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1 Introduction

It is one of important issues to study the origin of the quark/lepton flavor structure; why
there are three generations, why the hierarchy of quark/lepton masses and mixing angles
appear, etc. Non-abelian discrete symmetries are interesting ideas to address the above
flavor issue.

It is plausible that such non-abelian discrete flavor symmetries are originated from
extra dimensional theories, because non-abelian symmetries are symmetries of geometrical
solids. Indeed, in Ref. [1, 2, 3] it has been shown that certain types of non-abelian
discrete flavor symmetries such as D4 and ∆(54) can appear in four-dimensional effective
field theories derived from heterotic string theory with orbifold background. (See also
[4].) In those analyses, the important ingredients to derive the non-abelian discrete flavor
symmetry are geometrical symmetries of the compact space and stringy coupling selection
rules. Thus, stringy non-abelian discrete flavor symmetries are, in general, larger than
geometrical symmetries of the compact space.

It is important to extend such an analysis on heterotic orbifold models to other types
of string models. In this paper, we study which types of non-abelian flavor symmetries
can appear from magnetized/intersecting brane models. Magnetized D-brane models and
intersecting D-brane models are T-duals of each other [5].1 Selection rules for allowed
couplings in these models have been studied [7, 8, 9, 10]. Furthermore, three-point and
higher order couplings have been computed explicitly [11, 9, 12, 10, 13].2 Using these
results, we study the flavor structures, which can appear in four-dimensional effective field
theory derived from magnetized/intersecting brane models. For concreteness, we study
the flavor structure in magnetized brane models as well as magnetized orbifold models.
Then, we show several non-abelian discrete flavor symmetries can appear in magnetized
brane models and they include D4, ∆(27) and ∆(54), although ∆(27) is not realized
in heterotic orbifold models.3 Furthermore, most of their representations can appear
in magnetized brane models, while certain representations appear in heterotic orbifold
models. We would obtain the same results in intersecting D-brane models, because of the
T-duality between magnetized and intersecting D-brane models.

This paper is organized as follows. In section 2, we review on magnetized brane
models, in particular their zero-modes. In section 3, we study three-point and higher
order couplings and their selection rules. In section 4, we study non-abelian discrete
flavor symmetries, which can appear in magnetized brane models with non-vanishing
Wilson lines. Such analysis is extended to the models with vanishing Wilson lines in
section 5 and enhancement of symmetries are shown. In section 6, we discuss the flavor
symmetries on the orbifold background. Section 7 is devoted to conclusion and discussion.

1See for a review [6] and references therein.
2See for three-point and higher order couplings and their selection rules in heterotic orbifold models [14,

15, 1, 16].
3Indeed, these flavor symmetries are interesting for phenomenological model building. See e.g. [17,

18, 19].
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2 Magnetized brane models

We start with N = 1 ten-dimensional U(N) super Yang-Mills theory. We consider the
background R3,1 × (T 2)3, whose coordinates are denoted by xµ (µ = 0, · · · , 3) for the
uncompact spaceR3,1 and ym (m = 4, · · · , 9) for the compact space (T 2)3. The Lagrangian
is given by

L = − 1

4g2
Tr
(
FMNFMN

)
+

i

2g2
Tr
(
λ̄ΓMDMλ

)
,

where M,N = 0, · · · , 9. Here, λ denotes gaugino fields, ΓM is the gamma matrix for
ten-dimensions and the covariant derivative DM is given as

DMλ = ∂Mλ− i[AM , λ], (1)

where AM is the vector field. Furthermore, the field strength FMN is given by

FMN = ∂MAN − ∂NAM − i[AM , AN ]. (2)

The gaugino fields λ and the vector fields Am corresponding to the compact directions
are decomposed as

λ(x, y) =
∑
n

χn(x)⊗ ψn(y),

Am(x, y) =
∑
n

φn,m(x)⊗ ϕn,m(y).

We factorize the six-torus into two-tori (T 2)3, each of which is specified by the complex
structure τd and the area Ad = (2πRd)

2 Imτd where d = 1, 2, 3. We introduce the following
form of the magnetic flux,

Fzdz̄d =
2π

Imτd

m
(d)
1 N1

. . .

m
(d)
n Nn

 , d = 1, 2, 3, (3)

where Na are the unit matrices of rank Na, m
(d)
i are integers and we use the complex

coordinates zd. This background breaks the gauge symmetry U(N) →
∏n

a=1 U(Na) where
N =

∑n
a=1Na.

By introducing magnetic fluxes, we can realize four-dimensional chiral theory. Let us
focus on a submatrix consisting of two blocks,

Fzdz̄d,ab =
2π

Imτd

(
m

(d)
a Na 0

0 m
(d)
b Nb

)
. (4)

Then, the corresponding internal components ψn(z) of gaugino fields λ(x, z) also have the
following form

ψn(z) =

(
ψaa
n (z) ψab

n (z)
ψba
n (z) ψbb

n (z)

)
. (5)
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The off-diagonal components of zero-modes transform as bifundamental representations
ψab ∼ (Na,Nb), ψ

ba ∼ (Na,Nb) under SU(Na)×SU(Nb), where we omit the subscript 0
corresponding to the zero-modes, n = 0. For a fixed four-dimensional chirality, either ψab

or ψba appears as zero-modes with normalizable wavefunctions, since the ten-dimensional
chirality of λ is fixed. Which zero-modes appear, ψab or ψba, depends on the sign of
the relative magnetic flux M (d) ≡ m

(d)
a − m

(d)
b . Furthermore, the internal part ψ(z) is

decomposed as a product of the d-th T 2 part, i.e. ψ(d)(z
d), and each of them is two-

component spinor.
With an appropriate gauge fixing, the zero-modes on each d-th T 2 are written as [9]

ψj,M(d)

d (zd) = NM(d) eiπM
(d)zdIm zd/(Im τd) ϑ

[
j/M (d)

0

]
(M (d)zd, τdM

(d)), (6)

for j = 1, . . . , |M (d)|, where the normalization factor NM is obtained as

NM =

(
2Imτd|M |

A2
d

)1/4

, (7)

and ϑ

[
j/M (d)

0

]
(M (d)zd, τdM

(d)) denotes the Jacobi theta function

ϑ

[
a
b

]
(ν, τ) =

∞∑
n=−∞

exp
[
πi(n+ a)2τ + 2πi(n+ a)(ν + b)

]
. (8)

We have the |M (d)| zero-modes labelled by the index j. Note that the wavefunction for
j = k + M (d) is identical to one for j = k. The total number of zero-modes is the

product,
∏

d |M (d)| and their wavefunctions are also given as the product,
∏

d ψ
jd,M

(d)

(d) .

Furthermore, their flavor structure is also understood as a direct product of the d-th T 2

sector. Thus, we concentrate on the d-th T 2 part and hereafter we omit the subscript
d. In addition, the relative magnetic flux M is more important than the magnetic fluxes
themselves, ma and mb, from the viewpoint of the flavor structure. Hence, we examine
relative magnetic fluxes without mentioning the magnetic fluxes themselves, ma and mb.

We can have Wilson lines, ζ ≡ ζr + τζi, whose effect is just a translation of each
wavefunction [9]

ψj,M(z) → ψj,M(z + ζ), (9)

for all of j.

3 Coupling selection rule

We study order L couplings including the three point couplings L = 3 in four-dimensional
effective theory, i.e.,

Yi1...iLχ iLχ+1···iLχ
i1(x) · · ·χiLχ (x)ϕiLχ+1(x) . . . ϕiL(x), (10)
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with L = Lχ + Lϕ, where χ and ϕ collectively represent four-dimensional components of
fermions and bosons, respectively. In particular, the selection rule for allowed couplings
is important. The three-point couplings can appear from the dimensional reduction of
ten-dimensional super-Yang–Mills theory and higher order coupling terms can be read off
from the effective Lagrangian of the Dirac–Born–Infeld action with supersymmetrization.
The internal component of bosonic and fermionic wavefunctions is the same [9]. Thus,
the couplings are determined by the wavefunction overlap in the extra dimensions,

Yi1i2...iL = g10L

∫
T 6

d6z
3∏

d=1

ψi1,M1

d (z)ψi2,M2

d (z) . . . ψiL,ML

d (z), (11)

where g10L denotes the coupling in ten dimensions. Here, as mentioned in the previous
section, we concentrate on the two-dimensional T 2 part of the overlap integral of wave-
functions,

yi1i2...iL =

∫
T 2

d2z ψi1,M1(z)ψi2,M2(z) . . . ψiL,ML(z), (12)

where we have omitted the subscript d, again.
For example, we calculate the three-point couplings,

yi1i2 ī3 =

∫
d2z ψi1,M1(z)ψi2,M2(z)

(
ψi3,M3(z)

)∗
. (13)

For the moment, we consider the case with vanishing Wilson lines. The gauge invariance
requires that M1 +M2 = M3 and that the wave function

(
ψi3,M3(z)

)∗
but not ψi3,M3(z)

appears in the allowed three-point couplings. If these are not satisfied, there is not
corresponding operators in the ten dimensions, i.e. g103 = 0. The results are obtained
as [9]

yi1i2 ī3 =
∑

m∈ZM3

δi1+i2+M1m,i3 ϑ

[
M2i1−M1i2+M1M2m

M1M2M3

0

]
(0, τM1M2M3), (14)

where the numbers in the Kronecker delta is defined modulo M3. Indeed, the Kronecker
delta part leads to the selection rule for allowed couplings as

i1 + i2 − i3 =M3l −M1m, m ∈ ZM3 , l ∈ ZM1 . (15)

When gcd(M1,M2,M3) = 1, every combination (i1, i2, i3) satisfies this constraint (15)
because of Euclidean algorithm. On the other hand, when gcd(M1,M2,M3) = g, the
above constraint becomes

i1 + i2 − i3 = 0 ( mod g ). (16)

This implies that we can define Zg charges from ik for zero-modes and the allowed cou-
plings are controlled by such Zg symmetry. Indeed, each quantum number ik corresponds
to quantized momentum defined with theMi modulo structure. When gcd(M1,M2,M3) =
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g, the modulo structure becomes Zg and the conservation law of these discrete momenta
corresponds to a requirement due to the Zg invariance.

Let us consider higher order couplings. In [10], it has been shown that higher order
couplings can be decomposed as productions of three-point couplings. For example, we
consider the four-point coupling,

yi1i2i3 ī4 =

∫
d2z ψi1,M1(z)ψi2,M2(z)ψi3,M3(z)

(
ψi4,M4(z)

)∗
. (17)

This four-point coupling can be decomposed as

yi1i2i3 ī4 =
∑
s∈ZM

yi1i2s̄ ysi3 ī4 , (18)

where

yi1i2s̄ =

∫
d2z ψi1,M1(z)ψi2,M2(z)

(
ψs,M(z)

)∗
,

ysi3 ī4 =

∫
d2z ψs,M(z)ψi3,M3(z)

(
ψi4,M4(z)

)∗
, (19)

with M = M1 + M2 = M4 − M3. Here, ψs,M(z) denotes the s-th zero-mode of Dirac
equation with the relative magnetic flux M , and these modes correspond to intermediate
states in the above decomposition. Each of yi1i2s̄ and ysi3 ī4 is obtained as eq. (14). That is,
the coupling selection rule is controlled by the Zg invariance (15), i.e. the conservation law
of discrete momenta, and its modulo structure is determined by gcd(M1,M2,M3,M4) = g.

Similarly, higher order couplings are decomposed as products of three-point cou-
plings [10]. Therefore, the above analysis is generalized to generic order L couplings.
That is, the coupling selection rule is given as the Zg invariance and its modulo structure
is determined by gcd(M1, · · · ,ML) = g.

So far, we have considered the model with vanishing Wilson lines. Non-vanishing
Wilson lines do not affect the coupling selection rule due to the Zg invariance, but change
values of couplings yi1i2 ī3 . For example, when we introduce Wilson lines ζk for ψik,Mk(z),
the three-point coupling (14) becomes

yi1i2 ī3 =
∑

m∈ZM3

δi1+i2+M1m,i3e
iπ(

∑3
k=1 MkζkImζk)/Imτ

× ϑ

[
M2i1−M1i2+M1M2m

M1M2M3

0

]
(M2M3(ζ2 − ζ3), τM1M2M3), (20)

where Wilson lines must satisfy ζ3M3 = ζ1M1 + ζ2M2. Similarly, higher order couplings
with non-vanishing Wilson lines can be obtained.

4 Non-abelian flavor symmetries

Here we study non-abelian flavor symmetries, by using the analysis on the coupling se-
lection rule in the previous section.
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4.1 Generic case

First we study generic case with non-vanishing Wilson lines. We consider the model with
zero-modes ψik,Mk for k = 1, · · · , L. We denote gcd(M1, · · · ,ML) = g. As studied in the
previous section, these modes have Zg charges and their couplings are controlled by the
Zg invariance. For simplicity, suppose that M1 = g. Then, there are g zero-modes of
ψi1,M1 . The above Zg transformation acts on ψi1,g as Zψi1,g, where

Z =


1

ρ
ρ2

. . .

ρg−1

 , (21)

and ρ = e2πi/g.
In addition to this Zg symmetry, the effective theory has another symmetry. That is,

the effective theory must be invariant under cyclic permutations

ψi1,g → ψi1+n,g, (22)

with a universal integer n for i1. That is nothing but a change of ordering and also has a
geometrical meaning as a discrete shift of the origin, z = 0 → z = −n

g
. This symmetry also

generates another Zg symmetry, which we denote by Z
(C)
g and its generator is represented

as

C =


0 1 0 0 · · · 0
0 0 1 0 · · · 0

. . .

1 0 0 · · · 0

 , (23)

on ψi1,g. That is, the above permutation (22) is represented as Cnψi1,g. These generators,
Z and C, do not commute each other, i.e.,

CZ = ρZC. (24)

Then, the flavor symmetry corresponds to the closed algebra including Z and C. Diagonal
matrices in this closed algebra are written as Zn(Z ′)m, where Z ′ is the generator of another
Z ′

g and written as

Z ′ =

 ρ
. . .

ρ

 , (25)

on ψi1,g. Hence, these would generate the non-abelian flavor symmetry (Zg ×Z ′
g)oZ

(C)
g ,

since Zg×Z ′
g is a normal subgroup. These discrte flavor groups would include g3 elements

totally.
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Let us study actions of Z and C on other zero-modes, ψik,Mk , with Mk = gnk, where
nk is an integer. First, the generator C acts as

ψi,gnk → ψi+nk,gnk , (26)

because the above discrete shift of the origin z = 0 → z = −n
g
can be written as

z = 0 → z = −nnk

gnk
for these zero-modes. Thus, the generator C is represented as

the same as (23) on the basis 
ψp,gnk

ψp+nk,gnk

...
ψp+(g−1)nk,gnk

 , (27)

where p is an integer. Note that ψp+gnk,gnk is identical to ψp,gnk . Furthermore, the
generator Z is represented on this basis (27) as

Z = ρp


1

ρnk

ρ2nk

. . .

ρ(g−1)nk

 . (28)

Thus, the zero-modes ψik,gnk include nk g-plet representations of the symmetry (Zg ×
Z ′

g)oZ
(C)
g and some of them may be reducible g-plet representations. For example, when

we consider the zero-modes corresponding to nk = g, i.e. Mk = g2, the generator Z is
represented as ρpg on the above g-plet (27), where g is the (g × g) unit matrix. In such a
case, the generator C can also be diagonalized. Then, these zero-modes correspond to g
singlets of (Zg × Z ′

g)o Z
(C)
g including trivial and non-trivial singlets.

As illustrating examples, we consider the models with g = 2, 3 in the next subsections
and study more concretely about non-abelian discrete flavor symmetries.

4.2 g = 2 model

Here we consider the model with g = 2, that is, all of relative magnetic fluxes Mk are
even. Its flavor symmetry is given as the closed algebra of Z2, Z

′
2 and Z

(C)
2 , and all of

these elements are written as

±
(

1 0
0 1

)
, ±

(
0 1
1 0

)
, ±

(
0 1
−1 0

)
, ±

(
1 0
0 −1

)
. (29)

That is, the flavor symmetry is D4. The zero-modes with the relative magnetic flux
M = 2, (

ψ0,2

ψ1,2

)
, (30)
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M Representation of D4

2 2
4 1++, 1+−, 1−+, 1−−
6 3× 2

Table 1: D4 representations of zero-modes in the model with g = 2.

correspond to the doublet representation 2 of D4. This result is the same as the non-
abelian flavor symmetry appearing from heterotic orbifold models with S1/Z2, where
twisted modes on two fixed points of S1/Z2 correspond to the D4 doublet [1, 2].

Next, we consider the zero-modes corresponding to the relative magnetic flux M = 4,
ψi,4 (0 = 0, 1, 2, 3). As discussed in the previous subsection, in order to represent C, it
may be convenient to decompose them into the g-plets (27)(

ψ0,4

ψ2,4

)
,

(
ψ1,4

ψ3,4

)
. (31)

However, they are reducible representations as follows. Note that both ψ0,4 and ψ2,4

have even Z2 charges, and that both ψ1,4 and ψ3,4 have odd Z2 charges. That is, the
generator Z is represented in the form ±12, where 12 is the 2× 2 identity matrix. Thus,
the generator C can be diagonalized and such a diagonalizing basis is obtained as

1++ : (ψ0,4 + ψ2,4), 1+− : (ψ0,4 − ψ2,4),

1−+ : (ψ1,4 + ψ3,4), 1−− : (ψ1,4 − ψ3,4), (32)

up to normalization factors. Obviously, these correspond to four D4 singlets, 1++, 1+−,
1−+ and 1−−. The first subscript of two denotes Z2 charges for Z and the second one
denotes Z2 charges for C. Hence, all of irreducible representations of D4 appear from
ψi,2 and ψi,4. New representations can not appear in zero-modes ψi,M with M > 4.
For example, we consider zero-modes corresponding to M = 6, i.e. ψi,6. They can be
decomposed as

|ψ6⟩1 =
(
ψ0,6

ψ3,6

)
, |ψ6⟩2 =

(
ψ2,6

ψ5,6

)
, |ψ6⟩3 =

(
ψ4,6

ψ1,6

)
. (33)

Each of |ψ6⟩i with i = 1, 2, 3 is nothing but the D4 doublet. That is, we have three D4

doublets in ψi,6. The above representations appear repeatedly in ψi,M with larger M .
These results are shown in Table 1.

4.3 g = 3 model

Here we consider the model with g = 3, where all of relative magnetic fluxes are equal to
Mk = 3nk. Its flavor symmetry is given as (Z3 ×Z3)oZ3, that is, ∆(27) [18]. This flavor
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symmetry is different from the flavor symmetry appearing from heterotic orbifold models
with T 2/Z3. Later, we will explain what makes this difference.

The zero-modes corresponding to the relative magnetic flux M = 3,

|ψ3⟩1 =

 ψ0,3

ψ1,3

ψ2,3

 , (34)

correspond to the triplet representation 3 of ∆(27). Next, we consider the zero-modes
corresponding to the relative magnetic flux M = 6, i.e. ψi,6. Again, it may be convenient
to decompose them into the g-plets (27)

|ψ6⟩1 =

 ψ0,6

ψ2,6

ψ4,6

 , |ψ6⟩2 =

 ψ3,6

ψ5,6

ψ1,6

 . (35)

The generator C is represented in the same way for |ψ3⟩1 and |ψ6⟩i (i = 1, 2). On the other
hand, the representation of the generator Z for |ψ6⟩i (i = 1, 2) is the complex conjugate
to one for |ψ3⟩1. Thus, both |ψ6⟩i (i = 1, 2) correspond to 3̄ representations of ∆(27).

Moreover, let us consider the zero-modes with the relative magnetic flux M = 9, i.e.
ψi,9. Then, we decompose them into the g-plets (27)

|ψ9⟩1 =

 ψ0,9

ψ3,9

ψ6,9

 , |ψ9⟩ω =

 ψ1,9

ψ4,9

ψ7,9

 , |ψ9⟩ω2 =

 ψ2,9

ψ5,9

ψ8,9

 , (36)

where ω = e2πi/3. These (reducible) triplets |ψ9⟩ωn have Z3 charges, n and are decomposed
into nine singlets,

1ωn,ωm : ψn,9 + ωmψn+3m,9 + ω2mψn+6m,9, (37)

up to normalization factors, where n and m are Z3 charges for Z and C, respectively. In
zero-modes withM > 9, new representations do not appear, but the above representations
appear repeatedly. These results as well as zero-modes with M > 9 are shown in Table 2.
Similar analysis can be carried out in other models with g > 3.

We comment on symmetries in subsectors. Suppose that our model has zero-modes
ψik,Mk for k = 1, · · · , L with gcd(M1, · · · ,ML) = g and they are separated into two
classes, ψil,Ml (l = 1, · · · , L1) and ψ

im,Mm (m = L1, · · · , L), where gcd(M1, · · · ,ML1) = g1,
gcd(ML1 , · · · ,ML) = g2 and gcd(g1, g2) = g. Coupling terms including only the first class
of fields ψil,Ml (l = 1, · · · , L1) in the four-dimensional effective theory have the symmetry
(Zg1 ×Zg1)oZg1 , where g1 would be larger than g. However, such a symmetry is broken
by terms including the second class of fields. Thus, we would have a larger symmetry at
least at tree level for the subsectors. Such larger symmetries in the subsectors would be
interesting for model building.
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M Representation of ∆(27)

3 3
6 2× 3̄
9 11, 12, 13, 14, 15, 16, 17, 18, 19

12 4× 3
15 5× 3̄
18 2× {11, 12, 13, 14, 15, 16, 17, 18, 19}

Table 2: ∆(27) representations of zero-modes in the model with g = 3.

5 Models without Wilson lines

In the previous section, we have considered the models with non-vanishing Wilson lines.
Here, we study the models without Wilson lines. In this case, flavor symmetries are
enhanced.

When Wilson lines are vanishing, all of zero-modes ψ0,Mk have the peak at the same
point in the extra dimensions. In the intersecting D-brane picture, this corresponds to
the D-brane configuration, that all of D-branes intersect (at least) at a single point on
T 2. This model has the Z2 rotation symmetry around such a point. Here, we denote its
generator as P . In general, this acts as

P : ψi,M → ψM−i,M . (38)

As in the previous section, we consider the models with g = 2, 3 as illustrating models.

5.1 g = 2 model

First, we consider the zero-modes with M = 2, ψi,2, which correspond to the D4 doublet.
For them, the generator P acts as the identity. That implies that the flavor symmetry
is enhanced as D4 × Z2 and ψi,2 correspond to 2+, where the subscript denotes the Z2

charge for P .4

We consider the zero-modes with M = 4, ψi,4, which are decomposed as the four D4

singlets, 1++, 1+−, 1−+ and 1−− as (32). They have definite Z2 charges for P and are
represented as

1+++ : (ψ0,4 + ψ2,4), 1+−+ : (ψ0,4 − ψ2,4),

1−++ : (ψ1,4 + ψ3,4), 1−−− : (ψ1,4 − ψ3,4), (39)

where the third sign in the subscripts denotes Z2 charges for P .
Now, let us consider the zero-modes with M = 6, ψi,6, which are decomposed as

three D4 doublets (33). The doublet |ψ6⟩1 has the even Z2 charges for P . However, other

4Although this is just an enhancement by the factor Z2, such an enhanced flavor symmetry D4 × Z2

would be important to phenomenological model building. See e.g. [17].
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M Representation of D4 × Z2

2 2+

4 1+++, 1+−+, 1−++, 1−−−
6 2× 2+, 2−
8 1+++, 1+−+, 1+++, 1+−−, 1−++, 1−+−, 1−−−, 1−−+

10 3× 2+, 2× 2−

Table 3: D4 × Z2 representations of zero-modes in the model with g = 2.

doublets |ψ6⟩2 and |ψ6⟩3 transform each other under P . Thus, we take linear combinations
of these two doublets as

|ψ6⟩± ≡ |ψ6⟩2 ± |ψ6⟩3 =
(
ψ2,6

ψ5,6

)
±
(
ψ4,6

ψ1,6

)
, (40)

where ± also means Z2 charge of P . As a result, these zero-modes ψi,6 are decomposed
as two 2+ and one 2−.

We can repeat these analysis for larger M . For example, zero-modes with M = 8,
ψi,8, are decomposed as

{1+++, 1+−+, 1+++, 1+−−, 1−++, 1−+−, 1−−−, 1−−+}, (41)

and zero-modes with M = 10, ψi,10, are decomposed as three 2+ and two 2−. These
results are shown in Table 3.

5.2 g = 3 model

Here, we study the model with g = 3. First, we consider the zero-modes with M = 3,
ψi,3. They correspond to a triplet of ∆(27) with non-vanishing Wilson lines. At any rate,
the generators, Z, C and P , acts on ψi,3 as

Z =

 1 0 0
0 ω 0
0 0 ω2

 , C =

 0 1 0
0 0 1
1 0 0

 , P =

 1 0 0
0 0 1
0 1 0

 . (42)

Their closed algebra is ∆(54). Thus, the zero-modes ψi,3 correspond to the triplet of
∆(54), 31. This is the same as the flavor symmetry, which appears in heterotic orbifold
models with T 2/Z3 [2]. Three fixed points on the orbifold T 2/Z3 have the geometrical
permutation symmetry S3. Such symmetry is enhanced in magnetized brane models, only
when Wilson lines are vanishing. Indeed, the closed algebra of generators C and P is S3.

Similarly, we can consider the zero-modes with M = 6, ψi,6. We decompose them as
(35). The generators, C and P , act on |ψ6⟩i (i = 1, 2) in the same way as ψi,3, but the
representation of the generator Z for |ψ6⟩i (i = 1, 2) is the complex conjugate to one for
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|ψ3⟩1. Thus, both |ψ6⟩i correspond to 3̄1 representations of ∆(54). Recall that |ψ6⟩i are
3̄ representations of ∆(27).

Next, let us consider the zero-modes with M = 9, ψi,9. Recall that they correspond
to nine singlets of ∆(27) as (37). The following linear combination,

ψ0,9 + ψ3,9 + ψ6,9, (43)

is still a singlet under ∆(54), which is a trivial singlet 11. However, the others in linear
combinations (37) transform each other under P . Then, they correspond to four doublets
of ∆(54),

21 :

(
ψ0,9 + ωψ3,9 + ω2ψ6,9

ψ0,9 + ω2ψ3,9 + ωψ6,9

)
, 22 :

(
ψ1,9 + ψ4,9 + ψ7,9

ψ2,9 + ψ5,9 + ψ8,9

)
,

23 :

(
ψ1,9 + ωψ4,9 + ω2ψ7,9

ψ8,9 + ω2ψ5,9 + ω2ψ2,9

)
, 24 :

(
ψ1,9 + ω2ψ4,9 + ωψ7,9

ψ8,9 + ω2ψ5,9 + ωψ2,9

)
.

(44)

Now, let us consider the zero-modes with M = 12, ψi,12. We decompose them into
g-plets (27)

|ψ12⟩1 =

 ψ0,12

ψ4,12

ψ8,12

 , |ψ12⟩2 =

 ψ6,12

ψ10,12

ψ2,12

 ,

|ψ12⟩3 =

 ψ3,12

ψ7,12

ψ11,12

 , |ψ12⟩4 =

 ψ9,12

ψ1,12

ψ5,12

 . (45)

They correspond to four triplets of ∆(27). Representations of the generators, Z, C and
P , on |ψ12⟩1 and |ψ12⟩2 are the same as those on ψi,3 like Eq. (42). Thus, they correspond
to 31. On the other hand, |ψ12⟩3 and |ψ12⟩4 transform each other under P . Hence, we
take the following linear combinations,

|ψ12⟩± =

 ψ3,12 ± ψ9,12

ψ7,12 ± ψ1,12

ψ11,12 ± ψ5,12

 . (46)

Then, representations of Z, C and P on |ψ12⟩+ are the same as (42), and |ψ12⟩+ corre-
sponds to 31. On the other hand, representations of Z and C on |ψ12⟩− are the same as
(42), but the generator P is represented on |ψ12⟩− as

P =

 −1 0 0
0 0 −1
0 −1 0

 . (47)

That is, |ψ12⟩− corresponds to another triplet of ∆(54), i.e. 32. Furthermore, the zero-
modes with M = 15, ψi,15 correspond to

3× 3̄1, 2× 3̄2, (48)
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M Representation of ∆(54)

3 31

6 2× 3̄1

9 11, 21, 22, 23, 24

12 3× 31, 32

15 3× 3̄1, 2× 3̄2

18 2× {11, 21, 22, 23, 24}

Table 4: ∆(54) representations of zero-modes in the model with g = 3.

and the zero-modes with M = 18, ψi,18 correspond to

2× {11, 21, 22, 23, 24}. (49)

These results are shown in Table 4. Irreducible representations of ∆(54) are two triplets
31, 32, their conjugates 3̄1 3̄2, four doublets 21, 22, 23, 24, trivial singlet 1 and non-trivial
singlet 12. All of them except the non-trivial singlet 12 can appear in this model.

Similar analysis can be carried out in other models with g > 3. In generic case, the Z
and P satisfy

PZ = Z−1P, (50)

and the closed algebra of C and P is Dg. Thus, the flavor symmetry, which is generated
by Z, C and P , would be written as Dg n (Zg × Zg). Note that S3 ∼ D3 and ∆(54) is
D3 n (Z3 × Z3).

6 Orbifold models

We have found that several non-abelian discrete flavor symmetries like D4, ∆(27) and
∆(54) can appear. However, these exact symmetries may be rather large to explain
realistic mass matrices of quarks and leptons. Their breaking would be preferable. Such
symmetry breaking can happen within the framework of four-dimensional effective field
theory, that is, scalar fields with non-trivial representations are assumed to develop their
vacuum expectation values. On the other hand, a certain type of symmetry breaking can
happen on the orbifold background, which is called magnetized orbifold models [20, 21].
Here, we discuss the flavor structure in magnetized orbifold models.

The orbifold T 2/Z2 is constructed by dividing T 2 by the Z2 projection z → −z.
Furthermore, on such an orbifold, we require periodic or anti-periodic boundary condition
for matter fields as well as gauge fields,

ψ(−z) = ± ψ(z). (51)

Since such boundary conditions are consistent in models with vanishing Wilson lines,
we consider the case without Wilson lines. Indeed, zero-mode wavefunctions in models
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without Wilson lines satisfy the following relation,

ψj,M(−z) = ψM−j,M(z). (52)

Thus, even and odd zero-modes are obtained as their linear combinations,

ψj
±(z) = ψj,M(z)± ψM−j,M(z), (53)

up to a normalization factor. Which modes among even and odd modes are selected
depends on how to embed the Z2 orbifold projection into the gauge space, that is, model
dependent. At any rate, either even or odd zero-modes are projected out for each kind of
matter fields5. Note that the Z2 orbifold parity of ψj

±(z) is the same as the Z2 charge of
P . Thus, through the orbifold projection zero-modes with either even or odd Z2 charge
of P survive for each kind of matter fields.

Let us consider examples. First we study the model with g = 2. This model has the
non-abelian flavor symmetry D4 × Z2. The zero-modes with M = 2, ψi,2, correspond to
2+ of D4 × Z2. When we require the periodic boundary condition, they survive. On the
other hand, they are projected out for the anti-periodic boundary condition. Similarly,
the zero-modes with M = 4, ψi,4, correspond to 1+++, 1+−+, 1−++ and 1−−−, where the
third subscript denotes the Z2 charge of P . Thus, the zero-modes corresponding to 1+++,
1+−+ and 1−++ survive for the periodic boundary condition, while only 1−−− survives for
the anti-periodic boundary condition. Similarly, we can identify which modes can survive
through the Z2 orbifold projection. The number of matter fields are reduced through the
Z2 orbifold projection. However, four-dimensional effective field theory after orbifolding
has the flavor symmetry D4 × Z2. The reason why the flavor symmetry D4 × Z2 remains
unbroken is that the flavor symmetry is the direct product between D4 and Z2.

Next, let us consider the model with g = 3. This model has the flavor symmetry
∆(54). The zero-modes with M = 3, ψi,3, correspond to 31 of ∆(54). However, the
eigenstates of Z2 are ψ0,3 and ψ1,3 ± ψ2,3. Hence, when we project out Z2 even or odd
modes, the triplet structure is broken, that is, the flavor symmetry ∆(54) is completely
broken. However, such symmetry breaking is non-trivial, because the original theory has
the ∆(54) symmetry and we project out certain modes from such a theory.6

Orbifold models with larger g, g > 3 have a similar structure on flavor symmetries. The
original theory before orbifolding has a large non-abelian flavor symmetry. By orbifolding,
certain matter fields are projected out and the flavor symmetry is broken although some
symmetries like abelian discrete symmetries remain unbroken. However, there remains
a footprint of the larger flavor symmetry in four-dimensional effective theory, that is,
coupling terms are constrained.

As an illustrating example, let us consider explicitly the model with three zero-modes,
which have relative magnetic fluxes, (M1,M2,M3) = (4, 4, 8), that is, g = 4. The genera-

5Within the framework of intersecting D-brane models, analogous results have been obtained by
considering D6-branes wrapping rigid 3-cycles [22].

6This type of flavor symmetry breaking has been proposed in not magnetized brane models, but
orbifold models [23, 24, 25].
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i, j, k Li Rj Hk

0 ψ0,4 ψ0,4 ψ0,8

1 1√
2
(ψ1,4 + ψ3,4) 1√

2
(ψ1,4 + ψ3,4) 1√

2
(ψ1,8 + ψ7,8)

2 ψ2,4 ψ2,4 1√
2
(ψ2,8 + ψ6,8)

3 - - 1√
2
(ψ3,8 + ψ5,8)

4 - - ψ4,8

Table 5: Wavefunctions in the orbifold model.

tors, Z, C and P , are represented on the zero-modes with M1 = 4 as

Z =


1

i
−1

−i

 , C =


1

1
1

1

 , P =


1

1
1

1

 . (54)

Obviously, we find [P,Z] ̸= 0 and [C,P ] ̸= 0. Thus, eigenstates of P are not eigenstates
for Z or C. Since eigenstates with P = 1 or P = −1 are projected out by orbifolding,
the flavor symmetry is broken. However, one can find that [P,Z2] = [P,C2] = 0. The
symmetry generated by Z2, C2 and P remains unbroken after orbifolding. Thus, the flavor
symmetry is reduced to Z2 × Z2 × Z2. The first two Z2 factors are originally subgroups
of Z4 n (Z4 × Z4) generated by Z and C algebra and they are abelian groups.

For concreteness, let us consider the following Z2 boundary conditions,

ψi1,M1(−z) = ψi1,M1(z), ψi2,M2(−z) = ψi2,M2(z), ψi3,M3(−z) = ψi3,M3(z), (55)

for three types of zero-modes. Then, we assign the first and second modes with left-
handed and right-handed fermions, Li and Rj, while the third is assigned with Higgs
fields Hk. There are three Z2 even modes for M1 =M2 = 4, that is, the three generation
model [20, 21], while there are five Z2 even modes for M3 = 8. Their wavefunctions are
shown in Table 5.

After orbifold projection, Yukawa couplings YijkLiRjHk in this model are given by
[21]

YijkHk =

 yaH0 + yeH4 yfH3 + ybH1 ycH2

yfH3 + ybH1
1√
2
(ya + ye)H2 + yc(H0 +H4) ybH3 + ydH1

ycH2 ybH3 + ydH1 yeH0 + yaH4

 . (56)

Here, Yukawa coupling strengths, ya, yb, · · · , yf , are written as functions of moduli and
they are, in general, different from each other.

We can take the basis of Li, Rj, Hk as eigenstates of Z2 and C2. Such a basis is shown
in Table 6. Thus, if this effective theory has only Z2 × Z2 × Z2 symmetry, the following
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Li Z2 C2 Rj Z2 C2 Hk Z2 C2

1√
2
(L0 + L2) 1 1 1√

2
(R0 +R2) 1 1 1√

2
(H0 +H4) 1 1

1√
2
(L0 − L2) 1 –1 1√

2
(R0 −R2) 1 –1 1√

2
(H0 −H4) 1 –1

L1 –1 1 R1 –1 1 1√
2
(H1 +H3) –1 1

– – – – – – 1√
2
(H1 −H3) –1 –1

– – – – – – H2 1 1

Table 6: Eigenstates of Z2 and C2

couplings would be allowed,

YijkHk =

 y1H0 + y2H2 + y3H4 y4H1 + y5H3 y6H0 + y7H2 + y8H4

y′4H1 + y′5H
3 y9(H0 +H4) + y10H2 y′5H1 + y′4H3

y8H0 + y7H2 + y6H4 y5H1 + y4H3 y3H0 + y2H2 + y1H4

 ,(57)

where coupling strengths like y1,y2, etc. are independent parameters. For example, the
Z2 × Z2 × Z2 symmetry allows non-vanishing couplings of y2, y6 and y8. However, these
couplings are forbidden by the symmetry Z4 n (Z4 × Z4) and such couplings do not
appear in Eq. (56). Thus, Yukawa couplings derived from orbifolding are constrained
more compared with the model, which has only the Z2 × Z2 × Z2 flavor symmetry.

Similarly, other orbifold models have more constraints at least at tree level compared
with unbroken symmetry as a footprint of larger flavor symmetries before orbifolding.
Such a structure would be useful for phenomenological applications.

7 Conclusion and discussion

We have studied the non-abelian flavor symmetries, which can appear in magnetized
brane models. We have found that D4, ∆(27) and other Zg n (Zg ×Zg) flavor symmetries
can appear from magnetized brane models with non-vanishing Wilson lines. Matter fields
with several representations of these discrete flavor symmetries can appear. When we
consider vanishing Wilson lines, these flavor symmetries are enhanced like D4×Z2, ∆(54),
etc. These results are interesting to apply for model building of realistic quark/lepton
mass matrices. We have also discussed the flavor symmetry breaking on the orbifold
background.

Since intersecting D-brane models are T-duals of magnetized brane models, we would
obtain the same results in intersecting D-brane models.

It is important to study anomalies of non-abelian flavor symmetries. If string theory
leads to anomaly-free effective low-energy theories including discrete symmetries, anoma-
lies of discrete symmetries must be canceled by the Green-Schwarz mechanism. Those
discrete anomalies were studied within the framework of heterotic orbifold models in
[26], and it was shown that discrete anomalies can be canceled by the Green-Schwarz
mechanism. Furthermore, important relations of discrete anomalies with U(1) anomalies
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and others were found. (See also [27].) It is important to extend such an analysis to
magnetized/intersecting brane models.
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