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Abstract. Geometric spanner is a fundamental structure in computational geometry and plays an im-
portant role in many geometric networks design applications. In this paper, we consider a generalization
of the classical geometric spanner problem (called segment spanner): Given a set S of disjoint 2-D seg-
ments, find a spanning network G with minimum size so that for any pair of points in S, there exists a
path in G with length no more than t times their Euclidean distance. Based on a number of interesting
techniques (such as weakly dominating set, strongly dominating set, and interval cover), we present
an efficient algorithm to construct the segment spanner. Our approach first identifies a set of Steiner
points in S and then construct a point spanner for the set of Steiner points. Our algorithm runs in
O(|Q|+n2 log n) time, where Q is the set of Steiner points. We show that Q is an O(1)-approxiamtion in
terms of its size when S is relatively “well” separated by a constant. For arbitrary rectilinear segments
and under L1 distance, the approximation ratio improves to 2.



1 Introduction

In this paper, we consider the following generalization of the classical geometric spanner problem: Given a
set O of n disjoint objects in Euclidean space and a constant t > 1, construct a graph G for O of minimum
size so that for any pair of points pi ∈ oi and pj ∈ oj , there exists a path P (pi, pj) in G whose total length is
at most t× d(pi, pj), where oi and oj are objects in O and d(pi, pj) is the Euclidean distance between pi and
pj . The path P (pi, pj) consists of three parts, P1, P2 and P3, where P1 and P3 are the portions of P (pi, pj)
inside oi and oj respectively. We assume that there implicitly exists an edge (or path) between any pair of
points inside each object o ∈ O. Thus, the objective of minimizing the size of G is equivalent to minimizing
the total number of vertices and edges between vertices in different objects. In this paper, we consider the
case where all objects are disjoint 2-D line segments.

Spanner is a fundamental structure in computational geometry and finds applications in many different
areas. Extensive researches have done on this structure and a number of interesting results have been obtained
[1–11]. Almost all previous results consider the case in which the objects are points and seek to minimize the
spanner’s construction time, size, weight, maximum degree of vertex, diameter, or combination of them.

A common approach for constructing geometric spanner is the use of Θ-graph [1–4]. In [5], Arya et al.
showed that a t-spanner with constant degree can be constructed in O(n log n) time. In [6, 7], they gave a
randomized construction of a sparse t-spanner with expected spanner diameter O(log n). In [9, 10], Das et al.
proposed an O(n log2 n)-time greedy algorithm for a t-spanner with O(n) edges and O(1)wt(MST ) weight
in 3-D space. Gudmundsson et al. showed in [11] that an O(n) edges, and O(1)wt(MST ) weight t-spanner is
possible to be constructed in O(n log n) time.

In graph settings, Chandar et al. [8] showed that for an arbitrary positive edge-weighted graph G and any

t > 1, ǫ > 0, a t-spanner of G with weight O(n
2+ǫ
t−1 )wt(MST ) can be constructed in polynomial time. They

also showed that (log2 n)-spanners of weight O(1)wt(MST ) can be constructed.

For geometric spanners of objects other than points, Asano et al. considered the problem of constructing
a spanner graph for a set of axis-aligned rectangles using rectilinear bridges and under L1 distance [12]. They
showed that in general it is NP-hard to minimize the dilation, and when the spanner graph is restricted to
be trees, the problem can be solved using a linear program. They also considered other simple graphs such
as paths and sorted paths, and presented polynomial time solution for each of them.

The spanner of segments problem considered in this paper is motivated by several interesting applications.
One of such applications is for constructing bridges between a set of buildings so that the path (traveling
through bridges) between locations in different buildings is close to their Euclidean distance [12]. Another
application appears in wireless mesh networks. In such networks, a set of wireless routers (or stations) are to
be installed in objects, such as streets or highways, so that for any pair of wireless devices in those objects
there exists a routing path for them with length close to their Euclidean distance. The rationale of such
distance requirement is for minimizing the total energy used for routing messages between them, as the
energy consumption is proportional to the path length.

To build a spanner of segments, we view the construction as a two-phase process. In the first phase, a set of
points (called Steiner points) are selected from each segment, and in the second phase, a spanner is constructed
for the set of Steiner points. Since the second phase can be completed by using existing spanner algorithms
(for points), our focus in this paper is thus on the first phase. Furthermore, since most existing spanners
are sparse graphs (i.e., consist of O(n) edges), minimizing the size of the segment spanner is equivalent to
minimizing the total number of Steiner points. Our objective is hence to obtain a spanner with a minimum
number of Steiner points.

Minimizing the number of Steiner points is in general quite challenging. Part of the reason is that the
position of a Steiner point on one segment affects not only the positions of the Steiner points on the same
segment but also on other segments. To overcome this difficulty, we first introduce the concept of weakly
dominating set to lower bound the number of Steiner points on one segment. By using some imaginary
segments and a few other interesting techniques, we are able to find a set of strongly dominating set for
each segment. We show that the size of the strongly dominating set is only a constant factor away from the
optimal solution for segments relatively separated by a constant. This gives us a constant approximation of
the minimum-sized spanner. Our algorithm can be easily implemented and runs in near quadratic time. We
also show that for arbitrary rectilinear segments and under L1 distance, the approximation ratio improves to
2.

Due to space limit, we omit a lot of details and proofs from this extended abstract.
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2 Preliminaries

Let S = {s1, s2, · · · , sn} be a set of n disjoint segments on a plane with each segment si = aibi, where ai

and bi are the left and right endpoints of si respectively (For a vertical segment, ai is the lower endpoint and
bi is the upper endpoint). A t-spanner GS of S is a network which connects the segments in S and satisfies
the following condition. For any two points pi and pj on segments si and sj in S, there exists a path (called
spanner path) of GS between pi and pj and with length no more than t× |pipj |, where t is the stretch factor
of the spanner and |pipj | is the Euclidean distance between pi and pj . The spanner GS contains two types of
line segments: input segments and segments connecting the input segments. We call the former segments and
the latter bridges to distinguish them. The intersections of segments and bridges are called Steiner points.

As mentioned in previous section, our main objective for the spanner GS is to minimize its size. The size
of GS is the sum of the number of vertices and edges. The vertices of GS include all endpoints of the input
segments and the Steiner points. The edges consist of bridges and subsegments fragmented by the Steiner
points. For a segment si with k Steiner points, the number of edges on si is bounded by O(k) (i.e. at most
k + 1). Thus, to minimize the size of GS , it is sufficient to minimize the total number of Steiner points and
bridges.

To simplify the optimization task, our main idea is to separate the tasks of minimizing the number of
Steiner points and the number of edges (i.e. bridges). For this, we consider the following approach: (1) First
compute a set Q of Steiner points with small size, and then (2) construct a spanner GQ for Q to minimize the
number of edges. The spanner GQ together with the edges on S forms a spanner for the set S of segments.
Thus, the key to building the spanner GS is to identify a small set of “good” Steiner points.

For a pair of segments si, sj ∈ S, the distance between them is defined as d(si, sj) = min
pi∈si,pj∈sj

|pipj |. The

distance from si to S is defined as di = min
j 6=i,sj∈S

d(si, sj). Let li be the length of si. The relative separation

ratio of si in S is defined as di/li and the relative separation ratio of S is min
si∈S

di/li. In this paper, we assume

that the set S of segments are “well” separated in a sense that its relative separation ratio is no less than ǫ
for some constant ǫ > 0. The rationale of this assumption is that in wireless networks, if two segments are too
close to each other, they can share a set of routers (or stations) and therefore can be viewed as one segment.

3 Minimizing the Number of Steiner Points

To ensure that the resulted network is a t-spanner for the set S of input segments, each segment in S has to
be well sampled by the set Q of Steiner points. More specifically, for any pair of points p1 and p2 on some
segments, there should be a pair of Steiner points q1 and q2 which are close enough to p1 and p2 respectively
so that the spanner path between q1 and q2 in GQ plus the edges (p1, q1) and (p2, q2) forms a spanner path
for p1 and p2 (see Figure 1). One way to meet this requirement is to place as many Steiner points as possible
along each segment. However, this could lead to a very large set of Q and results in a very large network
GS . Thus, to minimize the size of GS , we should compute such a Q that contains only barely enough Steiner
points to cover every pair of points on the input segments. Unfortunately, to compute such a set of Q is
actually quite challenging. Part of the reason is that the position of a Steiner point on one segment could
affect the positions of other Steiner points not only on the same segment but also on other segments. Thus, it
is desirable to isolate the interference between Steiner points on different segments. This leads us to consider
weakly dominating sets.

3.1 Weakly Dominating Set

To investigate how the Steiner points affect each other, we consider the problem of placing Steiner points
on two disjoint segments, s1 = a1b1 and s2 = a2b2. Let p1 and p2 be two arbitrary points on s1 and s2

respectively. Let q1 and q2 be two Steiner points on the neighborhoods of p1 and p2 respectively such that
the path p1 → q1 → q2 → p2 is a spanner path for p1 and p2. In this case, we say that q1 and q2 t-dominate
the pair of p1 and p2. Clearly, the positions of q1 and q2 are constrained by p1 and p2. If we fix p1, p2, and
one Steiner point q1, then all possible positions of the other Steiner point q2 form a (possibly empty) interval
IS(p1, p2, q1) (which is a function of p1, p2, and q1) on s2 (see Figure 1). When q1 moves along s1, the interval
changes accordingly (on its position and length). Similarly, if we fix the two Steiner points q2, q1, together
with p2, all points on s1 t-dominated by q2 and q1, with respect to p2, also form an interval ID(q2, q1, p2) on
s1. Since the spanner GS needs to guarantee that there exists a spanner path (or equivalently a t-dominating
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pair of Steiner points) from p2 to every point on s1, from p2’s point of view, it expects q2 to be in some
position such that s1 can be covered by a minimum number of q1’s, i.e. the union of ID(q2, q1, p2)’s covers s1.

Clearly, the total number of Steiner points needed to cover s1 depends on the positions of the Steiner
points on s2, and vice versa. When the number of segments increases, the influence of the Steiner points on
one segment will be propagated to all the others, making the optimization problem extremely difficult to
solve exactly. Thus, our objective is to achieve a good approximation. To shed some light on the property
of an optimal solution, we first consider lower bounding the problem, that is, finding a set of Steiner points
with size no more than that of the optimal solution.

To lower bound the total number of Steiner points in an optimal solution, our main idea is to lower bound
it for each pair of segments by isolating their Steiner point determination from that of the rest of the segments.
As discussed previously, for an arbitrary pair of points p1 ∈ s1 and p2 ∈ s2, the positions of their t-dominating
pair q1 and q2 are constrained by a function. To relax this constraint, when placing Steiner points on s1, we
assume that q2 can be placed at any arbitrary position on s2. Ideally, we assume that q2 always overlaps with
p2. Thus, we only need to consider the relation between q1 and p1. We say that q1 t-weakly dominates p1 and
p2 if the length of the path p1 → q1 → p2 is no more than t × |p1p2|. If q1 t-weakly dominates p1 and p2 for
every possible choice of p2 (while fixing p1), then we say q1 t-weakly dominates p1. Our objective is thus to
select a minimum number of points on s1 so that every point on s1 is t-weakly dominated by some selected
Steiner point. We call such a set of points as a t-weakly dominating set of s1.

s1

q2

s2

q1
p1

I(p1, p2, q1)

p2

Fig. 1. Steiner points on two segments.

αθ
s1

d(p1, s2)

e1re1l

s2

q1 p1 b1

r

a1

a2

b2

p2(q2)

Fig. 2. The interval of I(p2, p1).

3.2 Computing t-Weakly Dominating Set in a Brute-Force Manner

Let θ be the angle 6 a1p1p2, and e1l and e1r be the two endpoints of the interval IS(p2, p1, p2), i.e. the interval
of all possible positions of q1 while q2 coincides with p2 (see Figure 2). The range of I(p2, p1, p2) can be
determined by the following lemma.

Lemma 1. The two endpoints e1l and e1r locate on different sides of p1 with |p1e1l| = min{|p1a1|,
t2−1

2(t−cos θ) |p1p2|}

and |p1e1r| = min{|p1b1|,
t2−1

2(t+cos θ) |p1p2| }.

Proof. As shown in Figure 2, by the law of cosines, we know that |q1p2|
2 = |q1p1|

2+|p1p2|
2−2|q1p1||p1p2| cos θ

if q1 is on the left side of p1, or |q1p2|
2 = |q1p1|

2 + |p1p2|
2 + 2|q1p1||p1p2| cos θ if q1 is on the right side of

p1. By the spanner property, we have |p1q1| + |q1p2| ≤ t|p1p2|. Solving the system of the two equations, we

get either |p1q1| ≤
t2−1

2(t−cos θ) |p1p2| or |p1q1| ≤
t2−1

2(t+cos θ) |p1p2|. The lemma follows from the fact that q1 is on
s1. ⊓⊔

To find a point q1 t-weakly dominating p1, we need to make sure that q1 t-weakly dominates p1 and p2

for all possible choices of p2. That is, q1 has to be in the common intersection, denoted as I(p1, s2), of all
IS(p2, p1, p2)’s, i.e. q1 ∈

⋂
p2∈s2

IS(p2, p1, p2). The following lemma shows some property of I(p1, s2).

Lemma 2. |p1e1l| (or |p1e1r|) achieves its minimum either when e1l coincides with a1 (or e1r coincides with
b1), or p2 is at the endpoints of s2, or θ is one of the two constants depending only on s1, s2 and t.

Proof. We prove the lemma only for |p1e1l|, and the other part can be proved similarly.
Let d(p1, s2) be the shortest Euclidean distance from p1 to s2’s supporting line and r be the point that

achieves the shortest distance. Let α be the angle 6 a1p1r. See Figure 2 for an example. It is easy to see that

|p1p2| = d(p1,s2)
cos(α−θ) . Thus |p1e1l| = min{|p1a1|,

(t2−1)d(p1,s2)
2(t−cos θ) cos(α−θ)}. When p1, s2 and s1 are fixed, both d(p1, s2)

and α are fixed. Thus to achieve its minimum, fl(θ) = (t− cos θ) cos(α− θ) has to be maximized. Since fl(θ)
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achieves its maximum either when θ is the root of f ′
l (θ) = 0 or θ is the minimum or maximum in its domain

(i.e. when p2 is at the endpoints of s2), where f ′
l (θ) = sin(2θ−α) + t sin(α− θ) is the derivative of fl(θ). It is

easy to see that the equation of f ′
l (θ) = 0 has at most four roots. Among the four roots, there exists at most

two real roots that allow fl(θ) to achieve the maximum for all p1. W.l.o.g let θ1 and θ2 be the two roots, and
fl(θ1) ≥ fl(θ2) (See Figure 3 for an illustration). The lemma follows from the fact that the roots depend only
on t and α. ⊓⊔

From the above lemmas, we know that for each point p1 ∈ s1, its corresponding interval I(p1, s2) can be
obtained by evaluating the functions of |p1e1l| and |p1e1r| at O(1) possible values and taking the minimum.

To obtain a size-minimized t-weakly dominating set for s1, our basic idea is to let each t-weakly dominating
point be shared by as many points on s1 as possible. Thus, we consider the following greedy approach.

1. Mark all points on s1 as non-dominated.
2. Starting from the first non-dominated point on s1 (initially it is a1), walk along s1 until encounter the

first point pi, whose interval I(pi) overlaps at only one point, say qi, with the common intersection of the
intervals of all visited but non-dominated points.

3. Select qi as a weakly dominating point, and mark all points visited in Step 2 as dominated points.
4. Keep walking along s1 and marking points as dominated until the encountered point cannot be dominated

by qi.
5. Repeat Steps 2-4 until all points are dominated.

The following lemma shows that the above procedure minimizes the total number of points t-weakly
dominating s1.

Lemma 3. The set of t-weakly dominating points selected by the above procedure has the minimum size
among all sets of points t-weakly dominating s1.

Proof. We prove by contradiction. Let Qg be the set of t-weakly dominating points chosen by the above
greedy procedure. Suppose that there exists another set Qo of t-weakly dominating points which has smaller
size. We sort both sets along s1. Let the set of sorted points in Qg be {g1, g2, · · · , gk} and the set of sorted
points in Qo be {o1, o2, · · · , oj} with j < k. By the greedy choice, g1 is the rightmost point that can t-weakly
dominate the left endpoint of s1. Thus o1 either coincides g1 or is to its left. Now consider the two intervals
t-weakly dominated by o1 and g1, say Io1

and Ig1
. Step 4 of the greedy approach guarantees that Io1

’s right
endpoint either coincides or is to the left of Ig1

’s right endpoint. Consequently, by a similar argument, oi

either coincides or is to the left of gi for all 1 ≤ i ≤ j. Since oj is the rightmost t-weakly dominating point on
s1, it t-weakly dominates all points to its right. Therefore gj can also t-weakly dominate all points to its right
as it coincides or is to the right of oj . Thus, the t-weakly dominating points gj+1, · · · , gk are not necessary.
This contradicts the stop condition of the greedy procedure. ⊓⊔

Lemma 3 implies the following Corollary.

Corollary 1. The set of t-weakly dominating points selected by the greedy procedure lower-bounds the number
of Steiner points on s1 in an optimal solution.

3.3 Parameterization

The greedy procedure, although minimizes the size of the t-weakly dominating set, cannot be directly imple-
mented as it requires to check an infinite number of points on s1. To efficiently implement it, we consider the
following parameterization.

Let m be the parameter of p1 in its convex combination of the two endpoints of s1, i.e. p1 = (1−m)a1+mb1,
for m ∈ [0, 1]. Let L1,2(m) and R1,2(m) be the functions defining the positions of e1l and e1r (respectively)
on s1, i.e. L1,2(m) = m − |p1e1l|/|a1b1| and R1,2(m) = m + |p1e1r|/|a1b1|.

Consider the two functions when m increases from 0 to 1, it is possible that the beginning part of L1,2(m)
always has value 0 (because e1l = a1), and the ending part of R1,2(m) always has value 1 (because e1r = b1).
To simplify the discussion in this section, from now on we focus on the remaining part of the two functions,

and assume that |p1e1l| = t2−1
2(t−cos θ) |p1p2| and |p1e1r| = t2−1

2(t+cos θ) |p1p2|.

By Lemma 2, we know that, for each fixed m, L1,2(m) (or R1,2(m)) is the maximum (or minimum) of O(1)
values with each corresponding to the position of e1l (or e1r) at a fixed θ value. Let Θ = {θ1, θ2} be the real
roots of f ′

l (θ) = 0 (or f ′
r(θ) = 0) that allow fl(θ) (or fr(θ)) to achieve its maximum. Since Θ depends only on
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fl(θ2)
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θ

fl(θ)

Fig. 3. An illustration of the
function (t−cos θ) cos(α−θ).

0

1

m
1

R(m)

L(m)

Position function on m

g functions

h functions

truncated h functions

Fig. 4. An illustration of L1,2(m) and R1,2(m).

the input segments and t, it is the same for any p1 ∈ s1 and can be computed in advance. Let θa(m) and θb(m)
be the two angles 6 a1p1a2 and 6 a1p1b2 respectively (i.e. when p2 is at the two endpoints of s2). Notice that,

θb(m) ≥ θa(m) by our definition. Thus we have t2−1
2(t−cos θb(m)) ≤ t2−1

2(t−cos θa(m)) and t2−1
2(t+cos θb(m)) ≥ t2−1

2(t+cos θa(m)) .

Therefore, the position of e1l depends on θb(m) and that of e1r depends on θa(m).
L1,2(m) (or R1,2(m)) can be viewed as the the upper (or lower) envelope of up to three functions, gl

i(m)
(or gr

i (m)), 1 ≤ i ≤ 2, and hl(m) (or hr(m)), where gl
i(m) (or gr

i (m)) is the function of e1l (or e1r) when
θ = θi ∈ Θ, hl(m) is the function of e1l when θ = θb(m), and hr(m) is the function of e1r when θ = θa(m).
The following lemma shows some property of gl

i(m) and gr
i (m).

Lemma 4. Each gl
i(m) (or gr

i (m)), 1 ≤ i ≤ 2, is a linear function of m.

Proof. From the previous discussion, we know that |p1e1l| = (t2−1)d(p1,s2)
2(t−cos θ) cos(α−θ) . When θ is fixed to be the real

root θi ∈ Θ that maximizes fl(θ), |p1e1l| is a linear function of d(p1, s2). Since d(p1, s2) is the distance from
p1 to s2’s supporting line, clearly it is a linear function of m. Thus gl

i(m) is a linear function of m. The case
for gr

i (m) can be proved similarly. ⊓⊔

For θa(m) and θb(m), since their values depend on the position of p1 on s1, they are not constants and
their corresponding functions, hr(m) and hl(m), are non-linear. The following lemma shows some property
of them.

Lemma 5. Each of hl(m) and hr(m)) is either a monotone function or the concatenation of a monotonically
increasing function and a monotonically decreasing function.

Proof. We show this lemma only for hl(m), and hr(m) can be similarly proved. Let r0 be the foot of perpen-
dicular from b2 to s1, and m0 be the parameter of r0 in its affine combination of a1 and b1. Then we have

hl(m) = m − t2−1
2(t−cos θb(m))

|p1p2|
|a1b1|

= m − (t2−1)(m−m0)
2(t−cos θb(m)) cos θb(m) . Its derivative is

(hl(m))′ =
2t2 cos2 θb(m) − (t3 + 3t) cos θb(m) + t2 + 1

2(t − cos θb(m))2
.

Let x = cos θb(m). We get 2t2x2−(t3+3t)x+t2+1
2(t−x)2 = t2 − 3t3−3t

2(t−x) + (t2−1)2

2(t−x)2 = 1
2 ( t2−1

t−x − t)( t2−1
t−x − 2t). The function

has two roots, x1 = 1
t and x2 = 1

2 (t + 1
t ). Since 0 < x1 < 1 and x2 > 1, obviously x2 is not feasible since

−1 ≤ x = cos θb(m) ≤ 1. The derivative of hl(m) is decreasing on x when x ≤ 1
t ; increasing otherwise. This

shows that the function hl(m) can be partitioned into at most two pieces, with the first one monotonically
increasing on θb(m) and the second monotonically decreasing on θb(m). ⊓⊔

Lemma 6. hl(m) is an increasing function on θb(m) when θb(m) ≥ π/2; hr(m) is a decreasing function
on θa(m) when θa(m) ≤ π/2. Further, the derivatives of hl(m) and hr(m) both have a minimum value of
1
2 (1 + 1

t2 ).

3.4 Truncating the h Functions

Lemma 5 shows that each of hl(m) and hr(m) could be a bitonic function (i.e., an increasing function followed
by a decreasing function). Taking hl(m) as an example, the geometric meaning of this lemma is that, as p1

5



moves along s1 from left to right, the left endpoint of I(p1, s2) calculated by fixing p2 at b2 might move from
right to left at some positions.

In such a scenario, let pi be the first such point on s1 that the left endpoint eil of interval I(pi, s2) starts
to move “from right to left”. By Lemma 5, every point pj on s1 that is to the right of pi, will have its ejl

(calculated by the same function hl(m)) located to the left of eil. This means that if we replace the ejl by eil

for every such pj , we can make hl(m) a completely monotone function. Geometrically, this seems to truncate
the tail of hl(m) (i.e., the decreasing piece) and replace it with a constant function.

Based on the above lemmas and analysis, we have the following Corollary for L1,2(m) and R1,2(m). See
Figure 4 for an illustration.

Corollary 2. L1,2(m) (or R1,2(m)) is monotonically increasing after truncating hl(m) (or hr(m)), and can
be partitioned into O(1) pieces with each being either a portion of the hl(m) (or hr(m)) function or the gl

i(m)
(or gr

i (m)) function.

3.5 Computing t-Weakly Dominating Set

Now, we are ready to discuss our approach for selecting the t-weakly dominating set. Clearly the two functions
L1,2(m) and R1,2(m) together form a “band” B1,2 (see Figure 4). A horizontal line segment located within
the band represents the interval I(p1, s2) of a point p1 on s1 determined by the corresponding e1l and e1r

positions. An interval cover IC1,2 for B1,2 is a set of horizontal intervals inside B1,2 so that the union of each
interval’s vertical projection covers the domain of m (i.e., covers the interval [0, 1]). It is easy to see that
an interval cover for B1,2 corresponds to a t-weakly dominating set for s1. This is because each horizontal
interval uniquely determines a point on s1. Since every point on s1 is covered by some interval, it is thus
t-weakly dominated by the point corresponding to the interval. Thus, to find a t-weakly dominating set of
minimum size for s1, it is sufficient to find a size-minimized interval cover for B1,2.

Let L(m) = {l1, l2, . . . , ln1
} be the 2-D curve corresponding to the function of L1,2(m), where each segment

(li, li+1) corresponding a piece of the h or g function in L1,2(m). Similarly we have R(m) = {r1, r2, . . . , rn2
}.

The following algorithm gives an efficient solution to compute an interval cover.

1. Starting from r1, shoot a horizontal ray to the right, and let v1 be the intersection of the ray and L(m).

2. Shoot a vertical ray upwards from v1, and let v2 be the intersection of the ray with R(m).

3. Starting from v2, repeat the above steps until all the L(m) and R(m) are horizontally covered.

4. Return the set of the horizontal segments as the cover.

Figure 5 shows an example of the minimum interval cover. The ray shooting operation in the above
algorithm can be easily implemented by using the fact that the vertices of L(m) and R(m) are in sorted
orders.

Lemma 7. The above algorithm computes an interval cover of minimum size in O(|IC| + n1 + n2) time,
where |IC| is the size of the interval cover and n1 and n2 are the number of vertices in L(m) and R(m)
respectively.

Position function on m

1

m
0 1

R(m)

L(m)

Fig. 5. An example of the interval cover.

p1

s1

q2

s
′

2

s2

p2

q1

pM

Fig. 6. Imaginary Steiner point pM .
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3.6 Imaginary Steiner Points

A t-weakly dominating set Q in general is not sufficient to construct a t-spanner for S. Actually, even a
complete graph built on Q does not yield a t-spanner for S. This is because weak domination is based on
the assumption that there are an infinite number of Steiner points on the other segment(s), when comput-
ing weakly dominating points for one segment. However, once the assumption is removed, points from two
segments may no longer have a dominating pair.

Let p1 and p2 be two arbitrary points on segments s1 and s2 respectively, and q1 and q2 be their t-weakly
dominating points. Ideally, the path p1 → q1 → q2 → p2 should be a t-spanner path for p1 and p2, i.e.
|p1q1| + |q1q2| + |q2p2| ≤ t|p1p2|. Due to the weak domination, we only know |p1q1| + |q1q2| ≤ t|p1q2| and
|p2q2|+ |q2q1| ≤ t|p2q1|. If we add the two together, we have |p1q1|+ |q1q2|+ |q2p2| ≤ t|p1q2|+ t|p2q1| − |q1q2|.
Thus, to make q1 and q2 be a t-dominating pair for p1 and p2, we need to have t|p1q2|+t|p2q1|−|q1q2| ≤ t|p1p2|.

Our main idea for solving this problem is to introduce an imaginary Steiner point pM , which is the median
of p1p2, and use this imaginary Steiner point to help determining the dominating points for p1 and p2 (see
Figure 6). More specifically, when computing the interval I(p1, s2), we assume that there exists a Steiner
point pM at the median of p1p2 for every possible choice of p2 on s2. These imaginary Steiner points form
an imaginary “Steiner” segment s′2 for every p1 (See Figure 6 for an example). Thus instead of computing
I(p1, s2) directly, we can calculate I(p1, s

′
2) = ∩pM∈s′

2
IS(pM , p1, pM ). (I(p2, s

′
1) can be defined similarly.)

Steiner point q1 in such I(p1, s
′
2) is therefore a t-weakly dominating point for p1 and ∀pM ∈ s′2.

The following lemma shows that by using the imaginary Steiner point, we are able to obtain a t-dominating
pair for p1 and p2.

Lemma 8. Let q1 ∈ I(p1, s
′
2) and q2 ∈ I(p2, s

′
1) be t-weakly dominating Steiner points for p1 and p2 with

respect to their imaginary Steiner segments respectively. Then, q1 and q2 are a t-dominating pair for p1 and
p2.

Proof. Let pM be the median of line segment p1p2. By the definition of imaginary Steiner segment, pM is
contained in both s′2 and s′1. Since q1 t-weakly dominates p1 with respect to s′2, it t-weakly dominates p1 and
pM . Thus |p1q1| + |q1pM | ≤ t|p1pM |. Similarly, we have |p2q2| + |q2pM | ≤ t|p2pM |. Adding the two together,
we have t|p1p2| = t(|p1pM | + |p2pM |) ≥ |p1q1| + |p2q2| + |q1pM | + |q2pM |. By triangle inequality, we have
|q1pM | + |q2pM | ≥ |q1q2|. Thus, we have t|p1p2| ≥ |p1q1| + |q1q2| + |q2p2|. ⊓⊔

3.7 From Weakly Dominating Set to Dominating Set

The computation for I(p1, s
′
2) is almost the same as that for I(p1, s2). The only difference is that |p1p2| is

replaced by |p1pM | in the functions (given in Lemma 1) for e1l and e1r. For the new functions L̄1,2(m) and
R̄1,2(m) for e1l and e1r, we have the following lemma.

Let m1 be the parameter of p1 when e1l is at a1 (i.e., L1,2(m1) = 0 and ∀m1 < m ≤ 1, L1,2(m) > 0), and
m2 be the parameter of p1 when e1r coincides with b1 (i.e. R1,2(m2) = 1 and ∀0 ≤ m < m2, R1,2(m) < 1).

Lemma 9. L̄1,2(m) = (m + L1,2(m))/2 for m1 ≤ m ≤ 1; R̄1,2(m) = (m + R1,2(m))/2 for 0 ≤ m ≤ m2.

Proof. Since pM is the median of p1p2, |p1pM | = |p1p2|/2. The Lemma follows from the definition of the L
and R functions. ⊓⊔

Let HL be the longest maximal horizontal line segment within B1,2, and HS be the shortest maximal
horizontal line segment within B1,2.

Lemma 10. |HL|/|HS | ≤
1

(t−1)ǫ , where ǫ is the relative separation ratio of S.

Proof. A horizontal line segment within B1,2 satisfying R1,2(λ1) = L1,2(λ1′) represents a t-weakly dominating
point q determined by two points p1 and p1′ on s1 (corresponding to parameter λ1 and λ1′ respectively, see
Figure 7 for an example.). For p1, assume that the point on the segment s2 that allows e1r to achieve its
minimum is p2. For p1′ , assume that the point on s2 that allows e1′l to achieve its minimum is p2′ . Since q is the
t-weakly dominating point determined by such minimum p1e1r and p1′e1′l, they (q, e1r and e1′l) coincide at one
point. Then we have |p1e1r|+ |p2e1r| = |p1q|+ |p2q| = t|p1p2| and |p1′e1′l|+ |p2′e1′l| = |p1′q|+ |p2′q| = t|p1′p2′ |
(equalities are achieved because p1e1r and p1′e1′l are minimum). By triangle inequality, |p2q| ≤ |p1q|+ |p1p2|,
|p2′q| ≤ |p1′q|+ |p1′p2′ |. Hence, |p1q|+ |p1′q| ≥ (t−1)(|p1p2|+ |p1′p2′ |)/2. As we described before, the segments
in S are well separated with relative separation ratio ǫ, therefore |p1p2| ≥ ǫ|a1b1| and |p1′p2′ | ≥ ǫ|a1b1|. Thus
we have |HS | = (|p1q| + |p1′q|)/|a1b1| ≥ (t − 1)ǫ. The lemma follows from the fact that |HL| ≤ 1. ⊓⊔
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Position function on m

1

m
1

L(m)

R(m)

0

HL

p2′

p2

p1′p1 (e1r)q(e1′l)

λ1 λ1′ ’

HSq’s
parameter

Fig. 7. An example of HL and HS .

0

Position function on m

1

m
1

R(m)

L(m)

R̄(m)

L̄(m)δl

m4

δr

λ2λm3λ1

Fig. 8. An example of B1,2 and B̄1,2.

L̄1,2(m) and R̄1,2(m) form a “shrunk” band B̄1,2. A minimum-sized interval cover IC1,2 can also be found
within B̄1,2 by using the algorithm given in Section 3.5. We have the following lemma regarding the ratio
β = |IC1,2|/|IC1,2|.

Let δl = R1,2(0) and δr = L1,2(1). By Lemma 9, we have R̄1,2(0) = δl/2 and L̄1,2(1) = (1 + δr)/2. Let m3

and m4 be the parameter of p1 satisfying L̄1,2(m3) = δl/2 and R̄1,2(m4) = (1 + δr)/2 respectively.

Lemma 11. If δr ≥ δl, then β ≤
1

(t − 1)ǫ
·min{1+1/(2 min

m3<m<1
L̄′

1,2(m) − 1), 1+1/(2 min
0<m<m4

R̄′
1,2(m) − 1)},

where L̄′
1,2(m) and R̄′

1,2(m) are the derivative of L̄1,2(m) and R̄1,2(m) respectively.

Proof. We prove β ≤ 1 + 1/(2 min
m3<m<1

L̄′
1,2(m) − 1) first. Let H be any maximal horizontal line segment

within B1,2 with endpoints (λ1, R1,2(λ1)) and (λ2, L1,2(λ2)). Obviously, R1,2(λ1) = L1,2(λ2). Starting at point
(λ1, R̄1,2(λ1)), there exists a maximal horizontal line segment H̄ within B̄1,2 with right endpoint (λ, L̄1,2(λ)).
Clearly,λ ∈ [λ1, λ2] and R̄1,2(λ1) = L̄1,2(λ). Assume that we can extend L1,2(m) such that Lemma 9 can
be applied to all m ∈ [0, 1] (i.e., allow e1l to be placed to the left of a1; Note that this will not affect
bounding β). Hence by Lemma 9, (λ1 +R1,2(λ1))/2 = (λ+L1,2(λ))/2, i.e., R1,2(λ1)−L1,2(λ) = λ−λ1. Since
R1,2(λ1) = L1,2(λ2), we get L1,2(λ2) − L1,2(λ) = λ − λ1. By Mean Value Theorem (Note that the function
L1,2(m) is smooth when L1,2(m) > 0), we have L′

1,2(λ
′)(λ2−λ) = λ−λ1, where λ < λ′ < λ2. Thus |H|/|H̄| =

(λ2−λ1)/(λ−λ1) = 1+(λ2−λ)/(λ−λ1) = 1+1/L′
1,2(λ

′) = 1+1/(2L̄′
1,2(λ

′)−1). To bound β, consider each

interval H̄i ∈ IC1,2. Corresponding to H̄i, there is a maximal horizontal segment Hi within B1,2. If we consider

all possible |H̄i| and find the minimum, say |H̄i| = λ̃− λ̃1 with λ̃1 < λ̃ < λ̃2, we have |IC1,2| ≤
1

λ̃−λ̃1
. For the

corresponding |Hi| within B1,2, we have |Hi| = λ̃2 − λ̃1 ≥ |HS |. Consider each interval Hj ∈ IC1,2, we have

|Hj | ≤ |HL| such that |IC1,2| ≥
1

|HL| . Hence, β =
|IC1,2|

|IC1,2|
≤

|HL|

λ̃ − λ̃1

≤
λ̃2 − λ̃1

λ̃ − λ̃1

×
|HL|

|HS |
. Therefore, by Lemma

10, we can bound the ratio as β ≤ max
λ1<λ<λ2

(λ2 − λ1)

(λ − λ1)
×

|HL|

|HS |
≤

1

(t − 1)ǫ
(1+

1

2minλ<λ′<λ2
L̄′

1,2(λ
′) − 1

). Since

R̄1,2(0) = L̄1,2(m3), β ≤
1

(t − 1)ǫ
(1 +

1

2minm3<m<1 L̄′
1,2(m) − 1

).

The lemma follows as β ≤
1

(t − 1)ǫ
(1 +

1

2min0<m<m4
R̄′

1,2(m) − 1
) can be similarly proved. ⊓⊔

Corollary 3. If δr ≥ δl, then β ≤
1

(t − 1)ǫ
× min{1 + 1/ min

0<m<1
L′

1,2(m), 1 + 1/ min
0<m<1

R′
1,2(m)}.

Corollary 4. Let β[u,v] be the ratio of |IC1,2| over |IC1,2| in the interval [u, v]. Then, β[u,v] ≤
1

(t − 1)ǫ
×

min{1 + 1/ min
u≤m≤v

L′
1,2(m), 1 + 1/ min

u≤m≤v
R′

1,2(m)}, for all 0 ≤ u < v ≤ 1.

Now, we are ready to bound β in term of t and other constants.

Lemma 12. β ≤ 1
(t−1)ǫ × max{1 + 2fl(θ2)

2fl(θ2)−(t2−1) cos α , 1 + 2fr(θ2)
2fr(θ2)−(t2−1) cos α , 3 − 2

t2+1}.

Proof. If δr ≤ δl, one Steiner point is sufficient to t-weakly dominate s1. Since the t-dominating interval of
a point p1 is always half of its t-weakly dominating interval, by choosing q, a1 and b1 as the Steiner points,
they are sufficient to t-dominate s1. In this case, we have β ≤ 3.

Thus, from now on we assume δr > δl. We consider two cases based on the pieces of L1,2(m).
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1. For the parts of L1,2(m) determined by the linear gi functions, we have

min L′
1,2(m) = min

θi∈Θ
{1 −

(t2 − 1) cos α

2(t − cos θi) cos(α − θi)
} = 1 −

(t2 − 1) cos α

2fl(θ2)
.

2. For the parts of L1,2(m) determined by hl(m), notice the fact that θb(m) decreases when m increases. Let
mb be the parameter of p1 such that θb(mb) = π/2. Thus, θb(m) > π/2, for 0 ≤ m < min{mb,m2}, and
θb(m) < π/2, for max{0,mb} < m ≤ 1. (Note that one of the two intervals in the above two inequalities
might be empty.)

(a) For m ∈ [0,min{mb,m2}], by Lemma 6 we have min L′
1,2(m) = min

dhl

dm
≥

1

2
(1 +

1

t2
).

(b) For m ∈ [max{0,mb}, 1], we have two subcases.

i. If R1,2(m) is determined by the linear gi functions, we have min R′
1,2(m) = 1 −

(t2 − 1) cos α

2fr(θ2)
.

ii. If R1,2(m) is determined by hr(m), we have θa(m) ≤ θb(m) ≤ π/2. By Lemma 6, min R′
1,2(m) =

min
dhr

dm
≥

1

2
(1 +

1

t2
).

Combining all the cases, the lemma follows from Corollary 4. ⊓⊔

Notice that the ratio β in the above lemma is O(1) since fl(θ2), fr(θ2), t and ǫ are all constants.

3.8 From Dominating Set To Strongly Dominating Set

By using the imaginary Steiner points mentioned above, we can find a minimum-sized t-dominating set for s1

with respect to another input segment s2. The idea of imaginary Steiner points can be easily extended to a
set S of segments and generates the set of t-strongly dominating points on each input segment. The following
lemma shows that to determine the t-strongly dominating points on s1 we only need to consider a subset of
the input segments.

For any two segments si and sj in S, we say that si and sj are weakly visible to each other if there exists
a pair of points pi ∈ si and pj ∈ sj such that pi and pj are visible to each other (i.e., the segment pipj does
not intersect the interior of any other input segment).

Lemma 13. To compute a t-strongly dominating set of an arbitrary segment s1, it is sufficient to consider
only those segments weakly visible to it.

The above lemma suggests us the following algorithm for computing a t-strongly dominating set for S.

1. For each segment si ∈ S, compute the set WVi of segments which are weakly visible to si.
(a) For each segment sj ∈ WVi, compute the g and h functions for si with respect to sj .
(b) Determine Li,j(m) and Ri,j(m) by computing the upper and lower envelopes of the set of g and h

functions.
2. Let Li(m) be the upper envelope of the set of Li,j(m) functions, and Ri(m) be the lower envelope of the

set of Ri,j(m) functions.
3. Determine L̄i(m) and R̄i(m) with the help of the imaginary Steiner points.
4. Compute an interval cover ICi for the band formed by L̄i(m) and R̄i(m).
5. For each interval in ICi, determine its corresponding t-strongly dominating Steiner point.

Firstly we show that the ratio βi of |ICi| to |ICi| is still bounded by a constant.
Consider si and the set of segments WVi = {s1, s2, . . . , ski

} which are visible to si. For each pair of
segments si and sj , sj ∈ WVi, we have a pair of parameterized functions Li(m) and Ri(m). It is not difficult
to see that both Li(m) and Ri(m) are piecewise smooth.

Lemma 14. Let βi[u,v] be the ratio of ICi to ICi in the interval [u, v]. Then,

βi[u,v] ≤
1

(t − 1)ǫ
× min{1 + 1/ min

0<m<1
Li(m), 1 + 1/ min

0<m<1
Ri(m)}.

Proof. Notice that if Li,j(λ) < Li,k(λ), then L̄i,j(λ) < L̄i,k(λ). Same property holds for the Ri,j(m) functions.
This property ensures that the ideas used in the proof of Lemma 11 can still be applied on each smooth piece.

⊓⊔
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Lemma 15. Let K1 = max
∀si,sj∈S

2fl(θ2)

2fl(θ2) − (t2 − 1) cos α
and K2 = max

∀si,sj∈S

2fr(θ2)

2fr(θ2) − (t2 − 1) cos α
. Then,

βi ≤
1

(t−1)ǫ × max{1 + K1, 1 + K2, 3 − 2
t2+1}.

Proof. The lemma follows from Lemma 14 and a similar argument in Lemma 12.

Lemma 16. The above algorithm computes a t-strongly dominating set for S in O(|Q|+n2 log n) time, where
|Q| is the size of the computed t-strongly dominating set.

Proof. In [13], it has shown that two segments si and sj are weakly visible from each other if and only if one
endpoint of si or sj sees a point on the other segment or there is at least one edge in the extended visibility
graph [14] of S which is intersected by both s1 and s2. To check the first case, for an endpoint of si and
another segment sj , it takes O(n log n) time by solving the point location problem. The second case can be
checked for all segments in S when computing the extended visibility graph in O(n2) time [14]. Therefore,
computing all pairs of the weakly visible segments for S takes O(n2 log n) time. The envelops of Li(m) and
Ri(m) can be computed in O(|WVi| log |WVi|) time using a plane sweep algorithm. Thus the total time for
this step is O(n2 log n). And for each interval covering problem solved in the algorithm, the running time is
linear in terms of the interval cover’s size. The total time is hence O(|Q|). ⊓⊔

With the previous lemmas, we have the following theorem.

Theorem 1. For a set S of n disjoint 2-D segments with constant relative separation ratio, a set of t-strongly
dominating Steiner points whose size is an O(1)-approximation of (the size of) the optimal solution can be
computed in O(|Q| + n2 log n) time, where |Q| is the size of the set of Steiner points.

4 Minimizing the Size of the Segment Spanner

Previous section shows how to obtain a small set Q of (t-strongly dominating) Steiner points for a set of
segment S. The size of Q is no more than β × |OPT |, where OPT is the set of optimal Steiner points and β
is a function of the stretch factor t. To complete the construction of the segment spanner, bridges are added
between the selected Steiner points using some existing spanner algorithms for points. The spanner of the
Steiner points introduces another stretch factor, say t2. Let the stretch factor in the Steiner point selection
be t1. Thus, to ensure the resulting segment spanner have a stretch factor t, we need to have t = t1 × t2. An
interesting question is how to select t1 and t2 so that the size of spanner is minimized.

To answer this question, consider an optimal solution O. Let N be the number of Steiner points in O, and
M be the number of bridges in O. It is easy to see that O contains: i) 2n endpoints and N Steiner points; ii)
N + n subsegments and M bridges. Therefore |O| = 3n + 2N + M . Recently, [15] shows that given a set of
n0 points S, in the worst case, any graph with n0 − 1 + k edges on S has dilation at least 2n0

π(k+1) . That is to

say, as a t-spanner for the input segment, O needs to contain at least M = 2N/πt + N − 2 edges. Therefore
|O| ≥ 3n + 3N + 2N/πt − 2.

Consider a spanner A generated by our algorithm. Let M ′ be the number of bridges in A. A contains: i)
2n endpoints and βN Steiner points; ii) βN +n subsegments and M ′ bridges. Therefore |A| = 3n+2βN +M ′.
Again, in [15], the authors give an algorithm that for a set of n0 points S, finds a spanner on S with at most
n0 − 1 + k edges and dilation O( n

k+1 ). Thus if using the algorithm in [15], we have t2 = O( βN
M ′−βN+2 ) =

c·βN
M ′−βN+2 . Therefore M ′ = c · βN/t2 + βN − 2 and |A| = 3n + 3βN + c · βN/t2 − 2. To achieve the best

approximation ratio, we can minimize the ratio |A|
|O| ≤ 3n+3βN+c·βN/t2−2

3n+3N+2N/πt−2 . Since β is a function of t1 and

t1t2 = t, we can choose t1 and t2 to minimize |A|/|O|.

5 Constructing t-Spanner for Rectilinear Segments Under L1 Distance

In this section we consider a special case of the segment spanner problem in which a better approximation
can be obtained.

Assume that the input is a set S of rectilinear segments, and the distance function is based on the L1

distance (i.e., the Manhattan distance). We have the following theorem. The details of the algorithm and the
proof are left for the full paper.

Theorem 2. Given a set of n rectilinear segments, a set of t-strongly dominating set of Steiner points with
size no more than 2 × |OPT | can be computed in O(|Q| + n2 log n) time.

Notice that in this theorem, the segments are not required to be well separated.
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