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Abstract

The focus of this thesis is to develop a Markov Chain based framework for
joint ranking and clustering of a dataset without the need for critical user-
defined hyper-parameters. Joint ranking and clustering may be useful in
several respects, and may give additional insight for the data analyst, as
opposed to the traditional separate ranking and clustering procedures. By
coupling Markov chain theory with recent advances in kernel methods using
the so-called probabilistic cluster kernel, we are able to learn the transition
probabilities from the inherent structures in the data in a near parameter-
free approach. The theory developed in this thesis is applied to several real
world datasets of different types with promising results.
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Chapter 1

Introduction

In our daily lives, we are surrounded by huge amounts of data. We take
pictures with our phones and send them to our friends. When working out,
we use devices to measure how well we are doing. During a discussion, we
use Google to prove that we are right. Everything is quantized and stored.
From web usage statistics to driving patterns.

During the past couple of decades, the storage and computational capa-
bilities has advanced drastically. As analyzing large amounts of data has
become computationally feasible, the field of data analysis has gained more
and more attention. Machine learning is a form of data analysis, where the
aim is to implement algorithms which learns from the data without human
interaction. In this thesis, two methodologies within the machine learning
field are considered, namely ranking and clustering.

In recent years, ranking has received a lot of attention, especially in In-
formation Retrieval (IR). The goal of a ranking task is to produce an ordered
list of objects. Formally, a ranking model sorts a group of objects according
to importance, relevance or preference. Ranking models have been utilized
in several applications. For instance search engine query ranking [1, 2, 3],
recommender systems using collaborative filtering! [4], image ranking [5, 6]
and language processing [7, 8].

Within the realm of ranking algorithms, there are both supervised and
unsupervised methods. In the supervised methods, ground truth data on
listwise or pairwise ordering is provided. Based on this ground truth data, a
ranking model is trained to rank new out of sample data. Methods within
supervised ranking include the RankNET [9], RankSVM [10] and RankBoost
[11]. In the unsupervised setting, there are several methods based on graph
theory [1, 2, 3, 5, 6, 7, 8]. These rank with a relational model. The graph

I This is used by Netflix, Spotify and Amazon.



encodes the strength of the relationship between objects (or vertices). The
importance of an object is then propagated through the graph based on the
strength of the relationships.

Although the graph theoretic methods mentioned above have specific ap-
plication areas, similar methods have been proposed for general multi at-
tribute data [12, 13]. These require a similarity measure to define the re-
lationship between the objects. For specific applications, these similarity
measures might be easily defined. For general multi attribute data, the simi-
larity measure used often relies on some dataset dependent critical parameter
which can influence the result.

The clustering task is to partition the data into subsets, or natural groups,
known as clusters. The members of each cluster should be more similar to the
members of the same cluster than the members of other clusters. This should
be accomplished without any prior knowledge about the data?. Clustering
is about discovering natural groups in the data, rather than learning known
patterns, which is known as classification. Clustering is normally considered
a more difficult task than classification. There are numerous applications
of cluster analysis, including image segmentation and computer vision [14,
15, 16], document grouping [17, 18, 19|, biology [20, 21, 22, 23| and market
segmentation [24, 25] to name a few.

To partition the data, the definition of reasonable partition needs to be
clear. This definition is different for each of the clustering algorithms and
depends on the structure of the data. Because of this, no single clustering
algorithm is appropriate for every dataset available. In some way, all the al-
gorithms are based on prozimity measures which measure either dissimilarity
(for instance Euclidean distance) or similarity (for instance the Gaussian ker-
nel). This could either be proximity between two clusters, proximity between
a data point and a cluster or proximity between two data points.

A common obstacle for the machine learning methods requiring similarity
measures is the dependence of critical parameters. The result could be very
dependent on these parameters which are set prior to the learning process.
For supervised learning, this might not be a big problem as we have prior
information on groups in the data. Optimal parameter values can then be
found by parameter sweeps and evaluating the results on a test set. In unsu-
pervised learning, no ground truth information is known a-priori. Parameters
are often set by rules of thumb or heuristic methods, which could leads to
sub-optimal results. Recently, methods have been developed, attempting to
learn some similarity measure directly from the data. A very recent kernel
function called the Probabilistic Cluster Kernel (PCK) [26] has been used for

2The number of clusters in the data is often required.



semi-supervised learning and clustering with promising results. The PCK
is calculated by fitting Gaussian Mixture Models (GMM) to the data with
several initial conditions and several number of mixture components using
the Expectation Maximization (EM) algorithm. The posterior distributions
for the data points are used to calculate pairwise similarities.

In this thesis, ranking and clustering is explored from a graph theoretic
point of view with a basis in Markov chain theory. The transition probabili-
ties are generated from the PCK. Since the PCK is learned from structures in
the data, the transition probabilities are learned from the data. This ensures
that no critical parameters needs to be set prior to the learning process. The
main contributions of this thesis include:

e A framework for joint ranking and clustering, which enables the data
analyst to rank the data, either globally or a versatile local ranking for
each cluster. This includes within-cluster-ranking and across-cluster-
ranking. Across-cluster-ranking ranks data points in one cluster with
respect to the data points in another cluster.

e A way of learning Markov chain transition probabilities from data via
the PCK, ensuring that the result is not dependent on critical param-
eters.

The theory developed in this thesis is applied to several real world datasets
with promising results.

1.1 Related work

Very little work has been done on combined frameworks for ranking and
clustering. However, some related work has been found.

RankClus [27] is an algorithm which simultaneously ranks and clusters
data on information networks. This algorithm iteratively ranks and clusters
the data in such a way that the ranking and clustering procedure mutu-
ally enhances each other. However, the algorithm is based on bi-type infor-
mation networks like conference-author networks, movie-user networks and
newsgroup-author networks. Thus this algorithm does not apply to multi
attribute data. NetClus [28] is a generalized variant of RankClus, where the
information network can have more than two types.

RankCompete [29] simultaneously ranks and clusters data in information
networks. This algorithm is based on competing random walkers on an infor-
mation network. For a k cluster problem, £ random walkers are initialized
on unique nodes in the dataset. For each step in the random walk, it is



checked which of the k£ random walkers have the highest probability of being
at each node. The random walker with the highest probability of being at
a given node owns the node. The random walkers who do not own a node
sets the score of the node to zero. The scores are normalized and the steps
restarts. The basis for the algorithm is a matrix of pairwise similarities. In
this paper, the experiments are based on two types of data. One dataset of
images and a research paper dataset. In the image dataset, Scale Invariant
Feature Transform (SIFT) based similarities are used. In the research paper
dataset, similarities are based on citations. For general multi attribute data,
the similarity measure would probably be chosen as an RBF, which in general
is sensitive to the width parameter o.

1.2 Structure of Thesis

This thesis is divided into four parts. Part I contains the background theory
needed for the methods used in this thesis. Ch. 2 presents theory on Dis-
crete Markov Chains. This is needed for the relational ranking algorithms
presented in Part II. Ch. 3 presents two relational ranking algorithms. The
first one is the well known PageRank algorithm by Google. The other is
a similar algorithm designed for multi attribute data. Ch. 4 presents the-
ory on Data Representation and Dimensionality Reduction. Two methods
are presented. Principal Component Analysis (PCA) and Kernel Principal
Component Analysis (KPCA). KPCA is a nonlinear extension of PCA and
is essential for the theory in Part II. Ch. 5 presents a few selected clustering
methods. There is an overwhelming amount of information on clustering in
the literature. For the benefit of the reader, the algorithms presented are
selected specifically to build the foundation for the main theory.

Part II contains the main theory. Ch. 6 presents the Probabilistic Cluster
Kernel (PCK), which is used as a similarity measure for the methods devel-
oped in this thesis. This is a similarity measure which is learned directly
from the data and has no strong parameter dependence. In this chapter, a
new mathematical connection between the PCK and the consensus matrix as
presented in Sec. 5.4 is derived. Ch. 7 introduces a way of learning Markov
Chain transition probabilities from the data. This is done using the PCK.
In addition to this, a dual form of the stationary distribution of the Markov
Chain induced by these transition probabilities in the empirical kernel space
is derived. This is extended to the kernel feature space and connected to
nonparametric density estimates. Ch. 8 presents the personalized PageRank
(PPR) algorithm. This is a generalized version of the PageRank as presented
in Sec. 3.1. Previous work on the PPR is presented. Using this theory, an



embedding for the data is proposed. It is shown that distances in this em-
bedding has a clear interpretation which makes sense for clustering and that
the PPR can be calculated using the embedded data.

In Part III, the theory developed in Part II is applied to several real world
datasets of different types. The thesis is concluded with some final words and
suggestions to further work in Part IV.

In the figures generated for this thesis, tick labels on the axes have in-
tentionally been removed where this information is redundant. The relevant
information is the overall structure of the data, not numerical values.






Part 1

Background Theory






Chapter 2

Discrete Markov Chains

A discrete Markov Chain is a statistical model of a process where the process
can be modeled by states. For instance, in a weather model, the states
might be "raining”, "sunny” and ”cloudy”. With each state, we associate a
transition probability to each of the other states in the Markov Chain. That
is, the probability that the process transitions from one state to another in
one step. The "step” is often a discrete step in time, but it can also be other
physical metrics like distance. The Markov Chain theory is vast, and most
of the theory is not needed for the methods used in this thesis. This chapter
will only present the Markov Chain theory which is relevant for the purposes
of this thesis. The theory is needed both for the ranking in Ch. 3 and for the
theory presented in Ch. 7 — Ch. 8.

In Machine Learning, the Markov theory is used in several applications.
For instance speech recognition with Hidden Markov Models [30], translating
hand written text to machine written text with Hidden Markov Models [31,
32], Reinforcement Learning with Markov Decision Processes [33] and web
page ranking using stationary distributions [2].

2.1 Definitions

A Markov Chain is a sequence of random variables { X3, X», ...}, where X,
denotes the state of the random process at time n. The transition probabil-
ities between the states satisfies the Markov Property:

P(XnJrl = anrl‘Xn = Tp,y--- ,X1 = Il) = P(XnJrl = .Tn+1|Xn = .13”) (21)

That is, given the current state of the process, the transition probability to
the other states is independent on the previous states of the chain. Now,
let p;; = P(X,11 = j|X,, = 7). Then the matrix P = {p;;}nxn, pij >

9
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0 is called the transition probability matriz of the Markov Chain with N
states. It can be shown using the Chapman Kolmogorov equations that the
transition probabilities in k& steps can be calculated easily using the transition
probability matrix [34]. Specifically, if P¥ = {p*} v, then

k . .
Py = P(Xpep, = i X, = j).

That is, we calculate P* and extract P(X,;, = i|X,, = j) as the element in
row ¢, column j.

2.1.1 Irreducible Markov Chains

Irreducible Markov Chains is a class of Markov Chains which has some nice
properties needed in order to justify the calculation of stationary distribu-
tions in later chapters. Two states, ¢ and 7, are said to communicate if for
some n > 0 and some m > 0, pgl) > 0 and p%n) > 0. This means that it is
possible for the process to reach state ¢ from state ;7 and vice versa. Now,
state ¢ and state j are said to belong to the same class if they communicate.
A Markov Chain is said to be irreducible if all of its states belongs to the
same class (i.e. there is only one class and all states communicate).

2.1.2 Stochastic Matrices

The transition probability matrix is a special type of matrix called a stochas-
tic matrix. There are three types of stochastic matrices: left-, right-, and
doubly stochastic matrices. If P is a matrix with non-negative entries and 1
is a vector of ones, then we classify a stochastic matrix as shown in Tab. 2.1.
We see that in a left stochastic matrix, each column sums to one. In a right
stochastic matrix, each row sums to one. In a doubly stochastic matrix, each
row and each column sums to one. It is important to be aware of which
type of stochastic matrix we work with, as this dictates where we extract the
probabilities. As we will see in later sections, this is also important when
calculating stationary distributions.

Example 2.1.1 (Weather model). Suppose that the weather is either ”rain-
ing” or "not raining” and that the weather tomorrow is independent on the
weather previous days, given todays weather. Based on historical data of the
weather, we have information that if it rains today, the probability that it
will rain tomorrow is a. If it does not rain today, the probability that it does
not rain tomorrow is 5. This can be modeled by a Markov Chain. If the
process is in state 1 when it does not rain and in state 2 when it rains, the
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Table 2.1: Classification of stochastic matrices.

Requirement Type

17P =17  Left stochastic
P1 =1 Right stochastic
1”"P = 17 and P1 =1 Doubly stochastic

l—«

1-p

Figure 2.1: State diagram for weather model.

left stochastic transition probability matrix that defines this Markov Chain
is given by
B 15} 11—«
P (1 P

The process can be visualized by a state diagram as shown in Fig. 2.1.

2.2 The Stationary Distribution

In some Markov Chains, the limit

lim P*

k—o00
converges. In this case, the probability

(k)

m; = lim p,;°,

k—o0

exists and is independent on the initial state ¢. This can be interpreted as
the probability for the process to be at state j at any given time n. Thus
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For a N state Markov Chain where the limit converges, the limiting proba-
bility m; is the unique non-negative solution of

N
Ty = E TiPij
i=1
N
E Ty = 1.
j=1

Let @# = (7?1 Ty - 7TN)T be the stationary distribution of the Markov
Chain and let P be a right stochastic matrix. From Eq. (2.2) we get

(2.2)

P =nx". (2.3)

Thus, 7 is the left eigenvector of P associated with the eigenvalue 1. For
a left stochastic matrix, 7 is the right eigenvector of the stochastic matrix
associated with the eigenvalue 1.

There are some situations where we know that the stationary distribution
exists, but most are outside the scope of this thesis. However, one particular
situation is relevant. The type of Markov Chains we will work with are called
irreducible time reversible Markov Chains. In the next section, we will define
time reversibility and conditions that have to be satisfied for a Markov Chain
to be time reversible.

2.2.1 Time Reversible Markov Chains

Suppose that we want to investigate what happens if we move through the
Markov Chain in reverse order. That is, starting at time k, we consider the
state sequence { Xy, Xy_1,...,X1}. Assume that the limiting probabilities
m, ©=1,2,..., N for the non-reversed Markov Chain exist. This sequence
can be shown to be a Markov Chain [34] with transition probabilities

p;j = %pjz‘-
The Markov Chain is said to be time reversible if
Pij = P
TiPij = TjPji- (2.4)

This is called the balance equation. Note that if we can find non-negative
numbers y;, Zjvzl y; = 1 that satisfies

YiPij = YiPji,
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the Markov Chain is time reversible. Then y = (y1 Yo v yN)T is the
reversibility distribution. By summing this equation over ¢, we get

N N
Z YiDij = Z YiPji
=1 i=1 N
=Y iji
i=1

(2.5)

A comparison between this and Eq. (2.2) reveals that the reversibility distri-
bution must be equal to the stationary distribution.

Up until this point, we have assumed that the stationary distribution ex-
ists. It turns out that if the Markov Chain is irreducible and the reversibility
distribution exists, then the stationary distribution also exists and is equal
to the reversibility distribution.

Example 2.2.1 (Time reversible Markov Chain). Consider a Markov Chain
with the transition probability matrix

0 Y2 0 3
e %6 s 0
P=15 2/ /6 3/6
3670 37 Y

The state diagram is shown in Fig. 2.2. As seen in the figure, all states
communicate. Thus, the Markov Chain is irreducible. Using the balance
equations in Eq. (2.4), it is easily verified that

4/23
6/23
6/23
/23

I

is a reversibility distribution and that the Markov Chain is time reversible.
Since the Markov Chain is irreducible and time reversible, 7 is also the
stationary distribution.



14

1/6

Figure 2.2: State diagram for a time reversible Markov Chain.



Chapter 3

Ranking

This chapter presents unsupervised Markov Chain based ranking algorithms.
Specifically, the PageRank (PR) algorithm [2] is presented along with a sim-
ilar multi attribute version [12]. These algorithms are chosen as the theory
in Ch. 7-Ch. 8 have a common background with these algorithms. More
information on ranking algorithms can be found in for instance [35, 36] and
the references therein.

3.1 The PageRank

In the PageRank algorithm [2], the web is modeled as a directed graph. Each
web page is a vertex on the graph and a directed edge from one vertex to the
other vertices is determined by the link structures. The key to understand-
ing PR is to think of each hyperlink as a recommendation. Furthermore,
if the web page that links to the other web page is itself considered impor-
tant, the recommendation should have a bigger impact. For an extensive
review /analysis of PR, see [37].

Let G = (V, E, W) be a directed graph of web pages with the vertices V',
edges I/ and weights, W. Vertex v; is connected to vertex v; with a directed
edge if web page 7 contains a hyperlink to web page j. Let n; be the number
of hyperlinks from web page 7. The weight on the edge from vertex v; to
vertex v; is then set to w;; = ni if web page ¢ has a hyperlink to web page j
and w;; = 0 otherwise. Furthefmore, let 7; be the score of web page ¢. The
score of web page j, 7;, is determined by the score of the pages that link to

15
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Figure 3.1: A simple web graph. In this example, vertex 3 is a sink.

it. Specifically, the score is defined as
N
= Z M
n;

i=1

(3.1)

where N is the number of web pages on the graph. By this definition, the
score of a web page is equally distributed between every web page it links to.
Important web pages (with a large score) that have just a few hyperlinks will
have a bigger impact on the scores than a web page with a lot of hyperlinks.
By letting 7 = (m; m ... 7TN)T, Eq. (3.1) can be rewritten as

nl =n'P, (3.2)

where p;; = w;; = ni Since Z 1 pij = 1 and P has positive elements, P
is recognized as a right stochastlc matrix. Thus, by comparing Eq. (3. 2)
Eq. (2.3) we see that 7 is the stationary distribution of a Markov Chain with
the transition matrix P. This equation is solved using power iterations (see
(38, Ch. 7]).

Although this definition of the graph works for connected graphs, there
are challenges when working with web pages. For instance, what if a web
page with inlinks have no outlinks as seen in Fig. 3.17 These are called
sinks. What if the graph contain cycles as seen in Fig. 3.27 It turns out that
sinks consume all of the scores. Cycles in the graph cause convergence issues
during the power iterations. To fix these problems, Page et al. [2] proposed
two corrections to the stochastic matrix. If a node is a sink, add a uniform
distribution of outlinks to all other web pages. That is, replace P by

1
S=P+ —al”
+yal’s
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Figure 3.2: In this web graph, we see a cyclic structure between vertex 3 and
vertex 4.

where a contains ones at every sink and zeros elsewhere and 1 is a vector
of ones. The other adjustment is to break the cycles by assuming that a
random surfer can surf the web without following the link structure. With
probability «, a surfer selects a web page with equal probability from every
web page available and with probability 1 — « the surfer follows the link
structure. This can be written mathematically by using the Google matrix

G defined as

L7
G—(l—a)S—i—aN]l]l :

The PR is the stationary distribution calculated from this stochastic matrix.
That is,

'l =7nTG
1 (3.3)
=n" ((1-a)S+a=11").
T (( a)S + s
It has been reported that Google uses a = 0.15 [1, 2]'.

As we have all experienced, this simple model of the web works well for
providing users with relevant results when searching for web pages.

I'Note that the value « in these papers are equivalent to 1 — « in this thesis.



18

3.1.1 A personalized extension to the PageRank algo-
rithm

The well known PageRank algorithm as defined in Sec. 3.1 is a special case of
Markov Chain Random Walks with Restarts. Consider the iterative sequence

re’ = (1 —a)r,'’P+as’, 0<a<l, (3.4)

where « is the restart probability, P is a right stochastic matrix and s is the
seed distribution. This is a model for the behaviour of a random walker. At
each step, the random walker will proceed to a neighbouring vertex according
to the transition probabilities in P with probability 1 — «. With probability
a, the random walker will restart according to the seed distribution. The
term personalized in personalized PageRank comes from the fact that the
seed distribution adds the versatility of ranking with respect to the seed.
The restart probability, «, decides the importance of the graph versus the
seed. This iterative sequence will converge to the stationary distribution of

the stochastic matrix
P'=(1-a)P+als”.

Letting s = %]l yields
P=(1-a)P+ al]l]lT
N Y

which is on the same form as the Google matrix. Thus, PR is a special
case of the Markov Chain Random Walk with Restarts using a uniform seed
distribution.

Authors refer to this procedure by different names, one being the person-
alized PageRank (PPR). This is the name that will be used for the rest of
this thesis. Although this is a short section, PPR is essential for the main
contributions of this thesis. More theory on this is presented in Ch. 8.

3.2 Ranking multi attribute data

The theory so far in this thesis has revolved around link structures and
general stochastic matrices without the need of having real measured data.
When working with measured data in machine learning, each data point is
represented by a vector. Each vector consists of multiple numerical mea-
surements, or features. The dimensionality of the vectors is the same as the
number of features. In this thesis, non-random vectors will be denoted by
lower case bold letters. For a sample, the data points are numbered. For
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instance x1,Xs, ..., Xy is a sample with N data points. Now that the defini-
tion and notation on data is established, an algorithm for ranking on multi
attribute data can be presented. This algorithm is defined in the paper Rank-
ing on Data Manifolds [12], where the term manifold refers to structures in
the data. Manifolds in data are often low dimensional structures within a
high dimensional space. This specific algorithm is chosen because it is very
similar to the basis of the main method developed in this thesis which is
defined in Ch. 8. However, it has its limitations with respect to the goal of
this thesis. Firstly, the algorithm is based on a similarity measure between
data points containing a width parameter which can greatly influence the
result. Secondly, the algorithm is solely used for ranking®. The goal for the
methods in this thesis is to jointly rank and cluster data using a common
framework without parameter dependence.

Ranking on Data Manifolds as defined by Zhou et al. [12] is similar to the
personalized formulation of the PR as presented in Sec. 3.1.1. The main dif-
ference is that this algorithm is based on multi attribute data in an Euclidean
space and that the stochastic matrix is exchanged for a symmetrically nor-
malized weight matrix in a weighted connected graph. Let x1,Xs,...,Xyx be
a sample. Imagine that the goal is to find the data point which are relevant
to a specific query. Let y = (y1 Yo v yN)T be the query, where y; = 1
if x; is in the query and zero otherwise. The algorithm is summarized in
Alg. 1. Intuitively, the scores of the data points are propagated through the
graph iteratively until convergence. The parameter a decides the importance
of the query versus the graph itself. The parameter ¢ decides the width of
the weight function on each data point. The choice of this width parameter
could greatly influence the result. Selecting an appropriate value for o is a
challenge in general for methods based on this type of weight function.

2Previously, a similar approach has been used for semi supervised learning [39]
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Algorithm 1 Ranking on Data Manifolds

Input: Data points X1, Xs, ..., Xy, query vector y, distance metric d(x;, X;)

and kernel width o.

: Calculate pairwise distances between every data point and sort them in

ascending order.

: Construct a connected graph by sequentially connecting two vertices ac-

cording to the ordered pairwise distances until the graph is connected.

202
and vertex 7 is connected and zero otherwise. Note that w;z = 0.

Calculate the affinity matrix, W by w;; = exp {—M} if vertex i

. Symmetrically normalize W by S = D-2WD~2, where D = diag(d;) =

: N
diag(d_;_, wi;).
Calculate the score of each data point by the iterative sequence f(t+1) =
aSf(t) + (1 — )y until convergence, where o € [0, 1).
Rank the data points according to their score. The largest score is ranked
first.

Output: Scores of the data points.




Chapter 4

Data representation and
dimensionality reduction

As the title implies, the methods in this section are used to reduce the di-
mensionality of the data. This is often done as a pre-processing step, before
analyzing the data using for instance clustering or classification. We do
this to avoid dimensionality problems, like the curse of dimensionality!. In
addition to this, the data often lies on lower dimensional structures, or man-
ifolds, in the higher dimensional space. Thus, in practice, the data is lower
dimensional but is represented in a high dimensional space. If we are able to
preserve the structure in the data using a lower dimensional representation,
the data will be easier to analyze.

This chapter starts with a simple statistical motivated approach called
Principal Component Analysis (PCA). It will become apparent that PCA is a
linear method which is not beneficial when working with nonlinear structures
in the data. Thus, a nonlinear extension called Kernel PCA (KPCA) will be
presented. KPCA is an essential part of the theory in Ch. 6-Ch. 8.

4.1 Principal Component Analysis

Principal Component Analysis (PCA) [40] is a method used to remove redun-
dant information in the data by decorrelating its components. Furthermore,
this is used to represent the data using just a few variables (dimensions)
while maintaining most of the variance. That is, we want to project the data
to a vector space which preserves most of the energy of the data and removes
correlation between variables. Note that PCA is a linear method. Thus,
PCA will not aid when analysing nonlinear data.

Euclidean distances does not make sense in high dimensions.

21
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Historically, PCA has been used in statistical analysis to help interpret
the data [41]. In machine learning, PCA is often used for dimensionality
reduction or feature extraction. In other fields, PCA has been proven useful,
for instance in signal de-noising and image processing. One could for instance
take a look at [42] for a nice introduction to PCA in signal processing. In [42],
both image processing (using eigen images) and de-noising speech signals is
considered.

4.1.1 Decorrelating the components

Let X € R? be a random vector with expectation pux and covariance matrix

S = F (X~ ) (X~ pix)” (1)
and let
Y = ATX, (4.2)

where A is some nonrandom transformation matrix. Then, the following

holds:

py = E[ATX]
= ATE[X]
= ATy, (4.3)

Yy =L (Y — py) (Y — NY)T}

(ATX — ATpy) (ATX — Apx) |

—E|AT (X — i) (X — pix)" A

= ATE (X~ ) (X - px)"] A
= ATSxA. (4.4)

To ensure that the variables in Y are uncorrelated, the covariance matrix v
needs to be diagonal. Now, let u;,us, ..., u, be the normalized eigenvectors
of ¥x with the corresponding eigenvalues Aj, Ag,..., A, where A\ > Ay >

. > Mp. Construct the eigenvector matrix U with the eigenvectors as
its columns and the diagonal eigenvalue matrix A with the corresponding
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eigenvalues along the main diagonal. That is

U:(u1 us - up)
M O - 0
0 X - 0
0 0 ... A

The normalized eigenvectors of Xx are orthogonal since the covariance ma-
trix is symmetric, so U is orthogonal. This implies that

U'=0". (4.5)
Now, we can diagonalize the covariance matrix Xx by
¥x = UAUT. (4.6)
Substituting Eq. (4.6) into Eq. (4.4) yields
Yy = ATUAUTA. (4.7)

The whole point of this operation is to find a transformation matrix A which
makes the covariance matrix Xy diagonal. We see that by letting A = U
and using Eq. (4.5), Eq. (4.7) is reduced to

Sy = A, (4.8)

which by definition is diagonal. Thus, the components of Y are uncorrelated.

From the covariance matrix, we see that for Y = (Y1 Y, --- YZD)T we have
Var(Y;) = \;, 1 =1,2,...,p. Furthermore, we have that

p
Z Var(X;) = Trace(Xx)
i=1

= Trace (UAUT)
= Trace (UTUA)

= Trace(A)
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so the total variance is preserved for the transformed data.

Note that U7 is the change of basis matrix from the standard basis to the
eigenbasis of the covariance matrix 3. Since the basis vectors are orthonor-
mal, the linear transformation performs a rotation of the coordinate system
until the components of the data are uncorrelated.

4.1.2 PCA on a sample

In real life applications, we work with observed data. Let x1,Xs,...,xy be a
sample of p-dimensional vectors with the sample covariance matrix Sy and let
U, Uy, ..., U, be the eigenvectors of Sy with the corresponding eigenvalues
:\1, :\}, - ,Xp, where Xl > Xg >...> Xp. We call the eigenbasis the principal
components of Sy, where the principal component is the most dominant
eigenvector. The idea now is to represent the data using the ¢ principal
components of Sy. For dimensionality reduction purposes, £ < p. To do this,
we construct the truncated eigenvector matrix

U=(a u - uy (4.9)

and let
yi=UTx;, i=1,2,...,N. (4.10)
Then y; will be (-dimensional vectors. Furthermore, the sample covariance
matrix of yi,ys,...,yn will be diagonal with A\;, A, ..., A\ along the main
diagonal which implies that the components of y; ¢ = 1,2,..., N are uncor-

related. The algorithm is summarized in Alg. 2.

Example 4.1.1 (Bivariate normally distributed data). For multivariate nor-
mally distributed data, the eigenvectors of the covariance matrix points in the
direction of the semi-axes of the constant density hyperellipsiods of the den-
sity function [43]. Fig. 4.1a shows a simulated dataset of bivariate normally
distributed data. The curves in the plot are the constant density ellipses of
the density function, while the arrows are the eigenvectors of the covariance
matrix. Fig. 4.1b shows the decorrelated dataset. It is readily seen that this
corresponds to a change of basis to the eigenbasis of the covariance matrix.
Fig. 4.1c illustrates how dimensionality reduction using PCA works. The red
dots are the projections onto each of the two first principal components. From
the estimated density functions (the black lines), we see that the projection
onto the eigenvector which points in the direction of maximum variance in
the original data has the largest variance of the two projections. Fig. 4.1d
shows the projection onto this principal component.
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(d)

Figure 4.1: (a): Bivariate normally distributed data with constant density
lines and eigen-decomposition. (b): Decorrelated data. (c): Projection of the
data onto the two principal components and estimated density functions. The
red dots are the projections, while the black lines are the estimated density
functions. (d): Projection of the data onto the first principal component.
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Algorithm 2 Principal Component Analysis

Input: Data vectors x1,Xs,...,xy € RP and the number of principal com-
ponents £.
1: Calculate the sample covariance matrix

where
B
X = N : X
=1
2: Compute the ¢ largest eigenvectors u;, Up,...,u, of S, with the corre-

sponding eigenvalues Ai, Ao, ..., Ay, Where Ay > Ao > ... > Ay
3: Construct the truncated eigenvector matrix

U: (ﬁl ﬁg ﬁg)
4: Compute _
Yi :UTXZ', 1= 1,2,...,N.
Output: Data vectors yq,ys,...,yn € R’ with uncorrelated components.

4.2 Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) [44, 45, 46] is a nonlinear
extension of the theory of PCA. The nonlinear property of KPCA is often
useful for data with structures which cannot be well represented in a linear
subspace. For instance, if we are interested in extracting features as a prepro-
cessing step for classification of nonlinearly separable data, canonical PCA
will not be very helpful to aid in discriminating between classes. KPCA,
however, may be able to extract features in such a way that the nonlinearly
separable data becomes linearly separable.

KPCA uses the theory of Mercer Kernels to perform an implicit nonlinear
transformation of the data and performs PCA in this (possibly unknown)
kernel space. KPCA has been used in several applications. This includes
face recognition [47, 48], de-noising [49, 50| and texture classification [51].
One should note that other nonlinear approaches to PCA has been proposed.
For instance [52, 53, 54, 55].

This chapter starts with a short introduction to Mercer Kernels. This
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will then be used in combination with the theory of PCA to derive KPCA.
Examples will be presented which compares KPCA and PCA.

4.2.1 Mercer Kernels

Let x be a data point in the feature space X and let H be some (possibly
infinitely dimensional) Hilbert space. Define the nonlinear transformation

o X - H
x — O(x). (4.11)

In general, the mapping function ®(-) is unknown but there exists a connec-
tion between a Kernel function

k: XXX =R
and inner products in the Hilbert space H. A kernel function satisfies
KX, %5) = (D(x5), D(x;)) 2 (4.12)

This means that the kernel function x(-,-) calculates inner products in H
without any explicit knowledge of the mapping ®(-). Thus, any machine
learning algorithm that relies on inner products between the data points
could be implemented using Eq. (4.12) as a way to map the data implicitly
to H.

The existence of a kernel function k(-,-) and the corresponding Hilbert
space H is ensured by the Moore-Aronszajn theorem [56] and Mercer’s the-
orem [57].

Theorem 1 (Mercer’s theorem). Let x;,x; € X. A function k(-,-) is a
Mercer kernel if and only if k(-,-) is symmetric and

Z Z a;ajk(x;,%5) > 0,
i g

where a, € R. Also, there exists a Hilbert space H and some mapping function
d: X —-H

such that
K(xi, x5) = (D(x;), D(x;))n
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Figure 4.2: Nonlinear mapping .

By defining the matrix
K = {r(x;,x;)}, 4,j=12,...,n, (4.13)

we see that Mercer’s theorem implies that K is a positive semidefinite matrix.
There exists numerous valid Mercer kernels [58]. The one that is probably
the most known and used in practice is the Gaussian kernel

2
==l

K(x;,Xx;) =€ 22 | (4.14)

where o controls the width of the kernel.

Why use Mercer Kernels?

There are numerous reasons why the kernel methods have become popular
in machine learning. Many of the methods in machine learning are origi-
nally linear. If the structures in the data are nonlinear, the linear methods
could fail. However, if the mathematical foundation of the methods can be
expressed solely as a function of inner products between feature vectors, a
Mercer kernel could perform an implicit mapping to a possibly infinitely di-
mensional space where the data might be linearly separable. The Support
Vector Machine [59, 60| is a popular classification method where this is pos-
sible. An illustration of this mapping is shown in Fig. 4.2. The benefit of
using an implicit mapping and not an explicit mapping is best shown with
an example.
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Example 4.2.1 (Polynomial kernel.). The polynomial kernel [61] is defined
as

R(x,y) = (1+x7y)", (4.15)
Considering a low dimensional feature space with x,y € R? and a quadratic
kernel with d = 2, we get

r(x,y) = (1+x"y)
=1+ 2xTy + (xTy)2

2 2 2
=1 +22xiyi +Z$iyizijj
i=1 i=1 Jj=1

=1+ \/591:1 \/§y1 + \/§x2\/§y2 + x%yf + x%y% + \/§$1$2\/§y1y2
= (®(x), @(y)),
where

CI)(X):(I V2x1 V2xy 2wime 22 x%)T

Here, we were able to find an explicit mapping ® such that k(x,y) =
(O(x), P(y)). If we were to first do this mapping and then compute the in-
ner product in the kernel feature space, we see that both the computational
complexity and the memory complexity are increased in comparison to just
evaluating the kernel function. Also, if we increase d or increase the dimen-
sionality of the data in the feature space, the dimensionality of the mapped
data increases drastically. So if we only need the inner product in the kernel
feature space, it is unnecessary to map the data first and then compute the
inner product when it is easy to compute via the kernel function.

In addition to the simplicity of computing inner products implicitly us-
ing the kernel function, we do not always know the explicit mapping .
For instance with the Gaussian kernel, the kernel feature space is infinitely
dimensional [62]. And thus, an explicit mapping is not possible.

In some situations, it is not necessarily the nonlinear property of the
kernel methods which is the most appealing. As seen in for instance [62], it
is possible to construct kernel matrices for nonvectorial data like documents
and DNA. This allows us to use the kernel methods on types of data which
regular methods are not compatible with.

4.2.2 Derivation of KPCA

Let x1,Xg,...,Xy € X be a sample and let ®(x) be a nonlinear transforma-
tion as defined in (4.11). Consider the correlation matrix

R =E[2(x)2(x)"].
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which is approximated by

1 & .
R= 2 D (x,)D(x;)7. (4.16)

Let v be an eigenvector of R with the corresponding eigenvalue A\. Then

Rv =)\v
N
1 (4.17)
N Z O(x;)P(x;) v = Av.
i=1
Now, define
1
a(i) = )\—N(I)(Xi)TV. (4.18)
By substitution, we have
N

v = Za(z’)@(xl-). (4.19)

From this, we see that v € Span {®(x;), i = 1,2,..., N}. By left multiplying
Eq. (4.17) with ®(x) and defining the kernel matrix

K = {r(xi, %)) }vxn
and the vector a = (a(1) a(2) --- a(N))T, we can show that
Ka = N)a. (4.20)

That is, a is an eigenvector of K with the corresponding eigenvalue \* = N .
But how is this used for PCA in kernel space? Recall that the projection of
®(xy) onto the principal component of R is given by

a(i)®(x;)" ®(xx)

M-

vId(xy;)

=1

(4.21)

M-

a(i)r(x;, Xg).

=1

From this, we see that the projection is completely defined by the kernel
matrix and its eigenvectors. From the theory on principal component anal-
ysis, we know that we need the eigenvectors of the covariance matrix to be
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normalized. That is

viv=1
Z a(i)®(x;)" Z a(§)®(x;) =1
D2 ala(i)@(x) (k) =1
> Z“(@)Q(J)F«'(Xz,xj) =1
a’lKa=1
Nala =

, 1

Jall = 5

Jall = —

So, we can ensure that v is normalized by scaling a. Note that \* = NA
is the corresponding eigenvalue of a, while A is the corresponding eigenvalue
of v. Now, let aj,as,...,a; be the ¢ dominant eigenvectors of K, with
Af > A5 > ... > \). Using (4.21), the projection of ®(x;) onto the ¢
principal components of R is given by

ﬁ D imy a1 (8)R(Xi, Xx)

o) | s, et
e | _ | g Do az
v; O (xy) L Zi\]:la‘g(l.)lf(xi,)(k)

V3

The algorithm is summarized in Alg. 3.

Centering

In the previous discussion, we derived KPCA without any assumptions on
the data. If we assume that the data is centered, i.e.

E[®(x)] =0,

we see that the correlation matrix and the covariance matrix are equal.
We are able to force the data in kernel space to be centered by modify-
ing the kernel matrix. By instead considering the covariance matrix of
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Algorithm 3 Kernel Principal Component Analysis

Input: Data vectors x;,Xs,...,xy € RP, the number of principal compo-
nents ¢ and a valid kernel function x(x;,x;).
1: Construct the kernel matrix K = {k;; } nxn, where k;; = r(x;, x;).
2: Compute the ¢ largest eigenvectors aj,as,...,a, of K and the corre-
sponding eigenvalues A}, A5, ..., A}, where \] > A5 > ... > \J.
3: Calculate the projection of ®(x;) onto the ¢ principal components in
kernel space

ﬁ Z;\}:l al(zi)“(xiv X))
ﬁ > in1 a%(l)ﬁ(xz‘, Xk

Zp = )

= T, i)

fork=1,2,...,N.
Output: Data vectors z;, 2o, ...,zy € R’ with uncorrelated components.

d(x;) — %Zj\le ®(x;), it is possible to show that we can use the same
methodology by modifying the kernel matrix. Instead of using K as defined
in Eq. (4.13), we use

K=K-1yK—-Kly+1yKly. (4.23)

Here, 1y = {#} - For details, see [44].

Now, the question is whether to center the data or not. This question
will not be answered here. The interested reader is pointed towards [63] for
a recent review on this topic. However, we will state that there are methods
where centering does not make sense. For instance Kernel Entropy Compo-
nent Analysis (KECA) [64]. As we will see in Ch. 7 and Ch. 8, centering the
kernel matrix does not make sense in these Markov Chain based methods.

The Empirical Kernel Space

As stated earlier, the kernel space might be infinite dimensional. When using
KPCA, the data is said to be embedded in the empirical kernel space. This
is because it is embedded to a finite dimensional space preserving the inner
products in the kernel space.

Example 4.2.2 (Comparison of KPCA and PCA). Fig. 4.3 compares KPCA
to PCA for two toy datasets. We see that the canonical PCA just rotates
the coordinate system until the variables are uncorrelated. The effect of the
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implicit nonlinear transformation is readily seen in the KPCA plots. The
original data was nonlinearly separable. After applying KPCA, the data is
linearly separable which might be beneficial for further analysis. Both kernel
matrices were constructed using a Gaussian kernel with ¢ = 0.1 and 0 =5
for the crescent moon data and the circle data respectively. This shows
that the value of this parameter is very dependent on the situation. Note
that in this example, the dimensionality of the output is the same as the
dimensionality of the input. We could have high dimensional input data and
use KPCA or PCA to extract just a few features. This might reveal otherwise
unknown structures in the data which could aid in further analysis. In the
case of KPCA, we could also have low dimensional data and project these to
a higher dimensional kernel feature space.
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Figure 4.3: (a-b):

Original data.

(f)

(c-d): PCA projection.

(e-f): KPCA

projection using a Gaussian kernel with o = 0.1 in (e) and o =5 in (f).
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4.2.3 In-sample KPCA

Let X1, X, ...,Xy € R? be a sample and let z, zo, ..., zy € R’ be the projec-
tions of the sample onto the ¢ principal components in kernel feature space.
Let K be a kernel matrix with the £ most dominant eigenvectors a;, as, ..., ay
and the corresponding eigenvalues A}, A5, ..., Aj. It is easy to see that if we
define the eigenvector matrix

E:(al a --- ag)

and the diagonal eigenvalue matrix

X0 - 0
0 X\ --- 0
0 0 - X
a combined calculation of all the projections is done with
zj
T
z
z-|""
: (4.24)
zyy
— K'EA >

Note that K is symmetrical, so K = K. Furthermore, E is orthogonal.
This implies that E~! = ET. Thus, the kernel matrix can be diagonalized
by K = EAET. Using these properties in Eq. (4.24) yields

Z =KTEA:
= KEA 2
— EAETEA :
— EA:. (4.25)

Thus, all the projections can be done in one matrix operation after construct-
ing the eigenvector matrix and the eigenvalue matrix. We also see that the
projection only depends on the eigenvalues and eigenvectors of the kernel
matrix, not the kernel function itself. If KPCA is used in combination with
for instance classification or regression, we have both training data and test
data. In this case, we would need to use the general expression in Eq. (4.22)
for the test data since the systems are trained based on the projection of the
training data. In clustering, however, we can use the expression in Eq. (4.25).
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Chapter 5

Clustering

This chapter presents the clustering algorithms needed to build the foun-
dation for the main theory in this thesis. A more in-depth presentation of
available clustering algorithms can be found in [58, 65, 66, 67, 68].

5.1 Generalized Hard Algorithmic Scheme

The Generalized Hard Algorithmic Scheme (GHAS) [58] is a subset of cluster-
ing methods based on minimizing a specific cost funtion. Let x;,Xs,..., X, be
the data vectors we want to cluster and let uy, us, ..., u, be their associated
membership functions. Assume we want to cluster our data into k clusters,
C1,Cy,...,Ck. For the GHAS, we assume hard membership functions. That
is, for

we have

Uij € {Ov 1} (5.1)
iuij =1. (5.2)

This means that u;; = 1 if x; is assigned to C; and zero otherwise. Now,
assume we can represent the cluster C; by a single vector, 8, j=1,2,... k.

37
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This vector is called the cluster representative for C;. Then, the cost function
for the GHAS is defined as

J(X,U,0) = ZZUW x;,0;), (5.3)

=1 j=1

where d(x;, 0;) is some dissimilarity measure between the data point, x; and
the cluster representative ;. The arguments in the cost function are matrices
containing the data points, membership functions and cluster representatives.

The intuition behind the cost function is that since w;; = 1 if and only if
x; is assigned to C;, we obtain the minimum of Eq. (5.3) when all the data
vectors are assigned to the cluster with the least dissimilar cluster represen-
tative. We also need to update the cluster representatives to minimize the
dissimilarity between the data vectors and the cluster representatives. This
ensures that the within cluster dissimilarity is minimized.

Optimizing a cost function is normally done by differentiating it with
respect to the unknown variables and equating the result to zero. In this
case, the unknown variables are the membership functions and the cluster
representatives. However, we see that the membership functions are not
differentiable because of their hard values. We will solve this by minimizing
Eq. (5.3) in an iterative manner. There are two stages for each iteration:

1. Fix © and set u;; = 1 if d(x;,0;) = min,,—12_ ;d(x;,0,,). Set u;; =0
otherwise. Do this for i =1,2,...,nand j =1,2,... k.

2. Fix U and minimize Eq. (5.3) with regards to the cluster representa-
tives, 8;, 7 =1,2,... k.

For the cluster representative, 0., we get

0
96, (X,U,0) = 90, ZZ% X;, 0

=1 j=1

- Zuzz le z)

Thus, the 6, which minimizes Eq. (5.3) has to satisfy

= 0

Naturally, this derivative depends entirely on which dissimilarity measure we
choose.
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5.1.1 k-means Clustering

The k-means clustering algorithm [69] is a classical method used extensively
because of its simplicity in implementation and its cost efficiency in terms of
computing power [66]. It shows up as a special case of the GHAS when we
use the squared Euclidean distance as our dissimilarity measure. That is,

d(x;,0;) = [|x; — ;15 = (x; — 6,)" (x; — 6;). (5.5)

Differentiating Eq. (5.5) with respect to 6; yields

0 0
Tojd(xi’ 0;) = aT,j(Xz‘ —0,)"(x; — 6;)

Substituting Eq. (5.6) into Eq. (5.4) gives us

=1
> ui(=2(xi — 6;)) =0
=1
ZUZ]Xi = Zumﬂj
=1 =1
0j = M (5_7)

We see that the optimal @; is just the sample mean vector of all the data
vectors which are assigned to C;. Thus, the k-means algorithm is summarized
as follows

1. Initialize the cluster representatives 8;, j = 1,2,..., k randomly.

2. Assign each data vector x;, ¢ = 1,2,...,n to the cluster with the
cluster representative which is closest in terms of Euclidean distance.

3. Update the cluster representatives 8;, 7 = 1,2,...,k according to
Eq. (5.7).

4. Check for convergence. If the algorithm has not converged, move to
step 2.
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We see that we need to provide the number of clusters, k. Choosing this is
not necessarily trivial. This would require either some prior knowledge of
the structure of the data or that we run the algorithm multiple times with
different values of k. In the latter case, people familiar with the type of data
might be able to interpret which of the k values makes sense based on the
output partitions.

In step 1 it is common either to choose a random sample of size k from
the data vectors as the initial cluster representatives or to sample k£ random
vectors within the bounds of the data . There are also several ways to check
if the algorithm has converged. For instance if no cluster representatives
changes when they are updated or if AJ < e, where ¢ is some small constant.
The cost function is guaranteed not to increase during the iterations [70], but
the k-means algorithm is susceptible to converging to local minima [66].

A consequence of using the squared Euclidean distance as the dissimilarity
measure is that the k-means algorithm is linear. It is easy to show that the
set of points equidistant to two cluster representatives is constricted to a
linear function. Let 6; and 8, be two cluster representatives and let x be a
vector in feature space. The vectors x which are equidistant to 8; and 6,
has to satisfy

(8; —x)" (8, —x) = (6. —x)" (. — x)
GJTOJ» — 20?){ +xTx =070, — 207x + x"x
2<9z — ej)TX + 0?0] — HZGZ = O,

which is a linear function in x of the form w? x+wy = 0. This implies that the
k-means clustering algorithm will not be able to capture the cluster structure
for nonlinearly separable data. It can also struggle with weirdly shaped
clusters that are linearly separable or if the clusters have vastly different
scales. This is shown in Fig. 5.1. Because of the intrinsic properties of
the Euclidean distance metric, the algorithm works best for ”hypersphere”
shaped clusters as the set of points equidistant to a cluster representative
forms a hypersphere.

Example 5.1.1 (k-means for Gaussian data). Fig. 5.2 and Fig. 5.3 shows
a toy dataset with three clusters of bivariate normally distributed data. In
Fig. 5.2, the data has been clustered using £ = 3. We see that k-means
correctly identifies the clusters. In Fig. 5.3, the data has been clustered
using k = 4, which is incorrect. This forces the k-means algorithm to divide
one of the natural clusters into two clusters.

'For instance the smallest possible hypercube containing the data.
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Figure 5.1: Two clusters of bivariate normal data with different scales. We
see that the k-means algorithm fails to capture the natural cluster structure.

Figure 5.2: Three well separated clusters of bivariate normally distributed
data. The k-means clustering algorithm correctly identifies the clusters with

k= 3.
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algorithm is forced to find four clusters, even though the data naturally
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5.2 Clustering with Gaussian Mixture Mod-
els

This section presents a clustering algorithm which assumes a model for the
data. More specifically, we assume that the Probability Density Function
(PDF) for the data can be expressed as a mixture of Gaussians. To arrive at
an algorithm which can be used for clustering, we need to take a detour and
establish some statistical theory.

In the end of this section, it will be shown that the k-means cluster-
ing algorithm is a special case of clustering using Gaussian Mixture Models
(GMM). If the clusters in the data differs significantly from hyperspherical
structures, but is still compact, the GMM will capture the structure better
than k-means. The GMM also considers the covariance structure of the data.
This enables us to cluster data where the clusters have different scales.

5.2.1 Mixture Models

Mixture models [71] are used to estimate the PDF for some data. We assume
that the density function can be expressed as a linear combination of PDF.
That is, we define the PDF of the data to be

fx(x) =Y Pufu(x[6%), (5.8)

where Py are the mizing coefficients, fr(x|0y) are the mizture components
and 0y, are the parameters of component k. Note that fi(x|@y) are density
functions. If we require

0<P, <1 (5.9)

Y p=1, (5.10)
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we have

/){fx(x)dxz/xipkfk<x|0k)dx

k=1

K
k=1 X

— Z P,
k=1

Il
=

Thus, fx(x) is a valid PDF and Py, could be interpreted as prior probabilities
of component k.

5.2.2 Mixture of Gaussians

A very important special case of the mixture model in Eq. (5.8) arises when
we choose the Normal (Gaussian) PDF as our mixture components. That is

ol 50) = (2) H el oxp { =30 ) B - b G1)

where p is the dimensionality of the data, p, is the mean vector and ¥ is the
covariance matrix. We note that p,, 3y from Eq. (5.11) and Py, from Eq. (5.8)
are unknown. We need to estimate these to fit the model to the data. For
the GMM, this is normally done by Mazimum Likelihood Estimation (MLE)
via the Ezpectation Mazimization (EM) algorithm [72]. To apply this to the
GMM, we first need to establish some basic theory behind these methods.

The Maximum Likelihood Estimator

The MLE is used to estimate unknown parameters for a specific model based
on the observed data. Let X;i,Xs,...,Xy be independent and identically
distributed (IID) from fx(x|@). Now, define the likelihood function as the
joint density

L(O) :fX17X2 ..... XN(XI;X27---,XN|0)

@fo(xilé’). (5.12)
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Notice that if x1,%s,...,xy are observed, Eq. (5.12) is a function of the
parameter 6. The likelihood function can then be maximized with respect
to 0 to obtain the parameter which is most likely given the sample.

Often, it is convenient to use the log-likelihood

1(0) = In (L(8))

= In (H fX(xi\0)>
= In(fx(x0))

=1

instead of the normal likelihood function to make computations easier. The
logarithm is a monotone function, so maximizing the log-likelihood is equiv-
alent to maximizing the likelihood. This is especially useful if the assumed
distribution of the data comes from an exponential family, like the normal
distribution.

The MLE is often preferred to other methods (like the method of moments
[73, Ch. 7]) because it has some nice properties [73, 41, 74]. Under some
conditions, we have:

e The MLE converges almost surely to the true parameter.
e The MLE is asymptotically unbiased.

e The MLE is asymptotically normally distributed with a variance given
by the Cramér-Rao lower bound.

e The MLE of a function of the parameter is the function applied to the
MLE of the parameter. That is for v = g(0),

/V\ML = g(gML)-

It is often convenient to use the MLE to estimate parameters, although in
some cases it is not possible to find an analytical solution. In these cases we
need to find an estimate of the MLE by other means (like the EM algorithm).

Example 5.2.1 (Multivariate normally distributed data). Let X1, Xs, ..., Xy
be independent and identically distributed from a p-variate normal distribu-
tion with mean p and covariance matrix 3.

X NA[?(IJHE)
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with the PDF
Pl 1 _
Pl ) = (2) 81 e { - - "B - )

To ease the computations, we will use the log-likelihood

fX X |y'7 ))

i (@0 b= e {500 - wreiox - )

In(2) — S (12)) — 5 3K~ ) S (X, — ).

i=1

Np
2

By taking the partial derivative of this with respect to p and equating it to
0, we get

N
) (Xi—p)=0

=1

|
-~ _ 1 X,
125Y19 N ;

)

under the assumption that 3 is non-singular. This is just the sample mean,
which is not a surprising result. Maximizing the likelihood function with
respect to X is a bit more cumbersome, but by some trace manipulations
and applying a variant of the Cauchy-Schwartz inequality [41, Ch. 4], the
MLE of 3 becomes

~ 1 7
S = & ~-X) (X; - X)

i1
7
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Note that this is not an unbiased estimator since

()< (Y59
N -1

== _"E(S

—E(S)
N -1

SRS
N

#3,

where S is the sample covariance matrix which is unbiased. However, the
MLE of the covariance matrix is asymptotically unbiased.

The Expectation Maximization Algorithm

The EM algorithm was originally proposed by Dempster et al. [72] as a way
to solve difficult likelihood optimization problems by an iterative method
which converges to the solution of the original problem. The idea is to aug-
ment the observed data X = (X 1 X9 oo X N)T with some missing/hidden
variables Z = (21 Ly oo Z M)T and use the likelihood function of the
complete dataset to estimate the parameters iteratively. Assuming IID vari-
ables X1, Xo,..., Xy from fx(z]f), the maximum likelihood estimator for ¢
is given by
Oy, = arg max L(0)1X)
0

N (5.13)
=a a X;0),
rgm XiHle< 1)

where both the observed values, X;, and the parameter, 6, could be vectors.
We now construct the complete data set by augmenting the observed data
with the missing/hidden data. We assume the joint distribution

X, Z ~ fxz(X, Z|(9) (514)

By conditioning on the observed data and assuming, we get

fzix(z]x,0) = fxz(x 2[0)
fx(x|6) 515)
_ L(blx,2) :
faix (e, 6) LOx)

where L°(0|x,z) denotes the likelihood function for the complete dataset and
L(#|x) denotes the likelihood function for the observed data. It can be shown
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[72] that given the estimate 8 and the function

Q (6,@”) = /ZZC(G\X, z)) fzix (Z|X, 5@> dz

R (5.16)
X, 9@)] ,

=[Egz [lc(0|x, z)

maximizing the log-likelihood of the original data can be done by an iterative
algorithm:

E-step:
Calculate @) (0, @”), where 8 is the current estimate of the parame-
ter.
M-step:
Maximize () with respect to 6
U+ = arg max Q (9, 5@)) (5.17)
0

These steps are repeated for each iteration until the likelihood function con-
verges. One thing we notice is that to kickstart the algorithm, we need an
initial guess for the parameter, #®). The choice of this initial guess will
depend on the situation.

The likelihood function is guaranteed to be non-decreasing for each iter-
ation and the solution is guaranteed to converge to a stationary point of the
likelihood function [75, Ch. 5]. However, for multimodal likelihood functions
this stationary point could be a local maximum.

MLE and EM for the Gaussian Mixture Model

We are now ready to formulate an algorithm to estimate maximum likelihood
estimators for the GMM. Let x1,Xs,...,Xy be the observed data we want
to fit the model to. Recall the mixture model in Eq. (5.8) and the mixture
components in Eq. (5.11). Sampling from Eq. (5.8) is equivalent to sampling
from fi(x|p,, Xx) with probability Py, k = 1,2,..., K. To avoid confusion,
we will use N, (x|p, X) to denote a p-variate normal PDF with mean p and
covariance matrix X evaluated at x. Now, define z; = (Zn Zio v z,-K)T
to be the indicator vector for x;, 1 = 1,2,..., N. That is

(5.18)

{1 if x; is drawn from mixture component k
ik = :

0 otherwise
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We see that
Zik - {O, ]_}

s (5.19)

We will now use the indicator vectors as our hidden variables in the EM
algorithm. The probability mass function (PMF) of z; puts mass Py on z; if
and only if z;; = 1. Because of Eq. (5.18), we see that the PMF will be

(z:) = ] Pe*. (5.20)

We also need to define the conditional distribution of a data point given the
indicator vector. Recall that if z;; = 1, the data point x; is drawn from a
p-variate normal distribution with mean g, and covariance matrix 3. Thus,
we have

=

F(xilzi) = [ ] N (il Z) 7 (5.21)

k=1
From this, we see that the joint distribution of the indicator vector z; and
the data x; will be

f(xi2i) = f(xilzi) f(2)
= kl;[l[ p (X g, B kl;[lplf"k (5.22)

éw

(PN (X3, )]

Using Eq. (5.13), we can then construct the log-likelihood of the complete
data

(01X,2) = Zln [f (xi,2:)]
= >t | TT RN (el 207 (5.23)

=

where O is the set of all the parameters, X is the set of all data vectors and Z
is the set of all indicator vectors. Now, we need to find () (@, @(l)> as defined
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in Eq. (5.16). This is the expectation of the complete log-likelihood with
respect to Z given the data X and the current estimates of the parameters,
N
(-)( ). The only stochastic variables in Eq. (5.23) are the z;;’s since the data
is assumed observed. Thus, we only need to find the expectation of these

given the data and parameters. We have that

xz‘,é(l)> :O-P< ik =

:p<,_

~ (1
X%@())

E (sz

(5.24)

Because of Eq. (5.18), we see that this can be interpreted as the poste-
rior probability of the data point x; belonging to component k. By using
Eq. (5.11) and expanding the products inside the logarithm, we get

K
Q(0.6") = sz I [P (5 2y, )

M=

=1

Il
WE
MNH

1
350 [0 = £ n(2m) - sy (5.25)

e
I

1

(x; — uk)TEEl(Xi — ) |-

N = =

1

From Eq. (5.17) we see that we need to maximize this function with respect
to the unknown parameters. By using known formulas for matrix and vec-
tor derivatives [76], we can obtain the partial derivatives of Eq. (5.25) with
respect to p;, and 3j. Equating these to 0 gives us the estimates

] N

~() _ =0

Hy = = Vi Xi (5.26)
D i 1%'(k) i=1

=) R T
= v o s> (xi-a) (x-80) - (27)
Zz 1 zk i=1
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Notice that the prior probabilities P, needs to be optimized under the con-
straint in Eq. (5.10). Thus, we use Lagrange optimization by constructing
the Lagrange function

K
~ (1 ~ (1
C (@,@(),)\> _Q (@,@”) _ A (Zpk - 1> .
k=1
Differentiating this with respect to P, and equating it to zero yields

N ~(I
P o Zi:l P)/Z(k)

Substituting Eq. (5.28) into Eq. (5.10) and solving for A\ gives us A = N.
Thus,

(5.28)

N ~()
BY = —le\ﬁk . (5.29)
By comparing this to the frequentist approach to probability, we see that
the numerator could be interpreted as the effective number of data points
belonging to component k.

Alg. 4 summarizes the steps needed to estimate the parameters for the
GMM. The convergence criterion is either based on evaluating the log-
likelihood of the observed data or by checking the parameters.

For the initialization step, it is common to first use the k-means clustering
algorithm to partition the data into K klusters and using the resulting cluster
representatives as the initial mean vectors. The initial covariance matrices
are estimated by the sample covariance matrix of the data points assigned
to each cluster. The initial mixing coefficients are estimated by counting the
number of data points assigned to a cluster and dividing this by the total
number of data points.

In some situations, one or several covariance matrices may become sin-
gular during the iterations. This often happens when the number of mixture
components are larger than necessary (wrong model). However, there are
situations where we actually want to have a lot of mixture components. To
circumvent this problem, it is possible to regularize the covariance matrices
[77]. This is done by adding a small constant to the main diagonal of the ma-
trix, which will make sure that the covariance matrix is positive definite (and
non-singular). Doing this will introduce a bias in the estimate, but this bias
could be small if the size of the constant is carefully chosen. The size of this
constant will depend on the data and the number of components. It should
be as small as possible without making the covariance matrices singular to
avoid that it affects the variances in the model.
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Algorithm 4 Expectation Maximization for a Gaussian Mixture Model.

Input: Data points Xz, 1 =1, 2 , N and the number of components K.
1: Initialize ué > Ek and P Vfork=1,2,..., K.
2: repeat

3:  E-step. Based on the current parameter estimates and the observed
data, calculate the posterior probabilities

~ !
SR . (leulﬁ)ﬁk )
kT K (l)
Zj:lp (szj y 24 )

fort=1,2,...,.Nand k=1,2,..., K.
4:  M-step. Adjust the parameters according to

~(+1)
By =N <0 A E :%k X
Zz 1 zk i=1

N
S (+1) 1 (1 (41 ~a+0\ T
X =S () Z%(k) (Xi - “l(ch )> (Xi - M;(f )>
Zi:l Yik =1
N ~(
oy _ Xt

5: until convergence.
Output: Estimate of parameters in the GMM.
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Figure 5.4: Simulated dataset from a GMM with three components.

Table 5.1: Parameters for simulated mixture of Gaussians.

Component 1 pg 02 p
Red 2 0 002 0
Green 1.2 05 0.05 -0.5
Blue 2 1 0.1 0.5

Example 5.2.2 (Gaussian Mixture Model for Gaussian data). Fig. 5.4 shows
a visualization of a dataset constructed by simulating 200 data points each
from three bivariate Gaussian distributions with different parameters. The
parameters are summarized in Tab. 5.1, where

_ (1
2 (u2>
2202 ]- P
p 1)

Fig. 5.5 shows the data along with constant density lines of a GMM PDF
fitted using the EM-algorithm which converged after 30 iterations. Com-
paring this to Fig. 5.6 which shows the contour lines of the theoretical PDF
constructed using the parameters in Tab. 5.1, we see that the estimated PDF
and the theoretical PDF are very similar.



54

Figure 5.5: Simulated dataset from a GMM with three components. The
constant density lines are from the PDF estimated using the EM-algorithm.

Clustering using GMM and EM

After fitting a GMM to the data, it is possible to use the posterior proba-
bilities to partition the data in K clusters. Let v, = (%1 Yia v %K)T,
1 =1,2,..., N be the posterior probabilities for data point i. We will now
consider these to be the membership functions for the clustering algorithm.
We see that the GMM outputs fuzzy membership functions. This indicates
that we are able to measure the degree a data point belongs to a cluster.
Some data points may have a strong membership to a certain cluster, while
others may be more uncertain (especially when it lies in the boundary be-
tween two or more clusters). Assigning a data point to a single cluster is a
matter of thresholding the membership function. That is, we set the largest
value to one and the rest to zero.

Example 5.2.3 (GMM Clustering). Fig. 5.7 shows the simulated dataset we
used previously. The colors of the data points show the degree of membership
to a certain cluster. Saturated colors indicate a strong membership, while less
saturated colors are more uncertain. Fig. 5.8 shows the cluster memberships
after applying a threshold to the membership functions. By comparing this
to Fig. 5.4, we see that there are some data points that are assigned to the
wrong cluster. This is because we have overlapping data, which cannot be
clustered 100% correctly.
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Figure 5.6: Simulated dataset from a GMM with three components. The
constant density lines are from the theoretical PDF constructed using the
parameters in Tab. 5.1.
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Figure 5.7: Cluster membership of a dataset from a GMM with three com-
ponents. Saturated colors indicate a strong membership to the cluster.
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Figure 5.8: Cluster membership of a dataset from a GMM with three com-
ponents after thresholding the fuzzy membership functions.
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Relation to k-means

The GMM clustering algorithm is closely related to the k-means algorithm.
More specifically, k-means arises as a special case of the GMM. Now, as-
sume that the covariance matrices in the mixture components are equal and
diagonal. That is,

Sp=c¢l, k=1,2,... K, (5.30)

where I is the identity matrix and € > 0. Inserting Eq. (5.30) into Eq. (5.24)
gives us the posterior probabilities

= Prexp {5l — pl*}
(A - K )
Zj:l Pjexp {_%”Xz - Nj||2}

where the estimate- and iteration step notation has been omitted for read-
ability. Let p; denote the mean vector which is closest to x;. If we consider
the limit € — 0, we see that v — 0 for all k such that p, # p;. Other-
wise, v;x — 1. This reduces to the same hard membership functions as the
k-means algorithm outputs. By inserting these limits in Eq. (5.26), we see
that the mean vectors will be the same as the mean vectors in the k-means
algorithm.

(5.31)

5.3 Spectral Clustering

Spectral clustering refers to a family of clustering methods which exploits
the eigenvalues and eigenvectors (the spectrum) of a similarity matrix to
partition the data. In recent years, these methods have become increasingly
popular since they often outperform other simple clustering algorithms like
the k-means algorithm. While the algorithms are often easy to implement,
the theory is a bit involved.

In this section, we will establish some of the theory behind the spectral
methods. First from a graph cut point of view, where we construct a similar-
ity graph and try to partition the data based on this graph. The graph cut
view is closely related to Markov Chain random walks [78]. The second part
is about the connection to kernel methods. For a more in-depth introduction
to spectral clustering, the interested reader could take a look at [68].

5.3.1 Graph Cut

The goal of the clustering methods is to partition a dataset in K clusters,
where the datapoints in the same cluster are similar, while datapoints from
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different clusters are dissimilar. A nice way of representing similarity between
data points is a similarity graph.

Let x1,Xo,...,Xy be a set of data points we want to partition into K
clusters and let s;; > 0 be some similarity measure between x; and x;. The
similarity graph G = (V, E) consists of vertices and edges. FEach vertex
v; represents a data point x;. Each edge is weighted by w;;. The weight,
w;; = s;; if x; and x; are connected in the graph and w;; = 0 otherwise. The
weights of the graph can be stored in the weight matric W = {w;; }i j=12..n-
For an undirected graph, we have w;; = wj;, so W is symmetric.

There are three types of similarity graphs that are commonly used:

1. e-neighborhood graph. In a e-neighborhood graph, we connect the ver-
tices v; and v; with an edge if ||x; — x;]| < €, ¢ > 0. That is, if
the Euclidean distance between the data points are lower than some
threshold, they are connected in the graph.

2. k-nearest neighbor (knn) graph. A k-nearest neighbor graph is con-
structed by considering the k-nearest neighbors of a data point x;.
Notice that if we connect vertex v; to v; by an edge based solely on
the k-nearest neighbors of x;, the graph will become directed. To make
the graph undirected, we connect v; to v; if x; is among the k-nearest
neighbors of x; or x; is among the k-nearest neighbors of x;. Fig. 5.9
shows a dataset. The two red points are selected to illustrate a k-
nearest neighbor graph. The three nearest neighbors of the points lies
within the circle centered at the point. We see that the bottom point
is among the three nearest neighbors of the top point. The opposite,
however, is not true.

3. Fully connected graph. In a fully connected graph, all points are con-
nected to each other. This is a useful representation if the similarity
measure models local neighborhoods.

Now that we know how to construct a graph, we can move on to defining the
Graph Laplacian and the Normalized Cut. This will lead us to the spectral
clustering algorithms.

The Graph Laplacian

Given the degree matriz, D = diag(d;)i=12,. n, where d; = Zjvzl w;;. The

graph Laplacian is defined as

L=D-W. (5.32)
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Figure 5.9: Illustration of constructing a k-NN graph. The three nearest
neighbors of the two red points lies within the circles.

The graph Laplacian has some nice properties. For an undirected graph,
consider the quadratic form

y'Ly=y"(D-W)y
=y Dy —y'"Wy
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Since w;; > 0, we see that y’Ly > 0V y € RY. Therefore, the graph
Laplacian is positive semi-definite. From this, it follows that the eigenvalues
of L are nonnegative. It is also easy to show that any constant vector c- 1
lies in the null space of L. So the smallest eigenvalue of L is 0 with the
associated eigenvector c - 1.

The Normalized Cut

Clustering on similarity graphs is often done by minimizing graph cuts. That
is, we want find a partition of the graph such that the between-cluster weights
are as low as possible while the within-cluster weights are high. That means
that vertices in different clusters are dissimilar, while vertices within the same
cluster are similar. We will consider the situation where we want to partition
the dataset into two clusters and then state a generalized algorithm.

For two complementary sets A and B, define the graph cut

cut(A, B) =Y > w. (5.34)

i€A jeB

The graph cut is the sum of the weights from every vertex in A to every
vertex in B. It makes sense intuitively to try to minimize this. If the graph
cut is low, the between-cluster similarity low. However, minimizing the graph
cut will often lead to a partition with one single vertex in one cluster and all
the other vertices in the other cluster. To compensate for this, we will define
the volume of the set A:

vol(A) =) " d;. (5.35)

i€A

If A consists of a single vertex, the volume will be the sum of all the weights
out of that vertex which is small compared to a partition where A contains
more vertices. This leads us to the normalized cut:

Neut(A, B) = cut(A, B) [le( ik VO& B)} | (5.36)

We see that the normalized cut will be minimized if cut(A, B) is low while at
the same time vol(A) and vol(B) are high. This ensures that the between-
cluster similarity is low and that the within-cluster similarity is high.

Fig. 5.10 shows an illustration of a fully connected graph. The circles are
vertices in the graph and the black lines represents the edges. The width of
the lines corresponds to the weight of the edge. Using the normalized cut,
the edges crossing the green line are removed.
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Figure 5.10: An illustration of the normalized cut.

An approximation to the Normalized Cut

Minimizing the normalized cut is not trivial. However, we are able to ap-
proximate it by using the graph Laplacian. Now, consider the label vector

y:(y1, Y2, .-, yN)T, where

yi = {#A; e d (5.37)
_F(B) le/LEB

If x; and x; are assigned to the same cluster, we have y; —y; = 0. From this,
it follows that

e 1 1 N
Yy =322 <V01(A) " vol(B)) i

We also have

€A jeB
1 1
- E -+ E
2 P j
— vol”(A) =5 vol (B)
1 1
— > d; Sy
2 i 2 j
vol“(A) < vol“(B) <=

vol(A) T vol(B)’
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Figure 5.11: Toy data with nonlinearly separable clusters. Each cluster con-
sists of 200 data points.

So )
y'Ly 1 <v011(A) + VO&B)> cut(4, B)
y' Dy T2 voll(A) + voltB)
x Ncut(A, B).
So minimizing the normalized cut can be done by
min ;;133; (5.38)

By relaxing the constraints on y in Eq. (5.37) so that we allow any value, it
is possible to show that an approximate minimization of the normalized cut
can be obtained by the generalized eigenvalue problem

Ly = ADy. (5.39)

Here, A is the second smallest eigenvalue since the smallest is the trivial
solution where A\ = 0. The idea is to compute y as an eigenvector of D~'L and
then threshold it to get the cluster labels. Note that D is a diagonal matrix,
which is easy to invert as long as all the diagonal elements are nonzero.

Example 5.3.1 (Crescent moon). Fig. 5.11 shows a typical two-cluster toy
dataset with nonlinearly separable clusters. Each cluster contains 200 data
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Figure 5.12: Clustering solution of the toy data. The k-means solution (left)
fails to correctly cluster the data, while the normalized cut approximation
(right) succeeds. The large circles in the k-means plot are the cluster repre-
sentatives for each of the two clusters.

points. Other algorithms, like k-means, fail to partition the data correctly as
seen in Fig. 5.12 along with the solution of the normalized cut approximation
which is clustered correctly. The similarity graph was constructed using a
fully connected graph with the Gaussian kernel

1
Sij = S(Xinj) = exp {—@”XZ — Xj||2} (540)

as the similarity measure. The parameter o controls the width of the kernel
and was set to 0 = 0.1. Fig. 5.13 shows a plot of the second smallest eigen-
vector, which is the approximate solution which minimizes the normalized
cut. We see that we can clearly apply a threshold to this eigenvector to
generate labels for our data.
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Figure 5.13: Plot of the second smallest eigenvector of D7'L. We see that the
labels can be obtained by thresholding this vector as the values are clearly
separable with a straight line indicated by the dashed line.

General algorithms

In the previous discussion, we assumed that the data could be partitioned
into two clusters. However, the theory is extendable to multiple clusters.
Now, define the normalized graph Laplacians

Ly, =D 2LD: (5.41)

L., =D 'L. (5.42)

The first normalized graph Laplacian is a symmetric matrix, while the second
one is related to random walks. Hence the subscripts. Recall the generalized

eigenvalue problem
Ly = ADy. (5.43)
By left multiplying Eq. (5.43) with D!, we get
D 'Ly = \
Y= (5.44)
Lrwy = >‘y

Thus, the solution of the generalized eigenvalue problem in Eq. (5.43) is a
solution of the regular eigenvalue problem using L,,,. Now, let

y =D 2z. (5.45)
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Algorithm 5 Spectral clustering using Lgym

Input: Similarity matrix S and the number of clusters k.

1: Construct a similarity graph with the weight matrix W.

2: Compute the symmetric normalized graph Laplacian Lgyy,.

3: Compute the first k eigenvectors of Lgyy, corresponding to the k& small-
est eigenvalues and form the matrix U containing the eigenvectors as
columns.

4: Normalize the rows of U to unit length.

5: Let y;, i =1,2,..., N be the rows of the row-normalized matrix U.

6: Cluster the data points y; into k clusters using the k-means algorithm.

Output: Cluster membership functions

Substituting Eq. (5.45) into Eq. (5.43) yields

1

LD 2z = A\DD 2z
LD 2z = \D?z
D LD 2z = \z

Lymz = Az.

(5.46)

We see that if y is an eigenvector of Ly, with the corresponding eigenvalue
A, then z is an eigenvector of Lgy, with the corresponding eigenvalue .
We also have that y = D 2z. An algorithm using Lgy,, is stated in Alg. 5
[79]. Alg. 6 [16] uses L,,. von Luxburg [68] suggests that using Alg. 6
is better than using Alg. 5 because multiplying the eigenvectors with D
could lead to undesired artifacts and the row normalization in Alg. 5 could
reduce the discriminating properties of the eigenvectors. The justification
the row-normalization is beyond the scope of this thesis. Two different views
of this can be found in [79] and [68].

A connection to Laplacian Eigenmaps

Laplacian Eigenmaps [80] is a dimensionality reduction method which as-
sumes that the data lies within a lower dimensional manifold in a higher
dimensional space. It attempts to preserve the relationship between data
points when mapping the data to a lower-dimensional space. More specifi-
cally, if two data points are close in the high dimensional space, they should
also be close in the lower-dimensional space.

Let G = (V, EY) be an undirected graph with the data points x;, Xa, ..., Xy
as its vertices. The edges are weighted by w;;. Now, consider a mapping to
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Algorithm 6 Spectral clustering using Ly,

Input: Similarity matrix S and the number of clusters k.

1: Construct a similarity graph with the weight matrix W.

2: Compute the normalized graph Laplacian L.

3: Compute the first & eigenvectors of L, corresponding to the k small-
est eigenvalues and form the matrix U containing the eigenvectors as
columns.

4: Let y;, i=1,2,..., N be the rows of the matrix U.

5: Cluster the data points y; into k clusters using the k-means algorithm.

Output: Cluster membership functions

a one dimensional space. An intuitive cost function which preserves the
relationship between data points is

T, W) => > (4 — y;)*wi, (5.47)

N
i=1 j=1

where y,, kK = 1,2,..., N is the one-dimensional mapping of the high di-
mensional data point x;. Since the weight w;; is a similarity measure in the
high dimensional space, this is large if the data points are similar and small
if they are dissimilar. Looking at the cost function, we see that if w;; is
large (similar data points) then y; — y; must be small to minimize the cost
function. Similarly, if w;; is small (dissimilar data points), then y; —y; could
be large without affecting the value of the cost function. From Eq. (5.33),
we see that

J(y, W) oy’ Ly,

which we know is minimized by the second lowest eigenvector of generalized
eigenvalue problem in Eq. (5.43). For an ¢-dimensional mapping, the cost
function is modified to

N
JOY, W) => "> "|lyi — y;l*wi = Trace(Y'LY),

=1 j5=1
where
v — y.z
YN
and y; € R, i = 1,2,...,N. This is minimized by the same generalized
eigenvalue problem, but using ¢ eigenvectors.
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Figure 5.14: Circle data.

We see a close connection between Alg. 6 and Laplacian Eigenmaps. The
algorithm uses Laplacian Eigenmaps for feature extraction and performs k-
means clustering on this new representation.

5.3.2 KPCA Spectral Clustering

The idea of Alg. 6, where we use Laplacian Eigenmaps for feature extrac-
tion and cluster this new representation can be extended to include kernel
methods. As seen in Sec. 4.2.2, a nonlinear transformation could make non-
linearly separable data linearly separable. This can be exploited by perform-
ing KPCA on the data using the in-sample version in Eq. (4.25) and cluster
this new representation of the data with a simple clustering algorithm like
k-means. Since KPCA exploits the eigenvectors and eigenvalues of a ker-
nel matrix, this is a spectral method. A connection between the Laplacian
Eigenmap embedding and the kernel PCA projections is provided in [81, 82].

Example 5.3.2 (Circle data). Fig. 5.14 shows the familiar circle data with
200 data points in each of the two circles. A kernel matrix was constructed
using a Gaussian kernel with ¢ = 5 on the data. The data was projected to
the ¢ = 2 principal components in kernel space using KPCA and canonical
k-means was applied to this representation of the data using & = 2. The
results of this is shown in Fig. 5.15a and Fig. 5.15b. The algorithm discovers
the two clusters perfectly. Note that the exact same matrix could be used
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as a weight matrix in for instance Alg. 6. An e-neighborhood graph was
constructed using the same kernel matrix. The Laplacian eigenmap repre-
sentation of the data in three dimensions is shown in Fig. 5.15¢c, while the
KPCA projection in three dimensions is shown in Fig. 5.15d. We see that
these two representations of the data are very similar. However, for this
specific dataset, the Laplacian representation seems to be more compact.
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Figure 5.15: (a): PCA projection in kernel space with labels assigned by
the k-means algorithm. (b): Original representation of the data. The data
points are colored according to the labels in (a). (c¢): 3-dimensional Laplacian
eigenmap of the circle data. (d): 3-dimensional PCA projection in kernel
space.
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5.4 Consensus Clustering

Consensus clustering (also called ensemble clustering) is a relatively new
methodology which has emerged over the last decade or so. Even though the
amount of clustering algorithms is vast, there are no clustering algorithms
which will be appropriate to use for every dataset and different algorithms
might produce different partitions for the same dataset. Even when applying
one clustering algorithm several times to the same dataset with different ini-
tial conditions, ambiguous results might arise when we compare the outputs
of the different trials. This might make the interpretation of the cluster-
ing results a challenge. The idea of consensus clustering is to combine the
results of several clustering trials to obtain a better partition than each in-
dividual trial. This is often done by constructing a similarity matrix called
a consensus-, co-association- or ensemble matrix. Different authors use dif-
ferent names for the same type of matrix. In this thesis, the term consensus
matrix will be used. The theory in this section is considered as a basis for
the discussion in Sec. 6.2, where we will provide a connection between the
consensus matrix and cluster kernels.

There are several proposed algorithms to combine clustering results. Fred
and Jain [83, 84] suggests using the k-means clustering algorithm several
times with random initial conditions. In each of the clustering trials, the
number of clusters, k, is either fixed or chosen randomly in the range k£ &€
[kmin, kmax]. The resulting partitions are then used to vote in a sense. A N x N
consensus matrix S = {s;;}nxn is constructed by counting the number of
times the points x; and x; are assigned to the same cluster in the M different
partitions. Each time these data points are clustered together, it counts as
one vote. They call this voting process evidence accumulation. The elements
of S are then calculated by

Sij = %,
M
where n;; is the number of times x; and x; has been assigned to the same
cluster. Since n;; = n;;, we see that S will be symmetrical.
In the ideal case, we should have

Sij =

1 if x; and x; belong to the same cluster
0 otherwise '

This happens when x; and x; are clustered together in all of the k-means
trials. We see that if the data points are ordered according to their final
cluster assignment, the consensus matrix will be a block diagonal matrix.
That is, there exists a permutation matrix Q such that

C=Q'sq,
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where C is a block diagonal matrix. In this case, detecting the cluster struc-
ture of the data is trivial. However, in real applications there will be some
non-zero matrix € in the off-diagonal elements of this matrix and thus, C is
block diagonally dominant.

The consensus matrix is a type of similarity matrix. If two data points
are clustered together in many of the different clustering solutions, they are
considered more similar than two data points that are not clustered together
as often. This similarity matrix is used to obtain a final partition. Fred and
Jain [84] suggests a hierarchical algorithm like the single link or average link
for this purpose.

In [84], an optimality criteria based on information theory is defined?.
This is used to choose the number of clusters in the final result. The theory
behind this is a bit involved and will not be presented in this thesis. However,
empirical results in the original paper suggests that the same number of
clusters is chosen when using the longest lifetime based on the dendrogram
of the hierarchical clustering algorithm.

While this is the basic idea, other similar approaches has been devised.
Monti et al. [86] includes resampling techniques (like Bootstrapping [87])
to simulate a perturbation of the original dataset. Strehl and Ghosh [85]
use (amongst other things) hypergraph partitioning to obtain a clustering
solution. Hore et al. [88, 89] use centroid based consensus clustering to reduce
memory complexity for large datasets. Nascimento et al. [90] use spectral
clustering theory. Meyer and Wessell [91] employ a stochastic (random walk)
approach.

2The same criterion was also proposed by Strehl and Ghosh [85].
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Chapter 6

The Probabilistic Cluster
Kernel

The Probabilistic Cluster Kernel (PCK) is a new and exciting data generated
kernel function. The goal of this kernel function is to distance ourselves
from strong parameter dependence that other kernel functions often suffer
severely from. For instance the Gaussian kernel, which is dependent on a
width parameter . The thought behind the PCK is to break free from this
strong parameter dependence by learning the kernel function from the data.

The idea behind cluster kernels in general can be traced back to Weston
et al. [92] where they used hard cluster membership functions to calculate
a weight function in semi supervised learning on protein data. The cluster
kernel is calculated by clustering the data several times with different number
of clusters and count the number of times two data points are clustered
together. It is easy to show that this counting process can be expressed as a
sum of inner products between the hard cluster membership functions. Thus,
a matrix with these values as its elements is a valid kernel matrix. This is
used in a Support Vector Machine as a weighting function together with a
domain specific kernel.

This idea was adopted by Tuia and Camps-Valls [93] for semi supervised
learning in remote sensing. The cluster kernel was further developed to in-
clude the use of fuzzy membership functions in [94] using Gaussian Mixture
Models and the EM algorithm. Recently, it has been used for spectral clus-
tering in [26], showing promising results.

This chapter starts by defining the PCK mathematically. A motivational
example is then presented. The chapter is concluded with a new connection
between the PCK and the consensus clustering methodology.
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6.1 Definition

The PCK is calculated by averaging inner products between posterior distri-
butions found by fitting Gaussian Mixture Models (GMM) to the data with
different initial conditions and different number of mixture components. The
intuition is simple. If two data points are considered similar if they have a
high probability of being drawn from the same mixture components.

Let G be the maximum number of clusters and let () be the number
of initial conditions. The PCK is generated by fitting GMMs with g =
2,3,...,G mixture components, () times using GMM-EM. This outputs the
posterior distributions «;(q,g) € RY of data point ¢ = 1,2,..., N with the
initial condition ¢ = 1,2,...,Q and g = 2,3,...,G mixture components.
The PCK is then defined as

QR G
1
Kpex(xi %)) = - > > 7i(a.9)%;(¢.9), (6.1)

q=1 9=2

where Z is a normalizing constant.

We should note that the PCK is able to capture both local- and global
scale similarities if the number of mixture components used is sufficiently
high. Imagine that we have a large number of mixture components. Each
mixture component will then attempt to estimate the density of a small region
in the input space. On the other hand, if the number of mixture components
is small, each of the mixture components will estimate the density of a large
region. Thus, a large number of mixture components will capture similarities
on a local scale, while a small number of mixture components will capture
similarities on a global scale. An illustration of this concept is shown in
Fig. 6.1.

Izquierdo-Verdiguier et al. [26] shows that the matrix formed by the PCK,
Kpck, is a valid Mercer kernel and provide the actual mapping function ® by
concatenating the posterior probability vectors. With other kernel functions,
this explicit mapping might be unknown. Empirical results in this paper
suggests that the eigenvectors of the PCK has discriminative properties with
regards to groups in the data. These properties can be exploited in cluster
analysis as suggested in Sec. 5.3.2.

In implementations of the PCK, we are required to let G' be sufficiently
large to capture the local scale similarities in the data. For a large number of
mixture components, the covariance matrices for the mixture distributions
might become singular while running the EM-algorithm. If this situation
arises, the covariance matrices needs to be regularized as described in Sec. 5.2.
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Figure 6.1: (a): Local structure with 7 mixture components. (b): Global
structure with two mixture components.

Example 6.1.1 (Motivation). Let g denote the number of mixture com-
ponents used. The posterior probability vector for the data point x;, is
¥, = (%1 Yio - %g)T. Here, v;; 7 = 1,2,...,¢ is the probability that
x; is drawn from mixture component j as seen in Eq. (5.24). If two data
points x; and x; have a high probability of being drawn from mixture com-
ponent k, we see that the inner product between the posterior probability
vectors will be large. For instance if ¢ = 3, v, = (0.80 0.15 0.05)T and
v, =(0.91 0.05 0.04), we have

0.91
/v, = (0.80 0.15 0.05) | 0.05
0.04
=0.80-0.9140.15-0.05+ 0.05-0.04
= 0.7375.
Now, if we swap the first two components in v;, we get
0.05
i, = (0.80 0.15 0.05) [ 0.91
0.04
=0.80-0.0540.15-0.91 + 0.05- 0.04
= 0.1785.

This corresponds to a situation where x; and x; are drawn from different
mixture components. We see that this inner product is much smaller than
the one where they were drawn from the same mixture component. Thus,
the inner product between the posterior vectors is some sort of similarity
measure between the data points for a given GMM.
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6.2 A connection to Consensus Clustering

There is a clear connection between the consensus clustering methodology
and cluster kernels. Recall from Sec. 5.4 that the consensus matrix is calcu-
lated by clustering the data several times with different numbers of clusters
and counting the number of times pairwise data points has been clustered to-
gether. The normalized consensus matrix is defined as S = {Z”\j; } Ny Where
n;; is the number of times two data points, x; and x;, are clustered together
and M is the number of clusterings. The cluster kernels as defined by Weston
et al. [92] is performed in the same way. The data is clusted several times
with different number of clusters. The output of the clustering procedures is
a hard membership function. This is a vector m; = (mil Miy -+ miK)T,
where m;, = 1 if data point x; is assigned to cluster k and zero otherwise.
When performing M clusterings, element (7, j) of the cluster kernel matrix
is defined as

M
1 T
C m m

K= = > m™ m{™, (6.2)

m=1
where mgm) is the cluster membership function of data point x; in clustering

T

trial m. Then m™ mg.m) = 1 if data point x; and x; are assigned to the

same cluster and zero otherwise. Thus, Eq. (6.2) calculates the average
number of times two data points are clustered together. This is exactly
the same calculation that is performed in consensus clustering. Although
these matrices are identical, they were developed independently for different
purposes. As far as the author knows, the researchers working on consensus
clustering has not mentioned the kernel aspect of the matrix and vice versa.
The rest of this section is devoted to deriving a new connection between the
more general PCK and the consensus matrix.

Assume that the number of mixture components, G € {2,3,...,G} is
random. Let ); = y if data point ¢ is drawn from mixture component y. The
posterior probabilities from the Gaussian Mixture Models are interpreted as

Yi(a,9) = :
POi=g9g—-12=¢G=yg)

This is justified by the fact that in the EM-algorithm, we condition on the
parameters. The parameters contain information on the number of mixture
components. In addition to this, the EM-algorithm calculates a deterministic
sequence. If the EM-algorithm is applied several times with the same initial
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condition, the parameters will converge to the same values for the different
trials. Thus, we implicitly condition on the initial condition. Then,

-1

Yi(@,9)",;(a,9) =Y PYVi=y|Q=¢G=9)P;=yQ=q0=y9).

y=1

<}

Assuming that x; and x; are drawn independently from one another, we see
that

vi(a.9)"v,(q. ZP =y, =y|Q=¢0G=y)

= P(yv: =YilQ=14q,G=y9).
Now, assume that G is distributed by G ~ P(G = g). Then

P(yi:yj|Q—q ZP yJ|Q_Q7 =9)
= Z P(G = 9)7i(0:9) (4, 9).
g

If G is uniformly distributed, i.e.

1
P(g:g>:m7 922737"‘7G7

then
P(yz‘:yj|Q_q ZG 'Yg(q 9)-

From this, we see that if we assume that Q is uniformly drawn from @

different random initial conditions and let Z = @, the PCK becomes
QR G
KPCK(X’MXj) 2271 7] q, g)
Q -1)
q:l g=2
= 9)"7,(¢, 9)
Q q=1 g=2 G ’
1 Q
= EZPO}@' :yj‘QICD
q=1
9
= =PV =Y;|Q=q

<
Il
—

I
=
&

I
&
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which is an estimate of the probability that data point x; is drawn from the
same mixture component as x;. This is the same as the probability that two
data points belong to the same cluster!.

As described in Sec. 5.4, the consensus matrix contains the number of
times two data points are clustered together using a range of the number
of clusters for different clustering algorithms or several runs of the same
algorithm. Let @ be the number of different clustering algorithms (or the
number of runs for one algorithm) and let G be the maximum number of
clusters used. Then we have a total of Q(G — 1) partitions/clusterings. If we
denote the number of times x; and x; are co-clustered as n;;, the elements
of the normalized consensus matrix are % From a frequentist point of
view, this is the probability of the two data points being clustered together.
This is the same interpretation as the elements of the PCK.

I'Note that since we assumed independent drawing, the interpretation breaks down on
the main diagonal of the matrix. Ideally, all these elements should be 1. This is not
necessarily the case, although the diagonal elements tend to be very close to 1.



Chapter 7

Learning transition
probabilities using the
Probabilistic Cluster Kernel

In this chapter, the PCK is used to define transition probabilities in a Markov
Chain. These transition probabilities are stored in a stochastic matrix P.
The properties of P yields interesting results from a theoretical point of view
when evaluating the stationary distribution of the Markov Chain. It is shown
that the stationary distribution of the Markov Chain calculates a linear rank-
ing function in the empirical kernel space defined by the inner products in
the kernel function. This is also true for kernel feature space. If the ker-
nel function is an RBF, the stationary distribution calculates nonparametric
density estimates using Parzen windowing. To the author’s best knowledge,
these interpretations of the stationary distribution are new.

The theory in this chapter is derived on general form, assuming that the
stochastic matrix is generated from a kernel matrix with positive entries. As
the goal of this thesis is to use transition probabilities learned from data, the
PCK will be used in the end.

The chapter is concluded with an algorithm for ranking on multi attribute
data using Markov Chain transition probabilities learned from data. This
ranking algorithm produces a global rank, not a local rank. For the goal of
developing joint ranking and clustering, we need the versatility of a local
rank. Thus, the theory in this chapter is considered as background theory
for Ch. 8.

81
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7.1 Generating a stochastic matrix from a
kernel function

Let G = (V,E) be a connected undirected graph where the edge weights
are stored in K. Here, K is a kernel matrix with positive entries. Let D =
diag(d;) denote the degree matrix, where degree is defined by d; = Zjvzl K.
Then the matrix P = D7'K is a right stochastic matrix.

Proof. As defined in Tab. 2.1, a right stochastic matrix has positive entries
and each row sums to one. Since K has positive entries, P will have positive
entries. Each row sums to one if 1, a vector of ones, is a right eigenvector
of P associated with the eigenvalue 1. Let d = (d1 dy - dN)T. Since
Ki1=dand D! = diag(dii), we have

P1=D'K1
=D"'d
=1.
Thus, P = D'K is a right stochastic matrix. O

This implies that for a weighted graph G, we can construct a Markov
Chain where the transition probabilities are induced by the weights. If the
weight between two vertices in the graph is large compared to the other
vertices, the transition probability will be large. Thus, the "flow” between
vertices is larger for large weights.

7.1.1 Properties of the Stochastic Matrix

Let P be a right stochastic matrix as defined above. Then P has the following
properties:

1. If x is a right eigenvector of P with the corresponding eigenvalue A,
then Dx is a right eigenvector of P7 with the same eigenvalue.

Proof. 1f x is a right eigenvector of P with the eigenvalue A\, then we

have
Px = )\x

D 'Kx = \x
KD 'Dx = A\Dx
P” (Dx) = A (Dx).

(7.1)
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2. The stochastic matrix P has real, positive eigenvalues where the largest
eigenvalue is 1.

Proof. Since P is a stochastic matrix, we know that its eigenvalues lies
within the unit circle in the complex plane with the largest eigenvalue
being 1 [95]. If we let Ky = D 2KD" 2, then DzPD~2 = Ky so P
and Ky are similar and have the same eigenspectrum. We know that
K is a kernel matrix with the entries k;; = <CI)(XZ) ®(x;)). From the
definition of Ky, we see that its elements are —— \/_kw, which can be

written as inner products since

1 1
\/d_i—\/d_jkij = \/_‘—\/_‘@ x;), D(x;))

1
<\/— (x; )T‘I’(Xj»

Thus, Ky is a kernel matrix and positive semidefinite. Since Ky is
symmetric and positive semidefinite, it has real, positive eigenvalues.
Furthermore, P is stochastic and has 1 as its largest eigenvalue. These
matrices are similar and thus, the result follows. O

(7.2)

3. The stationary distribution of the Markov Chain is given by 7 oc D1,
where 1 is a vector of ones.

Proof. The graph G is connected and thus the Markov Chain associated
with D7'K is irreducible. The stationary distribution of the Markov
Chain is a left eigenvector of P corresponding to the eigenvalue 1 (or
equivalently, a right eigenvector of PT). Since P is a right stochastic
matrix, we have that 1 is a right eigenvector of P corresponding to the
eigenvalue 1. The stationary distribution 7w o« D1 follows directly from
the first property. This is indeed a valid stationary distribution as it is
also a reversibility distribution. The balance equation is satisfied if

DijTi = PjiTj

kij g _ Kii gy
d ' d; (7.3)
)
kij - k?ﬂ

This is satisfied as K is symmetric. O
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7.2 The stationary distribution

Property 3 in Sec. 7.1.1 states that the stationary distribution of the Markov
Chain induced by the transition probability matrix can be expressed in ex-
plicit form as 7 o« D1. In this section, the stationary distribution is investi-
gated from a theoretical point of view. The theory is derived in Sec. 7.2.1-
Sec. 7.2.3 and discussed in Sec. 7.2.4. To the author’s best knowledge, the
connections obtained in this section are unknown prior to this thesis.

7.2.1 Projections in the empirical kernel space

In this section, the stationary distribution is investigated from the Empirical
Kernel Space. From Eq. (4.25), it is seen that z; € RY, the embedding of x;
to the Empirical Kernel Space of K, is given by

T
Z,

7 —
T
— EAz,

where E is the orthogonal eigenvector matrix of K and A is the diagonal
eigenvalue matrix of K. Property 3 in Sec. 7.1.1 states that the stationary
distribution of the induced Markov Chain is given by

T x D1
- K1
= EAE"1
— EA>A:ET1
1 1 T

_ (EA?) (EA?) 1
=77"1

N
-2y

=1
o Zm, (7.4)

where m = % ZZN:1 z; is the sample mean in the Empirical Kernel Space.

Thus, the limiting probabilities are given by m; « z/m = mTz;, i =

1,2,..., N, which is proportional to a projection of z; onto the sample mean.
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7.2.2 Projections in kernel feature space

As seen in Sec. 7.2.1, the limiting probabilities can be interpreted as a projec-
tion on the sample mean in the empirical kernel space. Since KPCA preserves
inner products, this is also valid for kernel feature space. This is easily seen,
as

777 = EAZAET
= EAE”T
—- K.

Let ®(-) be defined as in Sec. 4.2.1. Since the matrix K is a kernel matrix,
its elements are inner products. Thus

T X dl
N
— E ki
J=1

= > ) ()
X mgcb(xi), (7.5)

where mg is the sample mean in kernel space and ®(x;), i = 1,2,..., N is
the mapping of x;.

7.2.3 Nonparametric density estimates

There is a connection between the stationary distribution of the induced
Markov Chain and nonparametric density estimates if the kernel function
used is an RBF. Let x(x;,x;) = 672%2”""*’9”2, wherex; € RP, i =1,2,..., N.
Then

- 1 N

fr(xi) = (9762 AN Z K(i, X;)

(2mo?) =

N
__ 1 3 emmmll?
p
(2m0?)2 N 4
Jj=1

is a nonparametric estimate of the density function evaluated at x; using
Parzen windowing [96]. Comparing this to Eq. (7.5), we see that

f/\X(Xi) x mgCI)(xi),

which is proportional to the limiting probability ;.
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7.2.4 Key observations

In this section, some key observations on the previous results are discussed.

Centering in Kernel Space

In Sec. 4.2, we introduced the concept of centering in kernel space. Cen-
tered data implies that m = 0. By Eq. (7.4) and Eq. (7.5), a mean of zero
implies that all the rows of K should sum to zero. For positive kernel func-
tions as assumed in the Markov Chain methodology, this is never satisfied.
Thus, centering the data when working with Markov Chain methods is not
appropriate. This makes sense as negative probabilities do not exist.

Ranking with the stationary distribution

Eq. (7.4) and Eq. (7.5) states that the score of the data points is a linear
function. Ranking functions used in the literature for supervised ranking are
on the same form, for instance [62, Ch. 8]. Thus, the stationary distribution
as a ranking function fits well within the general ranking methodology. Note
that this is a linear function in kernel space. It is a nonlinear function in
input space.

Nonparametric density estimates

As a special case scenario, it is shown that when the kernel matrix is an RBF,
the stationary distribution calculates nonparametric density estimates using
Parzen windowing. In this setting, the data points are ranked according to
density in input space. Similar connections have appeared in other circum-
stances when investigating connections between information theory, graph
theory and Mercer kernels [97].

Are cluster centroids representative in spectral clustering?

As the stationary distribution is proportional to a projection onto the sam-
ple mean in the empirical kernel space, data points with the highest degree
of connectivity will generally be positioned far away from the origin. The
centroid in centroid based clustering is often used as a cluster representative.
That is, the centroid should be representative for the data points in the clus-
ter. The score obtained from the stationary distribution should represent
importance. The important data points in the sense of a Markov Chain are
embedded at the edge of the cluster. Thus, the centroid may not be the most
useful alternative as a cluster representative in spectral clustering.
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7.3 Learning transition probabilities from data

In the previous sections, it was assumed that the transition probability matrix
P was generated from a kernel matrix with positive entries, K. These kernel
matrices are generated from kernel functions. Well known kernel functions,
like the RBF, require the choice of a critical width parameter, 0. The choice
of this parameter greatly influences the result and is very dependent on the
dataset used.

By a coupling of the PCK and Markov chain theory, we are in this work
able to learn the transition probabilities from the inherent structures in the
data since the PCK is learned from the data and satisfies the properties in
Sec. 7.1. We achieve this by generating the matrix P of transition probabil-
ities from the probabilistic cluster kernel matrix Kpck, by

P = D 'Kpcxk.

7.4 A global ranking algorithm

In the previous sections, we have shown that given a kernel matrix with pos-
itive entries, K, and Markov Chain with the transition probability matrix
P =D'K, D = diag(d;), i = 1,2, ..., N, the stationary distribution of the
Markov Chain calculates a linear ranking function in the empirical kernel
space. By using the PCK such that P = D 'Kpck, the transition probaba-
bilities are learned from the data and not dependent on critical parameters.

Let
D1

17"D1
be the normalized stationary distribution of the induced Markov Chain.
Based on the analysis of the stationary distribution in the previous sections,
we propose using the elements of 7 as ranking scores and ordering the data
points according to this. That is

T (71'1 T = 7TN>T

X, Ix;6m <7, 1,5=12...,N,

resolving ties arbitrarily. Here, x; < x; means that x; is preferred to x;.
Note that this ranking is not dependent on the normalization constant 17 D1.
Thus, ranking using 7 o« D1 is equivalent to ranking using the normalized
stationary distribution. The algorithm is summarized in Alg. 7

We should note that this is the second algorithm implementing the PCK
for unsupervised learning. Although this ranking algorithm can be used for
a global ranking, joint ranking and clustering requires the versatility of local
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Algorithm 7 Markov Chain Ranking using the PCK.

Input: Data matrix X, number of initial contitions () and maximum number
of clusters G.
1: Compute the PCK Kpck as described in Ch. 6.
2: Compute the degree (score) of each data point as d; = Zjvzl Kij.
Output: Score of each data point.

ranking. The experiments in this thesis is focused on the theory in Ch. 8.
Results obtained using Alg. 7 will be presented at a later point in time.



Chapter 8

Joint ranking and clustering

In the previous chapter, it was shown that a transition probability matrix
can be generated from a positive kernel function K. When using the PCK,
the transition probabilities are learned from the data as the PCK is learned
from the inherent structures in the data. This chapter is focused on devel-
oping a joint ranking and clustering algorithm for multi attribute data using
the learned transition probabilities. The basis for the algorithm is the per-
sonalized PageRank (PPR) as presented in Sec. 3.1.1. Normally, this is only
used for ranking.

Previous work by Chung and Zhao [98] forms the basis for the theory in
this chapter. We will define an embedding for the data to a kernel space.
This embedding preserves a generalized effective resistance between vertices
in the graph as squared Euclidean distance, which will be exploited for clus-
tering. Furthermore, the PPR is expressed as projections in this vector space.
Because of the versatility of the PPR in terms of the seed distribution, this
enables us to combine ranking and clustering to output an ordered list of data
points both within and across clusters for the first time in this framework.
This is helpful for the analysis of the clustering result.

This chapter starts with a review on work done by Chung and Zhao [98],
which is extended to propose an embedding of the data. The embedding will
be analyzed in terms of distances between the data points. Based on this
analysis, the embedding is proposed to be used for clustering. An illustrative
example on synthetic data is presented in order to highlight properties of the
algorithm.

89
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8.1 Previous work

This section is based on the work by Chung and Zhao [98]. In this paper,
the authors study the relationship between the PPR and graph invariants
often considered when dealing with random walks and electrical networks.
The PPR is for instance used to approximate effective resistance.

8.1.1 A Symmetrical PageRank

Let G = (V, E) be a connected graph, where the edges are weighted by K.
Recall from Sec. 3.1.1 that the PPR is calculated from the iterative sequence

rpl =(1—a)r'P+as’, 0<a<l, (8.1)

where P is a right stochastic matrix, s is the seed distribution and « is
the restart probability. This difference equation converges to the stationary
distribution of

P' = (1 - )P+ als’.
Let 7(a, s) be the solution of Eq. (8.1). Then
w(a,s)’ = (1 —a)m(a,s)'P 4 as’, (8.2)
where 7(a, s) is cosidered unknown. Solving Eq. (8.2) for 7 («,s) yields

w(a,s) = (1 —a)m(a,s)"P + as”
m(a,s)'(I—- (1 —a)P) = as”
w(a,s) (ol + (1 —a)(I—P)) = as”

1—
aﬂ'(a,s)T<1 a I—i—I—P) =7

(0% —

S(as) (A +1-P) =",
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where 5 = . If the stochastic matrix P is on the form D™'K, where K
is symmetrlc Wlth positive entries we get

%ﬂ'(a, s$)'(BI+1—-D'K) =s"

l7'&'(04, s)'D (D +D - K) =s"

B
%ﬂ'(a, "D (3D + L)
%w(a, s)’D'Lg =5, (8.3)

where we define Lg = D+ L as the $-adjusted Laplacian. Here, L = D —-K
is the regular Laplacian matrix. This can be solved using a Green’s function.
In our case, we use a discrete Green’s function [99]. A discrete Green’s
function Gg for Lg satisfies

We see that since Lg is symmetric, we have
L; = Z Neel = EAET,

where )\; are the eigenvalues of L and e; are the corresponding orthonormal
eigenvectors. Clearly, we have

Al
ZA— el = EAT'ET, (8.4)

under the assumption that A\; > 0V i € {1,2,..., N}. The author has not
seen a proof in the literature that this is satisfied. However, the proof is
simple.

Proof. To show that this assumption is satisfied, we need to show that Lg
is positive definite. That is, \; > 0V i€ {1,2,..., N} iff y'Lgy >0V y €
RN\ {0}. Consider the B-normalized Laplacian matrix

Ls=pI+L,

'The observant reader will notice that Chung and Zhao [98] use 3 = 2%. This is
because they introduce a lazy random walk, which is not needed when using the PCK.
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where £ = D :LD" > is the symmetric normalized Laplacian. The -
normalized Laplacian has the same eigenvectors as L, but its eigenvalues

are shifted by . Thus,

N

Ls=> (A +B8)pe;,

=1

where 0 = A} < A5 < ... < Ay are the eigenvalues of £ and ¢, are the
corresponding orthonormal eigenvectors. Then, we have

1 1
yTLBy = yTD2L5D2y
1 1
= (D2y)" L3(D7y)
=2 Lyz (z =Dsy)

N
=2") (A + B)¢,] z
=1

DN+ B)(2"6,)(¢]2)

(A} + B)a; (2= ¢jz=12"¢,)

|
,MZ

=1

=Bri+ N+ B)z3 + ...+ (A\y + By

> 0,
as ¢@;, i =1,2,..., N forms an orthonormal basis in RY. Thus, Lg is positive
definite and has strictly positive eigenvalues. O]

Now, from Eq. (8.3) we get

1
Eﬂ'(a, s’ D 'Lg =s"
m(a,s) = Bs'G4D

m(a,s) = fFDGgs. (8.5)

We see that up to a change of basis, Gg is a symmetrical form of the PPR.

8.1.2 Generalized Effective Resistance

For a weighted graph, GG, we can interpret the weights on the edges as elec-
trical conductance of an electrical network. The effective resistance [100]
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between vertex ¢ and vertex j in the graph is found by injecting a unit cur-
rent at vertex i, extracting it at vertex j and using Kirchhoft’s laws. This has
been shown to be related to commute time in Markov Chains and is a well
known graph metric used to measure dissimilarity. The effective resistance
can be calculated using a Green’s function of the graph Laplacian. Specifi-
cally, if we let G be the Green’s function of the graph Laplacian L and let
X; be an indicator vector where every element is 0 except element ¢ which is
1, the effective resistance is given by

R(i,j) = (x; — Xj)TG<Xi - Xj)' (8.6)
Chung and Zhao [98] defines the generalized effective resistance as

Ra(i,5) = Bx; — x;)"Gs(x: — X;). (8.7)

An upper bound for the difference between the effective resistance and the
generalized effective resistance is provided. This upper bound is given by

8RG.3) ~ Rai.)| < 5 (54 (85)
? — Iig (7, =39 \ &+ 5 > .
where \; is the smallest nontrivial eigenvalue of L.

The generalized effective resistance is used in Sec. 8.3.1 as an interpreta-
tion of squared Euclidean distances in the embedding proposed in Sec. 8.2.

8.2 Proposed embedding

A key point in this thesis is to notice that the Green’s function, Gg, is
positive definite. Thus, it is a kernel matrix with elements corresponding
to inner products in some Reproducing Kernel Hilbert Space (RKHS). This
will exploited for joint ranking and clustering by embedding the data to the
empirical kernel space?.

Now that this has been established, the next step is to recognize that

Gs; =EA'E”
=EA:A:ET
= (BA"2)(BA2)", (8.9)

2In the latter stages of this work, the author noticed that [101] also noticed the positive
semidefiniteness of the Green’s function, however, [101] used this fact in a completely
different setting for estimating the Green’s function through random projections.
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where E is the orthonormal eigenvector matrix of Lg and A is the diagonal
cigenvalue matrix of Lg. Let Vol(G) = Y2 d; = 1”D1. From Eq. (8.5),
we get
m(a,s) = FDGgs
= BD(EA"2)(EA"2)"s

L D(V/BVVOlG)EA ) (/B /Vol[G)EA3)Ts  (8.10)

~ Vol(G)
= thG)Dszgs, (8.11)
where
z1(6)"
Zs— ZZ(?)T — /B/Vol(G)EA
an ()"

is an embedding in of the data preserving the inner products in G% =
B Vol(G) Gg. For the rest of this thesis, the matrix 8 Vol(G) Gy is denoted
by G to improve readability. The eigenvector and eigenvalue matrix is on
the form

and
A O 0
0 X 0
A= . I
0 0 AN
where ej, e, ..., ey are the orthonormal eigenvectors of Lg and A; < Ay <

. < Ay are the corresponding eigenvalues. We see from Eq. (4.25) that
this is equivalent to the in-sample form of KPCA on the kernel matrix Gj.
Notice that the eigenvalues are shown in ascending order. This is because
Gj has the same eigenvectors as Lg but with inverted eigenvalues. Since
KPCA requires eigenvalues in descending order in the eigenvalue matrix, the
eigenvalues of Lg needs to be in ascending order. The smallest eigenvalues
of Lg will then introduce the largest eigenvalues in Gg. The volume term
Vol(G) is introduced to keep the scale approximately equal for different sized
datasets.

Example 8.2.1 (Embedding). Fig. 8.1a shows a dataset containing three
clusters of bivariate normally distributed data, each with N = 300 data
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Figure 8.1: (a): Three clusters of bivariate normally distributed data. (b):
Embedding of the data in (a) using the PCK and the embedding proposed
in this section with a = 0.15. (c¢): KPCA of the data using the PCK.

points. A PCK, Kpck, was trained on this dataset with Q = G = 20.
Using the kernel matrix and o = 0.15, the data was embedded to a 3-
dimensional space with the embedding proposed in Sec. 8.2. This is shown
in Fig. 8.1b. We see that the embedding successfully discriminates between
the three clusters. Fig. 8.1c shows an embedding using KPCA directly on
the PCK. In this dataset, the PageRank embedding seems to contain more
compact clusters than the one using KPCA on the PCK.
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8.3 Analysis

8.3.1 Distances in kernel feature space

In Sec. 8.1.2, we presented a generalized effective resistance as defined by
Chung and Zhao [98]. If we expand Eq. (8.7) and use the fact that Gg is
symmetric, we get

Ro(i,7) = B(x! Gax; — 2xi Gsx; + x; Gsx;)

- VO&G) (BYol(G) G(i,7) — 26 Vol(G) G (i, j) + B Vol(G) Gs (4, 1))
1
(

Volq) (Calind) =260, 7) + G50, 7)) (8.12)

where G5(i,j) is found in row 4, column j of the kernel matrix Gj =
{(¥(x;), ¥(x;)) } nxn- Substituting this into Eq. (8.12) yields

Vol(G) Ra(i, j) = (¥(xi), U(xi)) — 2(W(x), U (x;)) + (¥ (x;), ¥(x;))
= [P (x:) — ¥ (x))|* (8.13)

Thus, an embedding of the data points to the Empirical Kernel Space defined
by GJ; ensures that the squared Euclidean distances between the data points
is proportional to the generalized effective resistances between vertices in the
graph.

8.3.2 The PPR as projections

From (8.11) we see that

1

m(a,s) = WDZB jz 5;2;(0)
1
(

SO
mi(a,s) = d z;(8) m (8.15)
T NIG) > '

where m, = Zjvzl s;z;() is a weighted mean. The weights are determined
by the seed distribution s. If we let m; be the score determined by the
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stationary distribution of a regular random walk on P = D7'K, we have
seen in Sec. 7.2 that m; = ]ljflﬁ = Vo‘liﬁ. Then, the PPR becomes
mi(a,s) = mz;(3)  m. (8.16)

From a random walk on P = DK, we obtain the base score, 7;. Eq. (8.16)
states that there are two factors contributing to the score obtained by the
PPR: the base score and a factor proportional to the projection onto a
weighted mean vector. We see that the effects of the restart in the ran-
dom walk comes from the projection. The restart probability, «, is encoded
in the embedding and the seed distribution is encoded in the weighted mean.

Using a uniform seed distribution

In this section we will investigate what happens if the seed distribution is
uniform over a given set of data points. This will result in an interpretation
of the PPR with respect to the k-means cluster centroids.

Let V be a set of data points. If s is uniform over V', then

N
ms = Z s;2(5)
j=1

1
“ W > 7(B),

jev

which is the sample mean of the data points in V. When clustering with k-
means, the algorithm outputs cluster centroids cy,co,...,ci. These are the
sample means of the data points assigned to the clusters. Thus, ranking the
data using a uniform seed distribution over the data points in a particular
cluster discovered by k-means is equivalent to inserting its cluster centroid
in Eq. (8.14) or Eq. (8.16). This is useful, either for within cluster ranking
or ranking data points outside a cluster with respect to the data points in a
cluster.

8.4 Putting it all together

Now that the theory has been presented, we are ready to observe key points
on the theory in this chapter:

e From Eq. (8.13), we see that the squared Euclidean distances in the
embedding are proportional to the generalized effective resistance in
Eq. (8.7). Although not equivalent, this distance metric is similar to
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the effective resistance on graphs. The squared Euclidean distances
between data points and the cluster centroids is a key factor in the
cost function of the k-means algorithm. Minimizing the cost function
of k-means in this embedding corresponds to minimizing generalized
effective resistances. The experiments in this thesis reveals that this
distance metric is able to preserve group structures in the data.

e From Eq. (8.16), we see that the score obtained when ranking with
PPR has a geometrical interpretation. Up to a base score factor, it is
proportional to a projection onto a weighted mean. If this weighted
mean is the sample mean of a cluster centroid obtained using k-means,
this corresponds to a uniform seed distribution over the data points
in the cluster. Thus, when using the cluster centroids as the weighted
means, the seed distribution is in some way learned by clustering the
data.

The theory in this chapter has been derived without mentioning which matrix
K to use when generating the transition probability matrix P. By the argu-
ments in Ch. 7, a suitable choice is the PCK as the transition probabilities
are learned from the data. As the experiments in this thesis suggests, this
kernel function works well without any modifications to parameters across
different types of data. One more factor that has not been mentioned is the
restart probability ce. As suggested in [2, 1], @ = 0.15 is a good choice. This «
value is used in all the experiments in this thesis. Although no mathematical
justification for this value is provided, empirical results in the experiments
suggests that this value is an appropriate choice.

Stages of the procedure

The joint framework for ranking and clustering consists of three stages.

1. The data is embedded using Alg. 8. This includes training a PCK on
the data to learn transition probabilities.

2. This embedding is used for clustering using Alg. 9.

3. The data is ranked using Alg. 10. The seed distribution is chosen based
on the purpose of the analysis. To rank within and across clusters,
uniform distributions based on the cluster assignments are good choices.
As noted above, this corresponds to projecting the data onto the cluster
centroids learned by k-means.
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Algorithm 8 Embedding using PCK.

Input: Data matrix X, number of initial contitions (), maximum number of

clusters G and restart probability a.

1: Compute the Probabilistic Cluster Kernel Kpck as described in Ch. 6.

2: Compute the S-adjusted Laplacian Lg = fD + L, where L = D — Kpck,
D = diag(d;) = diag(Z;\[zl kij) and = 2.

3: Compute the orthogonal eigenvector matrix E and the diagonal eigen-
value matrix A of Lg, where the eigenvalues are ordered in ascending
order.

4: Compute the embedding as Zg = /B+/Vol(G) EA_%, where Vol(G) =
Ei\il d;.

Output: Embedding of the data.

Algorithm 9 Clustering the embedded data.
Input: Embedded data Zg and the number of clusters k.
1: Cluster the data in Zg using k-means with & dimensions of the embed-
ding.
Output: Cluster assignments and cluster centroids.

Algorithm 10 Ranking of the embedded data.

Input: Embedded data Zg, degree matrix D and seed distribution s.
1: Compute the weighted mean mg = S~ | 5,2;(3), where z;(8)7 is located
in row 7 of Zg.
2: Compute the scores (o, s) = DZgm;.
3: Sort the scores in descending order.
Output: Ordered list of data points according to the sorted scores.
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Chapter 9

Experiment setup

9.1 Parameter Choice

9.1.1 Probabilistic Cluster Kernel

A key feature of the Probabilistic Cluster Kernel is that it is not strongly
dependent on the value of any parameters to get good results. The two
parameters we need to set is the number of initial conditions, (), and the
maximum number of clusters, G. As long as these are sufficiently high, the
results are stable over a range of parameter values. In all the experiments,
these parameters are held fixed at () = G = 30. By experimentation and
testing, this value is found to be an appropriate choice, independent of the
dataset used. Previous experience indicates that in some datasets, a value
of 20-25 might be a bit low. A value higher than 30 did not yield different
results than using 30. Thus, to emphasize the robustness of the PCK, these
are fixed at Q = G = 30 for all the experiments in this thesis. Note that the
results were always good when using () = G' = 20. In some cases, especially
with high dimensional data like the Frey Faces, the PCK performed better
with @ = G = 30.

9.1.2 The restart probability

The restart probability used in the personalized PageRank dictates how often
the random walk should restart according to the seed distribution. Google
has reported that they use a = 0.15 [1, 2]. In all the experiments of this
thesis, the restart probability is held fixed at o = 0.15 as this seems to be
a good trade off between cluster discrimination and mixing in the Markov
Chain for ranking purposes.

103
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9.2 Clustering procedure

Every clustering is performed by clustering the embedded data with k-means
100 times. The final partition is chosen by evaluating the cost function and
choosing the partition with the lowest cost function value. This ensures that
no human interaction can affect the results.



Chapter 10

Results

This chapter presents the experiments and the results obtained. The thought
behind selecting these particular datasets is that the results can be visualized
in print. Only one of the datasets have ground truth information on group
structure. For the other datasets, the challenge is that there is no guarantee
that there are group structures in the data. Thus, choosing the number of
clusters is a challenge and numerical comparisons of accuracies with other
methods are not relevant. Some aspects of the method may be compared to
other methods where appropriate.

In this chapter, the names for the methods used will be abbreviated.
Thus, we need to establish some notation. KPCA using the Probabilistic
Cluster Kernel is called KPCA-PCK. Embedding the data using Alg. 8 is
called JRC-EMBED-PCK. Embedding the data using Alg. 8 but with an
RBF instead of the PCK is called JRC-EMBED-RBF. Ranking with Alg. 10
is called JRC-RANK-PCK.

10.1 Cloud Screening

The task in this experiment is to decide which pixels in an optical multispec-
tral satellite image is a part of a cloud and which pixels are not. In Remote
Sensing, it is important to classify cloud pixels with high accuracy as the
clouds covers the ground areas we want to analyze. The image is taken over
an area in Spain in 2003 with the Medium Resolution Imaging Spectrometer
(MERIS) on the Evironmental Satellite (ENVISAT). An RGB composite of
the image is shown in Fig. 10.1a. Each pixel of the 1153 px x 1153 px image
is considered as a data point. Thus, there are 1153% = 1329409 data points
in the dataset. Each pixel consists of 6 physically inspired features [102] and
13 spectral bands. In total, there are 19 features. In addition to the image

105
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(a) (b)

Figure 10.1: (a): RGB composite of the satellite image. (b): Ground truth
labels for the pixels. The white pixels represents clouds. Black pixels repre-
sents ground.

itself, we have ground truth data. Experts have labeled the pixels of the
image as "cloud” or "ground”. These labels are shown in Fig. 10.1b. This
particular image has been use previously in [103] for cloud screening using
Kernel ECA Spectral Clustering [64] and an Information Theoretic K-NN
clustering approach [104] with good results.

10.1.1 Clustering and classification

Since this is a large dataset, a similar approach to Vikjord and Jenssen [104]
is used instead of clustering the whole image. They draw a fixed number
of pixels from each class at random, cluster these using their Information
Theoretic K-NN Clustering method and use the result as training labels
with a 1-NN classifier to classify the remaining pixels in the image.

Based on the ground truth labels, a sample of 200 cloud pixels and 200
ground pixels are drawn from the image. This sample is embedded using
JRC-EMBED-PCK. The data is clustered with k-means using £ = 3. In
this dataset, the value of k is chosen by investigating the eigenvalues of
P = D !'Kpck. The theory behind this is not presented here, but the
idea is that for a similarity matrix K with dominating diagonal blocks, the
number of eigenvalues approximately equal to 1 in the stochastic matrix
P = D 'K should be equal to the number of diagonal blocks. For data
containing clusters, the number of diagonal blocks in Kpcgk should be equal to



107

o
[ee]
T
I

Eigenvalue
o
>
Il

0.4F .
L]
° L]
0.2+ .« .
O L L L L L
0 2 4 6 8 10

Index

Figure 10.2: Eigenvalues of P = D 'Kpck. These indicates 3 clusters in the
data.

the number of clusters in the data. These eigenvalues are shown in Fig. 10.21.
There are three eigenvalues close to 1 with a gap to the fourth eigenvalue.
Thus, we expect three clusters in the data.

The embedded data is shown in Fig. 10.3a. The blue data points are
ground pixels, while the red data points are cloud pixels. We see that there
are indeed three clusters in the data, as indicated by Fig. 10.2. Although this
was suspected prior to embedding the data, this is a surprising result. Other
spectral methods applied to this dataset have assumed k = 2 by default.
Since the inherent properties of the PCK allows it to learn the structures in
the data, surprising, but more realistic, results like this might appear.

Fig. 10.3a reveals that the cloud class can be subdivided into two groups.
The result of the clustering procedure is shown in Fig. 10.3b. Fig. 10.3c shows
the data embedded using KPCA-PCK. The data points are colored using
the same colors as Fig. 10.3b. The three clusters from JRC-EMBED-PCKis
apparent in this representation too. This is not surprising, as the kernel
matrix is used as a basis for both embeddings. JRC-EMBED-PCK seems to
increase the distance between the green cluster and the two other compared
to KPCA-PCK. This might be advantageous for better separability between
clusters in some circumstances.

IThe kernel matrix is thresheld at the value t = 0.05 to improve the diagonal blocks
prior to generating the stochastic matrix.
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Figure 10.3: (a): Embedded data using JRC-EMBED-PCKwith ground
truth labels. (b): Embedded data using JRC-EMBED-PCK, clustered with
k = 3. (c): Embedded data using KPCA-PCK. The data points are colored
according to the colors in (b).

A 1-NN classifier is trained using the labels of the three classes in Fig. 10.3b.
The remaining pixels in the image is classified using this classifier. The clas-
sification map is shown in Fig. 10.4a. The black, grey and white pixels
corresponds to the blue, red and green class respectively in Fig. 10.3b. No-
tice that the white pixels seems to be in the center of the clouds. These might
correspond to dense clouds. As the classifier was trained using three classes,
the results cannot be compared to the results in [103] or to the ground truth
labels. However, since the green class consists of cloud pixels, merging the
green and red class is a possibility. A new 1-NN classifier is trained using the
labels obtained by merging the red and green class. The remaining pixels
are classified with a classification accuracy of 99.13%. This is comparable
to the best result obtained in [103] of 99.41%. In [103], other methods like
k-means and kernel k-means were tested on this image with worse results.
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(a) (b)

Figure 10.4: (a): Classification map with three classes. Black pixels indi-
cate ground, while grey and white pixels indicate cloud. The white pixels
might correspond to dense clouds. (b): Classification map with merged
cloud classes. Blue- and white colors indicate correctly classified ground and
cloud pixels. Red color indicates cloud classified as ground. Yellow indicates
ground classified as cloud.

The classification map is shown in Fig. 10.4b. Most of the error comes from
ground pixels classified as cloud. It would be worse if the errors came from
cloud pixels classified as ground since the goal is to eliminate the cloud pixels
prior to analyzing the ground pixels.

10.1.2 Using ranking information to adjust the train-
ing set

In Sec. 10.1.1, a classifier was trained based on cluster assignments. It was
shown that JRC-EMBED-PCKcan be used to discriminate between cloud
and ground pixels in the image. However, experiences show that the clas-
sification accuracy is dependent on the initial randomly sampled training
data. It is suspected that the cloud pixels which are the most similar to the
ground pixels could introduce noise in the training set. Especially since the
1-NN classifier is very simple. If for instance a test point is approximately
equidistant to both a cloud and ground pixel in the training set, the classi-
fication assignment would be questionable. For more robust classifiers, like
the Support Vector Machine, this might not be a problem. The idea now
is to use ranking information to reduce the training set to only contain the
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data points which are important for the structure of the data set. This is
motivated by Fig. 10.5a, where the global score of the data points is plotted
as a function of the two first components in JRC-EMBED-PCK. 1t is clear
that the data points near the boundary between ground and cloud pixels are
ranked lower than the other pixels and thus they are not very important for
the overall structure.

Since this framework for joint ranking and clustering allows for it, this
section is dedicated to investigating the use of ranking information to adjust
the training set. This is done by drawing random samples from the classes
and using the top ranked data points from each class as the training set. The
labels used in the classifier are found by clustering the sample.

A total of m = 200 random samples a of size n = 200 x 2 data points are
drawn from the image with balanced classes (cloud/ground). Each sample
is embedded using JRC-EMBED-PCKand clustered. The global ranking
score is calculated using JRC-RANK-PCK with a uniform seed distribution
over the whole sample. A subset of ny, € {10,20,30,...,150} of the ngop
top ranked data points from each class assigned by the clustering procedure
are used to train a 1-NN classifier. The remaining pixels in the image is
classified and the overall accuracy is calculated. Fig. 10.5b shows the mean
overall accuracy with standard deviations for the different sample sizes used.
The maximum accuracy of 99.68% is found with a subset of 110 data points
per class. Using the whole training set on this run, an accuracy of 99.02% is
obtained.

For each of the sample sizes, a 95% confidence interval for the difference
between the accuracy of the subset and the accuracy of the whole sample
is calculated. This is shown in Fig. 10.5c. By using 80-130 data points
per class in the training set the overall accuracy is significantly better than
the accuracy when using the whole sample. The result is summarized in
Tab. 10.1.

This section is concluded with a few words on the methods used in this
experiment. The clustering results in this experiment differ from results of
other methods. In particular, the PCK finds structures in the data indicating
that the cloud class can be divided into two groups. The clustering method
used by Vikjord and Jenssen [104] found two clusters. One for cloud pixels
and one for ground pixels. Using the PCK, the clustering result had to be
investigated manually to verify that the unexpected third cluster belonged
to the cloud class before training the classifier. Thus, this method is not
entirely unsupervised. In addition to this, there seems to be a sweet spot
for the number of top ranked data points used in the training set to obtain
the best classification accuracy. This sweet spot probably differs for different
datasets. It is not known if this method of adjusting the training set is
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Figure 10.5: (a): Global ranking score as a function of the two first compo-
nents of JRC-EMBED-PCK. (b): Mean accuracy for the different training
set sizes. The error bars indicate the standard deviation of the accuracy. (c):
Confidence intervals of the mean difference between the global accuracy and
the accuracy using a reduced training set.
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Table 10.1: Confidence interval and p-value for the difference between the
mean accuracy for the reduced training set and the mean accuracy of the
total training set. The null hypothesis is that the means are equal, while the
alternative hypothesis is that the means are not equal.

Sample size Confidence Interval p-value
Hlower Qupper

10 -0.05864 -0.03521 < 0.0001
20 -0.06692 -0.04114 < 0.0001
30 -0.06740 -0.04128 < 0.0001
40 -0.06021 -0.03672 < 0.0001
50 -0.04435 -0.02201 < 0.0001
60 -0.01999  -0.006652  0.0001015
70 -0.00865  -0.0003526  0.03354
80 0.002146 0.004032 < 0.0001
90 0.003767 0.005207 < 0.0001
100 0.003900 0.005448 < 0.0001
110 0.003744 0.005160 < 0.0001
120 0.002427 0.004052 < 0.0001
130 0.0006063  0.002362  0.0009720
140 -0.0009745  0.0006007 0.6410

150 -0.002887  -0.001302 < 0.0001
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beneficial for other datasets or other classifiers. This has to be investigated
further in the future.

10.2 Frey Faces

The Frey Faces dataset originates from Brendan Frey who recorded a video
of himself while changing his facial expression. The dataset consists of 1965
28px x 20px grayscale images that have been extracted from the video. These
images are reshaped into 560 dimensional vectors. This is an interesting
dataset for clustering because there is no guarantee that the data contains
clusters since it is just a video of his face.

Using JRC-EMBED-PCK, the data is embedded into a 3-dimensional
space and clustered using k-means with £ = 3. The embedding and clustering
result is shown in the scatterplot in Fig. 10.6a. There are two separable
clusters in the data. The structure of one of them seems to separate into
two branches. A reasonable explanation to this is that the images in the two
branches are somewhat similar to each other and have a common relative.
Here, relative means that his facial expression in the video changes from one
branch to the other via the relative. Thus, the images in the branches might
be different enough from each other to be separable, but because of their
relative, they are still connected in the structure of the data. Fig. 10.6b
shows the embedding of the data using KPCA-PCK. The data points in
the scatter plot are colored according to the clustering partition shown in
Fig. 10.6a. The cluster with branches when using JRC-EMBED-PCK does
not show a similar structure when using KPCA-PCK.

Fig. 10.7 shows 50 randomly drawn images from each of the three clusters.
In the blue cluster, he seems to be smiling. In the other two, he is not. The
red and green cluster seems to be different from each other in the sense
that in the red cluster, he looks straight ahead or to the left. In the green
cluster, he looks to the right. The facial expressions are also less apathic in
the green cluster than in the red. Ranking will now be incorporated in the
experiment by showing the highest ranked images within each cluster. The
ranking is performed using JRC-RANK-PCK. Both with a global uniform
seed distribution and with uniform seed distributions within each cluster.
This should in theory give us the images which are the most representative
for each cluster and the images from the other clusters which are the most
similar to the images in the cluster we rank with respect to.
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(b)

Figure 10.6: Embedding of the Frey Face dataset using: (a) JRC-EMBED-
PCK (b) KPCA-PCK. Data points have the same color in both embeddings.
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Figure 10.7: 50 randomly drawn images from: (a) The blue cluster (b) The
red cluster (c) The green cluster.
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10.2.1 Ranking the result

Fig. 10.8 shows rankings of the data using several different seed distributions.
For each ranking, the top 10 data points of each cluster are shown as columns.
The different rankings are displayed as rows in the figure. In the top row,
the ranking is calculated using a global uniform seed. The following rows are
ranked using a uniform seed distribution over the blue, red and green cluster
respectively.

From the global ranking (Fig. 10.8, top row), we can clearly see differences
between the three clusters. Within each cluster, all of the top ranked images
are very similar. In the blue cluster, he is smiling. In the red cluster, he is
frowning and looking straight ahead. In the green cluster, the frowning and
looking to the right. Notice that the frowning in the green cluster is more
prominant than in the red cluster. Since the red and green cluster is a part
of the same structure in the empirical kernel space, is expected that even
though the top ranked images are different, they contain similar images to
one another. This is seen in the relative rankings.

The images in the second row of Fig. 10.8 shows the top ranked images
with respect to the smiling cluster. In the top ranked image of the red cluster,
it looks like he is on the verge to smile. This is not seen in any of the other
top ranked images of this cluster. In the green cluster, there are several
images where he smiles. In these images, he is still looking to the right.

In the third row, the images are ranked according to the red cluster. This
does not seem to provide us with any more information within the other
clusters other than that the green cluster might not contain any images where
he does not look to the right.

As we see in the last row, when ranking with respect to the green cluster,
he looks to the right in all the top ranked images in all of the clusters. In
the blue cluster, he is still smiling, but has turned his head to the right. In
the red cluster, the images are very similar to the images we have previously
seen in the green cluster. This was expected, as these belong to the same
structure in the embedding.

10.2.2 Changing the kernel function

To show off the validity of using the Probabilistic Cluster Kernel as the
similarity measure for this dataset, the embedding has been performed using
an RBF for comparison. Since the Probabilistic Cluster Kernel does not
have any critical parameters, rules of thumb for the width parameter o has
to be used for comparable methodologies. Shi and Malik [16] suggests using
10-20% of the total range of pairwise distances. Jenssen [64] suggests using
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Figure 10.8: Top ranked images in each of the three clusters. (a, d, g, j):
Blue cluster. (b, e, h, k): Red cluster. (c, f, i, 1): Green cluster. First row:
Global uniform seed. Row 2, 3 and 4: Uniform seed over the Blue, Red and
Green cluster respectively.
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10-20% of the median or mean range of pairwise distances. The latter is
used in this experiment with o being 15% of the median range of pairwise
Euclidean distances. This yields o ~ 130.

Using a = 0.15 and o = 130, the data is embedded using JRC-EMBED-
RBF. The embedded data is shown in Fig. 10.9. Most of the data is embedded
close to the origin, while four data points are embedded along the axes.
During the experimentation with the embedding algorithm, the author has
experienced that data points with a low degree of connectivity (i.e. low
ranked points according to Ch. 7) might be severely penalized in terms of
the generalized effective resistance (i.e. distance in the embedding). These
could be interpreted as outliers. If the four data points with the lowest
degree of connectivity are removed, the situation shown in Fig. 10.10a is
obtained. This might allow the clustering procedure to work. The data points
are embedded onto two axes. Because of this angular difference between
two groups, the data is clustered using a variant of k-means using a cosine
distance. The clustering result is shown in Fig. 10.10b. 50 random data
points drawn from each of the two clusters are shown in Fig. 10.11. Both
clusters seems to contain both smiling and frowning faces. The blue cluster
shown in Fig. 10.11a does seem to have a larger proportion of smiling faces,
while the red cluster in Fig. 10.11b seems to have a larger proportion of
frowning faces. Even though we do get results using JRC-EMBED-RBF,
they are a bit more ambiguous than with JRC-EMBED-PCK.

We would like the reader to note that even though JRC-EMBED-PCK worked
out of the box, we had to make an effort to produce results using JRC-
EMBED-RBF. Both by removing low degree data points and by changing
the dissimilarity measure used in the k-means cost function. This is proba-
bly because the width parameter is sub-optimal. It is not straight forward
to find the optimal width parameter. Especially when no ground truth data
on groups is available. Thus, a kernel function with no critical parameters is
advantageous.
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Figure 10.9: Frey Face data embedded using JRC-EMBED-RBFwith o =
0.15.

!.“. : : . | l'"
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Figure 10.10: Frey Face data embedded using JRC-EMBED-RBFwith o =
0.15. The four lowest ranked data points according to Alg. 7 are removed.
(a): Embedded data. (b): Embedded data with cluster labels.
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Figure 10.11: 50 randomly drawn images from each of the two groups found
using an RBF as the similarity measure.
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10.3 NIPS Conference Dataset

The NIPS dataset? is generated using a bag-of-words model and includes
papers from the NIPS conference in the pre electronic era from 1987-1999.
In total, there are N = 1740 papers by 2037 authors. There are d = 13649
unique words in the vocabulary. In the bag-of-words model, the frequency
of each unique word in the paper is used as features. Each paper is regarded
as a data point in this experiment.

In this dataset, the number of data points is much lower than the num-
ber of features. Thus, the rank of the covariance matrices which are cal-
culated during the EM-iterations for the Probabilistic Cluster Kernel is less
than d. This implies that the covariance matrices are singular and thus,
non-invertible. Since we are required to invert these matrices in the EM-
iterations, it is not possible to calculate the Probabilistic Cluster Kernel for
the original dataset. However, by reducing the dimensionality of the data as
a preprocessing step this problem is avoided. In this thesis, Principal Compo-
nent Analysis and Kernel Principal Component Analysis has been presented
for this purpose. Neither will be used here. Instead, a generalization of
PCA called Singular Value Decomposition (SVD) will be used. This is fre-
quently used for Latent Semantic Indexing which is based on bag-of-words
models [105]. The theory behind the SVD will not be presented here, but
the interested reader may look at [58, Ch. 6.4].

Motivated by the scree plot in Fig. 10.12, d’ = 20 is chosen as the di-
mensionality of the dimensionality reduced dataset. The data is embedded
using JRC-EMBED-PCKand clustered with k-means using k& = 4. Here,
k = 4 is chosen with the hope of discovering four themes in the papers. It
is not expected that this dataset contains separable clusters. However, it
is expected that data points embedded within the same area are somewhat
similar. A 3-dimensional visualization of this is shown in Fig. 10.13. The
clusters contains 522, 621, 413 and 184 papers for the blue, red, green and
black cluster respectively.

To help the interpretation of the clustering result, the data is ranked
using JRC-RANK-PCKwith a uniform seed distribution over each of the
clusters. The idea is that the top ranked papers are the ones which are the
most representative for the clusters. The titles of the top 20 ranked papers
within each cluster are listed in Tab. 10.2. Each column contains papers in
one cluster. The rows contains the paper titles.

It is interesting to see that each cluster seems to have its own theme. In
the blue cluster, the papers are either related to Neural Networks or other

2http://cs.nyu.edu/~roweis/data.html
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Figure 10.12: Scree plot from the singular value decomposition of the NIPS
data.

network architectures. The top ranked papers are application specific. The
papers in the red cluster seems to be statistically motivated, and theoretical
results. In the green cluster, the papers seems to have a biological theme.
Many of the papers have words related to the brain or the eyes in the title.
Some of the papers even mentions specific animal species. On the front page
of the NIPS web page [106], it says:

The Neural Information Processing Systems (NIPS) Foundation
is a non-profit corporation whose purpose is to foster the ex-
change of research on neural information processing systems in
their biological, technological, mathematical, and theoretical as-
pects. Neural information processing is a field which benefits
from a combined view of biological, physical, mathematical, and
computational sciences.

With emphasis on biological in the quote, this is a natural theme for papers
at the NIPS conference. In the black cluster, nearly every paper within the
top 20 ranked papers have Reinforcement Learning or Q-Learning® in the
title. There are three papers (including the top ranked paper) that does not.
These papers have been investigated manually. All three of them are related
to Reinforcement Learning.

3Q-Learning is a variant of Reinforcement Learning.
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Figure 10.13: Embedding and cluster solution for the NIPS dataset.
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Top 20 ranked papers within each of the four clusters.

Table 10.2
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10.4 Queries

In this section, ranking using JRC-RANK-PCK is explored for image queries.
This is done to show that the Probabilistic Cluster Kernel is able to learn
similarities between data points which can be used with the personalized
PageRank for ranking purposes. The dataset consists of a subset of 400 x 2
randomly drawn 16pxx 16px images of handwritten fours and nines from the
USPS handwritten digits dataset?.

The data is embedded using JRC-EMBED-PCK and ranked using JRC-
RANK-PCKwith randomly drawn query images. The results are shown in
Fig. 10.14-Fig. 10.17. The left panels show the ranking results with JRC-
RANK-PCK. The right panels shows the ranking results using Euclidean
distances from the query images. The query images are shown in the top left
corner of the panels.

In Fig. 10.14, the query image is a closed four. Thus, it is similar to a
nine with straight edges. The Euclidean distance based ranking has 5 closed
fours within the top ranked images. However, it also presents 7 nines in the
list. Using JRC-RANK-PCK, the result is a bit different. Only two closed
fours are shown in the list. These are also ranked lower than when using
the Euclidean distance. However, the concept of a four seems to be better
preserved in this list.

The results are not as prominent for the other queries tested. In Fig. 10.15,
the query is a four with a curved left edge. This left edge resembles the left
edge of a nine. Still, JRC-RANK-PCKonly finds one nine in the list. This
nine is low ranked. The Euclidean distance based method finds 8 nines. For
the query in Fig. 10.16, both methods find only fours. For the query in
Fig. 10.17, both methods finds a lot of fours, even though the query is a
nine. However, this nine seems to have a very prominent slanting right edge.
Since the Probabilistic Cluster Kernel is learned from the data, this slanted
edge might be different enough from the norm of the concept of nines and
fours that the kernel considers images with a similar edge as a group.

4http://cs.nyu.edu/~roweis/data.html
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Figure 10.16: Query where both methods succeed.



127

Figure 10.17: Query where both methods fail.

10.5 Barro-Lee Educational Attainment
Dataset

The Barro-Lee Educational Attainment Dataset [107] consists of data on
education level in countries of the world for different age groups in the period
1950-2010. Within the dataset, it is possible to use a population of either
males, females or both. The features in the dataset are listed in Tab. 10.3.
In this experiment, the dataset is limited to males and females in the age
group of people over 25. The data is from 2010.

The data is embedded using JRC-EMBED-PCKand clustered using k-
means with & = 3. Although other k-values might be appropriate, k = 3 is
chosen to get a general overview of the educational attainment. The data
is ranked using JRC-RANK-PCKwith a global uniform seed distribution.
The embedded data with cluster labels is shown in Fig. 10.18. There is
no clear separable cluster structure in the data. Just by looking at this
plot, the clustering result is a bit hard to interpret. However, the data points
corresponds to countries. A world map containing the clustering and ranking
result is shown in Fig. 10.19. Each of the three groups (in general) consists of
countries in special regions of the world. The red cluster seems to dominate
Africa and spread to South Asia through the Middle East. From Mexico and
southwards through South America, the countries are mainly assigned to the
blue cluster. The green cluster consists of countries from Europe, Central-
and North Asia, North America and Oseania. Note that the data itself has
no information about the location of the countries. Still, the result of the
clustering is very region specific.

Fig. 10.21 shows a boxplot for the original features in each of the three
clusters. The labels on the first axis corresponds to the features as described
in Tab. 10.3. The blue and the green cluster has a stable low percentage of
people not attending school. The green cluster seems to have a higher level
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Table 10.3: Features of the Barro-Lee Educational Attainment Dataset. The
percentages are based on the highest attained schooling.

Feature  Description
lu Percentage of no schooling attained in population
Ip Percentage of primary schooling attained in population
Ipc Percentage of completed primary schooling attained in
population
Is Percentage of secondary schooling attained in population
Isc Percentage of completed primary schooling attained in
population
lh Percentage of tertiary schooling attained in population
lhc Percentage of completed tertiary schooling attained in
population
yr_sch Average years of schooling attained
yr_sch_pri Average years of primary schooling attained
yr_sch_sec Average years of secondary schooling attained
yr_sch_ter Average years of tertiary schooling attained

of educational attainment than the blue. However, there are some outliers
(the red plus signs). These countries are low ranked within the cluster. This
is not unexpected as the ranking procedure is based on similarities.

The red cluster has a wide range of percentages in this feature. From
3.9%-81.37% not having any schooling, but with no outliers in this feature.
The red cluster also has the widest range of percentages where starting pri-
mary school (but not completing it) is the highest level of education achieved.
As the level of education increases, the percentage of people achieving this
level decreases. Thus, these countries are expected to be poorly educated.
Note that some countries which is famous for brilliantly educated people (like
India), is within this cluster. Although there are many people which are well
educated and well known in the academic world, the country has millions of
inhabitants which lives in poverty. Thus, the overall educational attainment
is low.

The rank of the countries should not be interpreted as the ones with
the "best” education. As this is a relational ranking algorithm, the result
depends on the relationship between the data points. In this case, it is based
on similarities of educational attainment. The top ranked countries will then
be countries which are similar to a lot of countries. These are the big red
dots in Africa. This might be because the low level of education in these
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countries is common around the world. This shows off the point of joint
ranking and clustering. Does it make sense for a relational ranking to rank
across very different groups? It would probably make more sense to rank
within a group of similar data points. Tab. 10.4-Tab. 10.6 shows the top 15
ranked countries within each of the three clusters.

It should be noted that the dataset has been clustered using k-means on
the input data. This is shown in Fig. 10.20. Although the result is not very
different from the one obtained using JRC-EMBED-PCK, there are some
subtle differences. For instance, Finland, New Zealand and Iceland are as-
signed to a different cluster than Norway. The question of this being a correct
decision by the algorithm is not easy to answer. However, subtle differences
like this might be important when choosing which clustering algorithm to
use in a specific application.

Figure 10.18: Embedded data with cluster labels.
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Figure 10.19: World map. The data points represents countries. They are
colored according to the clustering labels. The size of the points are set using
ranking information. Larger points are ranked higher.

Table 10.4: Top 10 ranked countries in the blue cluster.

Country Region

Jordan Middle East and North Africa
Chile Latin America and the Caribbean
Sri Lanka South Asia

Malaysia East Asia and the Pacific

Guyana Latin America and the Caribbean
China East Asia and the Pacific

Malta Middle East and North Africa
Albania Europe and Central Asia

Cuba Latin America and the Caribbean

South Africa

Sub-Saharan Africa
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Figure 10.20: Clustering of the countries using k-means on the input data.
We see there are subtle differences, like Finland, New Zealand and Iceland.

Table 10.5: Top 10 ranked countries in the red cluster.

Country

Region

Central African Republic
Mali

Mozambique

Niger

Mauritania

Yemen

Senegal

Sudan

Burundi

Sierra Leone

Sub-Saharan Africa
Sub-Saharan Africa
Sub-Saharan Africa
Sub-Saharan Africa
Sub-Saharan Africa
Middle East and North Africa
Sub-Saharan Africa
Sub-Saharan Africa
Sub-Saharan Africa
Sub-Saharan Africa
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Table 10.6: Top 10 ranked countries in the green cluster.

Country Region

Denmark Advanced Economies
Switzerland Advanced Economies
Lithuania Europe and Central Asia
Sweden Advanced Economies
United Kingdom Advanced Economies
Netherlands Advanced Economies
Estonia Europe and Central Asia
Japan Advanced Economies
Bulgaria Europe and Central Asia
Germany Advanced Economies

10.5.1 Ranking with respect to Norway

Using JRC-RANK-PCK, it is possible to rank with respect to one specific
data point. In this section, the countries are ranked using JRC-RANK-
PCKwith Norway as the seed. One would expect the top ranked countries
to be similar to Norway in educational attainment. The top ranked coun-
tries are shown in Tab. 10.7. The top 6 results are not unexpected results.
Getting Lithuania, Bulgaria and Estonia within the top ranked countries
with respect to Norway was unexpected for the author. An OECD report
from 2012° claims that the attainment levels in Estonia is among the highest
among OECD countries. Also, a report from the European Centre for the
Development of Vocational Training from 2012° states that Lithuania has
one of the highest educational attainments in Europe. Although similar re-
ports on Bulgaria has not been found, this indicates that the ranking does
make sense.

Shttp:/ /www.oecd.org/estonia/estonia50.pdf
Shttp://libserver.cedefop.europa.eu/vetelib/2012/2012_CR_LT.pdf
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Table 10.7: Top 10 ranked countries with respect to Norway.

Country Region

Denmark Advanced Economies
Netherlands Advanced Economies
Sweden Advanced Economies
United Kingdom Advanced Economies
Switzerland Advanced Economies
Japan Advanced Economies
Lithuania Europe and Central Asia
Bulgaria Europe and Central Asia
Estonia Europe and Central Asia

Germany

Advanced Economies
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Chapter 11

Conclusion

In this thesis, we have proposed a framework for joint ranking and cluster-
ing on multi attribute data based on Markov chain theory with transition
probabilities learned from the data via the PCK. In the experiments, all pa-
rameters were held fized. This suggests that the methods developed does not
depend on critical parameters. This is an important point where many other
methods fail.

Theoretical results in this thesis include a new connection between the
PCK and the consensus clustering methodology. We have also shown that
the stationary distribution of a Markov chain with a transition probability
matrix on the form P = D™'K calculates a projection in the empirical kernel
space. This has been connected to Mercer kernel theory and nonparametric
density estimates.

The experiments in this thesis have mostly been focused on datasets where
there is no ground truth data. We have shown that the proposed embedding
is able to conserve group structures in the data when combined with the
PCK. It has also been suggested that ranking data using the clustered data
in this framework enables us to gain a better understanding of the clustering
result. Although some ranking results were unexpected, the results were
verified by investigating the data further.

Lastly, we have used the embedding in a specific application, namely
cloud screening. Here, the PCK found structures in the data which methods
in previously published papers did not find. This is one of the benefits of
having a function which is learned from the data. Other functions where
we have to use the same parameters for the whole input space might miss
these structures. In the cloud screening application, the ranking information
was used to increase the prediction accuracy. Although it is unknown if
this applies to other datasets or other classifiers, using the top ranked data
points of the randomly sampled initial training set as a new training set for
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the classifier gained significantly better results.

11.1 Further work

There are numerous questions with regards to the methods proposed in this
thesis. For instance, are there other applications than ranking and clustering
for the embedding? In Sec. 10.2.2, it was barely mentioned that low degree
data points may be penalized in in terms of distance in the embedding.
Experiments have shown that a way of ”forcing” this effect is to increase the
restart probability a. This seems to have the effect of increasing the distance
from the low degree data points to the rest of the data points. Although the
embedding has not been tested for this purpose, we suspect this can be used
for outlier detection.

The iterative form of the personalized PageRank has been used previ-
ously for semi supervised learning [39]. In many semi supervised learning
algorithms, the data is embedded using a nonlinear embedding, a linear clas-
sifier is trained on the few labels available and the unknown data points are
then classified using this classifier [108, 109]. As the embedding proposed in
this thesis seems to be able to capture group structures, this approach might
be an option for semi supervised learning.

In this thesis, the a parameter was set to a = 0.15 by the compelling
argument that ”Google recommends it”. The experiments indicate that this
is a good choice. However, we have no solid evidence that this is optimal.
Thus, a possible research area could be to investigate if there is such a thing
as an optimal «.

In the cloud screening experiment, we carefully suggested that the rank-
ing information could be used to improve the classification result by only
including the top ranked data points in the training set. Is this an appro-
priate approach in other datasets or with other classifiers than the simple
1-NN classifier? Currently, this is an unanswered question which has to be
investigated further.

Lastly, there is always the big question of choosing the number of clusters
in the clustering algorithm. Many approaches have been proposed in the
literature. One interesting approach based on iterative Consensus Clustering
and Markov chain theory exploits the eigenvalues of a transition probability
matrix [110]. This seems to fit well within this framework. Thus, it would
be interesting to investigate if this method could be applied.



Appendix A

One-step random walks and the
Personalized PageRank

In this chapter, it will be shown that the matrix used to calculate the person-
alized PageRank, Pg = fDGg, is a left stochastic matrix. The personalized
PageRank is calculated by a one-step random walk using this matrix. The
stationary distribution of the associated Markov Chain is the same as the
stationary distribution of the Markov Chain associated with P = D71K.

Recall that the $-adjusted Laplacian is defined as Lg = D + L, where
L = D — K is the Laplacian, D = diag(d;) is the degree matrix with the
degree defined as d; = Zjvzl k;ij. The B-normalized Laplacian is defined

as Lg = I + L, where £ = D :LD: is the symmetrically normalized
Laplacian. The Green’s function Gg of Lg satisfies GgLg = LgGs = 1. If
G is the Green’s function of L4 then

GsLs =1
Gs(PI+L)=1
GsD:(fD+L)D 2 =1
D 2GsD 2Ly =1

(A.1)

The Green’s function (or inverse) is unique. Thus, Gg = D :G 5D’% is the
Green’s function for Lg.

Let m = WDH be the stationary distribution of the Markov Chain
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associated with the transition probability matrix P = D7'K. Then

P/gﬂ' = 5DG57T
—DGzD1
<G> ’
_ B laD-}
= Yol —— DD :G;D :D1
b pig,mt
Vol(G) D2G(D?1)

It is known that D21 is an eigenvector of £ associated with the eigenvalue
0. Since Lz = BI + L has the same eigenvectors as £, but with 3 shifted

eigenvalues, D:1 is an eigenvector of Lz with the associated eigenvalue (.

Thus, D:1 is an eigenvector of Gz with the associated eigenvalue % This
yields

M\b—\

1
2

1
Vol(G) B

PgTF =

= Tr.

This result implies that 7 is a right eigenvector of Pg with the associated
eigenvalue 1. Furthermore,

1P = 17 DGy
—173DD :GsD >
—178D2GsD "2
= 8(D?1)7GsD 2.
By the same arguments as earlier,
(D:1)7G, = Z(D1)",
since G is symmetric. This yields
1"P; = 1"8DGj
]. 1 1
= p5(D1)" D

=17,
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Thus, 17 is a left eigenvector of Pg with the associated eigenvalue 1. These
two results are suspiciously similar to properties of a left stochastic matrix.
To show that Pg is indeed a left stochastic matrix, we need to show that Gg
has non-negative elements. The [-adjusted Laplacian Lg is a non-singular
M-matrix [111, Def. 1.1]. By [111, Thm. 2.2] its inverse (i.e. Gg) has non-
negative elements. Thus Pg = fDGj has non-negative elements and each
column sums to 1. So Py is a left stochastic matrix. It is easily verified that
this Markov Chain is time reversible with 7 as its reversibility distribution.
Thus, the associated Markov Chain has the same stationary distribution as
a random walk on the Markov Chain associated with P = D™'K. Further-
more, we recognize from Eq. (8.5) that the personalized PageRank can be
interpreted as a one-step random walk on the Markov Chain associated with
Ps with the initial distribution s.
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