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Abstract

We study long time series of the ion saturation current and floating potential, sampled by Lang-

muir probes dwelled in the outboard mid-plane scrape off layer and embedded in the lower divertor

baffle of Alcator C-Mod. A series of ohmically heated L-mode plasma discharges is investigated

with line-averaged plasma density ranging from ne/nG = 0.15 to 0.42, where nG is the Green-

wald density. All ion saturation current time series that are sampled in the far scrape-off layer

are characterized by large-amplitude burst events. Coefficients of skewness and excess kurtosis of

the time series obey a quadratic relationship and their histograms coincide partially upon proper

normalization. Histograms of the ion saturation current time series are found to agree well with a

prediction of a stochastic model for the particle density fluctuations in scrape-off layer plasmas.

The distribution of the waiting times between successive large-amplitude burst events and of

the burst amplitudes are approximately described by exponential distributions. The average wait-

ing time and burst amplitude are found to vary weakly with the line-averaged plasma density.

Conditional averaging reveals that the radial blob velocity, estimated from floating potential mea-

surements, increases with the normalized burst amplitude in the outboard mid-plane scrape-off

layer. For low density discharges, the conditionally averaged waveform of the floating potential

associated with large amplitude bursts at the divertor probes has a dipolar shape. In detached

divertor conditions the average waveform is random, indicating electrical disconnection of blobs

from the sheaths at the divertor targets.
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I. INTRODUCTION

The far scrape-off layer of magnetically confined plasmas is dominated by intermittent

fluctuations of the particle density and concomitant large transport events. A large body

of research links these phenomena to the radial propagation of plasma filaments which are

elongated along the magnetic field and localized in the radial-poloidal plane. [1–9]. They

carry excess particle density and heat relative to the background plasma and are hence

called blobs Blobs are believed to mediate the parallel and perpendicular transport channels

of particle and heat fluxes in the scrape-off layer. Furthermore may blob propagation be

responsible for a significant heat load on plasma facing components of the vacuum vessel.

As the empirical discharge density limit [10] is approached, the relative magnitude of these

transport channels changes such as to favor perpendicular transport [11 and 12]. To under-

stand the impact of blobby transport on plasma confinement, their mode of propagation as

well as the statistics of fluctuation induced transport have to be studied.

The basic mechanism underlying plasma blob propagation is the interchange mechanism.

[2, 13–17]. Magnetic gradient and curvature drifts in an inhomogeneous magnetic field give

rise to an electric current which polarizes filament structures of elevated pressure perpendic-

ular to the magnetic field and its direction of variation. At the outboard mid-plane location

of a toroidally magnetized plasma, a filament of elevated pressure is polarized in such a way

that it propagates radially outwards towards the main chamber wall [2].

The path along which electric currents within the filament are closed are crucial for its

radial velocity. Assuming that the electric current in the plasma filament can flow freely

along magnetic field lines within the plasma filament, the electric current loop may be

closed through these sheaths. Two-dimensional fluid simulations of isolated plasma blob

propagation reveal that the radial blob velocity decreases with increasing magnitude of the

parallel electric currents, parameterized by a sheath dissipation parameter [2, 16, and 17].

Sheath connection is expected to be limited by ballooning of the plasma filaments and large

plasma resistivity which prevents parallel electric currents through the sheaths [18–21]. Fluid

modeling of plasma blobs furthermore reveals a dependence of its radial velocity, vrad, on

the relative blob amplitude, where blobs with larger amplitude feature a larger radial center

of mass velocity [22–24].

Studies of plasma blob propagation in Alcator C-Mod show a good agreement between
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their radial velocity and the sheath-connected velocity scaling law when the scrape-off layer

is sheath-limited [24]. Work at Alcator C-Mod furthermore reveals correlation coefficients

of up to 75% between time series of particle density proxies, sampled at different poloidal

positions along a single magnetic field line [25 and 26]. This supports the idea that blobs

in Alcator C-Mod may extend from the outboard mid-plane to the divertor sheaths and are

sheath connected in suitable low-density plasmas.

The turbulent flows in the far scrape-off layer of magnetically confined plasmas have been

demonstrated to have many universal properties [27–31]. For one, the conditionally averaged

waveform of large amplitude events in particle density time series presents a fast rise and

a slow fall [4–6, 32–39]. The conditionally averaged waveform as well as the histogram of

ion saturation current time series were found to collapse upon normalization for a range of

line-averaged plasma densities and plasma currents in the Tokamak à configuration variable

(TCV) tokamak [8, 36, and 38]. Exponentially distributed burst amplitudes and waiting

times have been observed in the scrape-off layer of Alcator C-Mod and TCV [39 and 48].

Correlation analysis further reveals the presence of a dipolar electric potential structure

centered around local maxima of the particle density [25, 40–42].

Time series with frequent large amplitude bursts feature histograms with elevated tails

as well as positive coefficients of sample skewness and excess kurtosis [27, 30, 43, and 44].

The universal character of the fluctuations manifests itself in the fact that histograms of

the particle density coincide upon normalization when obtained at a single position in the

far scrape-off layer for various plasma parameters [27, 29, 30, 38, and 44]. Particle den-

sity fluctuations in the scrape-off layer sampled at the TCV device were also found to be

well described by a Gamma and a log-normal distribution over a large range of discharge

parameters [30].

Another salient feature of the density time series is a quadratic relation between sample

skewness, S, and excess kurtosis, F , of the form F = a + bS2, where a and b are real coef-

ficients [30, 45, and 46]. This relation is intrinsic to some probability distribution functions

that have been proposed to describe histograms of the particle density time series. Data

sampled in the TORPEX device over a large range of discharge conditions and spatial lo-

cations was shown to be well described by the generalized beta distribution [46]. Recent

work models particle density time series as a stochastic process which is based on the su-

perposition of individual pulses [47]. Under the assumption that the individual pulses decay
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exponentially, have exponentially distributed amplitudes and waiting times between pulses,

this model predicts the particle density time series to be Gamma distributed. It was shown

that this model describes the intensity fluctuations at the outboard mid-plane scrape-off

layer of Alcator C-Mod, as measured by gas-puff imaging, over several decades in normal-

ized probability [48]. So far however, no consensus on one particular analytic model exists

in the fusion community.

In this paper, we present an analysis of long time series of the ion saturation current

and floating potential obtained by Langmuir probes in the boundary region of the Alcator

C-Mod tokamak. Utilizing a probe dwelled in the outboard mid-plane scrape-off layer as

well as probes embedded in the divertor baffle allows us to study the universality of the

fluctuations sampled at these two positions as well as the dependence of the statistics on

the line-averaged plasma density.

The structure of this article is as follows. Section II introduces a stochastic model for

density fluctuations in the scrape-off layer as well as the conditional averaging method to

be used. The experimental setup is described in Section III. Section IV presents the time

series analysis data sampled by the probe in the outboard mid-plane scrape-off layer and

Section V presents the corresponding analysis of the time series obtained from the divertor

probes. A discussion of the universal properties of the time series sampled in both positions

and their relation to blob theory are given in Section VI. We conclude in Section VII with

suggestions for further work.

II. FLUCTUATION STATISTICS

Recent work models the particle density fluctuations at a single point in scrape-off layer

plasmas as the superposition of random pulse events [47]:

Φ(t) =
∑

k

Akφ(t− tk). (1)

Given that the arrival of pulses in the time series is governed by a Poisson process, this

model predicts a quadratic relation between coefficients of skewness and excess kurtosis.

Moreover, by assuming a Poisson distribution it follows that the waiting time between

pulses are exponentially distributed. Further assuming an exponential pulse shape, φ(t) =

Θ(t) exp (−t/τd), where Θ is the Heaviside step function and τd the duration time of a pulse,
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and exponentially distributed pulse amplitudes Ak, the model implies that the particle

density is Gamma distributed [47]. The ratio of pulse duration time and waiting times,

γ = τd/τw, is the shape parameter of the Gamma distribution.

To include random fluctuations of the background particle density we add normal dis-

tributed noise to the signal Eqn. (1),

Φ′(t) = Φ(t) +N(t). (2)

Here the normal distributed noise N has vanishing mean and variance σ2. The resulting

probability density function of the random variable is then given by the convolution of a

Γ-distribution and a normal distribution and can be written using two parameters: γ and

ε. While γ relates to the ratio of pulse decay and waiting time as before, in other words the

density of pulse arrivals, ε relates the variance of N to the root mean square value of Φ via

σ2 = εΦ2
rms. A large value of ε denotes the case where the root mean square value of the

process Φ is smaller than the scale parameter of the white noise N and a small value of ε

denotes the converse relation.

It is commonly observed in particle density fluctuation time series in scrape-off layer

plasmas that pulses overlap as to form large amplitude burst events. To determine the

average structure of the bursts we employ conditional averaging [49]. Starting from the

largest burst event in the time series at hand, we identify a set of disjunct sub records, placed

symmetrically around the peak of burst events which exceed a given amplitude threshold

until no more burst events exceeding this threshold are left uncovered. The threshold is

often chosen to be 2.5 times the root mean square value of the time series at hand. This

average can be written as

C(τ) = 〈Φ(τ)|Φ(τ = 0) > 2.5 Φrms〉, (3)

where τ is the time offset relative to the peak of the burst. The variability of the burst

events is characterized by the conditional variance [50]:

1− CV(τ) = 1− 〈(Φ− C)2 |Φ(0) > 2.5 Φrms〉
C2

. (4)

This quantity is bounded, 0 < 1−CV(τ) < 1, where the values 0 and 1 indicate respectively

no and perfect reproducibility of the conditionally averaged waveform.
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To study the intermittency of ion saturation current time series, they are rescaled ac-

cording to

Ĩ =
I − Imv

Irms,mv

. (5)

The subscripts mv and rms,mv denote the moving average and moving root mean square

value respectively. Both are computed within a window of 16384 elements when applied

to data from the horizontal scanning probe. This window corresponds to roughly 3ms and

exceeds typical autocorrelation times of approximately 15µs by a factor of 200 [11]. The

same window length is used for the time series obtained by the divertor probes. In the

latter case, this corresponds to approximately 20 ms. Since the amplitude of the density

fluctuation in the scrape-off layer is sensitive to the distance to the last closed flux surface

we compute the statistics within a moving window as to alleviate the fluctuations of the

last closed flux surface indicated in Fig. 4. The use of such averaging has little influence

on the conditional averaging threshold Eqn. (3). Time series of the floating potential are

rescaled by removing a linear trend from the time series and subsequently normalizing the

time series to the electron temperature and as to have vanishing mean:

Ṽ =
e
(
V − V

)

Te

. (6)

We do not use a moving average for the floating potential since the amplitude of the signal

varies little with distance to the last closed flux surface.

III. EXPERIMENTAL SETUP

Alcator C-Mod is a compact tokamak with a major radius of R = 0.68 m and a mi-

nor radius of a = 0.22 m, and allows for a magnetic field of up to 8T on-axis. Figure 1

shows a cross-section of Alcator C-Mod together with the diagnostics from which we report

measurements: the horizontal and vertical scanning probes and the Langmuir probe array

embedded in the lower outer divertor baffle. The magnetic equilibrium from discharge 2 of

Tab. I, as reconstructed by EFIT [51], is overlaid. The Mach probe head installed on both

scanning probes, depicted in Fig. 2, is designed to routinely withstand heat fluxes of up to

100 MW/m2 [52 and 53]. All electrodes are connected to sampling electronics that sample

current and voltage with 5 MHz and 14 bit resolution. The horizontal scanning probe is
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installed 10 cm above the outboard mid-plane and can be reciprocated horizontally 11 cm

into the plasma. For the present experiments this probe was dwelled at a fixed position in

the scrape-off layer for the entire duration of the plasma discharge. As a common radial

coordinate we employ the magnetic flux label ρ, which gives the distance to the last-closed

flux surface (LCFS) as mapped to the outboard mid-plane along magnetic field lines. This

coordinate is calculated by magnetic equilibrium reconstruction with the EFIT code using

input from a set of magnetic diagnostics installed in the vacuum vessel [54]. For positions

in the near and far scrape-off layer, the probe was targeted to dwell at ρ ≈ 3 mm and at

ρ ≈ 8 mm respectively. The north-east (NE) and south-east (SE) electrodes were biased to

−290 V with respect to the vacuum vessel in order to sample the ion saturation current. The

south-west (SW) and north-west (NW) electrodes were electrically floating. This allows to

estimate the poloidal electric field from these electrodes as

E ≈ V SW − V NW

4p

, (7)

where4p = 2.24 mm is the poloidal separation between the electrodes. The vertical scanning

probe was set up to plunge through the scrape-off layer up to the last closed flux surface,

as depicted by the vertical line in Fig. 1, three times per plasma discharge. A triangular

voltage waveform, sweeping from −255V to 55 V with a frequency of 2 kHz was applied to

all four electrodes of the probe head. The electron temperature Te is obtained by fitting a

three parameter exponential function on the measured voltage-current characteristic of each

probe head with a spatial resolution of 4ρ = 1 mm [55].

The Langmuir probe array embedded in the lower divertor baffle consists of two electrodes

per probe which were configured to sample the ion saturation current and floating potential

respectively with 0.4 MHz with 16 bit resolution. In the targeted magnetic equilibrium

configuration the two outermost divertor probes map to ρ ≈ 8 − 10 mm. This corresponds

to the approximate position where the horizontal scanning probe was dwelled in the far

scrape-off layer within error margins of 5 mm.

We report from measurements obtained in 5 ohmically heated plasmas in a lower sin-

gle null magnetic geometry with 5.4 T on-axis magnetic field and a plasma current of

Ip = 0.6 MA. For all discharges it was attempted to minimize the movement of the strike

point of the last closed flux surface on the lower divertor baffle. As a consequence, the

estimated position of the last closed flux surface at the outboard mid-plane is subject to

7



larger fluctuations. Table I lists the plasma parameters of all shots as well as the position

of the horizontal scanning probe, the time interval on which the time series are analyzed,

and the plot marker used in the following figures. The electron temperature at ρ = 5mm

which is used to normalize the floating potential and to estimate the acoustic velocity at the

position of the horizontal scanning probe is also listed. In discharge 1 the horizontal scan-

ning probe was dwelled in the near scrape-off layer, this data is not directly comparable to

the far scrape-off layer data. In discharge 3 the sensitivity of the electronics of the divertor

probes was not adjusted correctly such that this data is not analyzed either. Radial profiles

of the electron temperature are shown in Fig. 3.

The upper panel of Fig. 4 shows the time traces of the line-averaged particle density for

the analyzed discharges. The middle panel shows the radial coordinate of the probe head

of the horizontal scanning probe and the lower panel shows the radial coordinates of the

two outermost divertor probes. While the line-averaged plasma density is approximately

constant and the radial coordinate of the divertor probes show a slight drift, the radial

coordinate of the horizontal scanning probe is subject to larger fluctuations. The indicated

time intervals in this figure correspond to the interval of the time series used for data analysis.

These time intervals are chosen such as to keep the line-averaged particle density of any

given discharge within 4ne/nG
≈ 0.02 and the radial position of the horizontal scanning

probe within an interval of 4ρ ≈ 5mm of the reference position.

Discharge ne/nG Te/eV Probe position tstart/s tend/s Plot marker

1 0.15 35 near SOL 0.75 (0.75) 1.10 (1.10)

0.94 0.96 0.98 1.00 1.02 1.04 1.06
0.94

0.96

0.98

1.00

1.02

1.04

1.06

2 0.28 25 far SOL 0.65 (0.65) 1.50 (1.50)

0.94 0.96 0.98 1.00 1.02 1.04 1.06
0.94

0.96

0.98

1.00

1.02

1.04

1.06

3 0.32 25 far SOL 0.80 (–) 1.10 (–)

0.94 0.96 0.98 1.00 1.02 1.04 1.06
0.94

0.96

0.98

1.00

1.02

1.04

1.06

4 0.31 20 far SOL 0.80 (0.80) 1.10 (1.10)

0.94 0.96 0.98 1.00 1.02 1.04 1.06
0.94

0.96

0.98

1.00

1.02

1.04

1.06

5 0.42 20 far SOL 0.50 (0.50) 0.70 (0.70)

0.94 0.96 0.98 1.00 1.02 1.04 1.06
0.94

0.96

0.98

1.00

1.02

1.04

1.06

TABLE I. List of the plasma parameters and the time interval used for time series analysis. The

numbers in parenthesis give the interval on which data from the divertor probe is used. A dash

indicates that no data is available.
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IV. OUTBOARD MID-PLANE PLASMA FLUCTUATIONS

We begin by analyzing the time series sampled by the horizontal scanning probe in the

near scrape-off layer. This is discharge 1 in tab. I with ne/nG = 0.15. The histogram of the

normalized time series, shown in Fig. 5, is almost gaussian and the time series, shown in the

inset of the figure, appears to be random. With a mean value of I = 6.1× 10−2A and a root

mean square value given by Irms = 1.4× 10−2 the relative fluctuation level of the time series

is Irms/I = 0.22. Coefficients of skewness and excess kurtosis are given by S = 0.27 and

F = −0.07 respectively. A best fit on the model Eqn. (2) yields γ = 30 and ε = 6.24× 10−6.

This describes a process with mostly gaussian statistics, as suggested by the histogram and

the statistics of the time series.

We continue by analyzing the time series sampled by the horizontal scanning probe in the

far scrape-off layer. Figure 6 shows the histogram of the ion saturation current, normalized

according to Eqn. (5), as sampled by the north-east electrode of the horizontal scanning

probe during discharge 2 with ne/nG = 0.28. The length of the time series is 0.85 s and its

histogram spans over four decades in normalized probability. It presents an elevated tail with

fluctuations exceeding six times the root mean square of the time series. The raw time series

prominently features positive, large amplitude bursts events. The histogram of data sampled

by the south-east electrode is quantitatively similar. A sample mean of I = 4.0 × 10−2 A

and Irms = 1.3 × 10−2 A, yields a normalized fluctuation level of Irms/I = 0.32. Sample

coefficients of skewness and excess kurtosis are given by S = 0.78 and F = 0.96. A non-

linear least squares fit on the model described by Eqn. (2) yields γ = 6.35 and ε = 2.6×10−5.

This describes the situation where the fluctuation level of the background fluctuations is well

below the fluctuation level introduced by the bursts in the time series.

Figure 7 shows the histogram of the normalized ion saturation current time series sam-

pled during discharge 5 with ne/nG = 0.42. The histogram presents an elevated tail with

fluctuations well exceeding six times the root mean square of the time series. The mean

of the time series is given by I = 9.4 × 10−2A and its root mean square value is given by

Irms = 4.6× 10−2A. This yields a normalized fluctuation level of Irms/I = 0.49, coefficients

of skewness and excess kurtosis are given by S = 1.5 and F = 3.5. The time series presents

positive, large amplitude burst events, which seem to occur less frequent as in Fig. 6. The

best fit on the model given by Eqn. (2) yields γ = 1.06 and ε = 1.85× 10−1, suggesting that
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background fluctuations are of larger relative magnitude than in the previous case.

Figure 8 shows the conditionally averaged waveforms and their conditional variance of the

normalized data time series sampled during discharge 2 with ne/nG = 0.28. The upper row

shows the conditionally averaged waveform of large-amplitude bursts occurring in the ion

saturation current, as measured by the north-east and south-east electrodes, as well as their

conditional variance. The averaged waveform is asymmetric. The best fit of an exponential

waveform on the rise and fall give an e-folding rise time of τr ≈ 2µs and fall time of

τf ≈ 4µs respectively. Their reproducibility is close to unity within the interval centered

around τ = 0µs, bounded by the e-folding times, and it shows the same asymmetry as the

burst shape.

The conditionally averaged floating potential waveform, computed by setting the trigger

condition on bursts in the ion saturation current time series as sampled by the north-east

electrode, is shown in the middle row of Fig. 8. The south-west electrode measures a dipolar

waveform where the positive peak is sampled before the negative peak. The peak-to-valley

range of the waveform is approximately 0.3 where the positive peak is larger in absolute

value than the negative peak by a factor of 2. The waveform sampled by the north-west

electrode is more symmetric, and features a peak-to-valley range of approximately 0.2. The

positive peak is also more reproducible with 1 − CV ≈ 0.3 compared to 1 − CV ≈ 0.2 for

the north-west electrode.

Rather triggering on the south-east electrode, the conditionally averaged floating poten-

tial waveforms are also dipolar with peak-to-valley ranges of approximately 0.2 (0.4) for the

south-west (north-west) electrode. The reproducibility of the waveform is larger by a factor

of two for the latter. Opposite to the situation where the trigger is on the north-east elec-

trode, here the reproducibility is larger on the north-west electrode where the negative part

of the blobs electric potential dipole is measured after its density maximum has traversed

the probe.

Such poloidal motion is in agreement with the picture of a dipolar electric potential struc-

ture, centered around the particle density maximum of a plasma blob which is moving into

the direction of B×∇B, i.e. poloidally downwards. This is compatible with measurements

using gas-puff imaging [56 and 58]. For the plasma blob to propagate radially outwards, the

negative pole of the electric potential has to be poloidally above the particle density maxi-

mum and the positive pole has to be poloidally below the particle density maximum. When
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the particle density maximum is recorded by the north-east electrode, the positive pole of

the potential structure has traversed the south-west electrode. This explains the pronounced

positive pole for τ < 0 of the south-west electrode and its relatively large reproducibility.

The negative pole of the potential structure traverses the north-west electrode for τ > 0 and

leads to a large reproducibility of the waveform.

The conditionally averaged waveform of the estimated poloidal electric field is a monopo-

lar structure with a peak value of approximately −2500 Vm−1(−3000 Vm−1) when triggered

on bursts occurring on the north-east (south-east) electrode. Using that the toroidal mag-

netic field at the probe position is approximately 4.0 T, this corresponds to a local average

electric drift velocity of vrad ≈ 600 − 700 ms−1. Radial blob velocities of similar magnitude

have been reported from gas-puff imaging measurements [24 and 58].

We continue by elucidating the relation between the amplitudes of the bursts and their

associated radial velocity. For this, we approximate the time it takes for a blob to traverse

the probe by τr + τf . Both e-folding times are found by a least squares fit of an exponential

function on the rise and fall of the conditionally averaged burst shape respectively. The

electric drift velocity associated with a burst event is then computed using the estimated

poloidal electric field averaged over the interval [−τr : τf ].

Figure 9 shows the radial electric drift velocity associated with burst events in the ion

saturation current on the north east electrode plotted against its normalized amplitude.

The radial velocities rarely exceed 5% of the ion acoustic velocity. Approximately 90% of

all events have a velocity directed towards the main chamber wall and the Pearson sample

correlation coefficient increases from r = 0.19 for ne/nG = 0.28 (left panel, 5253 events),

to r = 0.29 for ne/nG = 0.31 (middle panel, 1203 events), to r = 0.36 for ne/nG = 0.42

(right panel, 833 events). To guide the eye on the sample correlation, a green straight line,

denoting a linear fit on the value pairs, has been over plotted in all scatter plots.

Conditional averaging further reveals the distribution of waiting times between successive

large amplitude burst events and of the burst amplitudes of the normalized time series at

hand. For discharges where multiple electrodes sample the ion saturation current, only data

sampled by the north east electrode is used.

The shape of the sampled histograms indicates that the waiting times and the burst

amplitudes are approximately described by an exponential distribution. The description

by the exponential model appears more accurate for the waiting times than for the burst
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amplitudes. For an exponentially distributed random variable X > 0, the complementary

cumulative distribution function is given by

1− FX (X) = exp

(
−X −X0

〈X〉

)
. (8)

Here FX is the cumulative distribution function, 〈X〉 is the scale parameter of the distribu-

tion, in the cases discussed here the average waiting time and average burst amplitude, and

X0 is the location parameter of the distribution. To obtain the average waiting time of the

distribution from sampled data we employ a maximum likelihood estimate. This method is

unbiased in the sense that all data points are equally weighted when estimating the scale

parameter [59]. The location parameter is given by the conditional averaging sub record

length in the case of waiting time distributions and the conditional averaging threshold in

the case of burst amplitude distributions.

Figure 10 shows the histograms of the sampled waiting times between successive burst

events with amplitudes exceeding 2.5. Compared are best fits on Eqn. (8), denoted by full

lines. The exponential model gives a good description of the waiting times over more than

one decade in normalized probability for all discharges. The average waiting time is between

〈τw〉 ≈ 0.12 ms for ne/nG = 0.28, 0.20 ms and 0.26 ms for discharges 3 and 4, and 0.18 ms for

discharge 5 where ne/nG = 0.42. No trend between the line-averaged plasma density and

the average waiting time is observed.

Histograms of the sampled normalized burst amplitudes are compared to the best fits of

Eqn. (8) in Fig. 11. We find that the burst amplitude histograms are approximately described

by an exponential distribution over approximately one decade. However, as all time series

feature significant pulse overlap, the burst amplitude histogram is only suggestive of the

actual amplitude distribution of the individual pulses that make up the signal. The average

burst value is between 〈A〉 = 1.1 for ne/nG = 0.28 and 〈A〉 = 1.3 for ne/nG = 0.42, with

no apparent correlation to the line-averaged density. That is, the average burst amplitude

is approximately given by the root mean square value of the time series.

V. DIVERTOR PLASMA FLUCTUATIONS

We proceed by analyzing data time series sampled by the Langmuir probes embedded

in the lower divertor in the same manner as in the previous section. Figure 12 presents
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the histogram of the normalized ion saturation current time series for discharge 1 with

ne/nG = 0.15, as sampled by the two outermost divertor probes 9 (shown in the upper

panel) and 10 (shown in the lower panel). The average current at probe 9 is I = 4.4×10−2A

and the root mean square value is given by Irms = 1.5 × 10−2A, which yields a relative

fluctuation level of Irms/I = 0.33. As shown in the upper panel of Fig. 12, the sample

presents only slightly elevated tails, fluctuations in the time series rarely exceed four times

the root mean square value of the time series. Coefficients of skewness and excess kurtosis are

given by S = 0.41 and F = −0.28. The histogram of the ion saturation current as sampled

by divertor probe 10 presents a more elevated tail with fluctuations exceeding five times the

root mean square value of the time series. With I = 2.9 × 10−2A and Irms = 9.0 × 10−3A

the relative fluctuation level is Irms/I = 0.31. The best fit on the model Eqn. (2) yields

γ = 9.9 (5.8) and ε = 2.0× 10−5 (7.3× 10−4) for the time series sampled by probe 9 (10).

Figure 13 presents the histograms of the normalized ion saturation current time series

sampled by the divertor probes for discharge 5 with ne/nG = 0.42. Both time series present

fluctuations of up to five times the sample root mean square value. For the time series

obtained by probe 9 the sample mean is given by I = 0.20 A and the root mean square value

is given by Irms = 7.8 × 10−2 A. This gives a normalized fluctuation level of Irms/I = 0.38.

Sample coefficients of skewness and excess kurtosis are given by S = 1.3 and F = 2.3, which

reflects the non-gaussian character of the fluctuations. Continuing with the histogram of

the normalized ion saturation current time series sampled by probe 10, shown in the lower

panel of Fig. 13, we find its histogram to be similar to the histogram sampled by probe 9.

The ion saturation current fluctuation amplitudes do not exceed six times the sample root

mean square value. Values of the sample mean, root-mean square and relative fluctuation

level are given by I = 0.20A, Irms = 5.7 × 10−2A, and Irms/I = 0.28, coefficients of sample

skewness and excess kurtosis are given by S = 1.0 and F = 1.8. The best fit on the model

described by Eqn. (2) yields γ = 2.2 (1.4) and ε = 5.3× 10−2 (3.5× 10−1) for the time series

sampled by probe 9(10).

We continue by analyzing the conditionally averaged waveforms of the time series sampled

by probe 10. For discharge 5 with ne/nG = 0.42 we assume a detached divertor and use half

the electron temperature measured by the vertical scanning probe, Te = 10 eV, to normalize

the floating potential time series [60]. Fig. 14 shows the conditionally averaged waveforms

for discharges 1 (ne/nG = 0.15), 2 (ne/nG = 0.28), and 5 (ne/nG = 0.42). For discharges 1
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and 2 the conditionally averaged burst shape is nearly symmetric. Least squares fits of an

exponential function on the burst shape yield e-folding times of τr ≈ 12µs and τf ≈ 14µs

and τr ≈ 14µs and τf ≈ 12µs respectively. The conditionally averaged burst shape for

discharge 5 is asymmetric with a rise time of τr ≈ 26µs and a fall time of τf ≈ 66µs. All

conditionally averaged burst shapes are highly reproducible.

The conditionally averaged waveform of the floating potential is shown in the lower panel

of Fig. 14. For discharges 1 and 2 the conditionally averaged floating potential waveforms

associated with large amplitude bursts in the ion saturation current have a dipolar shape

with a pronounced positive peak and are reproducible. For discharge 5 the conditionally

averaged waveform is irregular, showing only a weak positive peak, and is irreproducible.

We continue by studying the intermittency of large amplitude burst events in the nor-

malized ion saturation current time series sampled by divertor probe 10. Figure 15 shows

histograms of the waiting times between successive large amplitude burst events in the time

series. Full lines denote Eqn. (8) with an average waiting time obtained by a maximum

likelihood estimate and a location parameter given by τw,0 = 0.1 ms. All histograms are well

approximated by an exponential distribution over one decade in probability. Average waiting

times between large amplitude burst events are between 0.28 ms and 0.43 ms, approximately

twice as large as observed in time series sampled in the outboard mid-plane scrape-off layer.

Figure 16 shows the histogram of the burst amplitudes in the time series. Maximum like-

lihood estimates of the average burst amplitude are 〈A〉 ≈ 0.6 for ne/nG = 0.15 and 0.30,

which increases to 〈A〉 ≈ 0.9 for ne/nG = 0.42. As in the case of the horizontal scanning

probe data, no systematic variation of the scale length with line-averaged particle density is

observable. The average burst amplitude is approximately half the amplitude found for the

time series sampled in the outboard mid plane scrape-off layer.

VI. DISCUSSION

Long ion saturation current time series, with sample lengths between 0.2 and 0.85 s have

been sampled in the outboard mid-plane scrape-off layer and at the outer divertorr, during

discharges with line averaged plasma densities ranging from ne/nG = 0.15 to ne/nG = 0.42.

A statistical analysis shows that the time series in the far scrape-off layer are characterized by

large relative fluctuation levels and intermittent large-amplitude burst events. The sample
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Shot ne/nG Irms/I S F

1 0.15 0.22∗ / 0.33 / 0.33 0.27∗ / 0.41 / 0.41 0.07∗ / −0.28 / −0.29

2 0.28 0.32 / 0.35 / 0.31 0.78 / 0.71 / 0.55 0.96 / 0.53 / 7.5× 10−3

3 0.32 0.34 / − / − 1.2 / − / − 2.2 / − / −

4 0.31 0.33 / 0.40 / 0.37 1.1 / 0.98 / 0.87 1.9 / 1.3 / 0.81

5 0.42 0.49 / 0.39 / 0.28 1.5 / 1.3 / 1.0 3.5 / 2.3 / 1.8

TABLE II. Statistics of the entire time series sampled by the horizontal scanning probe / divertor

probe 9 / divertor probe 10. The values marked with a ∗ are sampled in the near scrape-off layer

and are not directly comparable to the other values.

statistics of all ion saturation current time series discussed in this paper are collected in

Tab. II. The data sampled in the near scrape-off layer presents Gaussian statistics, consistent

with previous measurements in the near scrape-off layer [11]. In the outboard midplane far

scrape-off layer we find that the relative fluctuation level increases gradually from 0.32 for

discharge 2 (ne/nG = 0.28) to 0.49 in discharge 5 (ne/nG = 0.42). A similar increase is

found for divertor probe 9, where Irms/I increases from 0.33 for ne/nG = 0.15, over 0.35 for

ne/nG = 0.28 to 0.39 for ne/nG = 0.42. On the other hand, the relative fluctuation level of

the time series sampled by divertor probe 10 shows no significant change as the line-averaged

density is changed between discharges. Sample coefficients of skewness and excess kurtosis

are found to increase in all time series as the line-averaged density increases. Thus, the

intermittency level increases with the line-averaged density in these ohmic plasmas.

Figure 17 shows the sample skewness plotted against the sample excess kurtosis, computed

for time series sub records of 20ms, sampled in the outboard midplane far scrape-off layer

during discharges 2 – 4. Both S and F increase with ne/nG. A least squares fit of the model

F = a + bS2 on the value pairs yields a = −0.20 ± 0.04 and b = 1.51 ± 0.03. The relation

between sample coefficients of skewness and excess kurtosis of the time series sampled by

the divertor probes, shown in Fig. 18, is qualitatively similar to those from the horizontal

scanning probe. The sample coefficients have a smaller range and notably feature small,

feature negative values of excess kurtosis. A least squares fit on the quadratic model yields

a = −0.50 ± 0.02 and b = 1.78 ± 0.03. The fit parameters have similar magnitude as

found for the outboard mid-plane far scrape-off layer. The clustering of the sample pairs
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is also similar to the clustering for the horizontal scanning probe data. Samples taken in

low line-average density discharges present smaller coefficients than samples taken in high

line-averaged density discharges, implying that time series from higher density discharges

are more intermittent.

The values of sample skewness and excess kurtosis for the outboard mid-plane time series

fall in a range between 0.0 ≤ S ≤ 2.0 and 0.0 ≤ F ≤ 6.0. These ranges are considerably

lower than observed for a similar analysis of gas-puff imaging data in Alcator C-Mod [48]. In

the latter case, the view of the diagnostics includes the area of the wall shadow, characterized

by a considerably lower plasma background density. As plasma blobs propagate into this

region, they are registered in the intensity time series as amplitudes which are significantly

larger than the background intensity signal. This leads to large values of sample skewness

and excess kurtosis.

Histograms of time series sampled in the outboard mid-plane far scrape-off layer present

elevated tails with fluctuations exceeding six times the root mean square value of the time

series. The time series sampled by the divertor probes show qualitatively the same features,

albeit with a lower normalized fluctuation magnitude. Figures 19 and 20 show histograms of

the ion saturation current and floating potential time series, normalized according to Eqs. (5)

and (6), sampled in all discharges listed in Tab. I. The ion saturation current histograms do

not collapse perfectly but may be separated by where they are sampled. Histograms sampled

in the far scrape-off layer present consistently slightly more elevated tails than histograms

sampled in the divertor region. Within each group, the highest density discharges feature the

histograms with the most elevated tails. The floating potential histograms are approximately

normal distributed. The time series sampled in the out board mid-plane scrape-off layer show

a slightly elevated tail compared to a normal distribution in positive and negative abscissa

regions while the time series sampled in the divertor region show an elevated tail in negative

abscissa regions and a lowered tail in positive abscissa regions.

The distribution of waiting times between large-amplitude bursts in ion saturation current

time series is found to be well described by an exponential distribution for both, time

series sampled in the outboard mid plane scrape-off layer as well and in the divertor region.

This suggests that the individual large amplitude pulses are uncorrelated and that their

occurrence is governed by a Poisson process. It is exactly this property for which the

stochastic model of Ref. [47] predicts a quadratic relation between skewness and excess
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Shot ne/nG 〈A〉 〈τw〉

1 0.15 − / 0.37 / 0.27 − / 0.37 / 0.64

2 0.28 0.12 / 0.26 / 0.38 1.1 / 0.61 / 0.49

3 0.32 0.20 / − / − 1.2 / − / −

4 0.31 0.26 / 0.37 / 0.43 1.2 / 0.66 / 0.64

5 0.42 0.28 / 0.37 / 0.38 1.3 / 0.98 / 0.91

TABLE III. Average amplitude and waiting times between conditionally averaged events compared

for time series sampled by the horizontal scanning probe / divertor probe 9 / divertor probe 10.

kurtosis.

The histograms of the normalized burst amplitudes, Fig. 11 and Fig. 16, are furthermore

compatible with the assumption the pulse amplitudes are exponentially distributed. The

evidence for this is however less clear than for the waiting times, mostly because the expo-

nential model given by Eqn. (8) is only a good fit in the uppermost decade. This is due

to the fixed location parameter and the conservation of probability limiting the choices of

the slope of the cumulative distribution function. The estimated shape parameter of the

stochastic model Eqn. (2) is 1 . γ . 10 for all distributions sampled in the far scrape-off

layer. This described the low intermittency case, i.e. pulses arrive frequently and overlap

as to form large amplitude burst events. As a consequence the amplitudes taken from the

bursts in the time series overestimate the underlying pulse amplitudes. This is reflected in

the curved shape of the histograms Figs. 11 and 16. However, the presented maximum like-

lihood estimates agree well with the complementary cumulative distribution function over

approximately one decade.

Conditional averaging of the ion saturation current time series further reveals an average

burst shape that features a steep rise and a slow fall, both of which are well described by

an exponential waveform. Typical rise times and fall times of the events in the time series

sampled by the horizontal scanning probe are given by τr ≈ 5µs and τf ≈ 10µs, while the

corresponding values for the time series sampled by the divertor probes are larger by a factor

of 2. We note however that the time resolution of the divertor probes is 2.5µs which might

affect the accuracy of the e-folding times negatively. The conditionally averaged structure

of the time series sampled by divertor probe 10 in discharge 5 shows a larger asymmetry
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with a large fall time. However, the waveforms sampled by the divertor probes do not allow

to draw conclusions about the physical dimensions of impinging plasma filaments. The

recorded waveform may be due to both, a filament traversing the probe radially outwards

or a filament impinging along the direction of the magnetic field on to the probe.

The conditionally averaged waveforms of the normalized ion saturation current and the

floating potential signal, sampled at the outboard mid-plane far scrape-off layer, support the

conventional picture of plasma blob propagation through the scrape-off layer. That is, peaks

in the plasma particle density are associated with a dipolar electric potential structure whose

polarization gives an electric drift velocity pointing towards the vessel wall. The phase shift

between the conditionally averaged waveforms of the ion saturation current and floating

potential is approximately π/2 and the estimated radial velocities of the blobs structure are

in the order of a few per cent of the ion acoustic velocity for all line averaged plasma densities.

These results extend previous measurements made in the scrape off layer of Alcator C-Mod

[25]. A positive linear correlation is observed between the estimated radial blob velocities

and their normalized amplitude, with Pearson sample correlation coefficients given by 0.19

for ne/nG = 0.28 and 0.36 for ne/nG = 0.42. A possible explanation for this correlation

is that the pressure gradient within the blob structure increases with filament amplitude.

Fluid modeling of isolated plasma filaments shows that the magnitude of the plasma pressure

gradient increases the plasma vorticity associated with the plasma blob [16]. Assuming that

the poloidal size of the plasma blobs is constant [24], this creates a larger electric field which

in turn increases the electric drift magnitude.

A simple estimate of parallel and perpendicular transport for a filament, see for example

Fig. 3 in [36], suggests that the bursts in the time series sampled by the divertor probes

may be due to plasma filaments impinging in the probes. For this we note that potential

variations may also be caused by the internal temperature profile of plasma blobs [61]. For

Te = 30 eV we evaluate the electron thermal velocity to be vth,e ≈ 2 × 106 ms−1 and the

ion acoustic velocity in a deuterium plasma to be Cs =
√
Te/mi ≈ 4 × 104 ms−1. A lower

bound on the characteristic velocity associated with transport of potential perturbations

along the magnetic field is given by vth,e [26]. Given a connection length of Lq ≈ 10 m, the

particles and potential generated by a blob ballooned on the low-field side will reach the

divertor targets after τn,‖ ≈ 3 × 10−4 s and τe,‖ ≈ 4 × 10−6 s respectively. Assuming that

the blob is instantiated as a structure with sharp modulation along a flux tube and that it
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propagates normal to the flux tube at vrad = 500 ms−1, independent of poloidal angle, the

time estimate above implies that the footprint of the blob has reached the divertor sheaths

at radial coordinates given by ρE ≈ 2× 10−3 m and ρn ≈ 1× 10−1m. This interpretation is

compatible with previous results from correlation analysis of particle density proxies along

single field lines in Alcator C-Mod and NSTX [25, 26, and 57].

Neglecting electron temperature fluctuations, a dipolar potential structure measured by

the divertor probes may be interpreted as the footprint of a plasma blob. When this is

the case, the radial velocity scaling of the plasma filaments falls in the sheath connected

regime. On the other hand, a random waveform implies that the electric current loop

within a plasma filament closes upstream of the divertor. On the other hand, random

structures have been observed in numerical simulations of plasma blobs where the late

blob has dispersed by Rayleigh-Taylor and Kelvin-Helmholtz instabilities [16] and in three-

dimensional simulations, where no coherent structure of the late blob is recognizable [20].

The hypothesis that the blobs are not electrically connected to the sheaths in discharge

5 is however also compatible with measurements of radial blob velocities in high density

plasmas in Alcator C-Mod, which indicate that the radial filament velocity at the outboard

mid-plane increases with increasing line-averaged density and exceed the value predicted for

sheath connected blobs [24 and 58].

This hypothesis is further supported by histograms of the radial particle flux in the out-

board mid-plane far scrape-off layer, shown in Fig. 21. Upon proper normalization, the

histograms for discharges 2, 3, and 4 collapse, while the histogram for discharge 5 features

a more elevated tail. All histograms feature exponential tails for both the positive and the

negative abscissa. The average radial particle flux increases by a factor of approximately 8

from the discharge with ne/nG = 0.28 to the discharge with ne/nG = 0.42. This increase of

the radial particle flux with line-averaged plasma density is consistent with previous exper-

iments in the Alcator C-Mod tokamak [11 and 62] as well as with experiments performcd in

the TCV tokamak [12]. The higher frequency of large flux events is consistent with the ob-

servation that blobs are moving faster while their cross-field size diameter remains constant

[24]. Another possible explanation for the high average radial particle flux in discharge 5

may be increased levels of temperature fluctuations due to plasma filaments.

The effective convective velocity, veff = Γ/ne = Ĩ ˜(V SW − V NW)/B4p , also increases

with the line-averaged plasma density. For discharge 2 we find veff = 57ms−1, while we find
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veff = 1.1 × 102ms−1 for discharge 3 and 4. For discharge 5 with ne/nG = 0.42 we find

veff = 1.5× 102ms−1.

Such an increase in effective convective velocity is consistent with flux measurements

done in the Alcator C-Mod tokamak [11]. The values we find for veff are furthermore in the

same order of magnitude as measured in the Tore Supra Device [63] and in TCV [12].

VII. CONCLUSION

To conclude, we have studied the dependence of fluctuations in scrape-off layer plasmas

on the line-averaged particle density, as measured by Langmuir probes at the outboard

mid-plane location and embedded in the outer divertor of Alcator C-Mod. Time series of

ion saturation current, sampled in the far-scrape off layer, all feature dynamics which is

governed by the intermittent arrival of large amplitude burst events. Waiting times between

large amplitude burst events are well described by an exponential distribution. Sub records

of the time series feature a quadratic relation between coefficients of sample skewness and

sample excess kurtosis. The fact that large-amplitude events occur uncorrelated and the

quadratic relation between sample skewness and excess kurtosis, support assumptions of a

stochastic model for the density fluctuations in scrape-off layer plasmas. The probability

density function of this model describes the histograms of all sampled ion saturation current

time series well.

The conditionally averaged waveform of the associated potential fluctuations is dipolar,

except for time series sampled in the divertor plasma where the divertor is detached. This

supports the hypothesis that plasma blobs are electrically detached in sufficiently high den-

sity plasmas and may explain the observed increase in radial blob velocity with line-averaged

plasma density [24 and 58]. Electric disconnection of the plasma blobs from the divertor

sheaths may also explain recent experiments performed at the ASDEX Upgrade tokamak

where it was observed that the radial blob velocity and cross-field diameter increases as the

divertor detaches [64].

Future work will include a more detailed comparison of the stochastic model to time series

measured in scrape-off layer plasmas. Work on a manuscript providing a detailed discussion

of the stochastic model presented in this article is in progress.

20



VIII. ACKNOWLEDGEMENTS

R.K, O.E.G and A.T. were supported with financial subvention from the Research Council

of Norway under grant 240510/F20. R.K. would like to thank D. Brunner for providing the

script used to create figure 1. Work partially supported by US DoE Cooperative agreement

DE-FC02-99ER54512 at MIT using the Alcator C-Mod tokamak, a DoE Office of Science

user facility. R.K and O.E.G. acknowledge the generous hospitality of the Plasma Science

and Fusion Center at MIT during a sabbatical stay during which these experiments were

performed.

21



0.4 0.6 0.8
R [m]

-0.6

-0.4

-0.2

0.0

0.2

0.4

Z
[m

]

11
11

20
80

08
0.

80
s

�BT = 5.4T
B ×∇B ↓

Outer
Divertor
Probes

Horizontal
Scanning
Probe

Vertical
Scanning
Probe

FIG. 1. Cross-section of Alcator C-Mod showing the diagnostics from which we report measure-

ments: The horizontal scanning probes as well as two probes of the outer divertor probe array.

Overlaid are magnetic field lines from discharge 2, as reconstructed by EFIT.

22



FIG. 2. Mach probe head installed on the horizontal and vertical scanning probes.
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FIG. 18. Coefficients of skewness and excess kur-

tosis computed for 20ms long sub samples of the

ion saturation current as sampled by the outer-

most divertor probe.
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FIG. 19. Rescaled histogram of all sampled ion

saturation current time series, normalized accord-

ing to Eqn. (5). Color coding of the plot markers

is as in Tab. I, triangle up denotes data sam-

pled at outboard mid-plane, triangle down de-

notes data sampled by the outermost divertor

probe.
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FIG. 20. Rescaled histogram of all sampled float-

ing potential time series, normalized according to

Eqn. (6). Color coding of the plot markers is as

in Tab. I, triangle up denotes data sampled at

outboard mid-plane, triangle down denotes data

sampled by the outermost divertor probe.
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FIG. 21. Rescaled histogram of the radial particle

flux as sampled by the horizontal scanning probe.

The particle flux is in units of 1021m−2s−1.
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