS operation and they are going to try restart
the insert procedure all over again, starting from the node x.

To assure that the marking delete (line 15) behaves nicely with the ”grow” insert opera-
tions, deleteNode(v, U) that has found the leaf node x with a value equal to v, will need to
check again whether the node is still a leaf (line 19) after completing CAS(x.mark, FALSE, TRUE).
The thread needs to restart the delete process from x if it has found that x is no longer a
leaf node.

Mirroring Whenever a ∆Node is undergoing a maintenance operation (balancing, expand-
ing, or merging), a mirroring operation also takes place. Mirroring works by maintaining
the original nodes but write the results into the mirror nodes. After this is done, the pointer
will be switched and now the mirror nodes become the original, vice-versa. The ∆Node’s
lock will be released, and all the waiting update threads can continue with their respective
operation. The original nodes and helping buffer served as the latest snapshot, which enables
wait-free search on that ∆Node.

Despite insertNode and deleteNode are non-blocking, they’ll still need to wait at
a tip of a ∆Node whenever a maintenance operation is currently operating within that
∆Node. We employ TAS (Test and Set) on ∆Node’s locked field (cf. Figure 49, line 81)
before any maintenance operation starts. Advanced locking techniques [35, 47, 55] can also
be used. This is to ensure that no basic update operations will interfere with the maintenance
operation. This is also necessary to prevent the buffer overflow.

Performance concerns Note that the previous description has shown that rebalance
and merge execution are actually sequential within a ∆Node. Rebalancing and merging
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only involve a maximum of two ∆Node with size UB. Their operation consist of traversing
and re-inserting all members of one or two ∆Nodes. Because UB � N , rebalance and
merge operations are not affecting much on the ∆Tree performance.

5.4 Balanced ∆Tree

∆Tree implementation served as an initial proof of concept of a dynamic VEB-based search
trees. This tree however has major weaknesses that would affect its performance. The first
is the fact that the left and right pointers occupies too much space. In a ∆Node with 127
nodes, the sets of pointers will occupy 2032 bytes of memory in a 64-bit operating system,
twice of the key nodes (in integer) that only require 1016 bytes. A cache oblivious data
structures will gain most of its benefits if only more data could occupy a small amount
of memory space. Thus, a single cache-line transfer will relocate more data between any
levels of memory. Secondly, inserting a consecutive increasing or decreasing numbers into
∆Tree will results a linked-list of ∆Node. It will be hard to guarantee the optimal search
performance of Lemma 5.1 in this particular case.

1: Struct Map:
2: member fields:
3: left ∈ N, interval of the left child pointer address
4: right ∈ N, interval of the right child pointer address

5: function right(p, base)
6: nodesize← sizeOf(single node)
7: idx← (p− base)/nodesize
8: if (map[idx].right != 0) then
9: return base+map[idx].right

10: else
11: return 0

12: function left(p, base)
13: nodesize← sizeOf(single node)
14: idx← (p− base)/nodesize
15: if (map[idx].left != 0) then
16: return base+map[idx].left
17: else
18: return 0

Figure 51: Mapping functions.



D2.1: Models for energy consumption of data structures and algorithms 87

5.4.1 Map instead of pointers

We have developed an improved ∆Tree, namely the balanced DT by completely eliminating
(left and right) pointers within a ∆Node. We replaced them with left and right functions
instead (Figure 51, lines 12 & 5). These two functions, given an arbitrary node and its
container ∆Node root memory address, will return the left and right child node address of
that arbitrary node, respectively. A ∆Node is now slim-lined into just an array of keys.
Each ∆Node is also coupled with a metadata that contains an array of pointers for the
inter-∆Node connection, and a structure that holds lock and counters.

With this mapping, we need only a single ∆Tree’s pointer-based ∆Node to be created in
the initialisation phase. This ∆Node is used to populate the map, by calculating the memory
address differences between a node and its left and right children, respectively. This map is
then used for every Balanced DT ∆Node’s left and right operations. The memory for
the pointer-based ∆Node can be freed after a map is created. And since we are re-using
one map array of size UB for traversing, memory footprint for the Balanced DT’s ∆Node
operations can be kept minimum. We ended up having 200% more node counts in a ∆Node
given the same UB, compared to the ∆Tree.

The inter-∆Node connection works by using the tree encoding. Here we gave colour to
each nodes using either 0 or 1 with a condition that adjacent nodes at the same level have
different colours. With this the path traversed from the root of a ∆Node to reach any internal
node will produce a bit-sequence of colours. This bit representation will be translated into
an array index that contains a pointer of another ∆Node. We are using leaf-oriented tree
and allocate a pointer array with the length equal to the number of nodes in that ∆Node.
Figure 52 illustrate how the inter-∆Node connection works in a pointer-less search function.

5.4.2 Concurrent and balanced tree

To solve the the worst case of consecutive numbers insertion, we adopt the structure and the
algorithm of B-Link trees [54] coined by Lehman and Yao. This tree is a highly concurrent
variation of B-Tree which sometimes referred as Blink tree. We maintain the concept of a
dynamic-vEB ∆Node and used these in place of the array nodes of B-Link trees.

To implement this, two new variables were added into the ∆Nodes’ metadata, namely
nextRight or pointer to the right sibling ∆Node and a highKey value that contains the
upper-bound value of that specific ∆Node. The insertion were done bottom-up and searches
were in top-down, left-to-right direction. With these additional variables and restrictions,
search operations are guaranteed as wait-free [54]. Bottom-up insertion also ensures that
the tree is always in a balanced condition as mandated by Lemma 5.1. The same rebalancing
procedures (Figure 50a) were also employed to ensure a ∆Node is full before it splits. The
rebalancing also help to clean-up the nodes marked for deletion, keeping ∆Nodes always in
good shape.
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1: function pointerLessSearch(key, ∆Node, maxDepth)
2: while ∆Node is not leaf do
3: bits← 0
4: depth← 0
5: p← ∆Node.root;
6: base← p
7: link ← ∆Node.link
8: while p & p.value != EMPTY do . continue until leaf node
9: depth← depth+ 1 . increment depth

10: bits← bits << 1 . either left or right, shift one bit to the left
11: if key < p.value then
12: p← left(p, base)
13: else
14: p← right(p, base)
15: bits← bits+ 1 . right child colour is 1

16: bits← bits >> 1
. pad the bits to get the index of the child ∆Node:

17: bits← bits << (maxDepth− depth)
. follow nextRight if highKey is less than searched value:

18: if ∆Node.highKey <= key then
19: ∆Node← ∆Node.nextRight
20: else
21: ∆Node← link[bits] . jump to child ∆Node

22: return ∆Node

Figure 52: Search within pointer-less ∆Node. This function will return the leaf ∆Node
containing the searched key. From there, a simple binary search using left and right
functions is adequate to pinpoint the key location
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5.5 Heterogenous balanced ∆Tree

The reason why we maintained the leaf-oriented (or external tree) layout for ∆Node is to
make sure the inter-∆Node mechanism works. Thus, it is not necessary for leaf ∆Nodes or
the last level ∆Nodes to have leaf-oriented layout since they don’t have any child ∆Nodes.

Based on this observation, we implement a special layout for the leaf ∆Nodes, making
the balanced ∆Tree is having heterogenous ∆Nodes. This special layout is using internal
tree for the key nodes, therefore 100% more key nodes can fit into leaf ∆Nodes compare to
the non-leaf ∆Nodes given the same UB limit. To save space even more, we omit the array
of pointers for intra-∆Node connection in the leaf ∆Nodes’ metadata.

Stepping up to this improved version of ∆Tree, we found that the efficiency of searches
were greatly improved. Compared to original pointer-based ∆Tree and balanced DT, this
heterogenous BDT delivered lower cache misses and more efficient branching.

5.6 Performance evaluation

To evaluate our conceptual ideas of dynamic-vEB implemented in the ∆Trees (section 5.3),
balanced ∆Tree (plDTv1) (section 5.4), and heterogenous BDT (plDTv2) (section 5.5), we
compare their performance with other prominent concurrent trees. The benchmark include
the non-blocking binary search tree (NBBST) [25], concurrent AVL tree (AVLtree) [12],
concurrent red-black tree (RBtree) [24], and speculation friendly tree (SFtree) [18] from
the Synchrobench benchmark [32]. We also develop a concurrent version of the static vEB
binary search tree in [10] using software transactional memory (STM). We utilise the GNU C
Compiler’s STM implementation from the version 4.9.1 for this tree and named it VTMtree.
An optimised Lehman and Yao concurrent B-tree [54] implementation (CBTree) is also
included in the benchmark. The tree (sometimes known as B-link tree) is a highly-concurrent
B-tree implementation and it is being used as the back-end in popular database systems such
as PostgreSQL 4. We use Pthread for concurrent threads and pin the threads to distinct
available physical cores. We use GCC 4.9.1 with -O2 for all compilations.

The base of the conducted experiment consists of running a series of (rep = 5, 000, 000)
operations. Assuming we have nr as the number of threads, the maximum time for any of the
threads to finish a sequence of rep

nr
operations is recorded. We also define an update rate u that

translates to upd = (u%×rep) number of insert and delete operations and src = (rep−upd)
number of search operations. We conduct experiments based on the combinations of update
rate u = {0, 20, 50} and the number of thread nr = {1, 2, . . . , 16}. Update rate of 0 means
that only searching operations are conducted (100% search), while update rate 50 indicates
that 50% insert and delete operations are being done out of rep operations. For each of the
combination above, we pre-fill the tree with (222 − 1) (or 4,194,303) random values before
starting the benchmarks.

The initial size (init) of (222−1) was chosen to simulate initial trees that partially fit into
the last level cache (LLC). All involved operations, namely search, insert, and delete invoked
during the tests, use random values v ∈ (0, init × 2], v ∈ N, as their parameter. Note that

4https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README
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Figure 53: Performance rate (operations/second) of the tested trees with 2,500,000 initial
members. The y-axis indicates the rate of operations/second.
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since VTMtree’s static vEB layout is fixed, we set its layout size to (223− 1) for running the
experiments. Namely, this setting is the best case for VTMtree since the memory allocated
for its static vEB layout is large enough to accommodate all the values v ∈ (0, init× 2] and
therefore its layout never needs to expand and rebuild during the experiments. To make a fair
comparison, we set the UB values of the ∆Nodes and the CBTree’s node-size to respective
values so that each ∆Node and each CBTree node will fit into the system page size of 4KB.

The conducted experiments run on a dual Intel Xeon CPU E5-2670 machine, with total
of 16 available cores. The machine has 32GB of memory, with a 2MB (8×256KB) L2 cache
and a shared 20MB L3 cache for each processor. The Hyperthread feature of the processor
is turned off to make sure that the experiments only run on physical cores. Linux OS with
Red Hat’s kernel version 2.6.32-358 are installed in this system. All performance result
(in operations/second) for concurrent operations are calculated by dividing the number of
iterations by the maximum time to finish the whole operations.

5.6.1 Experimental results

Before comparing the trees performance, there is one interesting thing to note from the
benchmark results. The x86 test system consists of 2 CPUs with 8-cores each. Therefore
we could see some ”spikes” in performance for couple of trees when it goes from 8-thread to
9-thread. This is expected though. For trees exploiting data-locality in cache (such as the
VTMTree’s 100% search and plDTv2’s 50% update in Figure 54), maintaining the cache-
coherence between the two CPUs (when more than 8 threads are used) via shared memory
reduces the benefit gained from cache-locality. Among the proposed trees, plDTv1 is up to
100% faster than ∆Tree for 100% search and is up to 2.5x and 3.5x faster in 20% and 50%
updates, respectively. Using map instead pointers and keeping the tree balanced manage to
lower the cache-misses of plDTv1 by 40%. The plDTv2 is up to 5% faster than plDTv1 in
100% searching. However in 20% and 50% updates, plDTv2 is up to 40% faster than the
plDTv1 (cf. Figure 54). It is because heterogeneous leaf ∆Nodes that can hold twice many
keys, manage to lower the search time and ∆Nodes’ re-balancing overheads. Unix perf utility
shows that plDTv2 has up to 30% less cache-misses and 20% more efficient branching than
plDTv1.

∆Trees versus VTMtree It is expected that VTMtree is among the fastest in 100%
search along with the plDTv2 (Figure 54). As the cache-oblivious tree implementation,
VTMtree is able to exploit perfectly data-locality in all levels of memory. Our dynamic-vEB
plDTv2 is the only contender and even beats VTMtree by up to 20% past the 8-thread mark.
In init = 4, 194, 303, the performance gap is even higher with plDTv2 leading by up to 30%,
after 9-thread. The plDTv1 and ∆Tree are both beaten by VTMtree since it can only pack
less data inside a memory page. CBTree and other trees are not exploiting data-locality,
which makes them slower in 100% search benchmark.

All other trees are demonstrating better performance compared to VTMtree whenever
update operations are involved. The bad performance of VTMtree’s concurrent update is
inevitable because of its static vEB tree layout. With this, the VTMtree needs to always
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Figure 54: Performance comparison of the tested trees with 4,194,303 initial members using
X86 based Intel Xeon system. There were 2 CPUs with 8 cores each and threads were pinned
to the cores, therefore several ”spikes” in performance could be observed for 9-thread tests.
The y-axis indicates operations/second.
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maintain a small height, which is done by incrementally re-balancing different portions of
its structure [10]. However in the worst case the whole tree must be blocked whenever a
rebalance operation is being executed, blocking other operations as a result. While [10]
explained that amortised cost for this is small, it will hold true only when implemented in
the sequential fashion. In all variants of ∆Tree, maintenance operations only block a ∆Node,
which is discernible in size compared to the whole tree.

∆Trees versus other trees In comparison with the other trees, the benchmark result in
Figure 53 and 54 shows that the heterogenous BDT (plDTv2) is the fastest among other
trees. In 50% update using a single CPU socket (8 threads), plDTv2 is up to 140% faster
than CBTree. plDTv1 and CBTree are trailing closely behind plDTv2. CBTree manages to
outperform plDTv1 in higher update ratios because plDTv1 sometimes need to do rebalanc-
ing, which is more expensive compared to array shifting in CBTree. However rebalancing
doesn’t affect much the plDTv2 because its leaf ∆Nodes are not leaf oriented. Thus, the
amortised cost of rebalancing is much lower compared to plDTv1.

NBBST performs similarly with the ∆Tree, mainly because the latter is modelled after
NBBST for achieving concurrency. However being not a locality-aware structures makes
NBBST unable to lead in the search-intensive benchmarks. The balanced ∆Tree (plDTv1)
performs well only in the low-contention situations, as it is able to deliver good performance
only up to 20% update.

The good performance of ∆Tree, plDTv1, and plDTv2 can be attributed to the dynamic
vEB layout that permits fast search. Also the fact that several ∆Node can be concurrently
updated and restructured is also one of the leading factor over the static vEB layout. The
CBTree layout, although fast and highly-concurrent, still suffers from high branching opera-
tions, based on Unix perf profiling. CBTree branching is up to 90% more than plDTv1’s and
plDTv2’s. Its cache references is also 150% higher than plDTv1’s and plDTv2’s, as expected
in B-tree since block B is not optimal for transfers between memory levels.

The software transactional memory (STM) based trees have a significant overhead in
maintaining transaction. Therefore their performances are the slowest.

5.6.2 On the worst-case insertions

One of the motivations in improving the ∆Tree into balanced DT and subsequently heteroge-
nous BDT, is to solve the poor performance of ∆Tree in the worst-case insertions. Inserting
a sequence of increasing numbers to the ∆Tree will result in a linked-list of ∆Nodes.

Therefore we compare CBTree and plDTv2 for the worst-case insertions. GCC standard
library std::set is included as the baseline. Starting from a blank tree, we insert a sequence
of increasing number within (0, 5, 000, 000] range using single thread.

The result in Figure 55 shows that plDTv2 is 50% faster than CBTree and std::set from
GCC standard library. This test is done using the same x86 experimental system as in
Section 5.6.1.
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Figure 55: Worst case insertion of 5,000,000 increasing numbers

5.6.3 Performance on different upper-bounds UB
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Figure 56: Benchmarks of 100% search using different sizes of UB. Tested on X86 platform.

Dynamic vEB requires that an upper-bound UB be specified or known in advance. One
may argue that UB is a fine-tuned value that will determine the performance of dynamic
vEB trees. To get the conclusion of whether this is the case, we test the heterogeneous BDT
using different upper-bounds UB, starting from 4KB (normal page size) up to 2MB (huge
page size). This tree is filled with (222 − 1) random values and time is recorded to conduct
5 million operations of 100% search.

The result shows that the heterogeneous BDT is resilient to different upper-bounds UB
(cf. Figure 56). This is an expected result according to Lemma 5.1. In fact, UB can be
as big as the whole tree and searching performance is still optimal, provided the meta-data
(e.g. the tree map in Section 5.4.1) occupies only a small fraction of the last level cache
LLC. As mentioned in Section 5.2.2, small UB benefits concurrent tree updates.

5.7 Energy consumption evaluation

To assess the energy consumption of the trees, the energy indicators are subsequently col-
lected during specified benchmarks. For these tests we use a specialised server with 2x
Intel Xeon E5-2690 v2 for 20 total cores. We use Intel PCM library that can measure the
energy for each CPU and DRAMs using the built-in CPU counters. The collected energy
measurements do not include the initialisations of trees.
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Figure 57: Energy profile on X86 processor. Note that the energy efficiency goes down for
some trees in 50% update on 20 threads (with 2 CPUs) because of the same reason discussed
in Section 5.6.1

Figure 58: Memory (DRAM) energy profile on X86 platform. DRAM energy requirement
goes up considerably for some trees in 50% update on 20 threads (with 2 CPUs) because of
the cache-coherence mechanism (cf. Section 5.6.1). Also it is reflected in the memory write
counters chart on Figure 60. Measured using Intel PCM.
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Figure 59: Amount data transferred between RAM and CPU for Read + Write operations.
Measured using Intel PCM.

Figure 60: Amount data transferred between RAM and CPU for write-only operations as
measured using Intel PCM. Data transfers goes up considerably for some trees in 50% update
on 20 threads (with 2 CPUs) because of the cache-coherence mechanism.

In this experiment, we conduct 5 million operations of 100% search and 50% update on the
trees. The trees are pre-filled with initial (222−1) random values. A combination of minimum
and maximum available physical cores are used as one of the benchmarks parameters. The
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total energy used for all CPUs and memory (in Joule) are divided by the number of operations
to produce operations/joule results.

The experimental result over the test system (Figure 57) shows that using the dynamic-
vEB layouts is able to reduce the CPU and memory energy consumption. In the search-only
benchmark, plDTv1, plDTv2, and ∆Tree’s actual energy efficiency is comparable to that of
the static vEB-based VTMtree and leads over the other trees by up to 33%. plDTv2 energy
efficiency is 80% better than CBTree’s and other trees in 50% update using 10-threads. As
expected, the VTMtree concurrent update results are very poor for the same reason discussed
on section 5.6.1.

∆Trees are locality-aware trees, and their memory access pattern are more efficient to the
other trees. Profiling data showed that branching and cache-misses are kept low. Assessments
on memory transfers (Figure 59 and 60) suggests that all ∆Tree versions are transferring less
data between RAM and CPU compared to other trees. Thus the energy consumed by the
∆Trees on DRAM operation is also efficient and comparable to the static-vEB’s VTMTree
in the searching only case (cf. Figure 58). The reader is referred to [75] for more details
about ∆Trees.

5.8 Conclusion

We have introduced a new relaxed cache oblivious model that enables high parallelism while
maintaining the key feature of the original cache oblivious (CO) model [26]: an algorithm
that is optimal in terms of data movement for a simple two-level memory is asymptotically
optimal for an unknown multilevel memory. This feature facilitates the development of
fine-grained locality-aware algorithms for deep memory hierarchy in modern architectures
as desired by energy efficient computing [19]. Unlike the original CO model, the relaxed
CO model assumes a known upper bound on unknown memory block sizes B of multilevel
memory systems.

Based on the relaxed CO model, we have developed a novel dynamic van Emde Boas (dy-
namic vEB) layout that makes the vEB layout suitable for highly-concurrent data structures
with update operations. The dynamic vEB supports dynamic node allocation via pointers
while maintaining the optimal search cost of O(logB N) memory transfers for vEB-based
trees of size N without knowing memory block size B.

Using the dynamic van Emde Boas layout, we have developed a pointer-based ∆Tree, a
balanced ∆Tree, and a heterogenous version of the latter that support both high concur-
rency and fine-grained data locality. Both pointer-based ∆Tree as well as balanced DT and
heterogenous BDT Search operations are wait-free. Only ∆Tree has non-blocking Insert and
Delete operations. All 3 versions of ∆Tree are relaxed cache oblivious: the expected memory
transfer costs of its Search, Delete and Insert operations are O(logB N), where N is the tree
size and B is unknown memory block size in the ideal cache model [26]. Our experimental
evaluation comparing the ∆Trees with non-blocking binary search tree of [25], concurrent
AVL tree [12], concurrent red-black tree [24], and speculation-friendly trees [18] from the the
Synchrobench benchmark [32], and the highly-concurrent B-tree of [54] has shown that the
best version of ∆Tree achieves the best performance and the highest energy efficiency.
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6 Conclusion

In this work, we have presented our current results on the investigation and modeling of the
trade-off between energy and performance as follows.

• A new power model for the Movidius Myriad platform has been proposed. The model
can predict power consumption of our micro-benchmarks with ±4% accuracy compared
to the measured values on the real platform. The new power model confirms that the
dynamic power consumption is proportional to the number of SHAVE (Streaming
Hybrid Architecture Vector Engine) processors used.

• Inspired by EXCESS D1.1 [49], a new version of the energy model for the CPU-based
platform has been developed. This new model decomposes the power into static, active
and dynamic power, and considers power as the sum of power from CPU, main memory
and uncore. The model parameters have been derived and evaluated; dynamic powers
roughly depend on nature of operation, amount of memory accessed per unit of time
and remote accesses, respectively for CPU, memory and uncore.

• We have made a first step towards realistic application by modeling the performance
and power dissipation of synthetic applications, whose design is based on concurrent
queues. We have exhibited a small set of parameters that rules both performance and
power consumption of the application and discriminates the different queue implemen-
tations. It leads to a good prediction of those two key metrics on the whole space of
study, while needing only a few measurements from this space.

• Several concurrent queue designs have been transferred to Myriad1 platform. Mu-
tex with two locks implementation is the fastest and most scalable since it provides
maximum concurrency until 8 SHAVEs. With 4 SHAVEs, FIFO-based implementation
performs well and is 28.3% faster than the mutex with two locks. Shared variable based
implementation has the worst performance. In terms of power, SHAVE FIFO-based
communication method is the most energy efficient. When contention is high and stall
is common, it is power efficient to avoid spinning and set SHAVEs to stall. Com-
munication via shared variables consumes more power because spinning on a memory
location is energy inefficient, even when the spinning happens in a local CMX slice.

• Another data structure that has been investigated and analyzed in this work is con-
current search tree. Our new concurrent search trees show the improvement on per-
formance and energy consumption. Based on experimental evaluations, our new con-
current search trees called ∆Trees that are up to 140% faster and 80% more energy
efficient than the traditional search trees.

In the next steps of this work, WP2 aims to identify other essential concurrent data
structures and algorithms for inter-process communication in HPC and embedded comput-
ing and focus on customizing them. We will exploit common data-flow patterns to create
a generalized communication abstraction with which application designers can easily create
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and exploit the customization for the data-flow patterns. The results will also constitute
a white-box methodology for tuning energy efficiency and performance of concurrent data
structures and algorithms, and programming abstractions with which application design-
ers can easily create and exploit the customization for common data-flow patterns. The
novel concurrent data structures and algorithms will constitute libraries for inter-process
communication and data sharing on EXCESS platforms.
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Glossary

BRU Branch Repeat Unit (on SHAVE processor)
CAS Compare-and-Swap instruction
CMX Connection MatriX on-chip (shared) memory unit, 128KB (Movid-

ius Myriad)
CMU Compare-Move Unit (on SHAVE processor)
Component 1. [hardware component] part of a chip’s or motherboard’s cir-

cuitry; 2. [software component] encapsulated and annotated
reusable software entity with contractually specified interface and
explicit context dependences only, subject to third-party (software)
composition.

Composition 1. [software composition] Binding a call to a specific callee (e.g.,
implementation variant of a component) and allocating resources
for its execution; 2. [task composition] Defining a macrotask and
its use of execution resources by internally scheduling its constituent
tasks in serial, in parallel or a combination thereof.

CPU Central (general-purpose) Processing Unit
uncore including the ring interconnect, shared cache, integrated memory

controller, home agent, power control unit, integrated I/O module,
config Agent, caching agent and Intel QPI link interface

CTH Chalmers University of Technology
DAQ Data Acquisition Unit
DCU Debug Control Unit (on SHAVE processor)
DDR Double Data Rate Random Access Memory
DMA Direct (remote) Memory Access
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
DVFS Dynamic Voltage and Frequency Scaling
ECC Error-Correcting Coding
EXCESS Execution Models for Energy-Efficient Computing Systems
GPU Graphics Processing Unit
HPC High Performance Computing
IAU Integer Arithmetic Unit (on SHAVE processor)
IDC Instruction Decoding Unit (on SHAVE processor)
IRF Integer Register File (on SHAVE processor)
LEON SPARCv8 RISC processor in the Myriad1 chip
LIU Linköping University
LLC Last-level cache
LSU Load-Store Unit (on SHAVE processor)
Microbenchmark Simple loop or kernel developed to measure one or few properties

of the underlying architecture or system software
PAPI Performance Application Programming Interface
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PEPPHER Performance Portability and Programmability for Heteroge-
neous Many-core Architectures. FP7 ICT project, 2010-2012,
www.peppher.eu

PEU Predicated Execution Unit (on SHAVE processor)
Pinning [thread pinning] Restricting the operating system’s CPU scheduler

in order to map a thread to a fixed CPU core
QPI Quick Path Interconnect
RAPL Running Average Power Limit energy consumption counters (Intel)
RCL Remote Core Locking (synchronization algorithm)
SAU Scalar Arithmetic Unit (on SHAVE processor)
SHAVE Streaming Hybrid Architecture Vector Engine (Movidius)
SoC System on Chip
SRF Scalar Register File (on SHAVE processor)
SRAM Static Random Access Memory
TAS Test-and-Set instruction
TMU Texture Management Unit (on SHAVE processor)
USB Universal Serial Bus
VAU Vector Arithmetic Unit (on SHAVE processor)
Vdram DRAM Supply Voltage
Vin Input voltage level
Vio Input/Output voltage level
VLIW Very Long Instruction Word (processor)
VLLIW Variable Length VLIW (processor)
VRF Vector Register File (on SHAVE processor)
Wattsup Watts Up .NET power meter
WP1 Work Package 1 (here: of EXCESS)
WP2 Work Package 2 (here: of EXCESS)


