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Abstract. We demonstrate a practical way to reduce latency for mo-
bile .NET applications that interact with cloud services, without disrupt-
ing application architectures. We provide a programming abstraction for
location-independent code, which has the potential to execute either lo-
cally or at a satellite execution environment in the cloud, where other
cloud services can be accessed with low latency. This maintains a simple
deployment model, but gives applications the option to offload latency-
sensitive code to the cloud. Services like cloud databases can still be
accessed programmatically, but with less concern for the aggregated la-
tency of consecutively-issued requests. Our evaluation shows that this
approach can significantly improve the response time for applications
that execute dependent database queries, and that the required cloud-
side resources are modest.

Keywords: Mobile, Cloud, Performance, Latency, Satellite Execution,
Code Offloading, Cloud Databases

1 Introduction

Use of cloud-provided services is integral to the operation of modern distributed
and mobile applications. For example, cloud databases simplify application logic
by serving as highly available repositories for critical state. For improved scalabil-
ity and availability these databases are commonly NoSQL, with limited support
for tabular relations and transactions and with a more relaxed consistency model
than a conventional relational database. Queries are issued through a program-
matic interface, rather than a domain-specific, high-level query language.

This promotes a usage pattern where multiple, consecutively-issued queries
implement a single logical transaction. For example, an atomic update can be
implemented as a read of the old value, followed by a conditional write of the new
value, with the predicate that the old value remains unchanged. Or a collection of
related records can be retrieved in multiple steps, by manually following foreign
key references, rather than using higher-level features like joins and subqueries.
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Fig. 1: How satellite execution is applied to eliminate extraneous round-trips of
communication between a client and the cloud—by moving code to a middle tier
close to cloud services—reducing overall latency.

When the database is hosted in the cloud, issuing a sequence of dependent
queries entails multiple round-trips of communication, and network latency be-
comes an important concern. For example, we have measured a latency of 50ms–
350ms for accessing the Amazon DynamoDB [7] cloud database from a mobile
device [18], whereas a study covering 260 global vantage points reports an av-
erage round-trip time (rtt) of 74ms for accessing Amazon ec2 instances [13].
Issuing a sequence of queries to the cloud can result in unwanted delays that are
perceptible by users.

One way to alleviate this problem is to move the execution of queries to a
middle tier that is closer to the cloud database. If the entire sequence of queries
can be moved as a unit, this can eliminate many round-trips between the client
and the cloud, substituting them with shorter round-trips between the middle
tier and the database. If an application experiences high latency, or needs to



Using Satellite Execution to Reduce Latency for Mobile/Cloud Applications 3

issue a long sequence of database queries, the queries can be offloaded to the
cloud and executed in close proximity to the database service.

In this paper, we refine and generalize this idea, to reduce latency for any
mobile/cloud application that issues a sequence of dependent requests to the
cloud. By moving the code that accesses cloud services to a middle tier, posi-
tioned in close proximity to the cloud, the code can execute in an environment
with lower latency. We refer to this concept as satellite execution, and illustrate
it in Figure 1. Figure 1a shows the baseline scenario, where a client must send
multiple requests over a high latency mobile network to the cloud in order to
complete a task. These can be replaced with a single round-trip as in Figure 1b,
where code is moved to the middle tier before multiple requests with intracloud
latency are issued to the cloud service.

By implementing general-purpose offloading of code, and not just specializing
on relaying of database queries, we preserve the programmatic style of database
access, and its associated advantages. For example, offloaded code can perform
computations, transformations, cryptographic operations, and any other ma-
nipulations of parameters and intermediate results that may be required when
performing a sequence of queries. The increased flexibility also widens the ap-
plicability of satellite execution as a general concept.

To illustrate the benefits of our approach, we quantify latency savings when
cloud database queries are executed from the middle tier rather than at the
client-side device. We also examine communication traces of popular phone ap-
plications to determine the practicality of our approach, to see if real applications
exhibit access patterns that are conducive to latency savings through satellite
execution.

We implement satellite execution in a system called Dapper, which signifi-
cantly extends and integrates the functionality of two previous systems: Rusta
[23] and Jovaku [18]. Rusta is a platform for developing cloud applications that
can utilize client-side storage and processing capacity, while the Jovaku system
provides a distributed infrastructure for caching of cloud database values through
the ubiquitous dns service.

A goal with Rusta was to express computations in a location-independent
way, allowing for opportune execution in the cloud or at client-side devices.
This was accomplished by expressing computations in the Scala programming
language and using built-in closure features to create transferable execution con-
texts. In Dapper we take a similar approach, but target the .net platform, so
that code in any of the .net languages can be made transferable. Jovaku’s archi-
tecture includes a cloud-side relay-node that bridges the dns protocol with the
database api. Dapper extends this component to include a middle-tier platform
for hosting and safely executing offloaded code.

The rest of this paper is structured as follows. Section 2 elaborates on the
background and context of our work, motivating our general approach. Section 3
describes the design and implementation of Dapper, and its programming ab-
stractions for satellite execution. Section 4 contains a performance evaluation
that focuses on the cloud database use-case, with measurements of typical re-
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ductions in latency, and the maximum query processing throughput that can
be achieved in various configurations. Section 5 discusses related work, and Sec-
tion 6 concludes.

2 Background

The desire to reduce latency for mobile/cloud applications tends to encourage
a split application architecture, where parts of the application logic executes on
the device, and other parts execute in the cloud. Higher-level operations such as
submitting a comment or generating a news feed are delegated as a whole to the
cloud, to avoid multiple round-trips of communication.

The split between frontend and backend also has a tangential benefit: it
allows a variety of frontends, often tailored for different devices, to access the
same backend service. For example, an on-line chess service will typically offer
both a web-based frontend, as well as clients for various mobile devices and
platforms. Users should be able to switch seamlessly between client devices, e.g.
moving from their laptop to their phone, so the state of on-going games must
be maintained by the backend. This requires frequent communication with the
cloud to retrieve and update application state.

Many frameworks and platforms aim to ease the development of mobile ap-
plications that are factored into separate backend and frontend components.
One example is Parse [17], which provides a backend-as-a-service solution that
offers backend cloud storage, as well as the ability to deploy application modules
that execute in the cloud, close to the data. One common downside of these
approaches is that the device-specific and cloud-specific parts of the application
are deployed independently, through different channels. This increases the risk of
breakage, when old versions deployed on devices interact with the newest version
deployed in the cloud.

We approach the problem differently; rather than explicitly deploying parts
of applications in the cloud, we empower applications to offload latency-sensitive
code on demand, in a dynamic manner. Offloaded code will execute in close prox-
imity to the backend storage service, where latency is low. Thus, we address the
main motivating concern—improving application responsiveness as experienced
by users—without dictating a static deployment model for applications.

A key idea underlying this work is to move computations closer to the data
that they touch, which is a well-known technique that finds diverse applications.
When processing streams of data, the demand for network bandwidth can be re-
duced by filtering streams closer to the source, pushing computations upstream.
When processing stored data, similar gains can be made by scheduling compu-
tations to execute locally on the storage nodes, using functional programming
models like MapReduce [6] for location independence.

Our experience from mobile agents [10, 11, 9] and MapReduce-style dis-
tributed data processing have inspired some key aspects of this work. As in
Cogset [21], we promote a functional programming model using the visitor pat-
tern, where latency-sensitive code has the ability to visit the backend storage
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service as desired. In this case, a visitor also resembles a mobile agent; although
restricted to moves back and forth between a client device and the cloud, it
retains the defining ability to carry state.

3 Dapper

Instead of statically partitioning mobile/cloud applications into client-side and
cloud-side components, satellite execution enables individual objects to move
dynamically between the client and the cloud. The decision to deploy an object
for satellite execution is taken at run-time. Deployment to the cloud involves
moving an object’s code (i.e., its class) and its current state. Incurred state
changes while executing remotely are included when the object is moved back
to the client. Objects can move repeatedly between the client and the cloud, for
example in response to changes in application environment or state.

Jovaku’s application-transparent interfacing with cloud databases through
dns was in part made possible by a cloud-side relay-node. The relay-node bridges
the dns infrastructure with the underlying cloud database service by turning dns
requests into database queries. The relay-node was placed in close proximity to
the cloud database service to avoid extra latency when performing the trans-
lations. Since we have similar requirements for the middle tier in our satellite
execution concept, integrating this functionality into Dapper was an intuitive
solution. To realize the satellite execution concept, we therefore extended the
relay-node with capabilities for hosting and executing offloaded .net code. Two
main components were identified as necessities for this extension:

An execution environment that is capable of hosting multiple securely iso-
lated sandboxes. Each of these sandboxes must be capable of loading and
executing code on behalf of clients, without interfering with each other, or
compromising the integrity of the surrounding execution environment.

A message processor that will receive and process messages sent from clients
and demultiplex and pass messages on to the execution environment. There
are several feasible approaches to implementing an efficient message pro-
cessor. The Windows Communication Foundation (WCF) offers one conve-
nient framework, but we decided to use an asynchronous socket-based server
with a customized communication protocol, because this gave slightly better
throughput.

An overview of the extended architecture with the new components can be seen
in Figure 2. The Name Server is a bind [2] server with a custom dlz [1] driver
that resolves dns queries by accessing a cloud database service. As noted, this
functionality stems from the original Jovaku system and complements the satel-
lite execution capabilities of Dapper.

In addition to these new relay-node components, we saw the need to create
a programming abstraction for execution of offloaded code. To this end, we
defined the IMobileFunction interface, seen in Code Listing 1, which clients use
to specify offloadable code. Implementations of this interface are called mobile
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Fig. 2: An overview of the extended architecture where the message processor and
execution environment have been integrated into the relay-node. The execution
environment is capable of hosting multiple isolated sandboxes for loading and
executing offloaded client code.

Code Listing 1: Interface to be implemented by mobile functions.

public interface IMobileFunction

{

Task Execute(IContext ctx);

}

functions, as they can be serialized and moved for remote execution on a relay-
node. The entry point of a mobile function is its Execute method, which may
be invoked asynchronously using .net’s task-based asynchronous pattern.

Mobile functions contain user-defined code, and are black boxes to Dapper.
Being implemented in C# or another .net language, they enjoy the expressive
power of a general-purpose programming language. However, this power must be
checked in order to provide a reasonable balance between flexibility and safety.
Dapper will only invoke mobile functions from sandboxes that are intended to
isolate the environment from unwanted side effects, restricting the mobile func-
tion’s capabilities for actions like file and network i/o. To compensate, Dap-
per will let mobile functions access safe implementations of selected operations
through the IContext interface, shown in Code Listing 2. These operations can
involve i/o, but they are implemented by Dapper, with rigorous validation of
arguments to minimize the potential for abuse.

Since we have selected cloud database services as a use case to focus on, our
IContext interface provides basic key/value operations that can be supported
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Code Listing 2: Interface for accessing cloud-side resources from a mobile func-
tion.

public interface IContext

{

Task<object> Get(string key);

Task<List<object>> GetMany(string key);

Task<bool> Put(string key, object value);

}

Code Listing 3: Interface for requesting remote execution of a mobile function.

public interface IDapper

{

Task<object> ExecuteAt(IMobileFunction function,

Uri location = null);

}

by any common NoSQL database. When applying satellite execution in other
contexts, the interface would be extended correspondingly, to expose the relevant
cloud service functionality.

The indirection created by the IContext interface also serves to separate
application logic from the particulars of the cloud services that are accessed,
and adds flexibility to deployments. For example, an application can be tested
and run as a fully client-side process by providing a context object that binds
to a local database.

3.1 Implementation

Our current implementation targets Amazon’s DynamoDB, which is a popular
NoSQL cloud database service. The relay-node is manifested as an instance in
the ec2 computing cluster, where DynamoDB can be accessed with very low net-
work latency. In addition to the bind process that serves dns traffic, a separate
server process—written in C#—implements the message processor and execu-
tion environment. Incoming messages either contain serialized mobile functions
that should be deserialized and executed, or .net assemblies that contain the
compiled code for mobile functions. Received assemblies are cached by Dapper.
Deserialization of a mobile function can fail, if its assembly is missing. In that
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Code Listing 4: Creating a new application domain, with minimal permissions
and a set of trusted assemblies.

private Sandbox CreateSandbox(string name)

{

var pSet = new PermissionSet(PermissionState.None);

pSet.AddPermission(new SecurityPermission(Execution));

var fullTrustAssemblies = new Assembly[]

{

typeof(Sandbox).Assembly,

typeof(SecureContext).Assembly,

typeof(Amazon.DynamoDBClient).Assembly,

};

var newAppDomain = AppDomain.CreateDomain(name, pSet,

fullTrustAssemblies);

var instance = Activator.CreateInstanceFrom(newAppDomain,

typeof(Sandbox).Assembly.ManifestModule.FullyQualifiedName,

typeof(Sandbox).FullName);

return (Sandbox)instance.Unwrap();

}

case, the client is asked to first send the missing assembly, before retrying. This
will be a rare event in practical use, because mobile functions can be parame-
terized, reusing the same code across many instances, and because one assembly
can contain the code for multiple mobile functions.

From the client application’s perspective, mobile functions are regular objects
that may, upon request, be executed remotely. The ExecuteAt method in Code
Listing 3 implements this abstraction by sending the object, in a serialized state,
to a relay-node, where the object is deserialized and its Execute method is
invoked. When the Execute method completes, the object is again serialized
and moved back to the client. As such, mobile functions can simply store any
relevant results of their cloud service interactions internally, and clients will be
able to observe the corresponding state changes when ExecuteAt has completed.

In the relay-node, we sandbox the execution of mobile functions using .net
application domains [3], which provide an isolation boundary for security, re-
liability, and versioning, and for loading assemblies. Application domains are
typically created by runtime hosts—which are responsible for bootstrapping the
common language runtime before an application is run—but a process can cre-
ate any number of application domains within the process to further separate
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Code Listing 5: The IContext implementation used in the isolated application
domains.

class SecureContext : IContext

{

private Amazon.DynamoDBClient _client;

[SocketPermission(Assert, Unrestricted = true)]

[ReflectionPermission(Assert, Unrestricted = true)]

[WebPermission(Assert, Unrestricted = true)]

public Task<string> Get(string key) { ... }

[SocketPermission(Assert, Unrestricted = true)]

[ReflectionPermission(Assert, Unrestricted = true)]

[WebPermission(Assert, Unrestricted = true)]

public async Task<List<string>> GetMany(string key) { ... }

[SocketPermission(Assert, Unrestricted = true)]

[ReflectionPermission(Assert, Unrestricted = true)]

[WebPermission(Assert, Unrestricted = true)]

public Task<bool> Put(string key, object value) { ... }

}

and isolate execution of code. Dapper creates a new application domain for each
mobile function assembly.

Each of these application domains is configured with a minimal set of per-
missions that will ensure that execution of code cannot compromise or access
code or data running in other domains. The minimal set will also ensure that the
code received from clients cannot do potentially malicious operations like access-
ing the file system, or participating in bot-nets that deplete network resources.
Code Listing 4 shows the code to instantiate new application domains. Aside
from the minimal permission set, which only includes the most basic Execution

ability, the code specifies a list of assemblies containing code that will be fully
trusted by the sandbox. This includes Dapper’s own assemblies, and the official
DynamoDB api from Amazon.

When mobile functions execute, they can use the IContext interface to ac-
cess cloud services. Dapper implements this interface in the SecureContext

class shown in Code Listing 5. The various database operations that can be per-
formed are implemented using Amazon’s api, which requires certain additional
permissions to work correctly. Socket and web permissions are needed to create
sockets and sending web requests, and the api uses reflection to access protected
methods in the .net library, to add custom headers to web requests. Since the
assembly that implements SecureContext is fully trusted, these permissions
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Code Listing 6: The sandbox, isolating loading of untrusted assemblies, and
execution of code.

class Sandbox : MarshalByRefObject

{

private IContext Context;

private Dictionary<string, Assembly> AssemblyCache;

private Assembly AssemblyResolve(

object sender, ResolveEventArgs args) { ... }

public bool AddAssembly(byte[] rawBytes) { ... }

public byte[] ExecuteFunction(byte[] obj) { ... }

[SecurityPermission(Assert, Flags = SerializationFormatter)]

private IMobileFunction DeserializeFunction(byte[] data) { ... }

[SecurityPermission(Assert, Flags = SerializationFormatter)]

private byte[] SerializeFunction(object graph) { ... }

}

can be elevated selectively by marking the relevant methods with special secu-
rity attributes. So the only way for a mobile function to access the network, for
example, is through one of the methods of the IContext interface.

The CreateSandbox method returns a proxy object that can be used to
communicate with the new application domain. Calls to the proxy object are
implicitly converted into remote cross-domain calls. The Sandbox class in Code
Listing 6 implements the internal execution environment of a sandbox, with
methods to inject serialized assemblies and mobile functions into the sandbox.
The sandbox will load the assemblies and put them into the AssemblyCache

indexed on the full name of the assembly. The full name includes versioning
information, so different versions of an assembly can be loaded at the same
time, without issue.

Upon receiving serialized objects through the ExecuteFunction method, the
sandbox will attempt to deserialize the byte array using the private method
DeserializeFunction. This method is marked with a SecurityPermission

attribute to allow deserialization of objects. We have restricted this permission
to specific methods instead of allowing it for all client code, as the private data
members of an object can potentially be retrieved by serializing it.

The sandbox also registers as a handler for the AssemblyResolve event,
which is triggered whenever a new assembly must be resolved. Notably, this
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Code Listing 7: Implementation of a bag-of-queries abstraction as a mobile func-
tion that can execute remotely in the cloud via satellite execution.

[Serializable]

public class QueryBag : IMobileFunction

{

private List<string> _responseList;

private List<string> _queryList;

public async Task Execute(IContext ctx)

{

foreach (var query in _queryList)

{

var queryResponse = await ctx.GetMany(query);

if (_responseList == null)

_responseList = new List<string>();

_responseList.AddRange(queryResponse);

}

}

public void AddQuery(string query)

{

if (_queryList == null)

_queryList = new List<string>();

_queryList.Add(query);

}

public List<string> GetResponses()

{

return _responseList;

}

}

may happen during deserialization of mobile functions. The ResolveEventArgs

will then contain the full name of the type that is being deserialized, and the
sandbox can make lookups in the assembly cache to find the correct assembly. If
the sandbox is unable to resolve the assembly required to deserialize the object,
an exception will be thrown to the governing satellite execution environment,
which in turn will inform the client of the missing assembly.

When an object has been deserialized successfully, the sandbox will typecast
it to IMobileFunction and invoke its Execute method. When the Execute
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Fig. 3: Example communication pattern between mobile device and cloud as-
sumed to be of a request/reply type.

method completes, the mobile function is again serialized into a byte array,
using SerializeFunction, and passed back to the client.

Code Listing 7 shows an example of a mobile function that implements a
bag-of-queries abstraction. Database queries are added to the bag by invoking
AddQuery; the queries are aggregated in the queryList field. The Execute

method issues the aggregated queries via the context object and stores results
in the responseList field. After executing the mobile function, the client can
observe the results of the queries by invoking GetResponses.

A potential optimization for the bag-of-queries example would be to reset
the list of queries to null once it is no longer needed. This would reduce the
amount of serialized data to return from the relay-node to the client. In gen-
eral, mobile functions are free to implement their own serialization mechanisms
via the ISerializable interface, but they can always fall back to the default
serialization protocol, for convenience.
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Table 1: Summary of cloud interactions during phone application startup.

Application # request/reply # connections

Social networking
1 1
2 1

Instant messaging
1 4
2 3
7 1

Short messaging

1 7
2 3
4 1
6 1

Picture exchange
1 1
2 2

4 Evaluation

Dapper runs on a variety of Microsoft Windows platforms, including phone,
store, and desktop. We used two different client-side platforms in our experi-
ments: (1) a phone with 2 GB memory and a quad-core QualComm Snapdragon
800 2.2 GHz cpu and (2) a desktop machine with 64 GB memory and a quad-
core Intel Xeon E5-1620 3.7 GHz cpu. The phone ran Windows Phone 8.1 and
communicated over 4G, whereas the desktop machine ran Windows 10 and was
connected to a lan.

The relay-node was hosted on two types of Amazon ec2 instances. The first
type was t1.micro, equipped with 613 MB memory and a single-core 64-bit vcpu
operating at 1.85 GHz. The second type was t2.medium, equipped with 4 GB
memory and a dual-core vcpu operating at 2.50 GHz. Both types of instances
were running Microsoft Windows Server 2012 R2. We used Amazon’s DynamoDB
as the cloud-side database, instantiated in the same availability zone as our relay-
node.

We first report on a black-box examination of the cloud communication pat-
terns of some popular mobile applications. Here we sought to discover patterns
consistent with sequences of dependent requests, with the motivation that satel-
lite execution could be used in place of such interactions. We configured our
phone platform to communicate through an access point instrumented to cap-
ture all ingress and egress network packets. We then inspected the encrypted
TCP streams and dissected them into SSL packets, looking for what appeared
as consecutive request/reply cloud interactions without intervening user actions.
The particular pattern we looked for is exemplified in Figure 3, which shows two
interactions assumed to be of a request/reply type.

Our findings for cloud interactions during startup of four popular applications
are summarized in Table 1. We observed that the applications communicate
over a number of separate network connections, ranging from 2 for the social
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1 2 3 4 5
0

200

400

600

800

1,000

1,200

Number of queries

L
a
te

n
cy

(m
s)

desktop

desktop with satellite execution

phone

phone (normalized)

phone with satellite execution

Fig. 4: Observed latency when executing a varying number of cloud database
queries with and without satellite execution. Error bars show standard deviation.

networking application to 12 for the short messaging application. Most of these
connections are to different services within the same cloud, but some are external,
typically in support of content distribution such as Akamai [16]. The number of
assumed request/reply interactions varied across applications and connections,
with the instant- and short messaging applications respectively having as many
as 7 and 6 consecutive interactions. These findings suggest satellite execution
could be effective if applied in these popular applications.

We continue with an experiment that quantifies latency when a client is-
sues cloud database queries directly and when using satellite execution. For this
we used the bag-of-queries implementation outlined in Code Listing 7 to issue
queries to the cloud database. Latency when the bag contained between 1 and
5 queries is shown in Figure 4. Results are averaged over 1000 runs, for both
phone and desktop, with the relay-node hosted on a t1.micro instance. As shown,
there are significant latency savings when the bag contains more than one query.
This is because latency between the relay-node and the database is low, and
the round-trip latency between the client and the cloud—approximately 64 ms
for desktop and 105 ms for phone—overshadows the low cost of serializing and
transferring the query bag.
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(d) Mobile: adding a friend, with satellite
execution.

Fig. 5: Latencies when adding a friend to a social network, with and without
satellite execution.

The DynamoDB library uses the http 100-continue feature when interacting
with the cloud database. Use of this feature adds a communication round-trip to
database interaction, needlessly inflating latency [18]. We therefore used platform
interfaces to disable this http feature on desktop. Similar interfaces do not
exist on Windows Phone, however. The results in Figure 4 consequently include
one additional round-trip latency for phone, compared to desktop. To better
convey the latency difference between phone and desktop, the figure also includes
results where one round-trip latency has been subtracted from phone. Even
after this normalization, phone has significantly higher latency than desktop,
demonstrating the relative importance of our satellite execution technique for
the mobile platform.
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Fig. 6: Latency per bag-of-queries when increasing the number of clients that
concurrently submit mobile functions to a relay-node.

The data on popular applications in Table 1 only indicates that latency sav-
ings are possible; determining the degree to which the interaction could exploit
satellite execution would require access to application source code. To approx-
imate the savings that could be experienced in a deployed application we re-
construct a scenario where a friend connection is established in the MSRBook,
a social networking application based on Deuteronomy [12]. The addition of a
friend in this network involves friend and news feed updates for both concerned
parties, for a total of 4 queries. Equivalent queries were placed in our bag-of-
queries and we ran the friend-add action 1000 times on both the desktop and
the mobile platform, with and without satellite execution. Figure 5 illustrates
latency savings. Savings due to satellite execution are pronounced; on desktop
latency drops from around 265 ms to approximately 100 ms, while it drops on
mobile from around 450 ms to approximately 125 ms.

On a mobile device such as a smartphone, a person uses around 24 different
applications every month [15]. Even the modest resource allocations available to
the Amazon t1.micro instance used in our experiments are likely to be ample for a
relay-node dedicated to a single mobile device. But if the relay-node functionality
was a service offered by the cloud database provider, in a fashion similar to the
Parse application module service [17], the relay-node would likely be shared
among many mobile devices and its capacity would be a potential issue. We
therefore last consider an experiment where the relay-node serves an increasing
number of clients.

In the experiment, we configured each client to repeatedly submit mobile
functions to the relay-node, in a closed loop. Each mobile function was a bag
of 4 queries. We then increased the number of clients, ensuring high contention
for relay-node resources, in an attempt to reveal the capacity for executing mo-
bile functions. We repeated the experiment both for t1.micro and t2.medium
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Fig. 7: cpu consumption and throughput at a relay-node when increasing the
number of concurrent clients that submit mobile functions.

instances. Results are shown in Figures 6 and 7. We observe that the t1.micro
instance is capable of completing around 250 bags per second before through-
put levels off. As the number of clients continues to increase, each of them ob-
serves higher latency, as illustrated in Figure 6. The t2.medium instance peaks
at around 700 bags per second. In Figure 7, we see a close correlation between
throughput and cpu consumption for both instance types. This indicates that
cpu is the likely bottleneck that causes throughput to peak.

The experiment does not expose any scalability issues in our relay-node
implementation, with regards to concurrently serving an increasing number of
clients. Throughput levels off and remains stable after it peaks. A single relay-
node can thus be shared among multiple mobile devices, and also across different
applications.
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5 Related Work

The complexity of developing and deploying applications that span a variety of
mobile devices, personal computers, and cloud services, has been recognized as
a new challenge. Users expect applications and their state to follow them across
devices, and to realize this functionality, one or more cloud service must usually
be involved in the background. Sapphire [24] is a recent and comprehensive sys-
tem that approaches this problem by making deployment more configurable and
customizable, separating the deployment logic from the application logic. The
aim is to allow deployment decisions to be changed, without major associated
code changes. Applications are factored into collections of location-independent
objects, communicating through remote procedure calls. Fabric [14] is another
distributed system that aims to securely share objects among heterogeneous
network nodes, and supports both data-shipping and function-shipping styles of
execution.

Like these systems, Dapper provides a location-independent programming
abstraction, but preserves a monolithic application structure, which allows the
application to be installed in its entirety on a single device through a regular
distribution channel like an app store. Code is then transferred on demand from
the device to the cloud, as objects move to the cloud to enjoy low-latency exe-
cution. The decision to visit the cloud or stay on the local device can be made
dynamically, at run time.

With Dapper, we introduce relay-nodes in the cloud as an architectural tier
between the cloud and mobile devices. Similar middle tiers have been proposed
for example with Cloudlets [19], and are implemented in code-offloading systems
like COMET [8], MAUI [5], and CloneCloud [4]. However, the goal of these
systems is often to augment mobile devices with additional computing power, or
to conserve energy [20], so the added tier may be located close to the devices,
on local server machines, or wherever cheap computing power is available. In
contrast, our motivation is not to offload work, but to reduce the latency of
accessing cloud services, and thus the new tier sits as close to the cloud services
as possible.

Concretely, Dapper reduces latency by eliminating extraneous round-trips of
communication to the cloud. An alternative way to achieve that is by having
cloud databases support more expressive query languages, so that more sophis-
ticated transactions can be submitted as a single operation. Indeed, relational
databases with full SQL support are part of the offerings of major cloud providers
like Amazon. However, the ability to access the database via a general-purpose
programming language remains appealing for its generality and flexibility. This
is a lesson learned from programming models like MapReduce [6], Oivos [22],
and Cogset [21], where data is accessed programmatically through user-defined
visitor functions that can integrate easily with legacy code and libraries. The
programming model in Dapper follows a similar philosophy, with the difference
that user-defined functions are visiting a database in the cloud rather than a
partition of data in a cluster.
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6 Conclusion

This work focuses on the general issue of latency as a concern for applications
that interact with the cloud, and looks specifically at scenarios where multiple
consecutive queries are issued to a database in the cloud. Intuitively, latency can
be reduced by shortening communication distances, so our idea is to move the
location where queries are issued closer to the database. Since cloud databases
commonly have programmatic interfaces, we implement a general mechanism for
code-offloading to support this pattern.

Having a relay-node in the cloud, located in close proximity to the database
service, has already proven to be a useful technique for caching, and beneficial
for read-mostly database workloads [18]. Here, we extend the relay-node with
functionality for satellite execution, allowing code that has moved temporarily
from a mobile device to execute in an environment with low-latency access to
cloud services. This gives benefits for additional workloads, which may include
database updates.

The key characteristic that a workload must exhibit to benefit from our
approach is dependencies between requests. For example, if the results from one
database query are used to shape the next query, there is a dependency between
the two. If there is no need for user interaction in-between requests, a whole
sequence of dependent requests can be offloaded to the cloud. By eliminating
extraneous round-trips of communication, this improves response times.

To estimate the potential for improvement in real applications, our evaluation
examines the communication patterns of some popular applications through a
black-box technique. This has yielded some indications that dependent requests
occur in practice, since sequences of up to 7 requests were observed back-to-back
over the same connection on startup. Looking at a concrete implementation of a
social networking application from [12], we found specific examples. For example,
a friend request results in 4 dependent database queries; when offloaded to the
cloud from a phone, the completion time of a friend request dropped from 450
ms to approximately 125 ms.

Our implementation handles the practicalities of transferring assemblies of
.net code, serializing and deserializing objects, and sandboxing code that exe-
cutes on the relay-node. Our evaluation gives some data points on performance:
a single Amazon t1.micro instance can serve hundreds of queries per second. One
such instance can thus easily handle load imposed by a large number of appli-
cations. So, we can dramatically reduce latency without disrupting application
architectures and with minimal requirements for resources in the cloud.
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