
Title An approximation algorithm for the pickup and delivery
vehicle routing problem on trees

Author(s) Katoh, Naoki; Yano, Taihei

Citation Discrete Applied Mathematics (2006), 154(16): 2335-2349

Issue Date 2006-11

URL http://hdl.handle.net/2433/84847

Right Copyright © 2006 Elsevier B.V.

Type Journal Article

Textversion author

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39217074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Approximation Algorithm

for the Pickup and Delivery Vehicle Routing Problem on Trees

Naoki Katoh1 and Taihei Yano2

Abstract

This paper presents an approximation algorithm for a vehicle routing problem on a tree-shaped net-
work with a single depot where there are two types of demands, pickup demand and delivery demand.
Customers are located on nodes of the tree, and each customer has a positive demand of pickup and/or
delivery.

Demands of customers are served by a fleet of identical vehicles with unit capacity. Each vehicle
can serve pickup and delivery demands. It is assumed that the demand of a customer is splittable, i.e.,
it can be served by more than one vehicle. The problem we are concerned with in this paper asks to
find a set of tours of the vehicles with minimum total lengths. In each tour, a vehicle begins at the
depot with certain amount of goods for delivery, visits a subset of the customers in order to deliver and
pick up goods and returns to the depot. At any time during the tour, a vehicle must always satisfy the
capacity constraint, i.e., at any time the sum of goods to be delivered and that of goods that have been
picked up is not allowed to exceed the vehicle capacity. We propose a 2-approximation algorithm for
the problem.

1 Introduction

In this paper we consider a capacitated vehicle routing problem on a tree-shaped network with
a single depot. Let T = (V,E) be a tree, where V is a set of n nodes and E is a set of edges, and
r ∈ V be a designated node called depot. Nonnegative weight w(e) is associated with each edge
e ∈ E, which represents the length of e. Customers are located at nodes of the tree. There are
two types of demand, i.e., pickup and delivery demands. Nonnegative values Dp(v) and Dd(v)
are associated with each customer at v ∈ V which represent pickup and delivery demands,
respectively. Pickup demand (p-demand for short) is a request to bring goods located at the
customer to the depot and delivery demand (d-demand) is the one to bring goods located at
the depot to the customer.

Thus, when there is no customer at v, Dp(v) = 0 and Dd(v) = 0 are assumed. Demands of
customers are served by a set of identical vehicles with limited capacity. We assume throughout
this paper that the capacity of every vehicle is equal to one, and that the p- and d-demands of
a customer are splittable, i.e., the p-demand (or d-demand) can be served by more than one
vehicle. Each vehicle starts at the depot, visits a subset of customers to (partially) serve their
demands and returns to the depot. It is assumed that at any time during the tour, a vehicle
is not allowed to violate the capacity constraint, i.e., Z(t) ≤ 1 holds at any time t, where Z(t)
is defined as Z(t) = (the total amount of goods to be delivered in a tour) − (the amount of
goods that have been delivered before time t in the tour)+(the amount of goods that have
been picked up before time t in the tour). exceed The problem we deal with in this paper
asks to find a set of tours of vehicles with minimum total lengths to satisfy all the demands of
customers. We call this problem TREE-CVRPPD.

Vehicle routing problems have long been studied by many researchers (see [4, 5, 6, 8, 12] for
a survey), and are found in various applications such as scheduling of truck routes to deliver

1Dept. of Architecture and Architectural Engineering, Kyoto University, Kyoto, 615-8540 Japan, email:
naoki@archi.kyoto-u.ac.jp.
This work was partially supported by Grant in Aid for Scientific Research of the Ministry of Education, Science,
Sports and Cultures of Japan.

2National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588, Japan, email: yano.t@nao.ac.jp

1

goods from a warehouse to retailers, material handling systems and computer communication
networks. Recently, AGVs (automated guided vehicles) and material handling robots are often
used in manufacturing systems, but also in offices and hospitals, in order to reduce the material
handling efforts. Vehicle routing problems with p- and d-demands (VRPPD for short) for
general networks have also been studied [13, 12]. They have recently received a considerable
attention because it is more profitable if we can combine demands of delivery and pickup than
carrying goods only for the delivery and returning to the depot without any goods. However,
to the authors’ knowledge, the capacitated vehicle routing problems with pickup and delivery
demands on trees have not been studied yet. It should be noted that general pickup and delivery
vehicle routing problems assume that the origin and destination of a demand are at arbitrary
positions. In this respect, our problem treats a restricted case. However, our case where either
the origin or the destination of transportation request is a depot has certain applications in
scheduling stacker cranes in automated store and retrieval systems and in beer and soft drinks
delivery where full bottles are delivered and empty bottles are collected.

The problem related to but simpler than VRPPD is the traveling salesman problem with
pickup and delivery (TSPPD). This is a special case in which both of the total pickup and
delivery demands in the network do not exceed the vehicle capacity. In the literature [1, 7, 11],
general network has been considered as the underlying network, and pickup (resp. delivery)
demands are requests to bring goods from the customer to the depot (resp. from the depot to
the customer) as in our model. Mosheiov [11] proposed a (1 + α)-approximation algorithm for
the problem, where α is the approximation ratio for the standard traveling salesman problem.
Anily and Mosheiov [1] proposed the better approximation algorithm with approximation ratio
2 based on the minimum spanning tree. After constructing the minimum spanning tree, they
used a linear time exact algorithm for the special case of TSPPD where the graph is a tree
rooted at the depot. Gendreau et al. [7] proposed a heuristic with approximation ratio 3 and
carried out an extensive comparison among several heuristics. They showed that their heursitic
exhibited better performance than others.

The tree-shaped network can be found in buildings with simple structures of corridors and
in simple production lines of factories. Capacitated vehicle scheduling problems on tree-shaped
networks (TREE-CVRP for short) have recently been studied by several authors [2, 9, 10]. [10]
considered the variant of TREE-CVRP where demand of each customer is not splittable and
gave a 2-approximation algorithm. Hamaguchi and Katoh [9] and Asano et al. [2] studied the
case where demand is allowed to be split. Hamaguchi and Katoh [9] proved the NP-hardness
(in a strong sense) of TREE-CVRP and proposed a 1.5-approximation algorithm. Asano et
al. [2] improved the approximation ratio of 1.5 by [9] to 1.35078.

This paper extends the work by [2, 9] in such a way that two types of transportation
requests (i.e., pickup and delivery requests) are taken into consideration. Since TREE-CVRP
is strongly NP-complete, our problem TREE-CVRPPD is also strongly NP-complete. Thus,
we turn our attention to developing approximate algorithms for the problem. In this paper,
we shall present a 2-approximation algorithm for the problem. If the 1.35078-approximation
algorithm by [2] is applied to process pickup demands and delivery demands separately, this
results in a trivial approximation ratio of 2.70156. In this paper, we shall present an improved
2-approximation algorithm for TREE-CVRPPD.

2 Preliminaries

We assume that tree T = (V,E) is weighted, i.e., a nonnegative weight w(e) is associated with
each edge e ∈ E, which represents the length of e. Since T is a tree, there exists a unique
path between two nodes. For nodes u, v ∈ V , let path(u, v) be the unique path between u and
v. The length of path(u, v) is denoted by w(path(u, v)). We often view T as a directed tree
rooted at r. We assume throughout this paper that when we write an edge e = (u, v), u is a

2

parent of v unless otherwise stated. For a node v ∈ V − {r}, let parent(v) denote the parent
of v. Let C(v) denote the set of children of v. If w ∈ C(v) is a leaf, it is called a leaf child of
v. For u ∈ V and v ∈ C(u), an edge (u, v) is called a child edge of u. An edge (u, v) is called a
leaf edge or a pendant edge if v is a leaf. An edge which is not a leaf edge is called an internal
edge. For any v ∈ V , let Tv denote the subtree rooted at v. For a connected subgraph H of
T , let w(H), Dp(H) and Dd(H) denote the sum of weights of edges in H, the sum of pickup
and delivery demands of customers in H, respectively. Since customers are located on nodes,
customers are often identified with nodes.

Suppose that we are given a set S ⊂ V − {r} with
∑

v∈S Dp(v) ≤ 1 and
∑

v∈S Dd(v) ≤ 1.
Let T ′ denote a minimal subtree that spans S ∪ {r}. It is known [1] that a simple depth-first
search generates a routing of a single vehicle that serves all the demands of customers in S with
optimal tour length of 2

∑
e∈T ′ w(e). For the completeness, we shall review the algorithm by

Anily and Mosheiov [1]. Since the amount of goods loaded on a vehicle cannot exceed one (i.e.,
the vehicle capacity), we should be careful about the choice of the node to be visited next from
among the children of the current vertex. Suppose Dp(Tv) and Dd(Tv) for all v are computed
in advance. When we arrive at node v, we choose the child w ∈ C(v) to be visited next such
that

Dd(Tw) − Dp(Tw) = max{Dd(Tw′) − Dp(Tw′) | w′ ∈ C(v) and is not visited yet}. (1)

After satisfying all p- and d-demands in Tw, we backtrack to v. We continue this process until
all demands are satisfied. It has been proved [1] that the routing schedule for T ′ obtained by
the depth-first search based on the above rule does not get stuck, i.e., it does not violate the
capacity constraint at any moment.

Thus, when we speak of a tour in this paper, we do not need to explicitly give a sequence of
nodes that a vehicle visits, but it is enough to specify a set of customers that the vehicle visits.
Since the demand of a customer is splittable, in order to define a tour of a vehicle, we also
need to specify the amounts of pickup and delivery demands of each customer served by the
vehicle. A solution of TREE-CVRPPD consists of a set of tours. From the above discussion,
we represent the tour of the j-th vehicle by

{(Dp
j (v),Dd

j (v)) | v ∈ Sj}, (2)

where Sj is the set of customers for which some positive demands are served in the j-th tour,
and Dp

j (v)(≥ 0) and Dd
j (v)(≥ 0) for v ∈ Sj are the amounts of pickup and delivery demands

that the j-th vehicle serves at v.
The total tour length of an optimal solution for TREE-CVRPPD is often referred to as the

optimal cost. For an edge e = (u, v), let

lb #vehicles(e) = max{�Dp(Tv)�, �Dd(Tv)�}. (3)

lb #vehicles(e) represents a lower bound of the number of vehicles that must traverse edge
e in a forward direction in an optimal solution because, due to the unit capacity of a vehi-
cle, the number of vehicles required for any solution to serve the demands in Tv is at least
max{�Dp(Tv)�, �Dd(Tv)�}. Let LB(e) denote the lower bound of the cost required to traverse
edge e in an optimal solution. Then, since each vehicle must traverse an edge e at least twice
in a forward direction and in a backward direction, we have

LB(e) = 2w(e) · lb #vehicles(e). (4)

From this, we have the following lemma.

Lemma 1 LB∗ =
∑

e∈E LB(e) gives a lower bound of the optimal cost of TREE-CVRPPD.

3

3 Reforming Operations

Our approximation algorithm repeats the following two steps until all the demands are served.
The first step is a reforming step in which we reshape a given tree by the following seven
operations which are ”safe” in the sense that they do not either increase the lower bound given
in Lemma 1 or decrease the ratio of the optimal cost to the lower bound. The second step is
to choose an appropriate subgraph and choose a strategy to serve (possibly partial) demands
thereof.

The first operation R1 is applied to nodes both of whose p- and d-demands are greater than
or equal to 1. For such a node v, we allocate k = �min{Dp(v),Dd(v)}	 vehicles to v (i.e., each
vehicle delivers one unit of goods and returns to the depot by picking up one unit of goods).
As a result of this operation, at least one of p- or d-demand at any leaf is decreased to less
than one. Let a = w(path(r, v)). Then the cost required for scheduling such k vehicles is 2a.
Notice that for every edge e on path(r, v), LB(e) is decreased by k. Thus, after satisfying k
units of p- and d-demands at v by k vehicles, the lower bound given by Lemma 1 decreases
by 2ka. Let P denote the original problem instance and P ′ the one resulted after satisfying
k units of p- and d-demands at v by k vehicles. Let cost(P), cost1, cost(P ′) denote the total
cost required for the original problem P by our algorithm, the cost required by serving k units
of p- and d-demands at v, and the cost for the remaining problem P ′ to be required by our
algorithm, respectively, (i.e., cost(P) = cost1 + cost(P ′)). Let LB(P ′) be the lower bound for
the problem P ′ and LB1 be the decrease of lower bound by scheduling such k vehicles. From
the above discussion, cost1 = LB1 holds. Thus, cost(P)

LB(P) ≤ cost(P ′)
LB(P ′) follows since

cost(P)
LB(P)

=
cost1 + cost(P ′)
LB1 + LB(P ′)

≤ cost(P ′)
LB(P ′)

.

Note that this operation is apparently safe because this does not decrease the ratio of the
optimal cost to the lower bound.

The second operation R2 is to remove positive demand from each internal node. If there is
any internal node v with positive demand, we create a new node connected with v by an edge
of weight zero and descend the weight of v to the new node. This reform operation is clearly
safe. Therefore, we can assume that positive demand is placed only at leaves, that is, demand
at any internal node is zero.

The third operation R3 is applied to two consecutive edges (u, u′) and (u′, u′′) such that u′′

is a unique child of u′. We just replace the edges (u, u′) and (u′, u′′) by a single edge (u, u′′)
with w(u, u′′) = w(u, u′) + w(u′, u′′)

The fourth operation R4 is to merge a subtree such that both p- and d-demands are less than
or equal to 1 into a single edge. Namely, for an internal node v with Dp(Tv) ≤ 1 and Dd(Tv) ≤ 1,
Tv is replaced by a single edge (v, v′) with edge weight equal to w(Tv), Dp(v′) = Dp(Tv) and
Dd(v′) = Dd(Tv). Since Dp(Tv) ≤ 1 and Dd(Tv) ≤ 1 hold, and from the remark given in
Section 2, this operation is also safe.

The fifth operation R5 is applied to a leaf whose p- or d-demand is greater than or equal to
one. We create a sufficient number of nodes connected to v with zero edge weight so that both
p- and d-demands of every leaf are less than or equal to one. This operation is clearly safe.

The sixth operation R6 is applied to a node v such that there are at least two leaves the
sum of whose p- or d-demand exceeds one. Let v1 and v2 be such leaves. We then introduce
a new node v′ and a new edge (v, v′) of zero weight and reconnect v1 and v2 to v′ so that v′

becomes a new parent of v1 and v2. This operation is clearly safe. We apply this operation
only to the node having a non-leaf child because otherwise it will be infinitely repeated. We
need this operation only for the technical purpose.

The seventh reforming operation R7 is to merge leaves. For a node v, let {v1, v2, . . . , vk} be
a set of its leaf children. By wi we denote the weight of the edge between v and vi. We examine

4

weight=0

v

v1

v2

v1

v2

v

v’

Figure 1: The operation R6.

(0.2,0.4) (0.5, 0.5) (0.8,0.1)

3
4 7

merge

(0.7.0.9) (0.8,0.1)

3+4 7

(0.2,0.4) (0.5, 0.5) (0.8,0.1)

3
4 7

merge

(0.7.0.9) (0.8,0.1)

3+4 7

Figure 2: Merge operation R7.

every pair of leaves. For the pair (vi, vj) we check whether the sum of their p-demands exceeds
1. If Dp(vi)+Dp(vj) ≤ 1 and Dd(vi)+Dd(vj) ≤ 1, then we merge them. Exactly speaking, we
remove the leaf vj together with its associated edge (u, vj) after replacing the p- and d-demands
of vi with Dp(vi) + Dp(vj) and Dd(vi) + Dd(vj), respectively, and the weight wi with wi + wj.
Then, we proceed to the next unexamined pair of leaves. We repeat this process while there is
any mergeable pair of leaves. Figure 2 illustrates how this merging process proceeds.

Notice that after the above seven operations are repeatedly applied until they cannot be
applied anymore, both of p- and d-demands of every leaf is at most one and at least one of
them is less than one.

4 Approximation Algorithm

The approximation algorithm to be presented in this paper repeats the following two steps:

Step 1: Apply seven reform operations described in the previous section until we cannot
perform any operation.
Step 2: Focusing on a connected subgraph H of the resulting graph such that (i) H contains
the root, (ii) both Dp(H) and Dd(H) are small enough, and (iii) �Dp(H)� = �Dd(H)�, we
prepare a few vehicles to (possibly partially) serve the demands in H.

One iteration of Steps 1 and 2 is called a round.

Theorem 1 The approximation of our algorithm for TREE-CVRPPD is 2.

Proof. The proof technique is similar to the one by Hamaguchi and Katoh [9] and Asano
et al. [2]. The theorem can be proved by induction on the number of rounds. Whenever the
sum of p- or d-demands in the tree exceeds one, we perform the reforming operations to have a
subgraph that falls into one of five cases shown below, and design how to serve the demands in
the subgraph. Then, we apply the reforming operations again to the resulting tree and repeat
this process until the remaining p-demands and d-demands are both less than or equal to one.
This is the base case. For the base case, the algorithm mentioned in Section 2 finds an optimal
tour by a single vehicle.

5

Assuming that the theorem holds for problem instances that require at most k rounds, we
consider the problem instance P of TREE-CVRPPD for which our algorithm requires k + 1
rounds. Each time we find a subgraph and apply an appropriate strategy. Let P ′ be the
problem instance of TREE-CVRPPD obtained from P after the first round by decreasing
demands served in this round from original D(·). Let LB(P ′) be the lower bound for the
problem P ′ and LB1 be the decreased lower bound at this round. Let cost(P), cost1 and
cost(P ′) denote the total cost required for the original problem P by our algorithm, the cost
required by the first round and the cost for the remaining problem P ′ to be required by our
algorithm, respectively, (i.e., cost(P) = cost1 + cost(P ′)). Then, we have

cost(P)
LB(P)

≤ cost1 + cost(P ′)
LB1 + LB(P ′)

. (5)

Since cost(P ′)/LB(P ′) ≤ 2 holds from the induction hypothesis, it suffices to prove cost1/LB1 ≤
2.

As we shall prove below (Lemmas 2 through 10), the above inequality holds in any of Cases
1 through 5 to be explained below. Thus, we have the theorem.

In order to explain how to determine the subgraph which we focus on and how to design
vehicle scheduling for the subgraph, we need the following definition. An internal edge e = (u, v)
is called p-dominant, d-dominant, and pd-balanced if �Dp(Tv)� ≥ �Dd(Tv)� + 1, �Dd(Tv)� ≥
�Dp(Tv)� + 1, and �Dp(Tv)� = �Dd(Tv)�, respectively.

4.1 Cases 1 through 4

Case 1: There exists a node v with two leaf children such that both the sum of p-demands
and that of d-demands are at least one. From reform operations R4 and R7, we have 1 ≤
Dp(v1) + Dp(v2) ≤ 2 and 1 ≤ Dd(v1) + Dd(v2) ≤ 2. In this case, we consider the subgraph
consisting of path(r, v) and edges connecting v and its two or three leaf children (see Fig. 3).
In Figures 3 through 5, a leaf is represented as a black square, and a leaf edge as a grey line.
Also, p-dominant and d-dominant edges are represented by thick and thin lines, respectively,
and a double line represents a path. In this case, we prepare two vehicles, one for v1 and the
other for v2 so that the first vehicle (resp. the second vehicle) serve the p- and d-demands for
v1 (resp. v2). Let e1 = (v, v1) and e2 = (v, v2). Let a denote the weight of path(r, v). Then
the the cost of the tour required for the first (resp. the second) vehicle is 2a + 2w(e1) (resp.
2a + 2w(e2)). Thus, the total cost for these two vehicles is 4a + 2w(e1)+ 2w(e2). The decrease
of the lower bound is at least 2a+2w(e1)+2w(e2) because both of p- and d-demands served by
two vehicles are at least one, and hence lb #vehicles(e) for each edge on path(r, v) is decreased
at least by one. Thus, we have the following lemma.

Lemma 2 In Case 1, the approximation ratio is at most 2.

Case 2: There exists a node v such that (i) there are two leaf children v1 and v2 the sum
of whose p-demands is at least one, and (ii) all edges along path(r, v) are p-dominant. We
prepare two vehicles, each serving the demands of v1 and v2, respectively. Let e1 = (v, v1) and
e2 = (v, v2), and let a be the one defined in Case 1. Then the the cost of tours of these two
vehicles is 4a+2w(e1)+2w(e2). The decrease of the lower bound is at least 2a+2w(e1)+2w(e2)
since every edge on path(r, v) is p-dominant and LB(e) for each edge on path(r, v) is decreased
by at least one.

Lemma 3 In Case 2, the approximation ratio is at most 2.

Case 3: There exists a node v such that (i) there are two leaf children the sum of whose
d-demands is at least one, and (ii) all edges along path(r, v) are d-dominant. This case can be
treated similarly to Case 2.

6

r

v
e1 e2

a

v v1 2

Figure 3: The illustration of Case 1.

r

u

v v

e1 e2

a

v v

e3 e4

v v'

1 2 3 4

Figure 4: The illustration of Case 4.

Lemma 4 In Case 3, the approximation ratio is at most 2.

Case 4: There exist nodes u, v and v′ such that (i) both v and v′ are descendants of u such
that all edges on path(u, v) are p-dominant and all edges on path(u, v′) are d-dominant, (ii)
there are two leaf children v1 and v2 of v the sum of whose p-demands is at least one, and there
are two leaf children v3 and v4 of v′ the sum of whose d-demands is at least one.

Fig. 4 illustrates this case. If the sum of d-demands of v1 and v2 is larger than or equal
to one, this reduces to Case 1. The same remark holds if the sum of p-demands of v3 and
v4 is larger than or equal to one. Thus, we can assume that the sum of d-demands of v1

and v2 is less than one, and the sum of p-demands of v3 and v4 is also less than one. Let
e1 = (v, v1), e2 = (v, v2), e3 = (v′, v3), e4 = (v′, v4), and assume without loss of generality that
w(e1) ≥ w(e2) and w(e3) ≥ w(e4). We prepare two vehicles. The first vehicles visits v1 and v2

to serve the whole p-demand of v1 and a partial p-demand of v2 so that the total p-demand of
v1 and v2 served by the vehicle is equal to one, and to serve the whole d-demands of v1 and
v2. The remaining p-demand at v2 is left for the succeeding rounds. Notice that the order
of visits may be different from what is written here in order to preserve capacity constraint.
The second vehicle visits v3 and v4 to serve the whole d-demand of v3 and a partial d-demand
of v4 so that the total d-demand of v3 and v4 served by the vehicle is equal to one, and to
serve the whole p-demands of v3 and v4. The remaining d-demand at v4 is left for succeeding
rounds. Let a = w(path(r, u)), b1 = w(path(u, v)) and b2 = w(path(u, v′)). The costs required
for the first and second vehicles are 2a+2b1 +2w(e1)+2w(e2) and 2a+2b2 +2w(e3)+2w(e4),
respectively. Thus, the cost required by the two vehicles is given by

cost = 4a + 2b1 + 2b2 + 2w(e1) + 2w(e2) + 2w(e3) + 2w(e4).

The decrease of the lower bound by the first and the second vehicles is given by

lb = 2a + 2b1 + 2b2 + 2w(e1) + 2w(e3).

Thus ratio of cost to lb is

cost

lb
=

4a + 2b1 + 2b2 + 2w(e1) + 2w(e2) + 2w(e3) + 2w(e4)
2a + 2b1 + 2b2 + 2w(e1) + 2w(e3)

≤ 4a + 2b1 + 2b2 + 4w(e1) + 4w(e3)
2a + 2b1 + 2b2 + 2w(e1) + 2w(e3)

≤ 2. (6)

The first inequality is derived from w(e1) ≥ w(e2) and w(e3) ≥ w(e4). Thus,

Lemma 5 In Case 4, the approximation ratio is at most 2.

7

4.2 Case 5

Case 5: This case is much more involved than the previous ones. Suppose any of Cases 1
through 4 does not hold. We focus on the node u such that edge (parent(u), u) is pd-balanced
and there is not any pd-balanced edge in Tu. Before explaining the subgraph we shall focus
on, we need the following lemma.

Lemma 6 Let v(
= u) be an internal node in Tu which has a non-leaf child, and let v′ =
parent(v). (i) If (v′, v) is p-dominant (resp. d-dominant) and v has only one non-leaf child w,
(v,w) is also p-dominant (resp. d-dominant). (ii) If (v′, v) is p-dominant (resp. d-dominant)
and v has at least two non-leaf children, at least one non-leaf child edge of v is p-dominant
(resp. d-dominant).

Proof. (i) Suppose v has a leaf child l. Notice that v has a unique leaf child since otherwise
the sum of p- or d-demands of leaves is greater than or equal to one due to merge operation R4

and hence R5 creates a new internal edge connecting these leaves which makes v be not allowed
to have a leaf child. Thus, v has at most one leaf child. Then (v,w) cannot be d-dominant
from Dd(l) ≤ 1. From the assumption of Tu (v,w) cannot be pd-balanced either. Thus, (i)
follows.

(ii) Since v has at most one leaf child, (ii) immediately follows.

From this lemma, if v has two non-leaf children w and w′ such that (v,w) is p-dominant
and (v,w′) is d-dominant, there exists a subgraph of Case 4. The reason is as follows: From
Lemma 6, there is a path from v passing through (v,w) to a node x having only leaf children
such that all edges on the path is p-dominant. Similarly there is a path from v passing through
(v,w′) to a node x′ having only leaf children such that all edges on the path is d-dominant.

Thus, from this lemma and since it is assumed that any of Cases 1 through 4 does not
hold, we can assume that there exists a node u such that (i) either all internal edges of Tu are
p-dominant, or all of them are d-dominant, and (ii) edge (parent(u), u) is pd-balanced. We
assume that every internal edge of Tu is p-dominant without loss of generality (the other case
can be similarly treated).

We focus on an internal node v ∈ Tu such that all children of v are leaves. We choose
arbitrary two leaf children v1 and v2 of v and then choose a set of leaves L̂ = {l′1, l′2, . . . , l′h}
whose parent is on the path path(u, v) so that the following two equations are satisfied. Here,
the subscript i of l′i is given so that parent(l′i) is a descendant of parent(l′j) if i < j.

1 + �
h∑

i=1

Dp(l′i)� = �
2∑

i=1

Dd(vi) +
h∑

i=1

Dd(l′i)� (7)

and

1 + �
j∑

i=1

Dp(l′i)� = 1 + �
2∑

i=1

Dd(vi) +
j∑

i=1

Dd(l′i)� for j = 0, 1, . . . , h − 1. (8)

We will leave the proof of the existence of such L̂ and the explanation of how such L̂ can be
obtained to the next subsection. We shall explain how we can construct a vehicle scheduling
for the leaves of {v1, v2} ∪ L̂, assuming that L̂ is given. Let

n = 1 + �
h∑

i=1

Dp(l′i)�. (9)

We first prepare n vehicles to serve p- and d-demands of {v1, v2} ∪ L̂ so that every vehicle
(possibly except the last one) serves a unit amount of p- and d-demands. Let n vehicles be
numbered from 1 through n. We assume w(v, v1) ≥ w(v, v2) without loss of generality. The

8

first vehicle satisfies the entire p-demand at v1 and a partial p-demand of v2 so that the total
amount is equal to one. The remaining demand of v2 is left for the succeeding rounds. For
p-demands at leaves of L̂, the succeeding vehicles are assigned to the leaves of L̂ in the order
of l′1, l′2, . . . , l′h so that the p-demand of a leaf with smaller subscript is assigned to the vehicle
with smaller or the same number. Namely, we first place l′1, l′2, . . . , l′h in a queue in this order,
and prepare the vehicles 2, 3, . . . n. We iteratively select the leaf l′i located at the top of the
queue, and assign its p-demand to the vehicle (say, vehicle k. Initially k is set to 2.). If the
entire p-demand of l′i is assigned to vehicle k, delete l′i from the queue and select the next leaf.
If the vehicle capacity becomes full (i.e. a unit amount of p-demand is loaded on the vehicle),
we select the next vehicle (vehicle k+1) and assign the remaining p-demand of l′i to the vehicle.
We repeat this process until all p-demands are assigned. We call this algorithm Assignment.
Eventually, every vehicle is assigned a unit amount of p-demands possibly except the last one.
Notice that for every leaf l′j, at most two vehicles serve its p-demand. See Example 1 below for
an illustration.

For the d-demands of {v1, v2} ∪ L̂, the assignment of d-demands to vehicles are made in
essentially the same manner as for p-demands. Namely, preparing n vehicles numbered from 1
through n and placing leaves v1, v2, l′1, l′2, . . . , l′h in the queue in this order, the assignment of
d-demands to vehicles are made in such a way that (i) every vehicle serves a unit amount of
d-demands possibly except the last one, and (ii) for any l′i and l′j with i < j, if d-demand of l′i
is served by the vehicle k, d-demand of l′j is never served by a vehicle whose number is smaller
than k. Notice that for every leaf l′i, at most two vehicles are assigned to serve its d-demand.

The vehicle scheduling given by Algorithm Assignment is denoted by S. Therefore, S
satisfies all p- and d-demands of {v1, v2}∪ L̂ possibly except the p-demand of v2 and that every
vehicle (possibly except the last one) serves one unit of p- and d-demands.

Although for each leaf l′i ∈ L̂, the number of vehicles which visit l′i to satisfy p-demand (resp.
d-demand) is at most two, respectively, the total number of vehicles which visit l′i may exceed
two (see Example 1 below where three vehicles visit a leaf l2). If so, the approximation ratio
for this round may exceed two when the edge weight w(parent(l′i), l′i) is very large compared
with other edge weights. In order to avoid this, we adjust S by executing the following steps
depending on the four cases (actually, we do not need do anything except Cases (iii) and (iv)).
The resulting scheduling is denoted by S′:
Adjustment of the scheduling

Case (i): There is only one vehicle (say, k) which visits l′i to satisfy p-demand, and also there
is only one vehicle (say, k′) which visits l′i to satisfy d-demand. In this case, the total number
of vehicles which visit l′i is two, and thus we do not need do anything.
Case (ii): There are two vehicles (say, k and k + 1) which visit l′i to satisfy p-demand while
there is only one vehicle (say, k′) which visits l′i to satisfy d-demand. If k′ < k or k′ > k + 1,
this contradicts that (8) holds for j = i − 1 or j = i, respectively. Thus, k′ = k or k + 1.
Therefore, the total number of vehicles which visit l′i is two, and we do not need do anything.
Case (iii): There is only one vehicle (say, k) which visits l′i to satisfy p-demand while there
are two vehicles (say, k′ and k′ + 1) which visit l′i to satisfy d-demand. Similarly to Case (ii),
k′ = k − 1 or k′ = k − 2 holds from (7) and (8). k′ = k − 1 holds only if i = h from (7). In
this case, the total number of vehicles which visit l′i is two, and we do not need an additional
vehicle. k′ = k−2 holds only if i < h and �∑i−1

j=1 Dp(l′j)� =
∑i−1

j=1 Dp(l′j). In this case, there are
three vehicles to visit l′i and thus we prepare a new vehicle which serves all p- and d-demands
at l′i instead of such three vehicles.
Case (iv): There are two vehicles (say, k and k + 1) which visit l′i to satisfy p-demand, and
also there are two vehicles (say, k′ and k′ + 1) which visit l′i to satisfy d-demand. As proved
in Cases (ii) and (iii), k = k′ + 1 holds. In this case, there are three vehicles in total which
visit l′i. Thus, instead of these three vehicles, we assign one new vehicle to satisfy all p- and
d-demands at l′i. Example 1 illustrates this case.

9

Table 1: Schedule S and S′ for Example 1. The numbers shown at lines 4, 6 and 8 represent
those of vehicles assigned, and those at lines 5 and 7 shows the amount of demand assigned to
the corresponding vehicle.

v1 v2 l1 l2 l3

input p-demand 0.8 0.8 0.7 0.5 0.6
d-demand 0.3 0.2 0.4 0.8 0.6

Schedule S vehicle No. 1 1 2 2, 3 3
for p-demand p-demand 0.8 0.2 0.7 0.3, 0.2 0.6
Schedule S vehicle No. 1 1 1 1, 2 2, 3

for d-demand d-demand 0.3 0.2 0.4 0.1, 0.7 0.3, 0.3
Schedule S′ vehicle No. 1 1 1, 2 4 2, 3

Example 1: We shall show an illustrative example. In Figure 5, L = {l1, l2, l3}. Let p- and
d-demands of v1, v2, l1, l2, l3 be given as in Table 1. Notice that L̂ = L holds because L̂ = L
satisfies (7) and (8). Vehicle assignment by schedule S is shown at lines from 4 to 7 in the table.
Since three vehicles are assigned to l2, a new vehicle (vehicle 4) is assigned to l2 to obtain a
final solution.

Lemma 7 For any i with 1 ≤ i ≤ h, the number of new vehicles we prepare according to Case
(iii) or (iv), is at most q − 2, where q = 1 + �∑j

j=1 Dp(l′j)�.

Proof. We first claim that the number of leaves in {v1, v2}∪{l′1, l′2, . . . , l′i} such that schedule
S assigns two vehicles to serve its p-demand is at most q − 2. From the way of constructing
the schedule S, if two vehicles visit the leaf to serve its p-demand, their vehicle numbers are
consecutive. Also, at most two vehicles visit each leaf l′j in order to serve p-demand because
Dp(l) ≤ 1 holds. Therefore, there are at most q − 1 leaves for which schedule S assigns two
vehicles to serve its p-demand. However, from the way of constructing the schedule S, there
is no leaf which both vehicles 1 and 2 visit. Thus, the claim follows. Suppose a new vehicle is
prepared for leaf l′j according to Case (iii). Then the schedule S assigns a single vehicle (say,
k) for l′j to serve its p-demand and two vehicles k − 2 and k − 1 to serve its d-demand. The
condition �∑i−1

j=1 Dp(l′j)� =
∑i−1

j=1 Dp(l′j) implies that vehicle k − 1 is scheduled in S to serve
p-demand of l′j−1. Thus, there is no leaf for which both vehicles k − 1 and k are scheduled in
S to serve its p-demand. Therefore, if g vehicles are prepared according to Case (iii) by the
schedule S′, this observation implies that the number of leaves in L̂ whose p-demand is split
in S is at most q − 2− g. Thus, at most q − 2− g vehicles are prepared according to Case (iv)
in S′. This proves the lemma.

In order to prove that the scheduling S of vehicles in Case 5 attains a 2-approximation, we
shall show that for every edge e which some vehicle passes in this scheduling, the ratio of the
cost to the decrease of the lower bound LB(e) is at most 2.

(1) e is a leaf edge whose end vertex is v1 or v2. In this case, we consider such two edges together.
The cost required to pass these two edges is 2w(v, v1)+2w(v, v2), and the decrease of the lower
bound concerning these two edges is 2w(v, v1). From the assumption of w(v, v1) ≥ w(v, v2), we
have (2w(v, v1) + 2w(v, v2))/2w(v, v1) ≤ 2.

(2) e is a leaf edge whose end vertex is a leaf of L̂. In this case, at most two vehicles pass the
edge to satisfy all p- and d-demands at the leaf. Thus, the ratio of the cost required to pass
the edge e to the decrease of LB(e) is clearly at most 2.

10

(3) e is on path(u, v). Notice that e is p-dominant. Suppose that e is between the path
connecting l′j and l′j+1. The amounts of p- and d-demands served by the vehicles passing e

are 1 +
∑j

i=1 Dp(l′i) and
∑2

i=1 Dd(vi) +
∑j

i=1 Dd(l′i), respectively. From (8) and since e is p-
dominant, the decrease of lb #vehicles(e) is at least �∑j

i=1 Dp(l′i)�. Let q = 1+ �∑j
i=1 Dp(l′i)�.

The scheduling algorithm first prepares q vehicles and then additionally prepares at most q− 2
vehicles from Lemma 7. Thus, the number of vehicles passing e is at most 2q − 2. Hence, the
ratio of the cost required to traverse the edge e to the decrease of LB(e) is clearly at most 2.

(4) e is on path(r, u). Similarly to (3) above, it follows that the number of vehicles passing
e is at most 2n − 2. The amounts of p- and d-demands satisfied by the vehicles passing e
are 1 +

∑h
i=1 Dp(l′i) and

∑2
i=1 Dd(vi) +

∑h
i=1 Dd(l′i), respectively. From (7), the decrease of

lb#vehicles(e) is at least n− 1. This implies that the ratio of the cost required to traverse the
edge e to the decrease of LB(e) is clearly at most 2.

Lemma 8 In Case 5, the approximation ratio is at most 2.

4.3 Existence of L̂

We now prove the existence of L̂. We first show the following lemma.

Lemma 9 For an internal node v ∈ Tu such that all children of v are leaves, Dp(v′)+Dp(v′′) ≥
1 and Dd(v′) + Dd(v′′) < 1 hold for any two children v′ and v′′ of v.

Proof.
Let C(v) = {v1, v2, . . . , vg} where leaves are rearranged in the nondecreasing order of

Dp(vi) − Dd(vi).
We first show that

∑2
i=1 Dp(vi) ≥ 1 and

∑2
i=1 Dd(vi) < 1 hold. Suppose otherwise. From

merging operation R6, either
∑2

i=1 Dp(vi) ≥ 1 or
∑2

i=1 Dd(vi) ≥ 1 holds. We derive a contra-
diction by assuming

∑2
i=1 Dd(vi) ≥ 1. If

∑2
i=1 Dp(vi) ≥ 1, we have the subgraph satisfying

Case 1. Thus,
∑2

i=1 Dp(vi) < 1 holds. It then follows that v must have a leaf v′ other than
v1 and v2 such that Dp(v′) > Dd(v′) because the edge (parent(v), v) is p-dominant. If v has
only three leaf children, Dp(Tv) < 2 holds and hence (parent(v), v) cannot be p-dominant, a
contradiction. Thus, v has at least four children. Then there exist leaves v3 and v4 of v which
are different from v1 and v2 such that Dp(v3) > Dd(v3) and Dp(v4) > Dd(v4) because other-
wise (parent(v), v) cannot be p-dominant. If

∑4
i=3 Dd(vi) ≥ 1, the subgraph consisting of the

leaves v3 and v4 together with path(u, v) satisfies Case 1. Thus,
∑4

i=3 Dd(vi) < 1 holds. Also,∑4
i=3 Dp(vi) ≥ 1 since v3 and v4 can be merged otherwise. Hence, the subgraph consisting of

v1, v2, v3, v4 and path(u, v) satisfies the condition of Case 4 where u, v, v′ of Case 4 are the same
node. Therefore, a contradiction is again derived. Thus,

∑2
i=1 Dp(vi) ≥ 1 and

∑2
i=1 Dd(vi) < 1

hold.
Now let us consider arbitrary two children vj and vk. From the choice of v1 and v2, it

follows that Dp(vj) + Dp(vk) > Dd(vj) + Dd(vk). Similarly to the case of v1 and v2, we have
Dp(vj) + Dp(vk) > 1 and Dd(vj) + Dd(vk) < 1. This proves the lemma.

We then consider two arbitrary leaves v1 and v2 of v, and let

L = {l ∈ V | l is a leaf, parent(l) ∈ path(u, parent(v))}
When v has an odd number of children, let v3 be a child of v other than v1 and v2 and let

L = {v3} ∪ {l ∈ V | l is a leaf, parent(l) ∈ path(u, parent(v))}.
We will choose an appropriate subset L̂ of L which satisfy (7) and (8). Let L = {l1, l2, . . . , lm}
(see Fig. 5). Here the subscript i of li is given so that if parent(li) is a proper descendant of
parent(lj), i < j holds.

11

r

u

v v v v1 2 3 4

H

v l1
l2

l3

L

Figure 5: The illustration of the subgraph H considered in Case 5.

Lemma 10

(i) �
2∑

i=1

Dd(vi) +
∑

l∈L

Dd(l)� ≥ �
2∑

i=1

Dp(vi) +
∑

l∈L

Dp(l)�. (10)

(ii) �
2∑

i=1

Dd(vi) +
∑

l∈L

Dd(l)� ≥ 1 + �
∑

l∈L

Dp(l)�. (11)

Proof. Since
∑2

i=1 Dp(vi) ≥ 1 holds from Lemma 9, (ii) is immediate from (i). Thus, we shall
prove (i) only. Let F be the set of internal edges that branch from path(u, v). Namely, F is
the set of internal edges e = (x, y) such that x is on path(u, v) but y is not. Let VF be the set
of such vertices y. Let C ′ be the set of children of v other than v1 and v2 (when v has an odd
number of children, v3 is excluded from C ′). Then we have

Dp(Tu) =
2∑

i=1

Dp(vi) +
∑

l∈L

Dp(l) +
∑

y∈VF

Dp(Ty) +
∑

v′∈C′
Dp(v′) (12)

and

Dd(Tu) =
2∑

i=1

Dd(vi) +
∑

l∈L

Dd(l) +
∑

y∈VF

Dd(Ty) +
∑

v′∈C′
Dd(v′). (13)

From the assumption, all edges e ∈ F are p-dominant, i.e. �Dp(Ty)� > �Dd(Ty)� holds for any
y ∈ VF . Thus, ∑

y∈VF

�Dp(Ty)� >
∑

y∈VF

�Dd(Ty)�. (14)

Noting the following fact,

Fact 1: �a� > �b� and �c� > �d� imply �a + c� > �b + d� for any positive numbers a, b, c, d,

(14) implies
�

∑

y∈VF

Dp(Ty)� > �
∑

y∈VF

Dd(Ty)�. (15)

12

If C ′
= ∅, Dp(v′) + Dp(v′′) ≥ 1 > Dd(v′) + Dd(v′′) holds for every pair of v′, v′′ ∈ C ′ from
Lemma 9. Hence, using Fact 1, we have

�
∑

v′∈C′
Dp(v′)� > �

∑

v′∈C′
Dd(v′)� (16)

because |C ′| is even. Thus, if (i) does not hold, this implies �Dp(Tu)� > �Dd(Tu)� from (10)
and (11). This contradicts that �Dp(Tu)� = �Dd(Tu)� holds since (parent(u), u) is assumed to
be pd-equivalent. Therefore, the lemma follows.

We shall explain how we compute L̂ ⊆ L satisfying (7) and (8). The algorithm is rather
greedy and is described as follows.

Algorithm Find L̂

Step 1: L̂ = ∅, i = 0.
Step 2: Let i = i + 1.
Step 3: If 1+�Dp(li)+

∑
l∈L̂ Dp(l)� −(�∑2

i=1 Dd(vi)+Dd(li)+
∑

l∈L̂ Dd(l)�) = 1, let L̂ = L̂∪{li}
and return to Step 2.
Step 4: If 1 + �Dp(li) +

∑
l∈L̂ Dp(l)� −(�∑2

i=1 Dd(vi) + Dd(li) +
∑

l∈L̂ Dd(l)�) = 2,
let L̂ = ∅ and return to Step 2.

Step 5: If 1+�Dp(li)+
∑

l∈L̂ Dp(l)� −(�∑2
i=1 Dd(vi)+Dd(li)+

∑
l∈L̂ Dd(l)�) = 0, let L̂ = L̂∪{li}

and u = parent(li). Halt after outputting L̂.

Lemma 11 Algorithm Find L̂ correctly computes L̂ which satisfy (7) and (8).

Proof. Suppose condition of Step 4 holds for some i. Then, �Dp(li)+
∑

l∈L̂ Dp(l)� > �Dd(li)+∑
l∈L̂ Dd(l)� holds. Let L′ = {li+1, li+2, . . . , lm} which is a set of leaves in L not yet examined

by the algorithm. From Lemma 10(i) (inequality (10)), L′
= ∅ must hold. Using Fact 1,

1 + �
∑

l∈L′
Dp(l)� ≤ �

2∑

i=1

Dd(vi) +
∑

l∈L′
Dd(l)� (17)

holds which implies that the inequality of (11) again holds for L = L′. Thus, we can again
apply the algorithm. Since L is a finite set, the condition of Step 5 eventually holds. It should
be noticed that i = m does not hold at Step 2 when returning from Step 3 or 4.

Notice that if the scheduling algorithm in Case 5 is changed so that p-demand of v2 is not left
for future rounds, the above lemma does not hold any more because (17) does not always hold
for this case.

4.4 Lower bound

We now show that the approximation ratio 2 proved in Theorem 1 is tight. Figure 6 illustrates
such an example. The numbers (α, β) attached to a leaf represent its p- and d-demands, and
the number attached to an edge represents the edge weight where ε is a sufficiently small
positive number. It is easy to see that none of Cases 1 through 4 holds, but Case 5 holds for
this example. Applying the method for treating Case 5, two vehicles are prepared to serve
the demands for Tu. The first vehicle serves the whole p- and d-demands at v1, and a partial
p-demand of 0.2 and the whole d-demand of 0.2 at v2. It also serves a partial d-demand of 0.6
at l1. The second vehicle serves the remaining p-demand of 0.6 at v2, and the whole p-demand
of 0.2 and the remaining d-demand of 0.2 at l1. The total cost required by two vehicles is
4a + 14 + 2ε.

On the other hand, the optimal vehicle scheduling is as follows: The first vehicle satisfies
all demands at v1, and the second one does all demands at v2 and l1. The total cost for this
scheduling is 2a + 12 + ε. As a increases, the approximation ratio approaches 2.

13

Table 2: Schedules obtained by our algorithm and an optimal schedule for an example given
in Section 4.4. The numbers shown at lines 4, 6, 8 and 10 represent those of vehicles assigned,
and those at lines 5, 7, 9 and 11 shows the amount of demand assigned to the corresponding
vehicle.

v1 v2 l1

input p-demand 0.8 0.8 0.2
d-demand 0.2 0.2 0.8

Schedule obtained by vehicle No. 1 1,2 2
our algorithm for p-demand p-demand 0.8 0.2, 0.6 0.2

Schedule obtained by vehicle No. 1 1 1,2
our algorithm for d-demand d-demand 0.2 0.2 0.6, 0.2

optimal schedule vehicle No. 1 2 2
for p-demand p-demand 0.8 0.8 0.2

optimal schedule vehicle No. 1 2 2
for d-demand d-demand 0.2 0.2 0.8

r

u

v v1 2

v l1
ε

Figure 6: The illustration of the graph considered in Section 4.4.

Theorem 2 The approximation ratio of the proposed algorithm is tight.

4.5 Running time

Among seven reforming operations, R1, R2 and R5 are applied only once at the first round
of the algorithm. R1 and R5 require O(|V | + ∑

v∈V (Dp(v) + Dd(v))) time while R2 requires
O(|V |) time. Let V ′ denote the node set of the graph after applying R1, R2 and R5 as much
as possible in the first round. Notice that |V ′| may become O(|V | + ∑

v∈V (Dp(v) + Dd(v))).
Performing operations R3, R4 and R6 in one round can be carried out by a depth-first search
starting from the root which requires O(|V ′|) time in total. The total time to execute the
operations R7 in the first round is O(|V ′|2) time since for each leaf vi testing whether there is
another leaf vj that is mergeable with vi can be done in O(|V ′|) time, and merging two leaves
decreases the number of nodes by one. In the suceedings rounds, the execution of R7 requires
O(|V ′|) time. The reason is as follows. In one round, for some leaves all p- and d-demands of
them are satisfied, and those leaves will be deleted. In addition, in Case 4 or 5 p- or d-demand

14

for at most two leaves are partially satisfied and a certain amount of demand is remaining. In
this case, R7 is applied to such leaves to check whether they are mergeable to other leaves.
This clearly requires O(|V ′|) time.

Thus, the total time to execute reforming operations is O(|V ′|2) = O(|V |2(∑v∈V (Dp(v) +
Dd(v)))2) for the first round while it is O(|V ′|) for the succeeding rounds.

In each round, we need to determine which one of Cases 1 through 5 holds. For this, we need
to compute Dp(v),Dd(v) for every v ∈ V and determine whether each edge is p-dominant, d-
dominant or pd-balanced. This can be done in O(|V ′|) time by executing the depth-first search
starting from r. From this information obtained, we can determine whether one of Cases 1,
2 and 3 holds. In order to determine whether Case 4 holds or not, we need to find a node
u such that (i) u has non-leaf children u′ and u′′ such that (u, u′) is p-dominant and (u, u′′)
is d-dominant and (ii) there is no such node other than u in T (u) satisfying (ii). In fact, if
such u, u′ and u′′ are found, as shown at the beginning of Subsection 4.2 (right after Lemma
6), there exists a subgraph of T (u) for which Case 4 holds. The path from u passing through
(u, u′) to a node x having only leaf children such that all edges on the path is p-dominant can
be found in linear time by following p-dominant edges starting from u. Similarly, we can find
in linear time a path from u passing through (u, u′′) to a node x′ having only leaf children such
that all edges on the path is d-dominant.

Finding a subgraph for which Case 5 holds can be done similarly. We first need to find an
internal node u such that (parent(u), u) is pd-balanced and there is not any pd-balanced edge
in Tu. We then find a path from u to a node x having only leaf children such that all edges
on the path is p-dominant. As in Case 4, this can be done in linear time. We then compute
the set of leaves L̂ by applying Algorithm Find L̂ given in Section 4.3. It is easy to see that
Algorithm Find L̂ runs in linear time.

We now claim that the number of vehicles prepared by our algorithm is at most 2�∑v∈V (Dp(v)+
Dd(v))�. For every edge e = (r, u) incident to the root r, the number of vehicles passing e in a
forward direction is at most 2lb #vehicles(e) because the algorithm schedules vehicles which
pass the edge e so that the cost required to pass the edge e is at most twice the decrease of
the lower bound LB(e) for any of Cases 1 through 5. This proves the above claim. Thus, the
number of rounds required by the algorithm is O(

∑
v∈V (Dp(v) + Dd(v))).

Theorem 3 The total time required for the proposed algorithm is O(M(
∑

v∈V (Dp(v)+Dd(v))+
M2), where M = |V | + (

∑
v∈V (Dp(v) + Dd(v)).

Note that the above running time is polynomial in the output (i.e. the number of vehicles
scheduled) and in the input size.

5 Conclusions

We have presented a 2-approximation algorithm for finding optimal tours to serve pickup and
delivery demands located at nodes of a tree-shaped network. This approximation ratio was
shown to be tight. For future research, it is interesting to extend the research to the cases for
general networks and for the plane.

References

[1] S. Anily and G. Mosheiov, The traveling salesman problem with delivery and backhauls, Operations
Research Letters, 16 (1994) 11-18.

[2] T. Asano, N. Katoh and K. Kawashima, A New Approximation Algorithm for the Capacitated
Vehicle Routing Problems on a Tree, Journal of Combinatorial Optimization. Vol.5 No.2 213-231,
June 2000. (Preliminary version was published in Proc. of ISAAC’99, LNCS 1741, Springer-Verlag,
317-326, 1999.)

15

[3] I. Averbakh and O. Berman, Sales-delivery man problems on treelike networks, Networks, 25 (1995),
45-58.

[4] N. Christofides, A. Mingozzi and P. Toth. The vehicle routing problem. in: N. Christofides, A.
Mingozzi, P. Toth and C. Sandi, editors. Combinatorial Optimization. John Wiley & Sons Ltd,
London,1979.

[5] M. Desrochers, J. K. Lenstra and M. W. P. Savelsbergh. A classification scheme for vehicle routing
and scheduling problems. Eur. J. Oper. Res. 46, 322–332, 1990.

[6] M.L. Fischer. Vehicle Routing. in Network Routing, Handbooks in Operations Research and
Management Science, 8, Ball, M. O., T. L. Magnanti, C. L. Monma and G. L. Nemhauser (Eds.),
Elsevier Science, Amsterdam, 1-33, 1995.

[7] M. Gendreau, G. Laporte and D. Vigo, Heuristics for the traveling salesman problem with pickup
and delivery, Computers & Operations Research, 26 (1999) 699-714.

[8] B.L. Golden and A. A. Assad (Eds.). Vehicle Routing: Methods and Studies, Studies in Manag.
Science and Systems 16, North-Holland Publ., Amsterdam, 1988.

[9] S. Hamaguchi and N. Katoh. A Capacitated Vehicle Routing Problem on a Tree, Proc. of ISAAC’98,
Lecture Notes in Computer Science 1533, Springer-Verlag 397-406, 1998.

[10] M. Labbé, G. Laporte and H. Mercure. Capacitated Vehicle Routing Problems on Trees, Operations
Research, Vol. 39 No. 4 (1991) 616-622.

[11] G. Mosheiov, The traveling salesman problem with pickup and delivery, European Journal of Op-
erational Research, 79 (1994) 299-310.

[12] P. Toth and D. Vigo, The Vehicle Routing Problem, SIAM, 2001.

[13] M.W.P. Savelsbergh, The general pickup and delivery problem, Transportation Science, Vol.29,
No.1 (1995), 17-29.

16

