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A stochastic model for intermittent fluctuations due to a super-position of uncorrelated

Lorentzian pulses is presented. For constant pulse duration, this is shown to result in an

exponential power spectral density for the stationary process. A random distribution of

pulse durations modifies the frequency spectrum and several examples are shown to result

in power law spectra. The distribution of pulse durations does not influence the char-

acteristic function and thus neither the moments nor the probability density function for

the random variable. It is demonstrated that the fluctuations are intrinsically intermittent

through a large excess kurtosis moment in the limit of weak pulse overlap. These results

allow to estimate the basic properties of fluctuations from measurement data and describe

the diversity of frequency spectra reported from measurements in magnetized plasmas.
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Numerous experimental investigations on fluctuations in magnetized plasmas have demon-

strated the general appearance of exponential frequency power spectra and in several cases con-

vincingly attributed this to the presence of Lorentzian pulses in the underlying time series. This

includes basic laboratory plasmas,1–4 magnetically confined plasmas4–7 and chaotic and turbu-

lent thermal convection.8–10 It has been anticipated that Lorentzian pulses and exponential spectra

are universal features of pressure-gradient driven turbulence in magnetized plasmas, leading to

fluctuation-induced transport.1–5 On the other hand, the frequency spectra of plasma fluctuations

are commonly fitted by power laws over limited frequency ranges, obviously motivated by pre-

vailing theories of turbulent motions and self-similar stochastic processes.11–13

In this contribution, an exponential power spectral density is shown to follow from a super-

position of uncorrelated Lorentzian pulses with constant duration. A random distribution of pulse

durations significantly influences the frequency spectrum. Several examples of pulse duration dis-

tributions resulting in power law spectra are presented, including uniform, Gamma and Rayleigh

distributions. The fluctuations are demonstrated to be inherently intermittent, manifested by a large

excess kurtosis moment in the limit of weak pulse overlap. Another major conclusion of this work

is that the characteristic function and thus the moments and the probability density function for the

random variable do not depend on the distribution of pulse duration times. Conversely, the shape

of the power spectral density does not depend on the degree of pulse overlap or intermittency.

Consider a stochastic process given by the super-position of a random sequence of K pulses in

a time interval of duration T ,14–21

ΦK(t) =
K(T )

∑
k=1

Akϕ
(

t − tk
τk

)
, (1)

where each pulse labeled k is characterized by an amplitude Ak, arrival time tk, and duration τk,

all assumed to be uncorrelated. The pulse arrival times tk are assumed to be independent and

uniformly distributed on the time interval under consideration, that is, their probability density

function is given by 1/T . The pulse duration times τk are assumed to be randomly distributed with

probability density Pτ(τ), and the average pulse duration time is defined by

τd = ⟨τ⟩=
∫ ∞

0
dτ τPτ(τ), (2)

where here and in the following, angular brackets denote the average of the argument over all

random variables.
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The pulse shape ϕ(θ) is taken to be the same for all events in Eq. (1). This function is normal-

ized such that ∫ ∞

−∞
dθ |ϕ(θ)|= 1. (3)

The integral of an integer power n of the pulse shape will appear frequently in the following, and

is defined as

In =
∫ ∞

−∞
dθ [ϕ(θ)]n . (4)

It is assumed that T is large compared with the range of values of t for which ϕ(t/τ) is appreciably

different from zero, thus allowing to neglect end effects in a given realization of the process.

Furthermore, the normalized auto-correlation function for the pulse shape is defined by

ρϕ(θ) =
1
I2

∫ ∞

−∞
dχ ϕ(χ)ϕ(χ +θ), (5)

and the Fourier transform of this function is defined by

ϱϕ (ϑ) =
∫ ∞

−∞
dθ ρϕ(θ)exp(−iϑθ). (6)

In this contribution, the statistical properties of the time series given by Eq. (1) will be investigated.

In particular, the influence of various duration time distributions in the case of Lorentzian pulses

will be explored.

The mean value of ΦK(t) is given by averaging over all random variables. Starting with the

case of exactly K events in a time interval with duration T , this gives

⟨ΦK⟩=
∫ ∞

−∞
dA1 PA(A1)

∫ ∞

0
dτ1Pτ(τ1)

∫ T

0

dt1
T

· · ·
∫ ∞

−∞
dAK PA(AK)

∫ ∞

0
dτK Pτ(τK)

∫ T

0

dtK
T

K

∑
k=1

Akϕ
(

t − tk
τk

)
, (7)

using that the pulse arrival times are uniformly distributed. Neglecting end effects by taking the

integration limits for the arrival times tk in Eq. (7) to infinity, the mean value of the signal follows

directly,

⟨ΦK⟩= τdI1⟨A⟩
K
T
. (8)

Taking into account that the number of pulses K is also a random variable and averaging over this

as well gives the mean value for the stationary process,

⟨Φ⟩= τd

τw
I1⟨A⟩, (9)
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where τw = T/⟨K⟩ is the average pulse waiting time. For a non-negative pulse function, I1 = 1,

the mean value of the process is given by the average pulse amplitude and the ratio of the average

pulse duration and waiting times. Note that the mean value vanishes both for anti-symmetric pulse

shapes, I1 = 0, and for pulse amplitude distributions with vanishing mean, ⟨A⟩= 0. For reasons to

become clear presently, the ratio of the average pulse duration and waiting times, γ = τd/τw, will

in the following be refered to as the intermittency parameter of the model.17–20

The characteristic function for a sum of independent random variables is the product of their

individual characteristic functions. Thus, the conditional probability density PΦ(Φ|K) that a sum

of K pulse events φk lies in the range between Φ and Φ+dΦ is given by15–18

PΦ(Φ|K) =
1

2π

∫ ∞

−∞
du exp(−iΦu)

K

∏
k=1

⟨exp(iφku)⟩, (10)

where the characteristic functions ⟨exp(iφku)⟩ are averaged over the values of φk = Akϕ((t −

tk)/τk). For general amplitude and pulse duration distributions,

⟨exp(iφku)⟩=
∫ ∞

−∞
dAk PA(Ak)

∫ ∞

0
dτk Pτ(τk)

∫ T

0

dtk
T

exp
[

iuAkϕ
(

t − tk
τk

)]
, (11)

where T is the duration of the time interval under consideration. Since all the K characteristic

functions in Eq. (10) are the same, the conditional probability density is

PΦ(Φ|K) =
1

2π

∫ ∞

−∞
du exp(−iΦu)⟨exp(iφku)⟩K, (12)

assuming the number of pulses K in a time interval T to be given. The probability density function

for the random variable Φ is given by

PΦ(Φ) =
∞

∑
K=0

PΦ(Φ|K)PK(K|T ) = 1
2π

∫ ∞

−∞
du exp

(
−iΦu+

T
τw

⟨exp(iφku)⟩− T
τw

)
, (13)

where the conditional probability PK(K|T ) that there are exactly K pulse arrivals during any inter-

val of duration T is assumed to be given by the Poisson distribution,

PK(K|T ) = 1
K!

(
T
τw

)K
exp

(
− T

τw

)
. (14)

The stationary probability density function for Φ is obtained by extending the integration limits

for tk to infinity in Eq. (11). This leads to the desired result,

PΦ(Φ) =
1

2π

∫ ∞

−∞
du exp

(
−iΦu+ γ

∫ ∞

−∞
dAPA(A)

∫ ∞

−∞
dθ [exp(iuAϕ(θ))−1]

)
, (15)
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which notably is independent of the distribution function for the pulse duration times. According

to this equation, the logarithm of the characteristic function for PΦ is

γ
∫ ∞

−∞
dAPA(A)

∫ ∞

−∞
dθ [exp(iuAϕ(θ))−1] =

∞

∑
n=1

γIn⟨An⟩ (iu)
n

n!
, (16)

where the exponential function on the left hand side has been expanded in a power series. The

cumulants κn = γIn⟨An⟩ are the coefficients in the expansion of the logarithm of the characteristic

function for PΦ. From the cumulants, the lowest order moments are readily obtained. A formal

power series expansion shows that the characteristic function is related to the raw moments of Φ,

defined by µ ′
n = ⟨Φn⟩,

⟨exp(iΦu)⟩= 1+
∞

∑
n=1

⟨iΦu⟩n

n!
= 1+

∞

∑
n=1

µ ′
n
(iu)n

n!
. (17)

It follows that the lowest order centred moments µn = ⟨(Φ−⟨Φ⟩)n⟩ are related to the cumulants

by the relations µ2 = κ2, µ3 = κ3 and µ4 = κ4 +3κ2
2 . Thus, the variance of the random variable is

given by

Φ2
rms =

τd

τw
I2⟨A2⟩, (18)

where Φrms denotes the standard deviation or root mean square (rms) value of the random variable.

Thus, the absolute fluctuation level is large when there is significant overlap of pulses, that is, for

long pulse durations and short pulse waiting times. Moreover, the skewness and flatness moments

are readily obtained,17,18

SΦ =

〈
(Φ−⟨Φ⟩)3〉

Φ3
rms

=
1

γ1/2
I3

I3/2
2

⟨A3⟩
⟨A2⟩3/2 , (19a)

FΦ =

〈
(Φ−⟨Φ⟩)4〉

Φ4
rms

= 3+
1
γ

I4

I2
2

⟨A4⟩
⟨A2⟩2 . (19b)

Both these moments increase with decreasing γ , clearly demonstrating the intrinsic intermittent

features of a signal composed of a super-position of pulses. An example of this is clearly seen

in Fig. 1, where time series due to a super-position of Lorentzian pulses with various degree of

overlap are presented. Note that for a symmetric amplitude distribution or an anti-symmetric pulse

shape, the skewness moment clearly vanishes together with the mean value of the random vari-

able. For large γ the skewness and excess flatness moments both vanish, consistent with a normal

distribution of the fluctuations which arise in this limit.15–18 For these reasons, γ is referred to as

the intermittency parameter of the model. It is emphasized that the distribution of pulse durations
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FIG. 1. Realizations of the stochastic process for Lorentzian pulses with constant duration and exponentially

distributed pulse amplitudes. The degree of pulse overlap is determined by the intermittency parameter

γ = τd/τw.

does not influence the characteristic function and thus neither the moments nor the probability

density function for the random variable.

A general expression for the power spectral density can be derived for this process. Considering

first the signal ΦK(t) defined by Eq. (1), the auto-correlation function for a given time lag r is given

by a double sum comprising K(K −1) terms when k ̸= ℓ and K terms when k = ℓ,

⟨ΦK(t)ΦK(t + r)⟩= ⟨A⟩2
K

∑
k,ℓ=1
k ̸=ℓ

∫ ∞

0
dτk Pτ(τk)

∫ T

0

dtk
T

ϕ
(

t − tk
τk

)∫ ∞

0
dτℓPτ(τℓ)

∫ T

0

dtℓ
T

ϕ
(

t − tℓ+ r
τℓ

)

+ ⟨A2⟩
K

∑
k=1

∫ ∞

0
dτk Pτ(τk)

∫ T

0

dtk
T

ϕ
(

t − tk
τk

)
ϕ
(

t − tk + r
τk

)
. (20)

Again neglecting end effects by taking the integration limits for tk and tℓ to infinity and averag-

ing over the number of pulses occurring in an interval with duration T , it follows that the auto-

correlation function for the stationary process is given by

RΦ(r) = ⟨Φ(t)Φ(t + r)⟩= ⟨Φ⟩2 +Φ2
rms

1
τd

∫ ∞

0
dτ τPτ(τ)ρϕ(r/τ). (21)

From this the power spectral density follows directly by a transformation to the frequency domain,

ΩΦ(ω) =
∫ ∞

−∞
dr RΦ(r)exp(−iωr) = 2π⟨Φ⟩2δ (ω)+Φ2

rms
1
τd

∫ ∞

0
dτ τ2Pτ(τ) ϱϕ (ωτ), (22)
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where ω is the angular frequency and δ is the delta function. The expression for the fre-

quency spectrum is simplified by considering the centered and scaled random variable Φ̃ =

(Φ−⟨Φ⟩)/Φrms,

ΩΦ̃(ω) =
1
τd

∫ ∞

0
dτ τ2Pτ(τ) ϱϕ (ωτ). (23)

It should be noted that this power spectral density is independent of the amplitude distribution

PA and does not depend on the intermittency parameter γ , that is, the degree of pulse overlap.

Moreover, the above expression is not restricted to a Poisson distribution for the number of pulses

K(T ). The only assumptions made are that the pulse arrival times have a uniform distribution and

that the two lowest order moments of the process are finite.

In the special case of constant pulse duration, Pτ(τ) = δ (τ − τd), the expressions for the auto-

correlation function and power spectral density become

RΦ(r) = ⟨Φ⟩2 +Φ2
rms ρϕ(r/τd), (24a)

ΩΦ(ω) = 2π⟨Φ⟩2δ (ω)+Φ2
rmsτd ϱϕ (ωτd), (24b)

that is, they are simply determined by the auto-correlation function for the fixed pulse shape ϕ(θ).

In the following, the frequency spectrum will be calculated for a Lorentzian pulse shape and

various distributions of the pulse duration times. The Lorentzian pulse shape is defined by

ϕ(θ) = 1
π

1
1+θ 2 . (25)

The integral of the n-th power of the pulse function is in this case given by

In =
1

πn−1/2
Γ(n−1/2)

Γ(n)
, (26)

where Γ is the Gamma function. From this it follows that the mean value of the stationary process

is given by ⟨Φ⟩ = γ⟨A⟩, the variance is Φ2
rms = γ⟨A2⟩/2π , and the normalized auto-correlation

function and its transform are

ρϕ(θ) =
4

4+θ 2 , (27a)

ϱϕ (ϑ) = 2π exp(−2|ϑ |). (27b)

In the special case of constant pulse duration it follows that the auto-correlation function is itself

a Lorentzian and therefore has algebraic tails,

RΦ(r) = ⟨Φ⟩2 +Φ2
rms

4
4+(r/τd)2 , (28)
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while the power spectral density has an exponential dependence on the frequency,

ΩΦ(ω) = 2π⟨Φ⟩2δ (ω)+Φ2
rms2πτd exp(−2τd|ω|) . (29)

The first term in the above equation results from the mean value of the signal, giving a zero

frequency contribution. The second term is the anticipated exponential spectrum for a super-

position of uncorrelated Lorentzian pulses.1–5

Any deviation from a constant pulse duration will modify the exponential power spectral den-

sity for the random variable. Consider as a first example a uniform distribution of pulse durations,

τdPτ(τ;s) = 1/2s for duration times the range 1− s < τ/τd < 1+ s and s ranging from zero to

unity. In this case the frequency spectrum is given by

ΩΦ̃(ω ;s)
2πτd

=
1

8sτ3
d |ω |3

{
[1+2τ2

d ω2(1− s)2 +2(1− s)τd|ω|]exp[−2(1− s)τd|ω|] (30)

− [1+2τ2
d ω2(1+ s)2 +2(1+ s)τd|ω |]exp[−2(1+ s)τd|ω|]

}
.

The power spectral density is presented in a semi-logarithmic plot in Fig. 2 for various values of

the width s, clearly showing how the spectrum becomes curved for a broad distribution of pulse

duration times.1–5 In the limit s → 0, the pulse duration distribution approaches a delta function,

the pulse durations are constant and the exponential spectrum in Eq. (29) is recovered. For the

broadest possible distribution of duration times, s = 1, the above expression simplifies to

ΩΦ̃(ω ;1)
2πτd

=
1− (1+4τd|ω|+8τ2

d ω2)exp(−4τd|ω |)
8τ3

d |ω|3
. (31)

This spectrum has the asymptotic limits

lim
τd|ω |→0

3
4

ΩΦ̃(ω ;1)
2πτd

= 1, (32a)

lim
τd|ω |→∞

8τ3
d |ω|3

ΩΦ̃(ω;1)
2πτd

= 1, (32b)

that is, a flat spectrum for low frequencies and a power law spectrum for high frequencies.

A general probability density function for the duration times is given by the Gamma distribu-

tion,

τdPτ(τ;s) =
ss

Γ(s)

(
τ
τd

)s−1
exp

(
−sτ

τd

)
, (33)

with scale parameter τd and shape parameter s. The power spectral density is in this case given by

ΩΦ̃(ω;s)
2πτd

=
(1+ s)s1+s

(s+2τd|ω |)2+s . (34)

8



10-3

10-2

10-1

1

 0  1  2  3  4  5

Ω
Φ~ (
ω

;s)
/2
πτ

d

τdω

s = 0
s = 1/4
s = 1/2
s = 1

10-3

10-2

10-1

1

 0  1  2  3  4  5

FIG. 2. Power spectral density for a super-position of Lorentzian pulses with a uniform distribution of

duration times with normalized width s. The case s = 0 corresponds to constant pulse duration times, which

results in an exponential spectrum.

This function is presented in a double-logarithmic plot in Fig. 2 for various values of the shape

parameter s. It is of interest to note that for low frequencies, the power spectral density scales

with the shape parameter as (1+ s)/s. Thus, the spectrum becomes increasingly peaked at low

frequencies with smaller values of s, as is clearly seen in Fig. 3. In the limit s → ∞, the Gamma

distribution resembles a narrow normal distribution, corresponding to constant pulse duration. As

expected, an exponential power spectral density then results. For s = 1, the pulse duration times

are exponentially distributed, τdPτ(τ;1) = exp(−τ/τd), and the frequency spectrum is given by

ΩΦ̃(ω;1)
2πτd

=
2

(1+2τd|ω|)3 , (35)

which qualitatively has the same asymptotic limits as spectrum for the broadest possible uniformly

distributed pulse duration times discussed above. Finally, in the limit s → 0, yet another power

law spectrum results,

lim
s→0

4τ2
d ω2

s
ΩΦ(ω ;s)

2πτd
= 1. (36)

The examples presented here clearly demonstrate how sensitive the power spectral density is to

the distribution of pulse durations. For sufficiently broad duration time distributions, power law

spectra are ubiquitous.

As a final example, consider a Rayleigh distribution of pulse duration times, τdPτ(τ) =

9
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FIG. 3. Power spectral density for a super-position of Lorentzian pulses with a Gamma distribution of

duration times for various shape parameters s. The limit s → ∞ corresponds to constant pulse duration

times, which results in an exponential spectrum.

(πτ/2τd)exp(−πτ2/2τ2
d ). The power spectral density is then given by

ΩΦ̃(ω)

2πτd
=

4
π2

[
π +4τ2

d ω2 − (3π +8τ2
d ω2)τd|ω|exp

(
4τ2

d ω2

π

)
erfc

(
2τd|ω |
π1/2

)]
. (37)

This also gives a flat spectrum for low frequencies and a power law spectrum for high frequencies,

lim
τd|ω |→0

π
4

ΩΦ̃(ω)

2πτd
= 1, (38a)

lim
τd|ω|→∞

16τ4
d ω4

3π
ΩΦ̃(ω)

2πτd
= 1. (38b)

In Fig. 4 the power spectral density for the case with constant pulse duration is compared with the

cases of exponential, uniform and Rayleigh distributions of pulse durations. All the asymptotic

power law limits discussed above are clearly observed.

A reference model for intermittent fluctuations in physical systems has here been extended to

include a random distribution of pulse duration times. This is demonstrated to modify the auto-

correlation function and power spectral density. In the particularly interesting case of Lorentzian

pulse shapes, the power spectrum changes from an exponential function in the case of constant

duration times to a power law spectrum for a broad distribution of pulse duration times. By con-

trast, the characteristic function, and therefore the moments and probability density function, do

not depend on the distribution of pulse durations. A robust property of the resulting fluctuations
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FIG. 4. Power spectral density for a super-position of Lorentzian pulses with exponential, uniform, Rayleigh

and degenerate distribution of pulse duration times.

is thus significant skewness and/or excess flatness, in particular in the case of weak overlap of

pulse structures. This sheds new light on the statistical properties of fluctuations in physical sys-

tems described by such models and allows to estimate the underlying model parameters by using

the auto-correlation function or power spectral density and the lowest order moments. Finally,

these results motivate further investigations of low-dimensional chaos, complexity and the role of

variable pulse durations in order to clarify the universality of Lorentzian pulses and exponential

frequency spectra.7
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