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Abstract

In this thesis we study various types of block codes, like linear, mutlti-linear, almost
affine codes. We also look at how these codes can be described by associated matroids. In
addition we look at flags (chains) of codes and see how their behavior can be described using
demi-matroids. We also introduce weight polynomials for almost affine codes.
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Almost Affine Codes and Matroids

1 Introduction

As long as people need to transmit data through noisy channels, we have to deal with
errors. Error-correcting codes were made to help us to correct, or at least or to detect, errors
that occurred through transmission. Such codes are used everywhere, from in a phone chat
between two friends, to in computers where data corruption cannot be tolerated, and for
example when receiving pictures from spacecrafts which are discovering cold dark undiscov-
ered space. A typical situation is when data are digitalized and represented as strings of
signs, or digits, taken from a given alphabet.

Basically we add some digits to the message we want to transmit, such that it is easier
to correct the received message in case of an error. We will talk about block codes when
the transmitted messages have the same length. The perhaps most common class of block
codes is called linear codes. In this case the alphabet is a finite field Fq, and a code C is
a k-dimentional vector subspace of Fnq , and the linear code C is called an [n, k]-code. But
there are also many other classes of codes; examples are multilinear codes, affine codes, al-
most affine codes and quasi-uniform codes.

Hence error-correcting codes is one interesting topic, both from an applied, and a theoret-
ical viewpoint. Another interesting topic is that of matroids, which is simply a set of subsets
of a given finite set E, such that this set of subsets satisfy three given axioms. At first sight
matroids is just an abstract piece of mathematics, and has nothing to do with codes. But it
is not so. And in this thesis we reveal some fundamental connections between matroids and
some important classes of error-correcting codes. For instance, we can build a matroid over
a generator matrix given by a linear code, and for larger classes of codes we can build a ma-
troid over its rank functions; the connections between them leads us to generalization results.

In the two following chapters we recollect basic facts that we find relevant in our thesis.
These facts are taken from standard textbooks or the booklet [1].

In particular, in Chapter 2 we introduce linear codes C over a finite alphabet A. And
the alphabet A is then a finite field F. Also we give some basic and important definitions,
like the minimum distance of a code, the generalized Hamming weights of linear codes, the
support of codeword in a linear code. Also we talk about how the code C can be represented
through a matrix, a parity check matrix and a generator matrix. Also we define the dual
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code of C, denoted C⊥.

In Chapter 3 we introduce matroids and describe some of their basic properties. We give
three definitions of a matroid: via independent sets, via sets of bases and via rank functions.
And we prove that all these definitions are equivalent. And for the givem matroid M we
define its dual matroid M∗. Also in this chapter we talk about representability of matroids
and how we can obtain a matroid from a linear code, denoted MC , and we will get famil-
iar with the important result, which says that M∗

C = MC⊥ . We also introduce generalized
Hamming weights of matroids, and Wei duality of matroids as well as for linear codes.

Chapter 4 treat larger classes of codes, these are classes that contain the linear codes. We
define affine codes, multilinear codes, almost affine codes and quasi- uniform codes. And we
make a comparison between these classes of codes and rank them in terms of generalization
(with respect to inclusion).

In Chapter 5 we define demi-matroids, which is a generalization of matroids and enables
us to study a larger class of objects. We give two definitions and prove they are equal. Also
we define flags of matroids and almost affine codes, and we say in Corollary 104 and Corollary
108 that demi-matroids can be used to describe a pair of almost affine codes or even bigger
chains of almost affine codes. A main purpose of this chapter is to extend well known prop-
erties for linear codes to results for almost affine codes. We will prove some statements like
Theorem 110 which treats chains (or flags) of almost affine codes. This chapter is inspired by
the preprint [3], but we will give some proofs that are not necessarily the same as those in [3].

In Chapter 6 we treat multilinear codes, in particular how a multilinear code can be
viewed as an almost affine code. We also define the support of a set of codewords in an al-
most affine code in general, and study generalized Hamming weights for almost affine codes,
and in particular for multilinear codes, and we show Wei duality for multilinear codes. We
also show a Kung’s bound for multilinear codes

In Chapter 7 we present a formula for calculating the cardinalities of the sets of codewords
of given weights in an of almost affine code. Also we use the fact that a code Cs ⊆ (F n)s

can be viewed as a subcode of (F s)n to obtain a hierarchy of codes over F s, for s ∈ N. The
formula we obtained can be viewed as a result for all of these codes simultaneously, since
the formula is given in terms of Q = qs(the cardinality of the alphabet). In fact we use the
matroid MC in the same way for almost affine codes in the main result - Theorem 135, as
for linear codes in [4].
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2 Basic definitions of linear codes

In this section, we will introduce basic definitions of linear codes, some examples and
proofs will be given as well. We assume that the reader already knows some algebra and
linear algebra.

Definition 1 An alphabet A is a finite set of symbols.

Example 2 A = Fq, the field with q elements and q is a prime power.

Definition 3 Let q be an integer. Then a q-ary code is a set of r-tuples (a1, · · · , ar) (r can
vary) where ai ∈ A and A is an alphabet of cardinality q. An element in this set is called a
codeword. In case A = F2 the code is called binary code.

From now on and further we will treat codes whose codewords all have the same length
(r from the definition above is fixed). These codes are called block codes.

Example 4 The set of all Norwegian postal codes is a 10-ary block code, every postal code
has 4 digits.

Definition 5 The length n of a block code is equal to the length of any codeword.

Definition 6 Consider the alphabet, A and let An be the set of all words of length n. Let
x = (x1, ..., xn) and y = (y1, ..., yn) be two words. The Hamming distance between x and y is

d(x, y) = # {i|xi 6= yi} .

If the alphabet is a field Fq, then the weight of the codeword x is

wt(x) = # {i, xi 6= 0} .

Example 7 One of the Oslo’s postal codes is 0029. The postal code the University of Tromsø
belongs to is 9019. And the Hamming distance between them is

d(0029, 9019) = 2

since just the first and the third digits are different.

Definition 8 The minimum distance of a code C is

d = Min {d(x, y)|x, y ∈ C, x 6= y} .

Code C can be define well by three numbers (n, M, d). Where n is a code length, M is a
quantity of codewords and d is a minimum distance.

Example 9 Let C be {(0000), (1100), (0011), (1010)}. It is easy to see that the minimum
distance is 2.
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Definition 10 A linear code over the finite field Fq is a linear subspace of the vector space
Fnq .

A subset C of Fnq is a linear code if and only if it is closed under addition and scalar
multiplication. If C is a k-dimentional vector subspace of Fnq , then the linear code C is
called an [n, k]-code or [n, k, d] if we need to specify minimum distance d as well.

Lemma 11 Let x, y be two codewords of a linear code. Then

d(x, y) = wt(x− y).

Proof. We have

d(x, y) = # {i|xi 6= yi}

= # {i|xi − yi 6= 0}

= wt(x− y)2

Theorem 12 Let C be a linear code. Then

d = Min {wt(x)|x ∈ C − {(0, ..., 0)}} .

Proof. See the proof of Theorem 5.2 in [3].

This way of finding a minimum distance of the code is much easier since we don’t need
to check all possible pairs of code words.

Definition 13 The support of codeword x is

Supp(x) = {i|xi 6= 0}

The support of a set of codewords is just the union of the supports of the codewords

Supp(S) =
⋃
x∈S

Supp(x) = {i|∃x ∈ S, xi 6= 0}

Definition 14 Let C be a [n, k] code. Then the generalized Hamming weights are

di=Min{# Supp(D)—D is a subcode of dimension i of C }

Definition 15 A k×n matrix whose rows from a basis of a linear [n, k]−code is called a
generator matrix of the code.

The generator matrix G for the [n, k]−code is not unique since the basis for [n, k]−code
is not unique.
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Definition 16 Two linear codes over Fq are called equivalent if one can be obtained from
the other by a combination of operations of the following types.

(1) Permutation of the position of the code;
(2) Multiplication of the symbols appearing in a fixed position by a non-zero scalar.

Theorem 17 Two k×n matrices generate equivalent linear [n, k]−codes over Fq if one ma-
trix can be obtained from the other by a sequence of operations of the following types:

(R1) Permutation of the rows.
(R2) Multiplication of a row by a non-zero scalar.
(R3) Addition of a scalar multiple of one row to another.
(C1) Permutation of the columns.
(C2) Multiplication of any column by a non-zero scalar.

Proof. See the proof of Theorem 5.4 in [3].

Proposition 18 Two equivalent codes have the same parameters n, k and d.
Proof. It is quite obvious that the length m of two equivalent codes is the same. Dimension
k also will not change by using the operations above, which follows from standard linear
algebra.

Remark 19 If we only use rows transformations such that (R1), (R2) and (R3), we obtain
a different generator matrix for the same code.

Theorem 20 Let G be a generator matrix of an [n, k]−code. Then by performing operations
of types represented above, G can be transformed to the standard form

[Ik|A] ,

where Ik is the k × k identity matrix, and A is a k × (n− k) matrix.
Proof. See the proof of Theorem 5.5 in [3].

Definition 21 Given a linear [n, k]−code C, the dual code of C, denoted C⊥, is defined to
be the set of those vectors of Fnq which are orthogonal to every codeword of C. i.e.
C⊥ = {y ∈ Fnq |x · y = 0, for all x ∈ C }

The code C⊥ is also a linear code since the set of all orthogonal vectors to Fkq vector space
gives us vector space Fn−kq . So the code C⊥ is a linear [n, n-k]-code.

Definition 22 A generator matrix of C⊥ is called a parity check matrix of C.

Remark 23 If H is a parity check matrix for C, then

C = {x|H · xT = 0}.
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Theorem 24 Let C be a linear [n,k]-code with generator matrix G under standard form

G = [Ik|A].

Then a parity check matrix for C is given by

H = [−AT |In−k].

Proof. See the proof of Theorem 4.6 in [5].

Definition 25 A parity check matrix H = [B|In−k] is also called a parity check matrix in
standard form.

Corollary 26 Let C be a linear code with H as a parity check matrix. Then, by performing
operations of type (R1), (R2), (R3), (C1) and (C2), we can obtain a parity check matrix in
standard form.

Proof. We can find generator matrix G = [I|A] for a C⊥ in a standard form for generator
matrixes and all we need to obtain a parity check matrix in standard form is to simply swap
I and A and call A as B. Need to be noticed that swaping is a combination of allowed
operations.

Theorem 27 Let C be a linear [n,k]-code with parity check matrix H. Then the minimum
distance of C is d if and only if any d-1 columns of H are linearly independent, but some d
columns are linearly dependent.

Proof. Let H = [C1|C2| · · · |Cn] be the parity check matrix for code C, where Ci is a i-th
column. According to Theorem 12, d(C) = d ⇔ d = Min {wt(x)|x ∈ C − {(0, · · · , 0)}} i.
e.

∃x ∈ C − (0, · · · , 0)|wt(x) = d

and

@x ∈ C − (0, · · · , 0)|wt(x) < d

But what does it mean that wt(x)=j, it means x = (0, · · ·x1, · · · 0, xj) where only x1,j not
equal to zero. Then

[C1|C2| · · · |Cn] · [0, · · ·x1, · · · 0, xj)]T = 0

x1Ci1 + · · ·+ xjCij = 0

It is a linear relation between exactly j columns. As a result we have a linear relation between
d columns and there is no linear relation between less then d columns �

Example 28 The [5,3]-code C over F5 is given by its generator matrix:

G =

 2 2 0 4 3
1 2 1 4 2
1 1 1 1 1


6



First of all, we are going to obtain a generator matrix in standard form. Subtract row 3
from row 2:  2 2 0 4 3

0 1 0 3 1
1 1 1 1 1


Then we multiply the first row by 3: 1 1 0 2 4

0 1 0 3 1
1 1 1 1 1


Then we subtract the first row from the third: 1 1 0 2 4

0 1 0 3 1
0 0 1 4 2


Finally, we obtained generator matrix in standard form by subtracting row 2 from row 1: 1 0 0 4 3

0 1 0 3 1
0 0 1 4 2


Now we use the Theorem 25 and find parity check matrix H for our code C :

H =

(
1 2 1 1 0
2 4 3 0 1

)
It is easy to see that first two columns are linearly dependent and there is no zero columns.
Following the Theorem 27, Its gives us that minimum distance is 2. Now lets find the
minimum distance of the orthogonal compliment of C by finding 3 × 3 determinants of
generator matrix in standard form:

det

 0 4 3
0 3 1
1 4 2

 = −5 = 0 mod 5

We found 3 columns are dependent which means the minimum distance of the orthogonal
compliment of C is at most 3. But all pairs of columns are linearly independent. Hence
minimum distance is 3.

Theorem 29 Let C be a linear [n,k]-code, and C⊥ its dual code. Let d1 < · · · < dk and
d∗1 < · · · < d∗n−k be the weight hierarchies of C and C⊥ respectively. Then{

d1, · · · , dn, n+ 1− d∗1, n+ 1− d∗n−k
}

= {1, · · · , n} .

Proof. See the proof in [5].
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3 Introduction to Matroids

There are many equivalent definitions of matroids, we first start with a definition through
independence sets.

Definition 30 A finite matroid is a pair (E, I) where E is a finite set {1, . . . , n} (called
the ground set), and I is a family of subsets of E (called independent sets). And I satisfies
following axioms:

(I1) ∅ ∈ I,

(I2) If I1 ∈ I and I2 ⊂I1, then I2 ∈ I,

(I3) If I1 and I2 are both elements of I with |I1| < |I2|, then there exists x ∈ I2 − I1 such
that I1 ∪ {x} ∈ I.

Definition 31 Let F be a field and A ∈ Fm×n an m× n matrix. Let E = {1, ..., n} be the
index set of the columns of A. Then I ⊆ E is independent if the columns indexed by I are
linearly independent. The matroid (E, I) constructed in this way called a linear matroid

Definition 32 Let F be a field, a matroid is said to be representable over given a field F if
it can be expressed as a linear matroid with matrix A and independence taken over F.

Definition 33 A matroid is called regular if its representable over any field.

Definition 34 A maximal independent set is called a basis and denoted by B.

Proposition 35 The bases of a matroid all have the same cardinality.

Proof. Suppose that B1 and B2 are two bases with different cardinality and |B1| < |B2|.
Since B1 and B2 are independent sets we can use axiom (I3) and find x ∈ B2−B1 such that
B1 ∪ {x} is still independent. This is contradiction because B1 supposed to be a maximal
independent set. 2

Definition 36 Let E be a finite set and B ⊂ 2E. We say that B is set of bases if it satisfies
the two following axioms

(B1)B 6=∅,

(B2)∀B1, B2 ∈ B,∀x ∈ B2 −B1,∃y ∈ B1 −B2, B2 ∪ {y} − {x} ∈ B.

Now we show that a matroid defined by axioms for independent sets I satisfies axioms
for bases B.

Corollary 37 Let M = (E, I) be matriod, then the set of bases B from the Definition 33
satisfies the definition 36.
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Proof. According to (I1), ∅ ∈ I, so B is not empty. It proves (B1). To prove (B2) we
assume that (B2) is false, then its negation is true:

∃B1, B2 ∈ B,∃x ∈ B2 −B1,@y ∈ B1 −B2, B2 ∪ {y} − {x} ∈ B

We can take I1 = B2 − {x} and I2 = B1. Since |I1| < |I2| and B2 ∪ {y} − {x} ∈ B is
equal to I1 ∪{y} ∈ I, we have contradiction to axiom (I3). So our assumption is wrong and
axiom (B2) works2

Now we can describe matroids through the set of bases.

Theorem 38 Let B be a set of bases on E. Let I = {X ⊂ B,B ∈ B}. Then M(B) = (E, I)
is a matroid, whose set of bases is B.

Proof. The axiom (I1) follows from (B1) and the statement that any set has the empty
set as a subset. Axiom (I2) is also obvious because if I2 is a subset of I1 it is a subset of the
same base B as I1. The proof of the third axiom (I3) can be found in [5]2

Example 39 We construct the matroid from the given matrix M over R

M =

 0 0 2 4 1
0 1 2 4 2
1 1 1 2 3


The ground set is E = {1, 2, 3, 4, 5} and I consist of all linearly independent sets of columns.

I = {∅, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {4, 5},
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}}.

And it is easy to see that B = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}}.

Definition 40 A matroid Ua,b is called uniform matroid if it based on the ground set of b
elements and every subset of a elements is a basis of Ua,b.

Now we introduce the circuits of a matroids.

Definition 41 The circuit of a matroid is a minimal dependent subset (for inclusion) of E.

We define the set of all circuits of a matroid by C

Proposition 42 A circuits of a matroid satisfy the following properties:

(C1) ∅ /∈ C,

(C2) If C1, C2 ∈ C with C1 ⊂ C2, then C1 = C2,
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(C3) If C1, C2 ∈ C are distinct and not disjoint, then for any e ∈ C1 ∩ C2, there exists
C3 ∈ C such that C3 ⊂ (C1 ∪ C2)− {e}

Proof. We need to show that the matroid’s axioms (I1), (I2), (I3) in the Definition 30 imply
the above properties. If ∅ belongs to C it means that ∅ is dependent set but this is a contra-
diction to (I1). The property (C2) comes straight from minimality of circuits. The proof of
(C3) is in the Proposition 20 in [5].

Now we are going to construct an object which looks like a matroid by using circuits and
theirs properties taken as axioms. And we will prove it is a matroid.

Theorem 43 Let E be a finite set, and C ∈ 2E satisfying (C1), (C2) and (C3), now inter-
preted as axioms. Let

I = {X ⊂ E,@C ∈ C, C ⊂ X}

Then (E, I) is a matroid whose set of circuits is C.

Proof. See the Theorem 6.7 in [5].

Example 44 Let’s find the circuits of Example 39. According to the definition the matroid
M has C = {{3, 4}, {1, 2, 4, 5}, {1, 2, 3, 5}}.

Definition 45 Let G be a graph. Then set of minimal cycles of the graph is the set of
circuits of a matroid. A matroid isomorphic to such a matroid is called a graphic matroid.

Remark 46 It can be shown that all graphic matroids are regular. But there are many
representable matroids that are not graphic.

Example 47 To illustrate the remark above we can take a uniform matroid U2,4. It is a
matroid with |E| = 4 and any set consists of up to 2 elements is independent. It is easy to
check that there is no graph with four edges such that each collection of three edges is a cycle
and each two edges must not contain a cycle. But the matrix(

1 0 1 2
0 1 2 1

)
gives us a representation of our matroid over R.

Now we introduce the rank function of a matroid.

Definition 48 Let M = (E, I) be a matroid. The rank of the matroid M is the function

r : 2E → N
X 7→Max{|I|, I ⊂ X, I ∈ I}

The nullity function is n : 2E → N defined by n(X) = |X| − r(X). By abuse of notation,
we shall write r(M)=r(E).
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The rank function of a matroid satisfies the following properties:

Proposition 49 The rank function of a matroid M=(E, I) satisfies the following properties:

(R1) r(∅) = 0,

(R2) If X ⊂ E and x ∈ E, then r(X) ≤ r(X ∪ {x}) ≤ r(X) + 1,

(R3) If X ⊂ E and x, y ∈ E, are such that r(X ∪ {x}) = r(X ∪ {y}) = r(X), then
r(X ∪ {x, y}) = r(X).

Proof. The first property follows from the definition. As for the second, by adding an
element to X we can either not change its biggest independent set or increase its cardinal-
ity by one. As for the third, we choose two elements which separately don’t affect on the
maximal independent set of X, so if we add them together we will not affect on the maximal
independent set as well.
It was just an idea of a proof, for more careful proof check the proof of the Proposition 17
of [5].

We will give an alternative description.

Proposition 50 Let r : 2E → N be a function. Then the 3 following properties:

(R′1) 0 ≤ r(X) ≤ |X|,
(R′2) If X ⊂ Y ⊂ E, r(X) ≤ r(Y ),
(R′3) If X ⊂ Y ⊂ E, r(X ∩ Y ) + r(X ∪ Y ) ≤ r(X) + r(Y ).

are equivalent to the properties (R1), (R2) and (R3).
Proof. See the proof of the Proposition 18 in [5].

Now we are going to describe a matroid through its rank function.

Theorem 51 Let E be a finite set and r : 2E → N a function satisfying (R1), (R2) and
(R3). Then if

I = {I ∈ 2E, r(I) = |I|},

then the pair (E, I) is a matroid.

Proof. See the proof of the Theorem 6.5 in [5].

Example 52 Now we find ranks of some subsets of the ground set of the matroid M from
Example 39.

r({1}) = r({3}) = r({5}) = r({3, 4}) = 1,
r({1, 2}) = r({2, 5}) = r({4, 5}) = r({1, 3, 4}) = 2,

r({1, 2, 3}) = r({2, 3, 5}) = r({1, 2, 3, 4}) = r({1, 2, 3, 4, 5}) = 3.
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Eventually we have defined matriods through independent sets, bases, circuits and rank
function. And we saw that all of these definitions are equal.

Duality of matroids.

Definition 53 Let M be a matroid on the ground set E and set of bases B. Then the matroid
on E with set of bases {B̄|B ∈ B} is called the dual M, and denoted by M*.

Remark 54 To justify this definition one has to show that the set {B̄|B ∈ B} satisfies the
axioms (B1) and (B2) of the Definition 36.

Proof. See the proof of the Theorem 7.2 in [5].

Remark 55 We have that (M∗)∗ = M .

Proof. It is true since ∀B ∈ B| ¯̄B = B.

Example 56 Let’s find a dual matroid of the matroid of Example 39. We have

B = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}}

and its compliment looks like:

B̄ = {{4, 5}, {3, 5}, {3, 4}, {2, 4}, {2, 3}, {1, 4}}.

So M∗ = (E, B̄).

Example 57 An uniform matroid Ua,b has the uniform matroid Ub−a,b as its dual.

Proposition 58 Let M be a matroid of rank r on the ground set E. Then the rank of M∗

is |E| − r.

Proof. The rank of M is equal to the cardinality of any base, and cardinality of a com-
pliment to any base is exactly |E| − r.

Theorem 59 Let M be a matroid of rank function r. Then the rank function r∗ of M∗ is
given by

r∗(X) = |X|+ r(E −X)− r(M).

Proof. See the proof of Theorem 7.3 in [5].

Corollary 60 Let M be a matroid with nullity function n. Then the nullity function n∗ of
M∗ is given by
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n∗(X) = |X|+ n(E −X)− n(E).

Proof.

n(X) = |X| − r(X)
n∗(X) = |X| − r∗(X)

n∗(X) = |X| − (|X|+ r(E −X)− r(M)) = r(M)− r(E −X)

and

n(E −X) = |E −X| − r(E −X),
n(E) = |E| − r(E).

Since r(E) = r(M), we have

n∗(X) = |E| − n(M) + n(E −X)− |E −X|.

and

n∗(X) = |X|+ n(E −X)− n(M).

Definition 61 Two matroids M1 = (E1, I1) and M2 = (E2, I2) are isomorphic if there ex-
ists a bijection φ : E1 → E2 such that

X ∈ I1 ⇔ φ(X) ∈ I2.

Theorem 62 Let M, N be two isomorphic matroids. Then M* and N* are isomorphic.
Proof. See the Theorem 7.5 in [5].

Proposition 63 The class of representable matroids is closed under duality.

Proposition 64 The class of regular matroids is closed under duality.

Theorem 65 Let C be a [n, k]q linear code defined by a generator matrix G or a parity
check matrix H. Let G’ be another generator matrix of C, and H’ be another parity check
matrix of C. Then

M [G] = M [G′]

and

M [H] = M [H ′].

Proof. As we mentioned before, we can get G’ from G (or H’ from H) by performing row
operations on a matrix. But this does not change dependence relations between columns, so
M [G] = M [G′] and M [H] = M [H ′].

Definition 66 Let C be a [n, k]q linear code. Then the matroid MC associated to the code
is

14



MC = M [H]

where H is a parity check matrix of C.

Theorem 67 Let C be a [n, k]q linear code. Then MC is a matroid on E = {1, . . . , n}, of
rank n-k. Moreover, we have

M∗
C = MC⊥.

Proof. See the Theorem 7.12 in [5].

Remark 68 The theorem above helps us to explain why the Proposition 63 and Proposition
64 are true. If M is a representable matroid over a field F it has the matrix as a ’representa-
tion’. Every matrix can be assumed to be a parity check matrix of a linear code for example,
called C. Every code C has an orthogonal compliment C⊥ which is a also linear code over
the same alphabet and can be defined by another parity check matrix over that field. And the
matroid build over C⊥ is exactly dual to our original matroid M by construction.

Definition 69 Let M be a matroid over the ground set E and with rank function r. Let
1 6 i 6 #E − r(E). Then the i-th generalized Hamming weight of M is

di = Min{#X|#X − r(X) = i}.

Theorem 70 Let C be a linear code over finite field Fq. If M = MC, then

di(C) = di(M), for i = 1, . . . , k = rank(M).

Proof. See p.108-110 in [5].

Proposition 71 Let M be a matroid of rank r on the ground set E. Then we have

d1 < · · · < d|E|−r.

Example 72 Lets find di of the code in Example 28. These are equal to di of the matroid
MC, defined by the parity check matrix H in Example 28. There are three of them because
|E| − r(E) = 5− 2 = 3., where r is the rank function of MC.

d1 = Min{|Supp(D)| where D is 1-dimensional subspace of C}
d1 = Min{wt(x)|x ∈ C}

and we already know from Example 28 that it is 2;

d3 = Min{|Supp(D)| where D is 3-dimensional subspace of C} = |Supp(C)| = 5.

To find d2 we use Theorem 70.

d2 = Min{#X|#X − r(X) = 2}

from the Proposition above it must be 3 or 4. It can not be 3 since each subset of cardinality
3 has nullity 1, because it has three different subsets of cardinality 2, but there is the only
one pair of elements which is dependent - {1, 2}. So it is 4.

15



Theorem 73 Let M be a matroid on the ground set E and rank r. Let

d1 < · · · < d|E|−r

be its weight hierarchy. Let

e1 < · · · < er

be the weight hierarchy of M∗. Then we have

{d1, · · · , d|E|−r} ∪ {n+ 1− e1, · · · , n+ 1− er} = {1, · · · , n}

and the union is disjoint.

Example 74 Now we take an example of non-representable matroid called Vamos matroid.
It is a matroid V = (E, I) with |E| = 8, r(V ) = 4 and all subsets of cardinality 4 or less
are independent except {1, 2, 5, 6}, {1, 2, 7, 8}, {3, 4, 5, 6}, {3, 4, 7, 8} and {5, 6, 7, 8}. Vamos
matroid has d1, d2, d3 and d4, since |E|−r(V ) = 8−4 = 4. It is clear that d1 = 4 and d4 6 8
and according to the Proposition 71 we have

4 = d1 < d2 < d3 < d4 6 8.

It is also known that V is isomorphic to V ∗. Hence di = d∗i for the Hamming weights di of
V. In particular d∗1 = 4. Now by using Theorem 73 we have n + 1 − d∗1 = 9 − 4 = 5, so 5
doesn’t belong to the inequality above. Hence this inequality has the only one solution left,
namely d1 = 4, d2 = 6, d3 = 7, d4 = 8. And as we mentioned before d∗1 = 4, d∗2 = 6, d∗3 = 7,
d∗4 = 8.
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4 Back to Codes

We define almost affine codes and a class of codes which is even bigger than it and see
how there are matroids associated to almost affine codes.

Up until now we have studied mostly a linear codes but these codes are a part of the ’code
world’ which is slightly bigger:

1. Linear codes
2. Affine codes

3. Multilinear codes
4. Almost affine codes
5. Quasi-uniform codes

Definition 75 An affine code is a subset S of F n for a finite field F, such that S = C + w̄
for a fixed word w̄, and a linear code C.

Hence linear codes are special case for affine codes for w̄ = 0̄.

Definition 76 Let F be a finite set of cardinality at least 2, and E be a finite set of cardi-
nality n > 1. We may assume E = {1, 2, · · · , n}, let X = {x1, · · · , xs} ⊆ E. Define

ρx : FE → FX

(c1, · · · , cn)→ (cx1, · · · , cxs).

Example 77 F = Z7, n = 5 and X = {2, 3, 5}, then ρX : (5, 4, 3, 2, 1)→ (4, 3, 1).

Definition 78 Let C be a code, then CX = ρX(C). If X = ∅, let |CX | = 1

Definition 79 A multilinear code is a Fq-linear subspace of F n, where F = Fmq , for some
natural number m, such that dimFq(CX) is divisible by m, for each X ⊂ E = {1, 2, · · · , n}.

Remark 80 Linear codes are special case of multilinear codes, with m=1.

Definition 81 A code C ⊆ FE is called almost affine if it satisfies the condition

r(X) = log|F |(|CX |) ∈ N for all X ⊆ E.

Proposition 82 Multilinear codes are almost affine codes.
Proof. Let X ⊆ E, then |CX | = qmg, for some g ∈ N, since CX is multilinear. But
|CX | = (qm)g = |F |q. But then

rk(X) = log|F |(|CX |) = log|F |(|F |g) = g ∈ N.

17



Corollary 83 Linear codes and affine codes are almost affine codes.

Proof. Linear codes are multilinear codes, and multilinear codes are almost affine codes.
Since C = C ′ + w̄, for a linear code C ′ and |CX | = |C ′X |, for all X, since C’ is linear, it is
almost affine and then C is almost affine.

Theorem 84 Let C ⊆ FE be an almost affine code and r be the function in sense of Defini-
tion 81. Then we can build a matroid M(C) over E by using r as a rank function of a matroid.

Proof. We have to check that all X ⊆ E and all i, j ∈ E satisfy the following axioms
for rank function of matriod:
(R1) r(∅) = 0;
(R2) r(X) 6 r(X ∪ {i}) 6 r(X) + 1;
(R3) if r(X ∪ {i}) = r(X ∪ {j}) = r(X), then r(X ∪ {i, j}) = r(X).
The first axiom follows from Definition 78. Also it is quite obvious that |CX | 6 |CX∪{i}| 6
|CX | · |F |, which gives us R2. And if each of two coordinates i, j fails to increase a cardinality
of the projection, their combination fails to do so as well.

Example 85 Let C be a linear code. Then it has a generator matrix G. Let X ⊆ E, let
GX be a matrix where we have deleted all the columns of E \X. Then r(X) = log|F ||CX | =
rk(GX). This means that we have:

M(C) = M [G] = MC⊥ = M∗
C.

Example 86 Let C be a code of length 3 and dimension 2 on the alphabet {0,1,2,3}. Its
set of codewords is:

000 011 022 033
101 112 123 130
202 213 220 231
303 310 321 332

In our case |F | = 4. And all we need to see to prove that C is an almost affine code is that
|CX | is a power of 4, for all X ⊆ {0, 1, 2, 3}. If X has only one element |CX | = 4. If X has
two elements it is easy to see that |CX | = 16 (after deleting one position of all codewords we
still have 16 different codewords). So C is an almost affine code but it is not equivalent to a
linear code, and not even to a multilinear code.

Quasi-Uniform codes.

For a code C ⊆ F n and for a finite alphabet F, we have that

P (Z = x) =

{
1
|C| , if x ∈ C
0 , if x ∈ F n\C.
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Another words, if we pick a codeword Z from C, then all choices of codeword have the same
probability. Assume that we project the code C down to A ⊆ E by using ρA, and pick the
projection ZA of an arbitrary codeword Z. We say that C is quasi-uniform code if

P (ZA = y) =

{
1

|ρA(C)| , if y ∈ ρA(C)

0 , otherwise.

Theorem 87 Almost affine codes are quasi-uniform.

Proof. By Proposition 2 of [10], the number of codewords with projection y is qr(E)−r(A),
and hence

P (ZA = y) = qr(E)−r(A)

|C| = qr(E)−r(A)

qr(E) = q−r(A)

for all y ∈ ρA(C), and 0 otherwise. So it satisfies the definition above.

The binary and ternary case.

The following text is taken from [10], p.187-188.
It can be shown that a subset A ⊆ Fn2 is an affine subspace if and only if x + y + z ∈ A
for all x, y, z ∈ A. In particular, the 2-dimensional affine subspaces of Fn2 are quadruplets
{x, y, z, u} with x+ y + z + u = 0.

Proposition 88 All binary almost affine codes are affine.

Proof. For any almost affine code C ⊆ Fn2 , we have to show that each triplet {x, y, z} ⊂ C
is contained in a 2-dimensional affine subcode {x, y, z, u} of C. Lets apply the induction
method with respect to dimC. If dimC 6 1, there is nothing to prove. Suppose that the
proposition holds for all binary almost affine codes of dimension < k, and let dimC = k.
Choose a base B ⊆ E for the matroid M(C). For any three distinct x, y, z ∈ C exists a
unique codeword u s. t. xB + yB + zB + uB = 0. We claim that x + y + z + u = 0. If not,
there is an i ∈ B̄ with xi + yi + zi + ui = 1. Without loss of generality, we may assume that
ui = xi = yi and ui 6= zi. Then the subcode

T = {c ∈ C|ci = ui}

of C has dimension k-1. By the induction hypothesis, a codeword v ∈ T exists such that
x + y + v + u = 0. This implies that xB + yB + vB + uB = 0. Hence vB = zB, v = z and
x+ y + z + u = 0.

For the ternary case (alphabet F3) one sees that a subset S ⊆ Fn3 is affine subspace if and
only if −x − y ∈ S for all x, y ∈ S, and the 1-dimensional affine subspaces are the triplets
{x, y, z} with x+y+z=0. Using this, and an argument similar to the proof of Proposition
88, are concludes

Proposition 89 All ternary almost affine codes are affine.
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5 Demi-matroids and flags of almost affine codes

We will now give 2 different definitions of a demi-matroid, a tool that will be used to study
flags of almost affine codes.

Definition 90 A demi-matroid is a pair (E, r) where E is a finite set, called the ground
set, and r is a function on the power set of E into N satisfying the following axioms:

(R1) r(∅) = 0,

(R2) r(X) 6 r(X ∪ {x}) 6 r(X) + 1.

In other word, a demi-matroid is a matroid without the following axiom

(R3) if r(X ∪ {x}) = r(X ∪ {y}) = r(X), then r(X ∪ {x, y}) = r(X).

Thus a matroid is automatically a demi-matroid. On the other hand we have the following
definition:

Definition 91 A demi-matroid is a triple (E,s,t) where E is a finite set, and r, s are two
functions on the power set of E into N satisfying the following two conditions for all subsets
X ⊆ Y ⊆ E:

(R) 0 6 s(X) 6 s(Y ) 6 |Y | and 0 6 t(X) 6 t(Y ) 6 |Y |;

(D) |E −X| − s(E −X) = t(E)− t(X).

Proposition 92 The condition (D) is equivalent to the following condition:

(D′) |E −X| − t(E −X) = s(E)− s(X).

Proof. Use (D) on E −X:

|E − (E −X)| − s(E − (E −X)) = t(E)− t(E −X)

so

|X| − s(X) = t(E)− t(E −X)

note that s(∅) = t(∅) = 0 by (R) and use (D) on ∅ we have:

|E| − s(E) = t(E)

putting this expression for t(E) into the previous equality gives us:
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|X| − s(X) = |E| − s(E)− t(E −X).

Thus

|E| − |X| − t(E −X) = s(E)− s(X),

hence we obtain

(D′) |E −X| − t(E −X) = s(E)− s(X).

To obtain (D) from (D’) we just interchange the roles of s and t in the proof we just gave
for the fact (D’) follows from (R) and (D).

We gave two different definitions, since they define the same object they are supposed
to be equivalent. We now prove this.

Proposition 93 Definitions 90 and 91 are equivalent.

Proof. Firstly we obtain Definition 90 from Definition 91, replace r = s and just forget
about t. (R) with X = Y = ∅ gives us:

0 6 r(∅) 6 r(∅) 6 |∅| = 0,

so r(∅) = 0 which is (R1). From (R) with X = X, and Y = X ∪ {x} we get r(X) 6
r(X ∪ {x}). And the last inequation to compelete is:

r(X ∪ {x} 6 r(X) + 1,

i. e.

s(X ∪ {x} 6 s(X) + 1

By (D’) we have

s(X) = s(E)− |E −X|+ t(E −X),

by (R) we have

t(E −X) > t(E − {X ∪ {x}}).

Hence:

s(X) > s(E)− |E − (X ∪ {x})| − 1 + t(E − (X ∪ {x})).

More over, by D’ applied to X ∪ {x} we have:

s(E)− |E − (X ∪ {x)| − 1 + t(E − (X ∪ {x})) = s(X ∪ {x})− 1.

Hence s(X) > s(X ∪ {x})− 1, and therefore
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r(X ∪ {x}) = s(X ∪ {x}) 6 s(X) + 1 = r(X) + 1.

Now we will prove that Definition 91 can be obtained from Definition 90, i. e. start with
(R1) and (R2) we will prove (R) and (D).
First we define: s = r. Then we define t the same way as we define r∗ when r is the rank
function of a matroid. In other words:

t(X) := |X|+ s(E −X)− s(E), (1)

or

t(X) = |X|+ r(E −X)− r(E),

First we prove (D). Rewriting (D), it is:

t(X) = t(E) + s(E −X)− |E −X|.

Comparing the two expressions, we have to prove:

|X| − s(E) = t(E)− |E −X|,

hence it is enough to prove:

t(E) = |E| − s(E).

The equality (1) gives us:

t(E) = |E|+ s(∅)− s(E),

but s(∅) = 0 by (R1), so t(E) = |E| − s(E) holds.

Now we prove (R). There are six inequalities with X ⊆ Y :

0 6 s(X) 6 s(Y ) 6 |Y |
0 6 t(X) 6 t(Y ) 6 |Y |.

Let us prove the first three in the order that they appear.

0 6 s(X)

this holds since s(= r) defined as a function into N.

The second inequality. Let Y = X ∪ {y1, · · · , ym}, then

s(X) = r(X) 6 r(X∪{y1}) 6 r((X∪{y1})∪{y2}) 6 · · · 6 r((X∪{y1, · · · , ym−1})∪{ym}) =
= r(Y ) = s(Y ).

And the last inequality related to s. Let Y = {y1, · · · , ym}, also

Y = {∅ ∪ {y1} ∪ · · · ∪ {ym}},
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apply (R2) to each yi and notice that r can be increased by 0 or 1 each time we add an
element, we have:

s(Y ) 6 s(∅) +m = r(∅) +m = 0 +m = |Y |.

Now we prove the last three inequalities. We start with t(Y ) 6 |Y | or t(Y )− |Y | 6 0. But:

t(Y ) = |Y |+ s(E − Y )− s(E)

so

t(Y )− |Y | = s(E − Y )− s(E).

And s(E − Y )− s(E) 6 0 since E − Y ⊆ E and by the already proven inequality for s.
Let us prove that if X ⊆ Y ⇒ t(X) 6 t(Y ).

t(X)− t(Y ) = |X|+ s(E −X)− s(E)− |Y | − s(E − Y ) + s(E) =
= |X| − |Y | − s(E − Y ) + s(E −X)

i.e. we need to prove:

s(E −X)− s(E − Y ) 6 |Y | − |X|.

We assume that Y = X ∪ {y1, · · · , ym}, otherwise (X = Y ) it is trivial.

(E −X) = (E − Y ) ∪ {y1, · · · , ym}
s(E −X) 6 s(E − Y ) +m = s(E − Y ) + |Y | − |X|.

And the last inequality to prove is 0 6 t(X), or

0 6 |X|+ s(E −X)− s(E)
s(E) 6 s(E −X) + |X|.

Assume X = {x1, · · · , xn}, then

E = (E −X) ∪ {x1, · · · , xn}
s(E) 6 s(E −X) + n = s(E −X) + |X|.

Pairs and flags

The material in this section has been inspired by [7]

Definition 94 Let C be a k-dimensional almost q-ary affine code. For any w ∈ C and
X ⊆ C, we define

C(X,w) = {c ∈ C | cX = wX}.

Example 95 Let us take the code C from Example 86. Let w = 123 and X = {2}. Then
C(X,w) = {022, 123, 220, 321}

Proposition 96 Let C be a q-ary almost affine code over an alphabet E, with rank function
rC. Let X ⊆ E. Then C(X,w) is an almost affine code, and
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|C(X,w)| = qrC(E)−rC(X).

Proof. See the proofs of Proposition 2 and Corollary 1 in [10].

Lemma 97 Let C be an almost affine code, w ∈ C. Let X ⊂ E and x ∈ E −X. Then

r(X ∪ {x}) = r(X)⇔ C(X ∪ {x}, w) = C(X,w).

Proof. We know that C(X ∪ {x}, w) ⊆ C(X,w), so by using Proposition 96 we have:

C(X ∪ {x}, w) = C(X,w)⇔ |C(X ∪ {x}, w)| = |C(X,w)| ⇔ qrC(E)−rC(X∪{x}) =
qrC(E)−rC(X) ⇔ r(X ∪ {x}) = r(X).

Theorem 98 Let D ⊆ C be a pair of two almost affine codes over an alphabet E. Then
(E, ρ = rC − rD) is a demi-matroid.

Proof. Firstly we prove (R1):

ρ(∅) = rC(∅)− rD(∅) = 0.

Now we prove (R2). In the case where x ∈ X (R2) reduces to

ρ(X) = ρ(X) < ρ(X) + 1,

which obviously holds. Let us treat the case where x /∈ X. Since rC and rD are both rank
functions we have four cases:

rC(X ∪ {x}) = rC(X) or rC(X) + 1
and

rD(X ∪ {x}) = rD(X) or rD(X) + 1

Case number one. rC(X ∪ {x}) = rC(X) and rD(X ∪ {x}) = rD(X). Then we have:

ρ(X ∪ {x}) = rC(X)− rD(X) = ρ(X),

so inequality for (R2), which is ρ(X) 6 ρ(X ∪ {x}) 6 ρ(X) + 1, holds.
Case number two. rC(X ∪ {x}) = rC(X) + 1 and rD(X ∪ {x}) = rD(X). Then:

ρ(X ∪ {x}) = rC(X) + 1− rD(X) = ρ(X) + 1,

this is also satisfies (R2).
Case number three. rC(X ∪ {x}) = rC(X) and rD(X ∪ {x}) = rD(X) + 1. Then:

ρ(X ∪ {x}) = rC(X)− rD(X)− 1 = ρ(X)− 1

This case does not satisfy (R2).
Case number four. rC(X ∪ {x}) = rC(X) + 1 and rD(X ∪ {x}) = rD(X) + 1. Then:

ρ(X ∪ {x}) = rC(X) + 1− rD(X)− 1 = ρ(X),
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which is O.K.
Now we will prove that the case number three never happens. We show that from rC(X ∪
{x}) = rC(X) follows rD(X ∪{x}) = rD(X). Let w ∈ D ⊂ C, by using Lemma 97 we have:

rC(X ∪ {x}) = rC(X)⇔ C(X ∪ {x}, w) = C(X,w)
⇒ D(X ∪ {x}, w) = D ∩ C(X ∪ {x}, w) = D ∩ C(X,w) = D(X,w)

⇒ rD(X ∪ {x}) = rD(X).

Hence the case number three is not a case anymore, and (E, ρ) is a demi-matroid.

Definition 99 Let (E, r) be a demi-matroid, define

E ′ = {(X, x), r(X) = r(X − {x})}.

For two matroids M1 = (E, r1) and M2 = (E, r2) we say that M2 6M1 if I2 ⊆ I1.

Lemma 100 M2 6M1 ⇔ r2 6 r1.

Proof. First we assume that the right hand side holds. We have r2 6 r1, let X ⊆ E,
assume

X ∈ I2 ⇒ r2(X) = |X|,

and then, by the given and the matroid’s axiom for a rank function we have:

|X| > r1(X) > r2(X) = |X|,

so r1(X) = |X| ⇒ X ∈ I1 which means I2 ⊆ I1. Now we start with I2 ⊆ I1. Let X ⊆ E
and r2(X) = r. Then

r = {max|Y | | Y ∈ I2, Y ⊆ X}.

But Y ∈ I2 ⊆ I1, so Y ∈ I1 also. Then

r1(X) = {max|Y | | Y ∈ I1} > r = r2(X),

so r2 6 r1.

Since there is no such a I for a demi-matroids, we define M2 6M1 if r2 6 r1.

Definition 101 We say that {Mi, for i = 1, · · · ,m} is a flag of demi-matroid if

Mm 6Mm−1 6 · · · 6M2 6M1.

In particular {M1 and M2} is a pair of demi-matroids if M2 6M1.

The next two theorems will be given without proofs. The proofs can be found in [7], p 10-11.

Theorem 102 Let M2 6M1 be a pair of demi-matroids on the ground set E with the rank
functions r1 and r2 respectively. Then (E, ρ = r1 − r2) is a demi-matroid if and only if
E ′1 ⊂ E ′2.
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Theorem 103 Let {(E, ri) for 1 6 i 6 n} be a flag of demi-matroids. Then (E, ρ) with
ρ =

∑n
i=1(−1)i+1ri is a demi-matroid if and only if E ′i ⊂ E ′i+1 for all i.

Corollary 104 Let Cn ⊂ · · · ⊂ C1 be a flag of almost affine codes. Then (E, ρ) with
ρ =

∑n
i=1(−1)i+1ri is a demi-matroid.

Proof. According to Theorem 98, for every 1 6 j < n, the pair Cj+1 ⊂ Cj of almost
affine code gives rise to a demi-matroid. Since every affine code is a matroid and every
matroid is a demi-matroid, Theorem 102 gives us E ′j ⊂ E ′j+1 for all j ∈ 1, n− 1. Which
means that conditions for Theorem 103 are met and (E, ρ) with ρ =

∑n
i=1(−1)i+1ri is a

demi-matroid.

Proposition 105 If M1 = (E, s1, t1), M2 = (E, s2, t2) and (E, s1 − s2) are demi-matroids
and M2 6M1, then (E, t2 − t1) is a demi-matroid also.

Proof. Let ρ := s1 − s2. For X ⊆ E, recall that

t(X) = |X|+ s(E −X)− s(E).

So is t1 6 t2? Let us find their difference:

t2(X)− t1(X) = [|X|+ s2(E −X)− s2(E)]− [|X|+ s1(E −X)− s1(E)] =
= [s1(E)− s2(E)]− [s1(E −X)− s2(E −X)] = (s1 − s2)(E)− (s1 − s2)(E −X) =

= ρ(E)− ρ(E −X).

Since ρ is a rank function of a demi-matroid and E −X ⊆ E, the last subtraction gives us
non negative result, so t1 6 t2. Now we prove that η := t2 − t1 is a demi-matroid. First of
all, it is clear that η maps {X | X ⊆ E} into N. Now we prove (R1):

η(∅) = t2(∅)− t1(∅) = 0− 0 = 0.

Now we prove the first inequality of (R2)

η(X) 6 η(X ∪ {x})

it is equivalent to

ρ(E)− ρ(E −X) 6 ρ(E)− ρ(E − (X ∪ {x}))
ρ(E − (X ∪ {x})) 6 ρ(E −X).

But this is correct, since ρ is a demi-matroid, and E − (X ∪ {x}) ⊆ E − X. And the last
inequality to be proven is

η(X ∪ {x}) 6 η(X) + 1
or

η(X ∪ {x})− η(X) 6 1.

27



Let us write the left part in terms of ρ:

ρ(E)− ρ(E − (X ∪ {x}))− [ρ(E)− ρ(E −X)] =
= ρ(E −X)− ρ(E − (X ∪ {x})).

But this at most 1, since ρ is a demi-matroid and the arguments of ρ have only one element
x as a difference. So, we conclude that (E, t2 − t1) is a demi-matroid.

Remark 106 If we have M1 = (E, s1, t1), M2 = (E, s2, t2) and M2 6 M1 and (E, s1 − s2)
be a demi-matroid, its also means that M∗

2 >M∗
1 since t1 6 t2.

Notice that we can extend the previous theorem and remark naturally to a flag of demi-
matroids by applying its to every pair of demi-matroids.

Theorem 107 If Mm 6 · · · 6 M2 6 M1 is a flag of demi-matroids, and (E, si − si+1) is a
demi-matroid for each i, then (E, tm − tm−1 + · · ·+ (−1)m+1t1) is a demi-matroid.

Proof. As we know, (E, ti+1 − ti) for each i ∈ 1,m− 1 is a demi-matroid, by Remark
106 we have M∗

1 6 · · · 6 M∗
m−1 6 M∗

m. Now we can apply Theorem 102, which gives us
E ′i+1 ⊂ E ′i for all i. Which means that canditions for Theorem 103 are met, but we need to
’reverse’ the summ for ρ to match it completely. So we have (E, ρ) is a demi-matroid with
ρ =

∑m
i=1(−1)i+1tm−i+1.

Corollary 108 If Cm ⊂ · · · ⊂ C1 is a flag of almost affine codes with rank functions
rm 6 · · · 6 r1. Then (E, r∗m − r∗m−1 + · · ·+ (−1)m+1r∗1) is a demi-matroid.

Proof. According to Theorem 98, for every 1 6 j < n, the pair Cj+1 ⊂ Cj of almost
affine code gives rise to a demi-matroid. And then we apply Theorem 107.

Definition 109 Let (E, s) be a demi-matroid. Then the supplement dual is (E, s̄), where
s̄(X) = s(E)− s(E −X), for all X ⊆ E.

Proposition 110 Let (E, s) be a demi-matroid. Then ¯̄s = s, and (s̄)∗ = s∗.

Proof. For all X ⊆ E we have:

¯̄s(X) = s̄(E)− s̄(E −X) = s(E)− s(∅)− s(E) + s(X) = s(X).

Recall that s∗(X) = |X|+ s(E −X)− s(E). Now we take

s∗(X) = s∗(E)− s∗(E −X) = |E|+ s(∅)− s(E)− [|S| − |X|+ s(X)− s(E)] =
= |X| − s(X)

And at the same time we have:

(s̄)∗(X) = |X|+ s̄(E −X)− s̄(E) = |X|+ s(E) + s(X)− s(E) + s(∅) =
= |X| − s(X).
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Theorem 111 Let Cm ⊂ · · · ⊂ C1 be a flag of almost affine codes with rank functions
rm 6 · · · 6 r1. And ρ = r1 − r2 + · · · + (−1)m+1rm and η := r∗m − r∗m−1 + · · · + (−1)m+1r∗.
Then η = ρ∗ if m is odd and η = ρ̄ if m is even.

Proof. η1 = ρ∗1, and for all n we need to prove

(∗∗)

{
η2n = ρ̄2n, and

η2n+1 = (ρ2n+1)
∗ for all n > 1.

Let us prove it for n = 1. For all X ⊆ E we have

η2 = r∗2 − r∗1 = |X|+ r2(E −X)− r2(E)− [|X|+ r1(E −X)− r1(E)] =
= (r1 − r2)(E)− (r1 − r2)(E −X) = ρ̄2(X).

And

η3 = r∗3 − r∗2 + r∗1 = |X|+ r3(E −X)− r3(E)
−|X| − r2(E −X) + r2(E)+
+|X|+ r1(E −X)− r1(E) =

= |X|+ (r1 − r2 + r3)(E −X)− (r1 − r2 + r3)(E) = ρ∗3(X).

Assume (∗∗) is true for i 6 n, so η2n = ρ̄2n, and η2n+1 = (ρ2n+1)
∗. Let us prove (∗∗) for

n+ 1, i.e.

η2n+2 = ¯ρ2n+2

and
η2n+3 = (ρ2n+3)

∗.

By assumption, we have η2n+1 = (ρ2n+1)
∗, so

η2n+2 = r∗2n+2−(ρ2n+1)
∗ = |X|+r2n+2(E−X)−r2n+2(E)−[|X|+ρ2n+1(E−X)−ρ2n+1(E)] =

= (ρ2n+1 − r2n+2)(E)− (ρ2n+1 − r2n+2)(E −X) = ¯ρ2n+2(X).

Now we have η2n+2 = ¯ρ2n+2, let us add r∗2n+3 to η2n+2 :

η2n+3 = r∗2n+3 − ¯ρ2n+2 = |X|+ r2n+3(E −X)− r2n+3(E)− [ρ2n+2(E)− ρ2n+2(E −X)] =
= |X|+ (ρ2n+2 + r2n+3)(E −X)− (ρ2n+2 + r2n+3)(E) = (ρ2n+3)

∗(X).

Hence, all conditions for induction are met and (∗∗) is proven.

Remark 112 Since it is well known (see [2] and [1]) that (E, s̄, t̄) and (E, t, s) are demi-
matroids if (E, s, t) is a demi-matroid, Theorem 111 gives another proof of Corollary 108.

Remark 113 The two important results Corollary 104 and Theorem 111 are given in [2]
also, but only for linear codes (see Theorem 9 and Theorem 10 respectively). It is clear that
the proof of Theorem 9 in [2] only applied for linear codes, and we have a completely new
proof for almost affine codes. The proof of Theorem 10 in [1], hovever, could have been used
also for almost affine codes in general, but the proof given above is different.
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6 Multilinear codes and generalized Hamming weights

Definition 114 A multilinear code is a Fq−linear subspace of F n, where F = Fmq , for some
natural number m, such that rkFq(CX) is divisible by m, for each X ⊂ E = {1, 2, · · · , n}.

Example 115 Let us take the following matrix over F11 and (F11)
2 = F

1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
1 22 3242 5262 7282

1 23 3343 5363 7383


In this case we have n = 4 and m = 2. Also such a matrix is known as a [4×8] Vandermonde
matrix. And we also know that for such a Vandermonde matrix we have rkF11(CY ) =
min{|Y |, 4}, for each Y ⊂ E = {1, 2, · · · , 8}. It is easy to see that for each X ⊂ E =
{1, 2, 3, 4}, rkF11(CX) will be either two or four which is divisible by m = 2. So, the code
with the given matrix as its generator matrix is a multilinear code.

Let C be such a multilinear code for a given m and n, and let G be a generator matrix
for C over Fq. The set of column positions of G are 1m

⋃
2m
⋃
· · ·
⋃
nm, where

am = {(a− 1)m+ 1, (a− 1)m+ 2, · · · , (a− 1)m+m},

for any natural number a 6 n.
For a given multilinear code, we denote it by C1 over Fq and by C2 over F . These codes

have two rank functions r1 and r2 which leads us to two matroids M1 and M2.
By using the notation for the columns of G we have r1(Xm) = dimFqCX = mdimFCX =

mr2(X), for any X ⊂ E.
Let H be a parity check matrix of C1 (over Fq). The column rank function of H is r∗1

which is the rank of the matroid dual to M1. For any X ∈ E we have:

r∗1(Xm) = |Xm| − r1(Em) + r1(Em −Xm)

= |Xm| − r1(Em) + r1((E −X)m)

= m|X| −mr2(E) +mr2(E −X)

= mr∗2(X).

We may interpret H as a generator matrix of a dual code over Fq, which is also a subcode
over F n, by interpreting each group of successive symbols in each row of H as an element
of F = Fmq . The following result is explained also in [6]

Proposition 116 C⊥1 code is a multilinear code.

Proof. For each X ∈ E we have:

dimFq(C
⊥)X = r∗1(Xm) = mr∗2(X)

which is divisible by m, since r∗2(X) is natural number. So C⊥1 satisfies Definition 114.

Taking the rank of X over F , we get r∗2(X). Hence C⊥1 is a natural dual code also over F ,
we may define it as C∗2 .
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Notice that all the following:

M(C1) = ({1, 2, · · · ,mn}, r1),
M(C∗1) = ({1, 2, · · · ,mn}, r∗1),
M(C2) = ({1, 2, · · · , n}, r2),
M(C∗2) = ({1, 2, · · · , n}, r∗2)

are matroids. Since every code we used is at least an almost affine code and, according to
Theorem 84, it gives us a matroid, build over ground set whose cardinality is the length of
the code and the associated rank function.

In the very beginning of this paper we defined what the support of code word is for linear
codes, now we extend this definition for almost affine codes.

Definition 117 Let c ∈ C, and w ∈ C, then

Supp(w, c) = {i | wi 6= ci}.

If D ⊆ C, then

Supp(D) =
⋃
w∈D Supp(w, c)

Since the support of a set of codewords is independent of the choice of c (it will be proven
next), we call it Supp(D).

Lemma 118 Let D be an almost affine code, and c, d ∈ D. Then we have⋃
w∈D Supp(w, c) =

⋃
w∈D Supp(w, d)

Proof. Assume, there is an i which belongs to
⋃
w∈D Supp(w, c) and does not belong to⋃

w∈D Supp(w, d). Now we look at ci and di, they are not equal since i /∈
⋃
w∈D Supp(w, d).

But at the same time we have found an element i which we have to add to
⋃
w∈D Supp(w, d).

By symmetry, we get equality.

Now we will give two definitions of Generalized Hamming weights for almost affine codes.

Definition 119 Let C be an almost affine code aver an alphabet F . C has an associated
matroid M , with rank function r. Then di(C), for i = 1, · · · , rank(C) are:

di(C) = di(M
∗
C) = Min{|X| | |X| − r∗(X) = i}.

Definition 120 Let C be an almost affine code aver an alphabet F . C has an associated
matroid M , with rank function r. Then di(C), for i = 1, · · · , rank(C) are:

di(C) = Min{|Supp(D)| | D is an almost affine subcode of dimensional i}.

Since we have two definitions of the same,the following theorem is natural.

Theorem 121 Definition 119 and Definition 120 are equivalent.

Proof. See the proof of Theorem 1 in [6].
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Example 122 Let us find the Hamming weights of Example 115 of C1 over F11. To do so
we will use another property of a Vandermonde matrix it is well known that it is an MDS
code. Then we have:

d1 = Min{|X|, |X| − r∗(X) = 1} = 5;

and d2 = 6, d3 = 7, d4 = 8. By the property of MDS-codes we know that the dual of an [n,k]
MDS-code is an [n,n-k] MDS-code. So, we also have: d∗1 = 5, d∗2 = 6, d∗3 = 7 and d∗4 = 8.

Now we will find the Hamming weights of the code based on the same matrix but consider
it over (F11)

2 = F . By notation above this code is called C2. Since length(C2)−dimF (C2) =
4− 2 = 2, we need to find D1 and D2. For i = 1, 2, we have:

Di = min{|X|, |X| − r∗2(X) = i}.

Also we know that

r∗2(X) = 1
2
r∗1(Xm) = 1

2
Min{|Xm|, 4}

All possible values for X are
{{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 2, 3, 4}}.
And we can see that only |X| = 3 gives us D1 and |X| = 4 gives us D2. So D1 = 3, D2 = 4.

Theorem 123 Wei duality holds for the codes C2 and C∗2 .

Proof. Since Wei duality holds between the matroid M(C2) = ({1, 2, · · · , n}, r2) and its
dual matroid M(C∗2) = ({1, 2, · · · , n}, r2) it holds between C2 and C∗2 .

Now we are able to find D∗1 and D∗2 by using the Wei duality theorem.

{D1, D2} ∪ {5−D∗1, 5−D∗2} = {1, 2, 3, 4}

So we have D∗1 = 3 and D∗2 = 4.

Remark 124 In the previous examples we see that the matroids C2 and C∗2 are the uniform
code U(2, 4) because we used U(4, 8) as the original code, but in general cases it is not so
simple.

Definition 125 Let C be a non-degenerate multi-linear code over F, F = (Fq)m for the
finite field Fq. For 1 6 i 6 n we define: ci is the smallest integer l such that there exists l
codewords over F, whose union of supports has cardinality at least i.

Definition 126 For a linear [n,k]-code, we define the Singleton defect si = (n− k+ i)− di,
and s⊥i = k + i− d⊥i .

Remark 127 For a multi-linear code which is an [mn,nk]-code over Fq we get s⊥j = mk +
j − d⊥j .
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Theorem 128 For a multi-linear code C with n > k we have ci 6 s⊥m(n+1−i) + 2 for

1 6 i 6 n, with the convention s⊥j = −1 for m(n− k) + 1 6 j 6 mn.

Proof. Since C is an almost affine code over F, there exist k columns of G over F, whose rank
over Fq is mk. After a permutation of columns over F, we assume that these correspond to
the mk leftmost columns of G over Fq. After row reduction we may assume that G is of the
form [I | A], where I is an (mk×mk)-identity matrix, and A is an (mk×m(n− k))-matrix
over Fq. By taking sum of all vectors of this matrix we obtain a codeword over Fq with ones
on the first mk places. Hence its support over F contains {1, · · · , k}.

Now we take t row vectors of G and assume their support over F intersected by {k +
1, · · · , n} is a set of cardinality at most i-k-1. By taking zeroes of these rows and their unique
representations as linear combinations of the columns in the I-matrix, it can be shown that
t 6 s⊥m(n+1−i). So to get the cardinality at least i-k it is enough with t > s⊥m(n+1−i) + 1. And
with adding the codeword we started with we are guaranteed a support of cardinality i. Hence
ci 6 s⊥m(n+1−i) + 2.

Corollary 129 If m=1 we have ci 6 s⊥n+1−i + 2 which is classic Kung’s result for linear
codes.

Corollary 130 If m=1, and i=n we have c1 6 s⊥1 + 2 = k − d⊥1 + 3 = k − d⊥ + 3
This is a classical result shown in [8].
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7 Extended weight polynomials of almost affine codes

In this chapter the main result is a generalization of weight polynomials for almost affine
codes.

Let F be an alphabet with cardinality q and C ⊆ F n be an almost affine code. Let Q := qs,
FQ = F s, and CQ := Cs.

For W ∈ Cs we have:

W = (w1, w2, · · · , ws),

where wi ∈ C, for all i = 1, · · · , s. So we have:

W = [(c11, · · · , c1n), (c21, · · · , c2n), · · · , (cs1, · · · , csn)] ∈ (F n)s.

Now we will rearrange W in the following way:

[(c11, c21, · · · , cs1), (c12, c22, · · · , cs2), · · · , (c1n, c2n, · · · , csn)] ∈ (F s)n = (FQ)n.

So, a code CQ can be viewed as a subcode of (FQ)n.

Let X ⊆ E = {1, 2, · · · , n}. For C ⊆ F and CQ ⊆ FQ we have their rank functions:
log|F ||CX | and log|FQ||(CQ)X |. It is easy to see it from the way we rearranged W that
|(CQ)X | = |CX |s, so we have:

log|FQ||(CQ)X | = logqs|CX |s = 1
s
logq|CX |s = 1

s
· s · logq|CX | = logq|CX | = log|F ||CX |.

Hence we have the equality between two given rank functions, let us call it r.
Now we see that the matroid M(C) viewed over F is equal to the matroid M(CQ) viewed

over FQ with the rank function r.
Now we are over FQ with the code CQ. Let cQ ∈ CQ and U ⊆ E and r(E) = k. Then

we define

SU(Q) = {w ∈ CQ | w|U = (cQ)|U}.

By Proposition 95 we have that

|SU(Q)| = Qk−r(U)

We say that a codeword has weight w if it is different from cQ in exactly w positions.
For simplicity, in further notations we will use C instead of CQ.

Definition 131 Let AC,j(Q) be a cardinality of the set of code words of CQ of weight j, for
0 6 j 6 n.

Theorem 132 AC,n(Q) = (−1)n
∑

X⊆E(−1)|X| ·Qn∗(X).

Proof. First we define Si(Q) = {code words which are equal to cQ in position number

i}. Now we have:
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AC,n(Q) = |CQ| − |
⋃n
i=1 Si(Q)|

We know that |CQ| = Qk, and by using well known principle of inclusion-exclusion we have:

AC,n(Q) = Qk −
∑n

i=1 |Si|+
∑

16i<j6n |Si ∩ Sj|−∑
16i<j<k6n |Si ∩ Sj ∩ Sk|+ · · ·+ (−1)n|S1 ∩ S2 ∩ · · · ∩ Sn|.

We now have, for U ⊆ E and U 6= ∅:

SU(Q) = ∩u∈USu(Q).

And for U = ∅ we define S∅ = CQ which is also very natural. So, by applying this notation
to the previous expression we have:

AC,n(Q) =
∑
|U |=0 |SU(Q)| −

∑
|U |=1 |SU(Q)|+

∑
|U |=2 |SU(Q)| −

∑
|U |=3 |SU(Q)|+

+ · · ·+ (−1)n
∑
|U |=n |SU(Q)| =

=
∑

U⊆E(−1)|U | · |SU(Q)| =
∑

U⊆E(−1)|U | ·Qk−r(U)

We also have:

k − r(U) = r(E)− r(U) = |E − U | − r∗(E − U) = n∗(E − U),

since r∗(E − U) = |E − U | − r(E) + r(U).
We conclude:

AC,n(Q) =
∑

U⊆E(−1)|U | ·Qn∗(E−U) = (−1)n
∑

X⊆E(−1)|X| ·Qn∗(X).

Definition 133 For X ⊆ E

aC,X(Q) = |{w ∈ CQ | Supp(w) = X}|.

It is easy to see that all codewords with support X are in

CQ(E −X, c) = {w ∈ CQ | w|E−X = c|E−X},

and by Proposition 95 |CQ(E−X, c)| = Qk−r(E−X) and it is an almost affine code. Since all
points on the E −X positions are fixed we may assume that it is an affine code C1 on the
ground set X.

An almost affine code C1 has the rank function r1 which gives us a matroid M1 = (X, r1)
with its n1, r

∗
1 and n∗1 functions. So we have aC,X(Q) is a number of codewords in C1 with

support exactly X. And since X matches the ground set we can apply Theorem 132:

aC,X(Q) = (−1)|X|
∑

U⊆X(−1)|U | ·Qk−r(E−X)−r1(U) = (−1)|X|
∑

U⊆X(−1)|U | ·Qn∗1(U).

Lemma 134 For U ⊆ X ⊆ E, we have n∗1(U) = n∗(U).

Proof. We recall that n∗1 is associated to M1 = (X, r1), where r1 is the rank function of
CQ(E −X, cQ) interpreted as a code on X. And we have:
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n∗1(U) = |U | − r∗1(U) = |U | − (|U | − r1(X) + r1(X − U)) = r1(X)− r1(X − U) =
= k − r(E −X)− r1(X − U).

And for n∗ we have:

n∗(U) = |U | − r∗(U) = |U | − (|U | − r(E) + r(E − U)) = r(E)− r(E − U) = k − r(E − U).

So enough to prove that r(E − U) = r(E −X) + r1(X − U). The following definitions will
help us to see the picture:

r −→ CQ;
r1 −→ CQ(E −X, cQ) := C1;

r2 −→ CE−U := C2.

We can see that r(E−U) = r2(E−U) and r(E−X) = r2(E−X). Now we work inside C2.
Let c2,Q = (cQ)|E−U and C2(E −X, c2,Q) = {w ∈ C2 | wE−X = c2,Q}. By using Proposition
96 we have:

dimC2(E −X, c2) = rank(C2)− r2(E −X) = r2(E − U)− r2(E −X) =
= r(E − U)− r(E −X).

Hence, it will be enough to prove that r1(X − U) is also equal to dimC2(E − X, c2). We
have:

Qr1(X−U) = |(C1)X−U | = |{w ∈ CQ | wE−X = CQE−X}X−U |.

And on the other hand we have:

QdimC2(E−X,c2) = |C2(E −X, c2)| = |{w ∈ C2 | wE−X = c2,Q}|.

But these two are equal since we basically picked a set of codewords and then just cut them
in the first case, and we first cut and then picked in the second case.

This Lemma leads us to the following result.

Theorem 135 For 1 6 m 6 n,

AC,m(Q) = (−1)m ·
∑
|X|=m

∑
U⊆X(−1)|U | ·Qn∗(U).

Remark 136 For a code C with length n, any codeword c has weight from 0 up to n. So

|C| =
∑n

j=0AC,j(Q)

Definition 137 Let M be a matroid on E = {1, 2, · · · , n}. We define the polynomial
PM,j(Z) by letting PM,0(Z) = 1 and for 1 6 j 6 n:

PM,j(Z) = (−1)j ·
∑
|X|=j

∑
U⊆X(−1)|U | · Zn∗(U)
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Proposition 138 di(M) = Min{j : degPM,j = i}.

Proof. We know that di(M) = Min{|U | | n∗(U) = i}. And from the definition above
we see that degPM,j = n∗(U) for some j, X, U with j = |X| = |U |, because if U ⊂ X then
replace X by U.

Example 139 Let us find all AC,m for the multilinear code C over (F11)
2 from Example

115.

AC,0 = (−1)0
∑
|X|=0

∑
U⊆X(−1)|U |Qn∗(U) = (−1)0

∑
|X|=0

∑
U=∅(−1)0Qn∗(∅) = Q0 = 1;

it seems pretty natural since the only codeword taken as an origin has weight 0.

AC,1 = (−1)1
∑
|X|=1

∑
U⊆X(−1)|U |Qn∗(U);

in this case all X-es which satisfy the condition |X| = 1 are {1}, {2}, {3} and {4}. Any of
these X-es gives 0, so AC,1 = 0.

AC,2 = (−1)2
∑
|X|=2

∑
U⊆X(−1)|U |Qn∗(U);

in this case all X-es which satisfy the condition |X| = 2 are {1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4} and {3, 4}. Let us take a closer look at X = {1, 2}. It gives us the set of U-es:
∅, {1}, {2}, {1, 2} and∑

U⊆X(−1)|U |Qn∗(U) = (−1)0Q0 + (−1)1Q0 + (−1)1Q0 + (−1)2Q0 = 1− 1− 1 + 1 = 0.

The rest of the X-es gives 0 as well, so AC,2 = 0. For AC,3 we have the following set of X-es:
{1, 2, 3}, {1, 2, 4}, {1, 3, 4} and {2, 3, 4}. Let us take a closer look at X = {1, 2, 3}. It gives
us the set of U-es: ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}. And∑

U⊆X(−1)|U |Qn∗(U) = (−1)0Q0 + 3(−1)1Q0 + 3(−1)2Q0 + (−1)3Q1 = 1−Q.

This is leading us to AC,3 = 4(Q − 1), since we have four such an X and (−1)3 in front of
the summ. And the last one AC,4 gives us the only one possible X = {1, 2, 3, 4}. And the
set of U-es has the following structure: ∅, 4 · {a}, 6 · {a, b}, 4 · {a, b, c} and {1, 2, 3, 4}. So
we have:

AC,4 = (−1)4[(−1)0Q0 + 4(−1)1Q0 + 6(−1)2Q0 + 4(−1)3Q1 + (−1)4Q2] = 3− 4Q+Q2

By using Remark 136 we can check our calculations as follows: AC,0 +AC,1 +AC,2 +AC,3 +
AC,4 = |C|. We have 1 + 0 + 0 + 4Q− 4 + 3− 4Q+Q2 = Q2 = |C|.

Example 140 In this example we will work with the code C ⊆ [(F3)
2]9, described in Example

2 of [10]. Hence q = 32 = 9, and CQ = CS ⊆ F S = FQ, where F = F2
3. The matroid

associated to all these codes is the ”non-Pappus” matroid. This matroid based on the ground
set E = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and all subsets X have rank equal to min(|X|, 3) except the
following subsets: (1,2,3), (1,5,7), (1,6,8), (2,4,7), (2,6,9), (3,4,8), (3,5,9), (4,5,6). These
have rank 2 and they are the set of circuits (C) in sense of Definition 41. Let us find all of
AC,j.
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Firstly we recall that n∗(X) = |X| − r∗(X) and r∗(X) = |X| − r(E) + r(E − X). So,
it is easy to see that for all X with cardinality less or equal to 5 we have n∗(X) = 0. For
|X| = 6 occurs that |E −X| = 3 and we have two cases: E −X ∈ C ⇒ r(E −X) = 2 ⇒
r∗(E −X) = 5 ⇒ n∗(E −X) = 1 and E −X /∈ C ⇒ r(E −X) = 3 ⇒ r∗(E −X) = 6 ⇒
n∗(E − X) = 0. If |X| = 7 then n∗(X) = 1, if |X| = 8 then n∗(X) = 2, if |X| = 9 then
n∗(X) = 3. Now we are ready to use the formula:

AC,m(Q) = (−1)m ·
∑
|X|=m

∑
U⊆X(−1)|U | ·Qn∗(U).

For m = 0 we already know that AC,0(Q) = 1. For m = 1 we have:

AC,1(Q) = (−1)1
∑
|X|=1[(−1)0Q0 + (−1)1Q0] = 0.

For m = 2 we have:

AC,2(Q) = (−1)2
∑
|X|=2[(−1)0Q0 + 2(−1)1Q0 + (−1)2Q0] = 0.

We can see the pattern and as long as n∗(X) is equal for X with the same cardinality we
can rewrite the general formula as:

AC,m(Q) = (−1)m
∑
|X|=m[(−1)0·

(
m
0

)
·Qn∗(X0)+(−1)1·

(
m
1

)
·Qn∗(X1)+· · ·+(−1)m·

(
m
m

)
·Qn∗(Xm)];

where n∗(Xa) is nullity for X with cardinality a. And as long as n∗(X) = 0 well known
property of the binomial coefficient gives us 0. So, AC,3(Q) = AC,4(Q) = AC,5(Q) = 0.
Moreover, AC,6(Q) = 0 for X /∈ C. But we have eight such X that X ∈ C and n∗(X) = 1
which is leading us to:

AC,6(Q) = (−1)6 · 8 · [(−1)0 ·
(
6
0

)
·Q0 + (−1)1 ·

(
6
1

)
·Q0 + · · ·+ (−1)6 ·

(
6
6

)
·Q1] = 8(Q− 1).

For |X| = 7 it is getting more interesting. We have
(
9
7

)
=
(
9
2

)
= 36 sets of cardinality 7.

Because of the way C is set on the ”non-Pappus” matroid every pair (a, b) determine only
one of element C. And we have 24 such pairs and 12 ”normal” pairs. So we have:

AC,7(Q) = [(−1)724·[(−1)0·
(
7
0

)
·Q0+(−1)1·

(
7
1

)
·Q0+· · ·+(−1)6·(Q+6)+(−1)7·

(
7
7

)
·Q1](= 0)]+

+[(−1)712 · [(−1)0 ·
(
7
0

)
·Q0 + (−1)1 ·

(
7
1

)
·Q0 + · · ·+ (−1)6 ·

(
7
6

)
·Q0 + (−1)7 ·

(
7
7

)
·Q1]] =

= 12(Q− 1)

So, AC,7(Q) = 12(Q − 1). Now we find AC,8(Q). There are 9 sets of cardinality 8. Let us

look at {1}, it has 28 subsets X of cardinality 6. We are interested in E−X, and in this case
they are just all of the triplets containing 1. And only three of them belong to C. Making the
same observations for the rest of possible sets of cardinality 8 gives us the following: {1},
{2}, {3}, {4}, {5}, {6} have 3 circuits out of 28; {7}, {8}, {9} have 2 circuits out of 28.
So

AC,8(Q) = 6[(−1)0 ·
(
8
0

)
·Q0 + (−1)6 · (3Q+ 25) + (−1)7 ·

(
8
7

)
·Q1 + (−1)8 ·

(
8
8

)
·Q2] =

= 6(Q2 − 5Q+ 4)
plus

3[(−1)0 ·
(
8
0

)
·Q0 + (−1)6 · (2Q+ 26) + (−1)7 ·

(
8
7

)
·Q1 + (−1)8 ·

(
8
8

)
·Q2] =

= 3(Q2 − 6Q+ 5)
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So AC,8(Q) = 9Q2 − 48Q+ 39. And the last one is AC,9(Q). Since there is only one subset
of cardinality 9 and we already know that only 8 out of 84 subsets of cardinality 6 give us
circuits:

AC,9(Q) =
(−1)9 ·[(−1)0 ·

(
9
0

)
·Q0+· · ·+(−1)6 ·(8Q+76)+(−1)7 ·

(
9
7

)
·Q1+(−1)8 ·

(
9
8

)
·Q2+(−1)9 ·

(
9
9

)
·Q3] =

= Q3 − 9Q2 + 28Q− 20

Also we can see that our calculations satisfy the equality from Remark 130:

1 + 8(Q− 1) + 12(Q− 1) + 9Q2 − 48Q+ 39 +Q3 − 9Q2 + 28Q− 20 = Q3

Proposition 141 For all codes Cs, viewed as a subcodes of (FnQ), where C is the code from
Example 2 of [10]. and Q = (9)s, we have d1 = 6, d2 = 8 and d3 = 9.

Proof. All codes CS have the same matroid, which is ”non-Pappus” matroid. Then we
apply Proposition 138.
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