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Optimizing the Sum of Linear Fractional Functions and Applications

Danny Z. Chen*  Ovidiu Daescu*f

Yang Dait

Naoki Katoh¥  Xiaodong Wu*

Jinhui Xu*Y

Abstract

The problem of optimizing the sum of m linear fractional
functions (SOLF) in a fixed dimension d, subject to n linear
constraints, arises in a number of theoretical and applied ar-
eas. This paper presents an improved algorithm for solving
the SOLF problem in 2-D. A key subproblem to our solution
is the off-line ratio query (OLRQ) problem, which computes
the optimal values of a sequence of m linear fractional func-
tions (called ratios), with the ratios subject to a dynamically
changing feasible domain defined by O(n) linear constraints.
Based on useful geometric properties and the parametric lin-
ear programming technique, we develop an algorithm that
solves the 2-D OLRQ problem in O((m + n)log(m + n))
time. Our OLRQ algorithm can be easily implemented and
is robust. More importantly, it enables us to speed up every
iteration of a known iterative SOLF algorithm in 2-D, from
O(m(m + n)) time to O((m + n)log(m + n)). Implemen-
tation results of our improved SOLF algorithm have shown
that in most cases our algorithm outperforms the commonly-
used approaches for the SOLF problem. We also show that
several geometric optimization problems can be formulated
as 2-D SOLF problems, and hence are solvable by our algo-
rithm.

1 Introduction.

The problem of optimizing the sum of linear fractional
functions (SOLF) is defined as follows:
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such that for each i = 1,2,...,m,
ni(x1,...,24) and d;(x1,...,24) are lin-
ear functions in a fixed d-D space RY,
di(z1,...,xq) # 0 for any (z1,...,24) € S,
the feasible domain S is defined by n linear

constraints (i.e., half-spaces in R?), and
ni(21,..-,24)

S # ¢. Each linear fractional term TR

is called a ratio.

The SOLF problem appears in the algorithmic so-
lutions for several geometric optimization problems. In
layered manufacturing, Majhi et al. [17], [18] showed
that the length-optimal supports for a simple non-
convex polygon can be obtained by solving the 1-D
SOLF problem on an interval. Arkin et al. [1] for-
mulated the problem of finding a minimum-area star-
shaped or monotone polygon that contains a simple
polygon, which appears in material layout [1], [8], [21]
(e.g., cloth manufacturing) and manufacturing [18], as
one of optimizing the sum of 2-D fractional polynomials
of degrees 3 and 2 under linear constraints. We will show
that the objective function of this problem can actually
be simplified to the 2-D SOLF form. For the problem
of finding optimal penetrations among weighted regions
[5], we shall show that the L; and L versions of this
problem have the 2-D SOLF problem as a key subprob-
lem. The SOLF problem also arises in other areas. For
example, in combinatorial optimization, a class of prob-
lems on finding a structure with the maximum (or min-
imum) mean-weight cost can be solved by optimizing
some linear fractional functions [23]. In operations re-
search, it was shown in [11], [24] that many economic
applications (e.g., maximization of productivity, return
on investment, and return/risk) can be reduced to solv-
ing the SOLF problem.

Quite a few solutions have been given for the SOLF
problem [1], [11], [15], [17], [18], [25]. It is interesting
to note that the SOLF related problems were originally
studied in economic applications, where the number of
variables is usually much bigger than the number of
fractional terms. As a result, many previous SOLF
algorithms were designed to target problems with only
a few fractional terms (less than 10) for a reasonable



running time [11], [15], [25]. On the other hand,
there are some general-purpose heuristic packages which
can generate local optimal solutions [13], [14], [20].
However, they usually run in a long time yet obtain
solutions without quality guarantee.

In geometric applications, however, the dimension
of the SOLF problem is often low (e.g., 2 or 3), while
the number of terms in the objective function can
be quite big (hundreds or even thousands) [1], [5],
[17], [18]. In consequence, most previous approaches
have difficulties in dealing with SOLF problems of
this nature. A commonly-used approach by known
geometric algorithms is to reduce the SOLF problem
to computing all real roots of a system of high degree
polynomial equations [1], [17], [18]. For an objective
function in d-D (i.e., having d variables) consisting of
m linear fractional terms, there can be O(m?) roots.
The time for computing all the roots essentially depends
on the conditioning of these roots. To compute an ill-
conditioned root, substantially long precision is needed
in order to attain a certain degree of accuracy, thus
increasing the computation time significantly. Clearly,
the situation worsens as the number of ill-conditioned
roots increases. Another drawback of the root-finding
approach is the cost and possible numerical errors
of the construction of the polynomial system from
the SOLF problem. For example, even in 2-D, each
coefficient in the polynomial system is computed from
O(m) coefficients of the SOLF problem (by performing
O(m?) multiplication and addition operations). Hence,
it is likely that numerical errors are introduced to
the coefficients of the polynomial system, making the
solution for the SOLF problem incorrect. Further, the
overhead of O(m?) time for creating the polynomial
system can be quite significant for a large m.

Falk and Palocsay [11] gave an interesting iterative
algorithm (we call it the FP algorithm) for solving
the general SOLF problem in any fixed dimension. In
this paper, we present an improved solution in 2-D.
By exploiting useful geometric properties and using the
parametric linear programming technique, we are able
to speed up the 2-D FP algorithm considerably.

A key subproblem to our algorithm is the following
2-D off-line ratio query (OLRQ) problem:

Given M linear ratios r1, ro2, ..., Ty and a
set C' of N linear constraints in 2-D, such
that N > M and the feasible domain defined
by the constraints in C is nonempty, find the
mazimum value of each ratio r; subject to the
constraints in C — C;, where C; C C, |C;] is
a constant, the denominator of each r; is non-
zero on each of its feasible points, and for any
1,] € {1,2,...,M}, C,’ﬂCj =¢ifi#£j.

It turns out that the OLRQ problem constitutes a key
step to the iterative FP algorithm [11]. We treat the
computation on each ratio r; as a query, and maintain
a data structure for processing such queries (on the
dynamically changing constraints).

In [11], the computation on one ratio is done
independently of another; further, such a computation
in 2-D is transformed to a 3-D linear programming
(LP) problem. Thus, solving the 2-D OLRQ problem
in the fashion of [11] would take O(MN) time (by
using Megiddo’s 3-D LP algorithm [19]). From the
view point of processing ratio queries, one could make
use of the best known dynamic 3-D LP algorithms
[3], [10]. But, these algorithms are rather complicated
to implement, and solving the 2-D OLRQ problem
in this way would take O(NlogN + Mﬁg;lévm)
time, by using Chan’s algorithm [3]. By combining
the parametric linear programming technique [24] with
some interesting geometric observations, we develop a
rather simple O((M + N)logN) time algorithm for
the 2-D OLRQ problem. Our algorithm is robust, as
ensured by a robustness theorem.

By making use of our OLRQ algorithm and by other
modifications, we reduce the time bound of each iter-
ation of the iterative FP algorithm in 2-D [11] from
O(m(m + n)) to O((m + n)log(m + n)). Our prelimi-
nary implementation results on the improved SOLF al-
gorithm show that, in most cases, our approach outper-
forms the root-finding approaches and some commonly-
used global optimization methods. Furthermore, since
our approach directly computes one optimal value in-
stead of finding all the real roots, in some degree it
may avoid the problem of handling many ill-conditioned
roots, and it appears to use less space than the usual
root-finding approaches.

As applications, we show that the problem of com-
puting a minimum-area star-shaped (resp., monotone)
polygon to cover a simple polygon [1], [8], [21] (called the
star-cover or monotone-cover problem) and the problem
of determining an optimal penetration among weighted
2-D regions [5] (called the penetration problem) under
the L; and L, metrics can all be reduced to solving a
set of O(n?) (resp., O(n)) instances of the 2-D SOLF
problem. Each such problem instance involves a sum
of O(n) linear fractional functions over a convex do-
main, and thus is solvable by our 2-D SOLF algorithm.
By using topological peeling [6] to traverse an arrange-
ment of O(n) lines, the O(n?) SOLF instances can be
generated one by one in O(n?) time and O(n + Sr(n))
space, where Sy(n) is the maximum space used by the
SOLF algorithm on each problem instance. In compari-
son, the algorithm in [1] for the star-cover problem uses
O(n? + S,(n)) space, where S,(n) is the space used in



finding all O(n?) roots of an O(n)-degree polynomial
system with two variables.

Due to the space limit, we omit the proofs of some
lemmas from this extended abstract.

2 The Off-Line Ratio Query Problem.

In this section, we show how to solve the 2-D off-
line ratio query (OLRQ) problem in O((M + N)log N)
time. Our algorithm, based on the parametric linear
programming technique, is actually quite simple. We
will first sketch our ideas for handling a single ratio
query over a convex polygonal domain by parametric
linear programming, and then describe a data structure
for efficiently processing the sequence of M ratio queries.

2.1 Parametric Linear Programming over a
Convex Polygonal Domain. We first consider the
following problem.

ni(z,y) _ az+tbytc

PROBLEM 1. Mazimize ri(z,y) = Tlzy) = daterts’
subject to (z,y) € S in 2-D, where S is defined by N

linear constraints, S # ¢, and d;(x,y) # 0 for any point
(x,y) €8S.

For this problem, we further assume that the common
intersection S of the N half-planes (specified by the
N linear constraints) is already computed and is rep-
resented as an O(N)-vertex convex polygon (possibly
unbounded with some vertices at infinity). We also as-
sume that a simple O(NN)-time preprocessing has been
done on S to associate certain information with the ver-
tices of S (this will be discussed later).

Since the domain S is convex, the maximum value
of r;(z,y) is actually attained at a vertex of S, as shown
in [24]. This immediately implies a brute-force method:
First evaluate the value of r;(z,y) at every vertex of S,
and then take the maximum among the resulted O(N)
candidate values. This method takes O(N) time once
S is available, but using it to solve the OLRQ problem
would yield an expensive O(M N) time algorithm. To
obtain a better solution, we consider the parametric
version of the objective function r;(z,y) = ni(@y) —

di(zy) —
az+by+c

dotertf OO S, ie.,

fi(A) = max {ni(z,y) — Ad;(z,y)},

(z,y)eS

The function f;(\) is a parametric linear function. It is
clear that for any given value X', the value of f;(\') is the
solution to an LP problem P()\') on S whose objective
function is n;(z,y) — N'd;(z, ).

It is known [24] that maximizing r;(z,y) on S
is equivalent to computing the root A\* of f;(A\) = 0
(i.e., the maximum value of 7;(z,y) occurs at A*). To

compute \* efficiently, we make use of the fact that
the curve of f;(\) is monotone and piecewise linear
[23]; moreover, for all values of A corresponding to each
linear piece of f;(A), fi;(\) actually attains its values
at the same vertex of S, say v. The union of all A
values (at vertex v) for a linear piece of f;(\) forms
an interval on the A-axis, denoted by vy. Also, note
that the slope of the parametric line n;(x, y) — Ad;(z,y)
changes monotonically with respect to A.

For a given ), the slope sy of the objective function
ni(x,y) — Md;(z,y) of the LP problem P()\) determines
O(1) vertices on the boundary of S such that each of
them has a tangent line with slope sy. Obviously, one
of them is the optimal point for P()), i.e., the vertex
of S at which f;(\) attains its value. The slopes of
all tangent lines at any vertex v of S clearly form an
interval, which we denote by I,, (I, may contain +oo or
—o0). Hence, to decide whether a vertex v of S is one
of the O(1) candidates for the optimal point of P(\)
(i-e., at such a candidate vertex f;()) is evaluated for
its value), one only needs to check whether I, contains
sx. Due to the monotonicity, every slope interval I,
corresponds to one A interval v).

LEMMA 2.1. Let vypper and Viower be two vertices on
the upper and lower boundaries of S respectively, such
that Iy,,,., ond I, both contain the slope ’Tfi Then
the wvalues in vy change monotonically while visiting
the wvertices v by walking counterclockwise along the

boundary of S either from Vypper t0 Viower OT from vipwer
10 Vupper -

Lemma 2.1 and the properties of f;(A) imply that
we can perform a binary search on the vertices of S to
find out at which vertex the root A* of f;(\) lies. Sup-
pose the search is visiting a vertex v for a value A (i.e.,
vy contains A). Without loss of generality (WLOG), we
assume that v is on the upper boundary of S. To com-
pute f;(X) correctly, we need to find the vertex v’ on the
lower boundary of S, such that v} also contains A. To
be able to locate v' quickly, we assume that a prepro-
cessing on the vertices of S has already associated with
v the list of all of its antipodal vertices [22], in the coun-
terclockwise order. Actually, to represent the antipodal
vertex list of v, it is sufficient to store the starting and
ending vertices lapd(v) and rapd(v) of the list (called
extreme antipodal vertices). Given S, this preprocess-
ing can be easily done in O(N) time [22]. With the
antipodal vertex information already available for each
v, the algorithm below computes the root A* of f;(}\) in
O(log N) time. Let the vertices of S be ordered counter-
clockwise along its boundary and next(v) and pred(v)
denote the successor and predecessor of a vertex v in
this order.



1. Let vfirst be Vupper and viase be Viower (assume
Vupper a0 Viower have been identified in the pre-
processing).

2. Compute the slope sy of the line through both
Vfirst and next(vyirs:) and the slope s; of the line
through both vj,s; and pred(viest). Determine the
values Ay and ); for sy and s;.

3. Compute f;(Af) and f;(A;). If they both have
the same sign, then evaluate 7;(x,y) at Vypper and
Viower and take the maximum as the solution.

4. Otherwise, compute f;(Ami) and fi(Amr), where
At and A, are the two extreme A\ values asso-
ciated with the middle vertex v,,;q of the list of
vertices from vyirs¢ tO Vigst- Determine which half
of the vertex list contains the root, and recursively
search on the appropriate half.

5. If only one vertex is left in the list, say v, then
evaluate r;(z,y) at v, and also perform a binary
search on the vertices from lapd(v) to rapd(v), in
order to determine the root.

LEMMA 2.2. The above algorithm correctly computes
the root \* of fi()\) in O(log N) time provided that the
operations of finding the median, successor, predecessor,
and extreme antipodal vertices can be performed in
constant time each, where N is the number of vertices

of S.

2.2 Sequence of Off-Line Ratio Queries. We now
show a sequence of M 2-D ratio queries r1,7r2,...,7
(r; on constraints in C' — C;) can be efficiently processed
by means of a data structure. Although the M queries
are on different domains, these domains differ from each
other at only O(1) constraints. Hence, it is possible to
maintain an efficient data structure for these changing
domains (as well as other useful information such as
the antipodal vertex list of each vertex of every convex
polygonal domain) in an off-line fashion.

Our OLRQ algorithm is based on the structure
of layers of common intersections of half-planes in C,
which is defined as follows:

1. Let CL; be the common intersection of all half-
planes in C, and let it be the common intersection
of layer 1. (Note that CL; # ¢ since CL; = S.)

2. Remove from C all the half-planes whose bound-
aries contain a boundary edge of C'L;.

3. Repeat steps 1 and 2 to define the common inter-
sections of layers 2, 3, ..., until C' = ¢.
Figure 1 gives an example for the layers of common in-
tersections of C'. Note that these layers of common in-
tersections of the half-planes are closely related, through
a geometric duality [22], to Chazelle’s convex layers of
a planar point set [4].

Figure 1: The expansion of a cap bdfhi. The dashed
lines represent the removed constraints.

Let k = 1 + maxi<;<m{|C;|}. It is easy to ob-
serve that each of the M domains for the ratio queries
contains the common intersection S = C'L; of all half-
planes of C; further, all these domains are contained
inside the k-th common intersection layer (if it ex-
ists). Based on this observation, we only need to make
use of the first k& (convex) common intersection lay-
ers CLy,CL,,...,CLy of the N linear constraints of
C. These k convex layers can all be computed in
O(N log N) time by using Chazelle’s algorithm [4], with
each convex layer being stored in an array. Once this
k-layer structure is available, the M domains can be
constructed easily, by removing certain specified con-
straints.

More precisely, for a query r;, if there is no half-
plane hp (i.e., constraint) in C; whose boundary line
I(hp) contains an edge of the boundary bd(CL;) of CLy,
then the domain of r; is C'L;. Otherwise, assume the
boundary line I(hp) of a half-plane hp € C; contains an
edge of bd(CL;). To obtain the domain of r; defined by
C—C;, weneed to “expand” C'Ly onto C' Ly by removing
I(hp) from bd(CL1). The removal of I(hp) causes CL;
to expand along the two neighboring lines, l;.y; and
lyight, of I(hp) on bd(CLy). That is, a convex polygon
@ which is bounded by I(hp), lieft, lrignt, and possibly
bd(C L) and which is to the right of [(hp) Nbd(CL,) (as
we walk along bd(CL;) counterclockwise) is attached
to CLy. Let ljcgy and lyign; intersect bd(C'Ls) at two
points p; and p,, respectively. The expanded convex
polygon @ is called the cap of hp, denoted by cap(hp).
Note that l;cf; and l;4n+ may intersect each other at a
point p before they touch bd(CL,), and if this is the
case, cap(hp) is the triangle ppiesipright, where press
(resp., Pright) is the intersection of I(hp) and ¢4 (resp.,
lyight)- If a boundary edge of D; = cap(hp)UC'L; lies on
I(hp') of another half-plane hp' € C; (e.g., the half-plane
bounded by jg in Figure 1), then we similarly expand
D; onto CLs or C'L3, and so on.



It is not hard to see that each expansion (caused
by the removal of a half-plane in C;) can be done in
O(log N) time, since it performs O(1) binary searches
on one of the k convex layers (for computing its intersec-
tions with two lines). Thus for each query r;, its O(k)
caps can all be obtained in O(log N) time.

After all the caps of r; are found, we need to
compute the antipodal vertices for the vertices on the
boundary of the union of these caps and CL;. The
information on such antipodal vertices is needed for
handling the query r;, as shown in Subsection 2.1. We
can show that it is possible to compute the antipodal
vertices for all the M ratio queries in altogether O(M +
N) time (the details on this computation and analysis
are a little tedious and are left to the full paper).

THEOREM 2.1. The OLRQ problem can be solved in
O((M + N)log N) time and O(M + N) space.
for

3 Robustness Theorem Optimizing

Fractional Functions.

In this section, we first prove a robustness theorem for
optimizing a fractional function in any fixed dimension
d, and then use this theorem to ensure the robustness
of our OLRQ algorithm.

Let P be the primal problem of optimizing a
fractional function:

PROBLEM 2. Mazimize r(z) = %, subject to x €
S CR?, where b € R and S is the feasible domain of x.

We also assume that g(z) > 0 for all z € S and b > 0.
The essence of these conditions on g(z) + b is to ensure
that g(x) does not get arbitrarily close to zero in S, i.e.,
b is a non-zero constant lower bound on how close the
denominator can get to zero. Hence, it will be fine if
we have g(z) <0 for all z € S and b < 0 (in this case,
the conditions of problem P are satisfied since we can
simply change the signs for both h(z) and g(z) + b).
Associated with problem P, we consider its parametric
version Q(A) with a linear parameter \:

PROBLEM 3. Mazimize h(x)—Ag(x), subject tox € S C
R?, where A € R.

Let z(\) and v()) be the optimal solution and the
objective value of problem (), respectively. Let \*
satisfy v(A*) = A*b, i.e., A\* is the optimal objective
value of P. WLOG, assume that A* > 0. Notice that
v()\) is nonincreasing in A due to g(z) > 0. We shall
show the following theorem.

THEOREM 3.1. Let 2’ be a feasible solution of P such
that

(3.1) v\)=d<h(=) - Ng(') <ov(XN)+34,

(3.2) -8 < h(z") = N(g(z") +b) <é.

Then x' is an e-approxzimate solution of problem P,
where § = %.

Intuitively, the theorem says that if we have an
approximate solution z' of Q(X") such that the objective
value of Q()\') is almost zero, then z' is an approximate
solution of P. This implies a useful robustness property
of the linear fractional problem we consider.

LEMMA 3.1. If a solution x' satisfies (3.1) and (3.2),
then \*b— 6 < h(z') — Mg(z') < X*b+ 6.

Proof. It X' < X*, then we have, from (3.1) and v(A\*) =
A*b, that A*b—0 = v(A*)—0 < v(N)—d < h(z')—Ng(z').
We also have from (3.2) that h(z') —Ng(z') < Nb+4d <
A*b + 4. On the other hand, if X' > X*, then we have
from (3.2) that A*b — 6 < Nb— 3§ < h(z") — Ng(z').
We also have from (3.1) that A*b+ 3§ = v(A*) +§ >
v(A") + 9 > h(z') — Ng(z).

We define A\° by letting \* = \* — §/b, i.e.,

(3.3) Ab—6=\.

LEMMA 3.2. Let x' be given as in Lemma 3.1. Then,
6 CE’ *

X = ity <@ <A

Proof. The second inequality is obvious because of the
optimality of A*. From the second inequality of (3.2),

h(z') 6 _ ) :
we have X Z g(m'—as-f—b - W = T’(IL") - m This
implies that

(34)  h@')=Ng(a) <r@@)b+—=—.

From Lemma 3.1 and (3.3), we have

(3.5) A= \*b—6 < h(z') — Ng(a').

(3.4) and (3.5) then lead to the assertion of the lemma
because b > 0.

LEMMA 3.3. Let 2’ be given as in Lemma 8.1. Then by
letting § = %, z' is an e-approzimate solution of P.

_ e
wbta=D) " (from Lemma 3.2) <

(from (3.3)) < 2 =«

*—(AO

*_ ' A
Proof. 2 A’;(z) <

(") 5
I+ 5&yrs) " oae

Note that, in order to apply Theorem 3.1, we need
to know a positive lower bound of the value of A\*
because ¢ is related to the value of \*.



LEMMA 3.4. Let r(z) = Z((g, where © € S C R?, be
a linear fractional function such that d(x) # 0 for any
x € S. Then r(x) can be represented as a function of
the form (Qb, such that b > 0 and g(z) > 0 for any

h
g(z)
r€S.

Proof. WLOG, assume d(z) > 0 over S. Then let
g(z) = d(x) — b, where b = min,cg d(x).

Theorem 3.1 and Lemma, 3.4 can be used to improve
the robustness of our 2-D OLRQ algorithm in Section
2. Note that for each ratio r;(z,y) = % in our
OLRQ problem, 1 = 1,2,...,M, d;(z,y) # 0 for any
point (z,y) in the feasible domain S. WLOG, suppose
di(z,y) > 0 and A} > 0 over S. Then the minimum
value b; of d;(z,y) and a positive lower bound ! of
Af over S for the ratio query r;(z,y) can be easily
obtained in O(log|S|) time once the feasible domain
S for ri(z,y) is available (A\! = r;(z!,y') such that at
the point (z',4"), ni(z',y") = max(, yyesni(z,y)). Our
OLRQ algorithm uses a binary search on the boundary
of a convex polygonal domain to determine the root of
fi(\). However, when the search examines a \ value
such that f;(A) is very close to 0, numerical errors
could change the sign of f;(A) and thus misguide the
course of binary search. By Theorem 3.1, we know that
when f;()\) is close to 0, A is close to A*. Thus, we
can terminate the binary search process and simply use
the corresponding boundary vertex as an e-approximate
optimal solution.

4 Speeding up the FP Algorithm for the 2-D
SOLF Problem.

In this section, we show how the time bound of each
iteration of the FP iterative algorithm for the 2-D SOLF
problem [11] can be sped up from O(m(m + n)) to
O((m + n)log(m +n)).

We begin with an outline of the general FP iterative
algorithm [11]. Let T = (x1,z2,...,24)T € S C R.
The FP iterative algorithm first transforms the original
SOLF problem in d-D (called the X-space) to another
problem in m-D (called the R-space), by mapping each
ratio r;(Z) = ZT(;_; in the objective function f(T) to a
corresponding dimension r; in the new m-D space (i.e.,
r; = r;(T) is a variable in the R-space). The SOLF
problem thus becomes one of optimizing F(7) = ;" r;
in the R-space. It then computes an upper bound wu;
for each dimension r; and a feasible lower bound f; for
F (7). These u;, i =1,2,...,m, and f; together define a
simplex in the R-space containing at least one optimal
point. The algorithm iteratively cuts the simplex by
reducing the upper bounds u;, and an optimal solution
is obtained when the upper bounds match f;. When the

algorithm cannot lower the upper bounds any further
(this is called a stall state), it either increases the lower
bound f; to change the domain, or splits the simplex
into two and searches on each of them.

The key step in each iteration of the FP algorithm
is to compute the upper bound wu; for each ratio ;,
by transforming it to solving a (d + 1)-D LP problem.
Using Megiddo’s LP algorithm for any fixed dimension
d [19], all m upper bounds can be obtained in O(mn)
time. Other steps of the iteration (for updating and
representing the new simplex resulted from cutting)
take O(m?) time.

To speed up the FP algorithm, we formulate the
operations for computing the m upper-bounds in each
iteration as a sequence of m ratio queries, and reduce it
to an OLRQ problem with parameters k = 2, M = m,
and N = |C| = m + n. The total time for computing
the m upper bounds in each iteration is thus reduced
from O(mn) to O((m + n)log(m + n)). By using an
implicit representation for storing the simplex (instead
of an explicit one as in [11]), we are able to carry out
the rest of the computation in each iteration in O(m)
time. Therefore, the time bound of each iteration of the
FP algorithm in 2-D is reduced from O(m(m + n)) to
O((m + n)log(m + n)).

5 Solving Geometric Optimization Problems as
SOLF Problems.

In this section, we discuss two geometric optimization
problems which can be reduced to 2-D SOLF problems
(and thus are solvable by our improved SOLF algo-
rithm).

The reductions for these problems are all hinged on
a traversal of a 2-D arrangement of O(n) lines [9] that
defines the domains and objective functions of various
instances of the SOLF problem. The arrangement
traversal is based on a new technique called topological
peeling [6].

5.1 Minimum Area Star Cover and Monotone
Cover Problems. Let P be an n-vertex simple poly-
gon. The star-cover or monotone-cover problem on P
is that of computing a star-shaped or monotone poly-
gon P’ such that P’ contains P and the area of P’ is
minimized [1], [8], [18], [21]. This problem finds applica-
tions in material layout (e.g., cloth manufacturing) and
manufacturing. Arkin et al. [1] showed that the star-
cover (resp., monotone-cover) problem is reducible to
solving O(n?) (resp., O(n)) problems of optimizing the
sum of O(n) fractional polynomials of degrees 3 and 2
under O(n) linear constraints in 2-D. We are able to re-
duce the star-cover (resp., monotone-cover) problem to
O(n?) (resp., O(n)) instances of the SOLF problem in



2-D. Our star-cover algorithm also improves the space
bound of [1]. The details are left to the full paper.

THEOREM 5.1. In O(n?) (resp., O(nlogn)) time and
O(n) space, it is possible to reduce the minimum-area
star-cover (resp., monotone-cover) problem to O(n?)
(resp., O(n)) problem instances of optimizing the sum of
O(n) linear fractional functions subject to O(n) linear
constraints in 2-D.

5.2 Optimal Penetration Problem. The optimal
penetration problem [5] is defined as follows. Given a
subdivision R with a total of n vertices in 2-D, divided
in m regions R;, ¢ =1,2,...,m, find a ray L such that
L originates from outside R and intersects a specified
target region T € {R1,Ra,..., Ry}, and such that the
weighted sum S(L) = 3_; 5, 4, wi * fi(L) is minimized,
where f;(L) is a function associated with the pair (R;, L)
and w; is a weight factor associated with R;. Such a ray
L is called a penetration. The regions R; are all simple
polygons, and the weights of T and the complement R of
R are zero (R is the free space outside R). This problem
arises in several applied areas such as radiation therapy,
geological exploration, and environmental engineering
(see [5] for a discussion of the applications).

Let Ry be the set of regions of R intersected by a
ray L and d; be the length of L within R; € Rr. As
shown in [5], if the length d; is computed in the Lo
metric, then this problem can be reduced to solving
O(n?) instances of an optimization problem in 2-D,
each such problem with an objective function of the
form v1+22Y ", %, where (z,y) is any point in
a convex domain defined by linear constraints. If the
Ly and Lo metrics are used, then we can prove the
following theorem (the details are left to the full paper).

THEOREM 5.2. In O(n?) time and O(n) space, it is
possible to reduce the optimal penetration problem under
the Ly and Lo, metrics to O(n?) problem instances of
optimizing the sum of O(m) linear fractional functions
subject to O(n) linear constraints in 2-D.

6 Implementations.

We have implemented the 1-D FP algorithm and the
improved 2-D FP algorithm. Our implementations are
based on LEDA, and all experiments ran on a SUN
ULTRA 30 computer.

For the 1-D FP algorithm, we tested our program
using a large set of randomly generated problem in-
stances with different numbers of ratios (i.e., from 1
to 1000) and different sizes of domains. We average the
execution times of the (about 20) problem instances at
a same domain size and same number of ratios. Our ex-
periment shows that this algorithm converges quickly,

and the average execution times of the tested problem
instances are less than 8 seconds, even for problems with
1000 ratios. The overall results are summarized in Fig-
ure 2.

We made two comparisons for the 1-D FP algo-
rithm. The first comparison is with a global optimiza-
tion package, GENOCOP III [20]. The experimental
results show that the average execution time of the FP
algorithm is faster than that of GENOCOP III, by an
order of magnitude (see Figure 3). In most cases, the
FP algorithm also produces optimal solutions of better
quality. The second comparison is with a root-finding
software, MPSolve-2.0 [2], which is a fast software for
the special purpose of finding the roots of high degree
polynomials. We used MPSolve-2.0to compute all roots
of the polynomial equations derived from the SOLF
problems. The comparison is only between the aver-
age execution time of the FP algorithm and the average
root-finding time. The costs for computing the coeffi-
cients of these equations, which in many cases can be
quite time-consuming, are not included. Our experi-
ments indicate that in most cases, the FP algorithm is
faster than MPSolve-2.0 (see Figures 4 and 5). Since
it is quite difficult to obtain coefficients with a reason-
able precision for problems with large ratio numbers, the
comparison is only done for problems with ratio num-
bers less than 160.

For our improved 2-D FP algorithm, we tested it
using a set of randomly generated problem instances
with different numbers of ratios (up to 1000) and
different numbers of linear constraints (from 3 to 1000),
and compared it with several optimization softwares,
such as Maple, CFSQP [7], and GENOCOP III. So
far, much of our efforts is on large-ratio problems.
This is motivated by the observations that Maple has
difficulties with handling problems with ratio numbers
> 24, and the local optimization package CFSQP fails to
obtain good quality solutions for large-ratio problems.

Our experimental results are summarized in Figure
6, where all problems are of ratio numbers larger than
100, and the average execution time is taken over 15
runs on problems with the same numbers of ratios and
linear constraints. Only one comparison is made, with
GENOCORP III, for the 2-D algorithm (a good software
package for solving systems of high degree polynomial
equations is not yet available to us). Figure 7 shows
that our algorithm is roughly 10 times faster than
GENOQOCOP III for large-ratio problems.

The experiments seem to suggest that the average
execution time of our algorithm is a slowly growing
function of the number of ratios. It is also interesting
to note that the execution time does not increase too
much when more constraints are used. One of our



explanations is that since our algorithm improves the
time complexity of each iteration from O(m(m + n)) to
O((m + n)log(m + n)), the influence of an increasing
n is not significantly amplified by m. The experiments
also show that for most problem instances, the number
of iterations is much bigger than the number of R-space
simplex splitting, implying that it makes sense to reduce
the time complexity of each iteration.

We think the experiments on our 2-D cases are not
quite thorough and the result given in Figure 6 is only a
preliminary version. More data and a full analysis will
be given in the full paper.
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