

Title	P-wave n- N coupling and the spin-orbit splitting of 9Be					
Author(s)	Fujiwara, Yoshikazu; Kohno, M.; Suzuki, Y.					
Citation	Modern Physics Letters A (2009), 24(11-13): 1031-1034					
Issue Date	2009					
URL	http://hdl.handle.net/2433/84860					
Right	c 2009 World Scientific Publishing Company.					
Туре	Journal Article					
Textversion	author					

Modern Physics Letters A
© World Scientific Publishing Company

P-WAVE ΛN - ΣN COUPLING AND THE SPIN-ORBIT SPLITTING OF $^9_\Lambda \mathrm{Be}$

Y. FUJIWARA¹, M. KOHNO², Y. SUZUKI³

Department of physics, Kyoto University, Kyoto 606-8502, Japan yfujiwar@scphys.kyoto-u.ac.jp
 Physics Division, Kyushu Dental College, Kitakyushu 803-8580, Japan
 Department of Physics, and Graduate School of Science and Technology, Niigata University Niigata 950-2181, Japan

Received (Day Month Year) Revised (Day Month Year)

We reexamine the spin-orbit splitting of $_{\Lambda}^9$ Be excited states in terms of the SU_6 quark-model baryon-baryon interaction. The previous folding procedure to generate the $\Lambda\alpha$ spin-orbit potential from the quark-model ΛN LS resonating-group kernel predicted three to five times larger values for $\Delta E_{\ell s} = E_x(3/2^+) - E_x(5/2^+)$ in the model FSS and fss2. This time, we calculate $\Lambda\alpha$ LS Born kernel, starting from the LS components of the nuclear-matter G-matrix for the Λ hyperon. This framework makes it possible to take full account of an important P-wave $\Lambda N - \Sigma N$ coupling through the antisymmetric $LS^{(-)}$ force involved in the Fermi-Breit interaction. We find that the experimental value, $\Delta E_{\ell s}^{\rm exp} = 43 \pm 5$ keV, is reproduced by the quark-model G-matrix LS interaction with a Fermi-momentum around $k_F = 1.0$ fm $^{-1}$, when the model FSS is used in the energy-independent renormalized RGM formalism. On the other hand, the model fss2 gives too large splitting of almost 200 keV, owing to the uncanceled contribution of the scalar-meson exchange LS components.

 $Keywords \colon \mathbf{Quark\text{-}model\ baryon\text{-}baryon\ interaction;\ spin-orbit\ splitting\ of\ } \Lambda\ \mathbf{hypernuclei}$

PACS Nos.: 21.45.-v, 13.75.Ev, 21.80.+a, 12.39.Jh

1. Introduction

In view of rich experimental data accumulated for the light Λ -hypernuclei, 1,2 it is important to examine if various models of the fundamental hyperon-nucleon (YN) interactions can reproduce these experimental data or not. For few-body systems, this program is most reliably carried out by detailed Faddeev calculations for the hypertriton $(^3_\Lambda \mathrm{H})$, $^3_\Lambda^4 \mathrm{H}$ and $^4_\Lambda \mathrm{He}$, 4 using some versions of the Nijmegen models 5 and Jülich potentials. 6 The knowledge of the ΛN interaction learned from these calculations, however, is mainly about the central part of the interaction and features of the ΛN - ΣN coupling of the $^3S_1 + ^3D_1$ state due to the one-pion exchange tensor force. For the p-shell Λ -hypernuclei, some kinds of models inevitably need to be assumed so far, to connect properties of the Λ -hypernuclei and the under-

2 Y. Fujiwara, M. Kohno, Y. Suzuki

lying YN interactions. For example, the small spin-orbit (ℓs) splitting commonly observed in many of the light Λ -hypernuclei 2 is typically manifested in the excited states of $^9_\Lambda$ Be, for which a simple $\Lambda + \alpha + \alpha$ three-cluster model is usually employed with approriate $\Lambda\alpha$ and $\alpha\alpha$ potentials. The framework of this model, the origin of the ℓs splitting for the $5/2^+$ and $3/2^+$ excited states is the spin-orbit potential between Λ and one of the α clusters, which is known to be very small due to the strong cancellation between the symmetric (LS) and antisymmetric $(LS^{(-)})$ LS forces of the ΛN interaction.

In our previous study of the ${}^{9}_{\Lambda}$ Be spectrum, 8 we have carried out the $\Lambda \alpha \alpha$ three-cluster Faddeev calculation, trying to reproduce the very small ℓs splitting of the $5/2^+$ and $3/2^+$ excited states, $\Delta E^{\rm exp}_{\ell s} = 43 \pm 5$ keV, 2 experimentally observed. As a first step, Ref. 8 directly used the quark-model (QM) ΛN LS resonating-group kernel (RGM kernel) to generate the $\Lambda \alpha$ LS potential by a simple procedure of the α -cluster folding. In this approach, the QM ΛN LS interaction of FSS or fss2 predicts 3 to 5 times larger values for $\Delta E_{\ell s}$, which is not much improved in comparison with the results of Nijmegen simulated potentials. 7 It was pointed out in Ref. 8 that a further reduction is possible in the model FSS, if one can properly take into account the short-range correlation of the P-wave ΛN - ΣN coupling by the $LS^{(-)}$ force. This was conjectured through the analysis of the Scheerbaum factors for the single-particle (s.p.) spin-orbit potentials, calculated in the G-matrix formalism.

2. Calculational Procedure

Following the above suggestion, we here generate $\Lambda \alpha$ LS Born kernel from the LS component of the nuclear-matter G-matrix for the Λ hyperon. Our calculation consists of the following three steps.

- 1. Solve the G-matrix equation for the Λ -hyperon in symmetric nuclear matter with an appropriate Fermi momentum k_F and determine the s.p. potentials for N, Λ and Σ . ^{9,10}
- 2. The LS components of the ΛN G-matrices with definite momenta K and starting energies ω are converted to the $\Lambda \alpha$ Born kernel by the folding procedure recently developed for the $\Lambda \alpha$ system. ¹¹
- 3. Solve $\Lambda \alpha \alpha$ three-cluster system in the Faddeev formalism for composite particles. ⁸

We generate $\Lambda \alpha$ LS Born kernel from our QM baryon-baryon interactions, FSS and fss2. ¹² For the $(0s)^4$ α -cluster folding, a new method developed in Ref. 11 is used to derive the direct and knock-on terms of the interaction Born kernel from the ΛN G-matrix, with explicit treatments of the nonlocality and the center-of-mass motion between Λ and α . The G-matrix calculations are carried out by assuming a constant value of the Fermi momentum, $k_F = 1.07$, 1.20, and 1.35 fm⁻¹ (the normal saturation density ρ_0), since the local density approximation does not seem to work in light nuclear systems. The G-matrix equation is solved for the energy-

Table 1. The Scheerbaum factor S_{Λ} for symmetric nuclear matter and the ℓs splitting of the $^9_\Lambda \mathrm{Be}$ excited states predicted by the quarkmodel G-matrix $\Lambda\alpha$ LS Born kernel. In the last column, " ΛN Born" implies the previous results, 8 in which the ΛN single-channel RGM kernel is used for the S_{Λ} calculation and the α -cluster folding.

	$\frac{\rho/\rho_0}{k_F \text{ (fm}^{-1})}$	$0.5 \\ 1.07$	$0.7 \\ 1.20$	$\frac{1}{1.35}$	ΛN Born
G -matrix $S_{\Lambda} \; ({ m MeV fm^5})$	fss2 (cont) FSS (cont)	$-11.8 \\ -4.1$	$-12.1 \\ -5.2$	$-12.3 \\ -6.3$	$-10.9 \\ -7.8$
Faddeev $\Delta E_{\ell s}$ (keV)	fss2 (cont) FSS (cont)	$\frac{206}{55}$	216 85	$\frac{223}{114}$	198 137
$\Delta E_{\ell s}^{\mathrm{exp}} \; (\mathrm{keV})$			43 ± 5		

independent QM baryon-baryon interaction, by using the renormalized RGM kernel, ¹³ and the continuous prescription for intermediate spectra. A similar procedure of the renormalized RGM is also used for the microscopic $\alpha\alpha$ interaction, ¹⁴ for which the Pauli forbidden states between the two α -clusters are completely eliminated in the three-cluster RGM formalism using the two-cluster RGM kernels.

3. Results and Discussion

Table 1 shows the ℓs splitting of the $^9_\Lambda \mathrm{Be}$ excited states, predicted by the $\Lambda \alpha \alpha$ Faddeev calculations, using the QM G-matrix $\Lambda \alpha$ LS Born kernel. The Scheerbaum factor S_{Λ} is also listed to indicate the strength of the spin-orbit potentials of the A hyperon in symmetric nuclear matter. The Fermi momenta $k_F = 1.07$, 1.20, and 1.35 fm⁻¹ correspond to the densities $\rho = 0.5 \rho_0$, $0.7 \rho_0$, and ρ_0 , respectively, with $ho_0 = 0.17~{
m fm}^{-3}$ being the normal saturation density. The final values for the ℓs splitting of the $5/2^+$ and $3/2^+$ excited states are $\Delta E_{\ell s} = 55$ - 114 keV for FSS and 206 - 223 keV for fss2, depending on the k_F values in the range of 1.07 - 1.35 fm⁻¹. A smaller k_F value gives a smaller ℓs splitting. If we compare these results with the experimental value $\Delta E_{\ell s}^{\mathrm{exp}} = 43 \pm 5$ keV, we find that the model FSS can reproduce the experimental value if the k_F value around 1.02 fm⁻¹ is used. We find the strong cancellation between the LS and $LS^{(-)}$ forces taking place in the QM Fermi-Breit interaction by the P-wave $\Lambda N - \Sigma N$ coupling in the ${}^{1}P_{1} - {}^{3}P_{1}$ state, when the G-matrix equation is solved especially in low-density nuclear matter. This is most prominently exhibited in the model FSS. The spin-orbit contribution from the effective-meson exchange potentials in fss2 does not lead to the sufficiently small ℓs splitting of the Λ hyperon, since the scalar-meson exchange LS force contains only the ordinary LS and does not produce the $LS^{(-)}$ force.

4. Summary

We have carried out $\Lambda \alpha \alpha$ Faddeev calculations by employing the $\Lambda \alpha$ LS Born kernel generated from the LS components of the nuclear-matter G-matrix for the Λ

4 Y. Fujiwara, M. Kohno, Y. Suzuki

hyperon. One of our SU_6 QM baryon-baryon interactions, FSS, can reproduce the very small ℓs splitting of ${}^9_\Lambda \text{Be}$ excited states, $\Delta E_{\ell s}^{\text{exp}} = 43 \pm 5$, when an appropriate k_F value corresponding to almost half of the normal saturation density is employed in the G-matrix calculation. The explicit value of k_F depends on the model construction even within the framework of the $\Lambda\alpha\alpha$ cluster model; $k_F = 1.02 \text{ fm}^{-1}$ for the model FSS, when the energy-independent renormalized RGM kernels are used for the $\alpha\alpha$ RGM kernel and for the QM baryon-baryon interaction. On the other hand, the model fss2 gives too large splitting of almost 200 keV, which is traced back to the uncanceled contribution of the scalar-meson exchange LS components. An essential ingredient of the present formalism is to take into account an important P-wave $\Lambda N - \Sigma N$ coupling through the antisymmetric $LS^{(-)}$ force involved in the Fermi-Breit interaction. The present results indicate that the spin-orbit contribution from the effective meson-exchange potentials in fss2 needs to be improved to reproduce the small spin-orbit interaction of the Λ hyperon in the nuclear medium. A new model for the ΛN interaction with consistent central and LS components is strongly desired.

Acknowledgments

This work was supported by Grants-in-Aids for Scientific Research (C) (Grant Nos. 18540261 and 17540263), and for Scientific Research on Priority Areas (Grant No. 20028003), and Bilateral Joint Research Projects (2006-2008) from the Japan Society for the Promotion of Science (JSPS). This work was also supported by the Grant-in-Aid for the Global COE Program "The Next Generation of Physics, Spun from Universality and Emergence" from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

References

- 1. H. Bandō, T. Motoba, and J. Žofka, Int. J. of Mod. Phys. A 5, 4021 (1990).
- 2. O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006).
- 3. K. Miyagawa and W. Glöckle, Phys. Rev. C 48, 2576 (1993).
- 4. A. Nogga, H. Kamada, and W. Glöckle, Phys. Rev. Lett. 88, 172501 (2002).
- 5. Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73, 044008 (2006).
- J. Haidenbauer and Ulf-G. Meißner, Phys. Rev. C 72, 044005 (2005).
- 7. E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, *Phys. Rev. Lett.* **85**, 270 (2000).
- 8. Y. Fujiwara, M. Kohno, K. Miyagawa, and Y. Suzuki, Phys. Rev. C 70, 047002 (2004).
- M. Kohno, Y. Fujiwara, T. Fujita, C. Nakamoto, and Y. Suzuki, Nucl. Phys. A674, 229 (2000).
- Y. Fujiwara, M. Kohno, T. Fujita, C. Nakamoto, and Y. Suzuki, Nucl. Phys. A674, 493 (2000).
- 11. Y. Fujiwara, M. Kohno, and Y. Suzuki, Nucl. Phys. A784, 161 (2007).
- 12. Y. Fujiwara, Y. Suzuki, and C. Nakamoto, Prog. Part. Nucl. Phys. 58, 439 (2007).
- 13. Y. Fujiwara, Y. Suzuki, M. Kohno, and K. Miyagawa, Phys. Rev. C 77, 027001 (2008).
- Y. Suzuki, H. Matsumura, M. Orabi, Y. Fujiwara, P. Descouvemont, M. Theeten, and D. Baye, Phys. Lett. B659, 160 (2008).