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Lorentzian pulses is presented. For constant pulse i 1s is shown to result in an
exponential power spectral density for the statlﬁar’i cess. A random distribution of
pulse durations modifies the frequency spectriim an Sral examples are shown to result
in power law spectra. The distribution e durations does not influence the char-
acteristic function and thus neither th% L1'1-61" the probability density function for

ha fluctuations are intrinsically intermittent

the random variable. It is demonstrate

Me limit of weak pulse overlap. These results

through a large excess kurtosis,mo
allow to estimate the basic prop E of fluctuations from measurement data and describe

the diversity of frequency sp W rted from measurements in magnetized plasmas.
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PublishinglNumerous experimental investigations on fluctuations in magnetized plasmas have demon-
strated the general appearance of exponential frequency power spectra and in several cases con-

vincingly attributed this to the presence of Lorentzian pulses in the underlying time series. This

1-4 4-7

includes basic laboratory plasmas, — magnetically confined plasmas™ ' and chaotic and turbu-

lent thermal convection.?~10 It has been anticipated that Lorentzian pulsés and exponential spectra

are universal features of pressure-gradient driven turbulence in m tizedwplasmas, leading to

fluctuation-induced transport.'=> On the other hand, the frequen ctra of plasma fluctuations

are commonly fitted by power laws over limited frequency es, ebviously motivated by pre-

focesses.!1-13

vailing theories of turbulent motions and self-similar stochast
—

In this contribution, an exponential power spectral density #§ shown to follow from a super-

position of uncorrelated Lorentzian pulses with congtant duratien. A random distribution of pulse
durations significantly influences the frequency spectru rum, S S)V(iral examples of pulse duration dis-
tributions resulting in power law spectra are pr , ncludlng uniform, Gamma and Rayleigh
distributions. The fluctuations are demons ate%\be herently intermittent, manifested by a large
excess kurtosis moment in the limit of yeak pulge overlap. Another major conclusion of this work
is that the characteristic function and thu moements and the probability density function for the
random variable do not depend on thﬁ's&i ution of pulse duration times. Conversely, the shape
of the power spectral density does\opend on the degree of pulse overlap or intermittency.

Consider a stochastic ro@&\glven by the super-position of a random sequence of K pulses in
a time interval of duration T2}

r—1
= A _ 1
k(1) k_Zl krp( Tk), (1)

where ea plyse beled k is characterized by an amplitude Ay, arrival time #;, and duration T,
all assumed beduncorrelated. The pulse arrival times #; are assumed to be independent and
uniformly dis%ributed on the time interval under consideration, that is, their probability density
fi nction}s given by 1/T. The pulse duration times T; are assumed to be randomly distributed with

ify density P;(7), and the average pulse duration time is defined by

T4 = (1) = /OmdfrPf(r), 2)

where here and in the following, angular brackets denote the average of the argument over all

random variables.
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PublishingThe pulse shape ¢(6) is taken to be the same for all events in Eq. (1). This function is normal-
ized such that

LGt 3)

The integral of an integer power n of the pulse shape will appear freql?tly in the following, and

is defined as

I, = /_ng [p(0)]". j\ 4)

It is assumed that 7" is large compared with the range of values of hieh ¢(z/7) is appreciably
different from zero, thus allowing to neglect end effects 1 ahzatlon of the process.

Furthermore, the normalized auto-correlation function f tm pu shape is defined by

p (P ( X)P + 7 (5)
and the Fourier transform of this function is dd@)
9) exp(—iv0). (6)

— 00

In particular, the influence of variou

will be explored. \

The mean value of ®

In this contribution, the statistical p<pe h)f"the time series given by Eq. (1) will be investigated.

t10n time distributions in the case of Lorentzian pulses

t iven by averaging over all random variables. Starting with the

case of exactly K eve 'me interval with duration 7, this gives

T dr
(Pk) / df( Ar) TIPT (1) A -1

T

\ / dAg Pa( AK/ dg Pr( TK/ Z kP (_tk), (7)

using that-the 15/ arrival times are uniformly distributed. Neglecting end effects by taking the

integration lllhltS for the arrival times #; in Eq. (7) to infinity, the mean value of the signal follows
directly, 5
K
Y (Px) = 7l (4) . ®)
~

Taking into account that the number of pulses K is also a random variable and averaging over this

as well gives the mean value for the stationary process,

(@) =14, ©

3
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Publishi‘n'g< re T, = T /(K) is the average pulse waiting time. For a non-negative pulse function, I} = 1,
the mean value of the process is given by the average pulse amplitude and the ratio of the average
pulse duration and waiting times. Note that the mean value vanishes both for anti-symmetric pulse
shapes, I} = 0, and for pulse amplitude distributions with vanishing mean, (A) = 0. For reasons to
become clear presently, the ratio of the average pulse duration and Wai{élg times, ¥ = 74/ Tw, will
in the following be refered to as the intermittency parameter of the el. "<

The characteristic function for a sum of independent random%:\bes is the product of their
ilit

)

1V'(’51'r--by15‘18

individual characteristic functions. Thus, the conditional pro ensity Pp(P|K) that a sum

of K pulse events ¢y, lies in the range between ® and ® + dd
—

K

1 [os)
Py (@|K) = 5 / duexp( ebp(i(pku)), (10)

(ziRu)
(&
where the characteristic functions (exp(iq)ku)Qrz\:\ir&ged over the values of ¢p = A o((r —
i

tx)/ 7). For general amplitude and pulse dur&{& stributions,

(exp(iduu)) = /_i dAkPA(@Tk) /OT d_;:kexp {iuAk(p <%)} , 1)
.
|

under consideration. Since all the K characteristic

where T is the duration of the tim&ﬂexl
functions in Eq. (10) are the sau‘ﬁ‘t\‘he\on itional probability density is
@? o / dut exp(—idbou) (exp(igyu))K (12)
assuming the nur?@ieés in a time interval 7T to be given. The probability density function
1able @

£

for the random v iven by

S
}( =0

i(élal probability Px(K|T) that there are exactly K pulse arrivals during any inter-

—~

1 [o)
IK)Pe(K|T) = 5 /_ duexp (—iCDu+ Tl (exp(ideu)) — Tl) 13

W W

where/he condi
va 9£ atiob T is assumed to be given by the Poisson distribution,

SO ) Pg(K|T) = % <%)K6Xp (—%) : (14)

stationary probability density function for ® is obtained by extending the integration limits

for 1 to infinity in Eq. (11). This leads to the desired result,

Po(®) :%/:odu exp (—ic1>u+y/_°;dAPA(A)/°;de [exp(iuA<p(e))—1]), (15)

4
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PublishiwHich notably is independent of the distribution function for the pulse duration times. According

to this equation, the logarithm of the characteristic function for Py is
y/ dAPy(A / d6 [exp(iuAg(6 Z Y (A™) ) (16)

where the exponential function on the left hand side has been expande/ in a power series. The
cumulants k, = yI,(A") are the coefficients in the expansion of the og%lm the characteristic
function for Pp. From the cumulants, the lowest order momentS«are readily obtained. A formal
power series expansion shows that the characteristic functio is%late o the raw moments of P,

defined by 1! = (&), e

(exp(i®u)) = " (17)
It follows that the lowest order centred moments L, ("CIT ) are related to the cumulants
by the relations Uy = k», U3 = k3 and Uy = K4X§\ us, the variance of the random variable is
given by .~
- 2
’b—\f—wlz(f\ ), (18)

where ®,,,s denotes the standar dem root mean square (rms) value of the random variable.
Thus, the absolute fluctuation leve\farge when there is significant overlap of pulses, that is, for

long pulse durations and o?hw%se waiting times. Moreover, the skewness and flatness moments
are readily obtained,!74®

> 1 13 (A3)

3\ R S 15

d— (P))* 11, (A*
F‘I’:%:H}éﬁ' (19b)

Both nts increase with decreasing 7, clearly demonstrating the intrinsic intermittent
gnal composed of a super-position of pulses. An example of this is clearly seen

f
€&Swhere time series due to a super-position of Lorentzian pulses with various degree of
ﬁ\?;l p are presented. Note that for a symmetric amplitude distribution or an anti-symmetric pulse
S

e, the skewness moment clearly vanishes together with the mean value of the random vari-
able. For large y the skewness and excess flatness moments both vanish, consistent with a normal
distribution of the fluctuations which arise in this limit.'>~!® For these reasons, v is referred to as

the intermittency parameter of the model. It is emphasized that the distribution of pulse durations

5
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FIG. 1. Realizations of the stochastic process for Lorentzi(tprulﬁwith constant duration and exponentially
distributed pulse amplitudes. The degree of puls%isﬁktermined by the intermittency parameter

Y=t/ \

~

does not influence the characteristic n@n d thus neither the moments nor the probability

density function for the random v. K ~
A general expression for the er al density can be derived for this process. Considering

e
first the signal ®k (¢) defined by EO:\F:e auto-correlation function for a given time lag r is given

by a double sum comprising

4 Tdy, [(t—t\ [ T'dty [(t—ty+r
Z/O diPf(Tk)/O T(P (T—k)/o dTgPT(Tg)/O T(p T
\;((
5 Tdn

) o0 r—1t t—ty+r
4 (A >k21/0 diPr(Tk)/O T 9 (T_k> (0] (T—k> (20)

— 1) terms when k # ¢ and K terms when k = /,

£
Agaifgeicct ‘gnd effects by taking the integration limits for #; and #, to infinity and averag-

in oV the 1§1mber of pulses occurring in an interval with duration 7', it follows that the auto-

c relati%‘l function for the stationary process is given by
\ T~ Ro(r) =(®()®P(t+7r)) = <<I>>2 + @2 Tld /Ooo dT TP (T)pe(r/T). (21)
From this the power spectral density follows directly by a transformation to the frequency domain,
Qo(0) = /_ Z drRo(r) exp(—iwr) = 27(®)28(w) + cprzmsrld /0 TATeP(T) 0p (07),  (22)
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Publishiwfi¢re @ is the angular frequency and 6 is the delta function. The expression for the fre-
quency spectrum is simplified by considering the centered and scaled random variable D =
(@~ (@) /P, )
Qs () = Tid /0 4T TPL(7) 0p (7). (23)
It should be noted that this power spectral density is independent OQ(lﬁQilitude distribution
de

P4 and does not depend on the intermittency parameter 7, that is{ t gree, of pulse overlap.
Moreover, the above expression is not restricted to a Poisson distributi
hav

K(T). The only assumptions made are that the pulse arrival Q uniform distribution and
T~

for the number of pulses

that the two lowest order moments of the process are finite..

In the special case of constant pulse duration, Pr(7 (T —‘}'d), the expressions for the auto-

)
correlation function and power spectral density becc@

Ro(r) = (@) + %’c‘&'f, (24a)
Qs () = 270(2) " 81) Fy, 7 29 (0), (24b)
\
that is, they are simply determined by &a%to elation function for the fixed pulse shape ¢ ().

-
In the following, the frequency sﬁr: will be calculated for a Lorentzian pulse shape and
ra

various distributions of the pul%l imes. The Lorentzian pulse shape is defined by

1 1
0)=———. 25
The integral of the n- pc;/we f the pulse function is in this case given by
1 I'(n—1/2
y: . 1/2) (26)
\ 7172 L(n)

where I is the Qma function. From this it follows that the mean value of the stationary process
is given By (®) = 7A), the variance is ®2 . = y(A?)/2x, and the normalized auto-correlation

functién and i

— 4
KS Pel®) =i @
~ oo (9) = 2mexp(~219)). @
.

In“the special case of constant pulse duration it follows that the auto-correlation function is itself

tsdransform are

a Lorentzian and therefore has algebraic tails,

Ro(r) = (@) + @2,

rms m: (28)
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PublishiwHile the power spectral density has an exponential dependence on the frequency,
Qo (0) = 27(D)? 8 () + D2, 2w Tgexp (—274|0)]) - (29)

The first term in the above equation results from the mean value of the signal, giving a zero
frequency contribution. The second term is the anticipated exponeryﬁl spectrum for a super-
position of uncorrelated Lorentzian pulses.'™

Any deviation from a constant pulse duration will modify the ex ntlal power spectral den-
sity for the random variable. Consider as a first example a u <@\ ribution of pulse durations,

T4P:(T;5) = 1/2s for duration times the range 1 —s < 7/7, +s.and s ranging from zero to
_—
unity. In this case the frequency spectrum is given by

Qz(w;
&(@:5) _ = {l 142730%(1—5)? J,S Jexp[—2(1 —s)74|®|] (30)
L
+

2y 8s7:3|a)]
— [1+27i0? H\K

The power spectral density is presented i logarlthmlc plot in Fig. 2 for various values of

)Tq|o|] exp[—2(1 —i—s)‘cd\a)H} )

the width s, clearly showing how the mt,slm comes curved for a broad distribution of pulse
duration times.'™ In the limit s %(xil: Ise duration distribution approaches a delta function,

the pulse durations are consta% ponential spectrum in Eq. (29) is recovered. For the

broadest possible distribution of duration times, s = 1, the above expression simplifies to

% L~ (14 474] 0] + 872002) exp(—d g )

€2Y)
7 8*cd\a)|
This spectrum ha{% tic limits
3Q~(w;1
5 lim —L =1, (32a)
tloj—=04 27Ty
y. 3 Qz(w;1)
lim 87)|w|” 22—~ =1, 32b
- 4 Tg|®| o0 d| | 2T (32b)

that _i_‘s\, flat s}ectrum for low frequencies and a power law spectrum for high frequencies.

A geﬂsral probability density function for the duration times is given by the Gamma distribu-

on.
ﬁb Ky s—1
h TPy (Ts8) = — (1) exp (—E) (33)

F(S) Td Td
with scale parameter 74 and shape parameter s. The power spectral density is in this case given by
.Q&)((D;S) B (1—}—s)s1+s

(34)

2ty (s+279|@])2ts

8
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FIG. 2. Power spectral density for a super-position of (&rentzijn pulses with a uniform distribution of

duration times with normalized width s. The case s—OQ Sp'o'nds to constant pulse duration times, which

results in an exponential spectrum. \

e
This function is presented in a doubl arithmic plot in Fig. 2 for various values of the shape
parameter s. It is of interest to n: m%w frequencies, the power spectral density scales
\Pkus, the spectrum becomes increasingly peaked at low

frequencies with smaller values of $yas 15 clearly seen in Fig. 3. In the limit s — oo, the Gamma

distribution resembles a @arrow normal distribution, corresponding to constant pulse duration. As
expected, an exponential 90 ectral density then results. For s = 1, the pulse duration times
tributed

with the shape parameter as (1

are exponentially dis AaP:(7;1) = exp(—7/14), and the frequency spectrum is given by

3\ Qz(@:1) 2

— 35
27Ty (14 274|@])3’ (33)

which 1‘1_9‘11 ively‘has the same asymptotic limits as spectrum for the broadest possible uniformly

2,2 .
475 0° Qp(w;s)
s—=0 8 27Ty

(36)

e examples presented here clearly demonstrate how sensitive the power spectral density is to
the distribution of pulse durations. For sufficiently broad duration time distributions, power law

spectra are ubiquitous.

As a final example, consider a Rayleigh distribution of pulse duration times, T3P (T) =

9
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FIG. 3. Power spectral density for a super-position of (Qrentzijn pulses with a Gamma distribution of
duration times for various shape parameters s. TT oo corresponds to constant pulse duration

times, which results in an exponential spectrum.

(n7/274) exp(—7nt?/213). The power ctra nsny is then given by
8

Qz(w) 4 412 0° 274||

T = 7r+4”L'da) — »’ ’L’d|a)|exp (T) erfc ( py )] . (37)
This also gives a flat spectrum for 10 requencies and a power law spectrum for high frequencies,

7 Qg (0)
— =1, 38a
rd|a)|—>0 4 21wty (382)

167 0* Qg
1@ Qg(®) (38b)
rd|w|—>oo 3 2m7y

In Fig. 4 thep spectral density for the case with constant pulse duration is compared with the
cases of &pomential; uniform and Rayleigh distributions of pulse durations. All the asymptotic

powerf law limitsdiscussed above are clearly observed.

A.reference model for intermittent fluctuations in physical systems has here been extended to
inelude aSrandom distribution of pulse duration times. This is demonstrated to modify the auto-
?bge&tlon function and power spectral density. In the particularly interesting case of Lorentzian
pulse shapes, the power spectrum changes from an exponential function in the case of constant
duration times to a power law spectrum for a broad distribution of pulse duration times. By con-

trast, the characteristic function, and therefore the moments and probability density function, do

not depend on the distribution of pulse durations. A robust property of the resulting fluctuations

10
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FIG. 4. Power spectral density for a super-position of Loré@an‘pj]ses with exponential, uniform, Rayleigh

and degenerate distribution of pulse duration tlmes

is thus significant skewness and/or exce in partlcular in the case of weak overlap of
pulse structures. This sheds new light e s istical properties of fluctuations in physical sys-
tems described by such models an ow to stlmate the underlying model parameters by using

the auto-correlation function tral density and the lowest order moments. Finally,
these results motivate further investigations of low-dimensional chaos, complexity and the role of
variable pulse durations cm)to clarify the universality of Lorentzian pulses and exponential

frequency spectra
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