
Title Enumerating Constrained Non-crossing Minimally Rigid
Frameworks

Author(s) Avis, David; Katoh, Naoki; Ohsaki, Makoto; Streinu, Ileana;
Tanigawa, Shin-ichi

Citation Discrete and Computational Geometry (2008), 40(1): 31-46

Issue Date 2008-07

URL http://hdl.handle.net/2433/84862

Right The original publication is available at www.springerlink.com.

Type Journal Article

Textversion author

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39217069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Enumerating Constrained Non-crossing Minimally Rigid

Frameworks

David Avis 1 Naoki Katoh 2 Makoto Ohsaki 2

Ileana Streinu 3 Shin-ichi Tanigawa 2

April 25, 2007

Abstract

In this paper we present an algorithm for enumerating without repetitions all the
non-crossing generically minimally rigid bar-and-joint frameworks under edge constraints,
which we call constrained non-crossing Laman frameworks, on a given set of n points in
the plane. Our algorithm is based on the reverse search paradigm of Avis and Fukuda. It
generates each output graph in O(n4) time and O(n) space, or, with a slightly different
implementation, in O(n3) time and O(n2) space. In particular, we obtain that the set of
all the constrained non-crossing Laman frameworks on a given point set is connected by
flips which preserve the Laman property.

Key words: geometric enumeration; rigidity; constrained non-crossing minimally rigid
frameworks; constrained Delaunay triangulation.

1 Introduction

Let G be a graph with vertices {1, . . . , n} and m edges. G is a Laman graph if m = 2n − 3
and every subset of n′ ≤ n vertices spans at most 2n′ − 3 edges. An embedding of the graph
G(P) on a set of points P = {p1, · · · , pn} ⊂ R2 is a mapping of the vertices to points in the
Euclidean plane i 7→ pi ∈ P . The edges ij of G are mapped to straight line segments pipj .
An embedding is planar or non-crossing if no pair of segments pipj and pkpl corresponding
to non-adjacent edges i, j 6∈ {k, l} have a point in common. Where no ambiguity arises, we
simply denote a vertex pi by i and an edge pipj by ij.

An embedded Laman graph on a planar point set is called a Laman framework. It has
the special property of being minimally rigid when viewed as a bar-and-joint framework
with fixed edge-lengths, under some rather weak conditions on the point set [13, 19]. This
motivates the tremendous interest in their properties. Let F be a set of non-crossing edges
(bars) on P . A Laman framework containing F is called F-constrained. In this paper we

1School of Computer Science, McGill University, Canada.
2Department of Architecture and Architectural Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto

615-8450 Japan, {ohsaki,naoki,is.tanigawa}@archi.kyoto-u.ac.jp. Supported by JSPS Grant-in-Aid for

Scientific Research on priority areas of New Horizons in Computing.
3Dept. of Comp. Science, Smith College, Northampton, MA 01063, USA, streinu@cs.smith.edu. Sup-

ported by NSF grant CCF-0430990 and NSF-DARPA CARGO CCR-0310661.

1

(a) (b)

Figure 1: (a)Minimum pseudo-triangulation. (b)Non-crossing Laman framework.

give an algorithm for enumerating all the F-constrained non-crossing Laman frameworks on
a given point set P .

A pseudo-triangle is a simple polygon with exactly three convex vertices. A pseudo-
triangulation is the partition of the convex hull of a planar point set P into the interior
disjoint pseudo-triangles, the vertices of which are points in P . It is known that a pseudo-
triangulation with minimum number of edges, called a minimum pseudo-triangulation or a
pointed pseudo-triangulation, is a non-crossing Laman framework [23]. However a minimum
pseudo-triangulation contains all the edges of the convex hull of the underlying point set,
whereas a non-crossing Laman framework need not as illustrated in Figure 1. Bereg showed
that minimum pseudo-triangulations are connected via simple flips, in which the removal of
any non-convex-hull edge leads to the choice of a unique other edge that can replace it, in
order to maintain the pseudo-triangulation property [8]. This leads to the definition of a
graph whose vertices are minimum pseudo-triangulations and whose edges are simple flips.
He showed that this graph is connected and showed how to apply the reverse search technique
to generate all of its vertices (minimum pseudo-triangulations). Bereg’s efficient algorithm
makes use of specific properties of minimum pseudo-triangulations which do not extend to
arbitrary non-crossing Laman frameworks. In particular, remove-add flips are not unique,
relative to the removed edge, in the case of a non-crossing Laman framework.

In our previous paper [5] we studied a graph whose nodes were non-crossing Laman
frameworks on a given point set. Two vertices are adjacent in the graph if one can be
obtained from the other by a single edge insertion and deletion in the corresponding non-
crossing Laman frameworks. We showed that this graph is connected. The rather involved
proof relies on some properties of the one-degree-of-freedom mechanisms that are obtained
by removing a single edge from a Laman framework.

Unfortunately, it is not feasible to generate all Laman frameworks of practical interest
due to the huge output size. However, certain engineering considerations, discussed later in
this section, allow us to limit ourselves to Laman frameworks containing a given set F of
non-crossing edges. It is not at all clear how to adapt our earlier proof to apply to these
F -constrained Laman frameworks.

In this paper we use both matroids and triangulations as important tools to solve this
problem. Firstly we note that although Laman graphs form the bases of a matroid defined on
the edges of a given base graph (see, e.g., [13, 25]) this is not true in general for non-crossing
Laman frameworks on a point set P . In fact for the two non-crossing Laman frameworks
L1 and L2 depicted in Figure 2 (a) and (b) there exists no edge to insert into L1 − {ab}
from L2 −L1 that maintains the non-crossing property. However, by choosing a non-crossing

2

(a) (b)

Figure 2: Non-crossing Laman frameworks need not form the bases of a matroid.

base graph, all subgraphs are automatically non-crossing, and hence the non-crossing Laman
frameworks which are subgraphs of this graph do form the bases of a matroid. Triangulations
are natural candidates for such base graphs, are connected by flip operations, and handle
rather naturally the condition of being F -constrained.

The reverse search enumeration technique of Avis and Fukuda [3, 4] has been successfully
applied to a variety of combinatorial and geometric enumeration problems. The necessary
ingredients to use the method are an implicitly described connected graph on the objects
to be generated, and an implicitly defined spanning tree in this graph. In this paper we
use triangulations and matroids to supply these ingredients for the problem of generating
constrained Laman frameworks. After proving the correctness of our approach, we give an
implementation based on reverse search that allows the enumeration without repetitions of
all the F -constrained non-crossing Laman frameworks on n points in O(n4) time and O(n)
space per output framework. A slightly different implementation yields O(n3) time and O(n2)
space per output framework. For the unconstrained case, also using reverse search but with
very different parent function, we obtain the same time and space complexity results that we
obtained in [5]. The method presented here is, however, considerably simpler.

In our implementation we make use of the pebble game algorithm of Jacobs and Hen-
drickson [14] for 2-dimensional rigidity, see also [9]. Our complexity analysis relies on recent
results, due to Lee, Streinu and Theran [20, 21], regarding the complexity of finding and
maintaining rigid components during the pebble game algorithm. Indeed, the time-space
trade-off of our algorithm is inherited from [21].

In the remainder of this section, we briefly describe how this problem came to our attention
via the work of the third author. The motivating application described here is not essential
for understanding the results of the paper, but may be of interest to readers interested in
structural rigidity. Graph theoretical approaches are widely used in structural mechanics
[17], where the edges and vertices in the graph represent the bars and rotation-free joints of a
structure called a truss. It is well-known that the stiffest truss under static loads is statically
determinate that is equivalent to a Laman graph [7].

Another bar-joint system, which is widely used in industrial applications, is a link mech-
anism that is unstable and generates large deformations, or changes in the direction of the
nodal displacement. Applications of link mechanisms can be found in, e.g., automobile sus-
pensions, robot hands, umbrellas, crankshafts, etc. Kawamoto et al.[18] presented a method
which used the enumeration of planar graphs to find an optimal mechanism. However, their
method was developed for their specific problem, and no general approach was given.

Recently, a new type of mechanism, called a compliant mechanism, has been developed

3

and applied mainly in the field of micro-mechanics. A compliant mechanism has flexible
parts, which are not present in conventional unstable mechanisms, to stabilize the structure.
Although a compliant mechanism is usually modeled as a continuum with elastic joints,
it is possible to generate a similar mechanism by using a bar-joint system. Ohsaki and
Nishiwaki [22] presented a method for generating compliant flexible bar-joint mechanisms
using a nonlinear programming approach, and found that the optimal structure is statically
determinate, i.e., minimally rigid. They utilized snapthrough behavior to generate multi-
stable mechanisms that have multiple self-equilibrium states. Such a mechanism can be used
as a switching device, robot hand, gripper, deployable structure, etc. In their method, the
optimal locations of bars and joints are found from a highly connected initial structure that
has bars between all pairs of the nodes whose distances are small enough. However, due
to high nonlinearity of the analysis and optimization problems, the nonlinear programming
problem should be solved many times starting from different initial solutions to obtain a few
types of mechanisms.

Since the compliant bar-joint mechanism is usually statically determinate, the optimiza-
tion problem can be solved easily if the design space is limited to statically determinate
structures. Combining an implementation of our earlier method for generating unconstrained
Laman frameworks [5] with this nonlinear programming approach, we could obtain many new
compliant mechanisms with up to 10 joints [16]. However the number of Laman frameworks
grows too rapidly to allow a complete enumeration for significantly larger examples.

In view of practical requirements, the optimal structure should not have intersecting
members, and some pre-selected members should always exist. Therefore, the computational
cost could be much reduced if the candidate set of statically determinate non-crossing trusses
(non-crossing Laman frameworks) is restricted to those containing pre-selected members.
Thus it is desirable to enumerate all Laman frameworks which contain a given set of specified
edges.

2 Preliminaries

Let L be a non-crossing Laman framework on a given point set P . A mechanism is a flexible
framework obtained by removing one or more edges from a Laman framework. Its number of
degrees of freedom or dof’s, is the number of removed edges. We will encounter mostly one-
degree-of-freedom (1dof) mechanisms, which arise from a Laman framework by the removal
of one edge. In particular, a mechanism with k dofs has exactly 2n − 3 − k edges, and each
subset of n′ vertices spans at most 2n′−3 edges. A subset of some n′ vertices spanning exactly
2n′ − 3 edges is called a rigid block. A maximal rigid block is called a rigid component.

An important tool in our work is the generic rigidity matroid, also called the Laman
matroid, which can be defined on the edges of the complete graph Kn, see [13, 25]. A subset
T of edges of Kn is independent in the matroid if for every subset S ⊆ T we have |S| ≤
2|V (S)| − 3, where V (S) is the subset of vertices spanned by the edges in S. The bases
are those independent sets which contain exactly 2n − 3 edges, i.e., the Laman graphs on
n vertices. Two bases L1 and L2 are connected by a flip if their edge sets agree on 2n − 4
elements. The flip is given by the pair of edges (e1, e2) such that e1 ∈ L1 −L2, e2 ∈ L2 −L1.
In other words, we have L2 = L1 − {e1} ∪ {e2}, which for simplicity we will write as L2 =
L1 − e1 + e2 throughout the paper.

4

The definition of Laman matroid may be generalized by replacing the base graph Kn by
any graph G. In order that the matroid be non-empty, G must contain at least one Laman
subgraph. We may further extend the definition by fixing an independent set F of edges of
G. The independent edge sets of G that contain F also form a matroid, which we will call
the F-constrained Laman matroid.

Let G be an n vertex graph that contains a Laman subgraph, and let F be an independent
set of edges in G. Using flips, we can define a new graph whose nodes are the bases of the
F -constrained Laman matroid defined on G. Its edges correspond to bases connected by
flips. It follows from the properties of a matroid that this graph is connected. But a priori,
the subset of F -constrained non-crossing Laman frameworks may not necessarily be. We will
prove this later in Section 3.

Reverse search is a memory efficient method for visiting all the nodes of a connected graph
that can be defined implicitly by an adjacency oracle. It can be used whenever a spanning
tree of the graph can be defined implicitly by a parent function. This function is defined for
each vertex of the graph except a pre-specified root. Iterating the parent function leads to a
path to the root from any other vertex in the graph. The set of such paths defines a spanning
tree, known as the search tree.

3 Constrained Non-crossing Laman Frameworks

Let T be a triangulation on a given set of n points P in the plane, containing k triangles.
The angle vector of T is the vector of 3k interior angles sorted into non-decreasing order.
We say that T is an F-constrained triangulation, denoted T (F), if it contains a given set of
non-crossing edges F . Many facts about F -constrained triangulations are contained in the
survey by Bern and Eppstein [10]. If F is an independent set in the Laman matroid on Kn,
then a Laman framework on P containing F is called F -constrained, and is denoted L(F).
The following lemma, a well known fact about the Laman matroid, follows from rigidity
considerations (see, e.g.[25]).

Lemma 1. Let F be a non-crossing edge set on P that is an independent set in the Laman
matroid on Kn. Every F -constrained triangulation T (F) on P contains an F -constrained
Laman framework L(F).

The F -constrained Delaunay triangulation plays an important role for developping our
results, which we define by means of legal (illegal) edge and D-flip as follows:

Definition 1. (Legal edge) Let T be a triangulation on a point set P . An edge ac that bounds
two triangles whose edges are in T , say abc and acd, is a legal edge (with respect to T) if the
circumcircle of abc does not contain d in its interior.

Definition 2. (D-flip) Let T (F) be an F -constrained triangulation on a non-crossing edge
set F . Let ac be an illegal edge (with respect to T (F)) that is not in F and is the diagonal of
a convex quadrilateral abcd whose edges are contained in T (F). The replacement of edge ac
by edge bd in T (F) is called a D-flip.

Definition 3. (F -constrained Delaunay Triangulation) Let T (F) be an F -constrained trian-
gulation on a non-crossing edge set F . T (F) is an F-constrained Delaunay Triangulation,
denoted DT (F) if it admits no D-flips. Equivalently, all edges in T (F) − F are legal.

5

(a) T (F) (b) DT (F) (c) DT (∅)

Figure 3: (a)F -constrained triangulation, (b)F -constrained Delaunay triangulation and
(c)Unconstrained Delaunay triangulation, where the bold edges denote the edges of F .

In Figure 3 (a), (b) and (c), we illustrate examples of an F -constrained triangulation
T (F), the F -constrained Delaunay triangulation DT (F) and the unconstrained Delaunay
triangulation DT (∅), respectively, where F = {13, 16, 23, 25, 27, 47, 57, 67}. We observe that
T (F) and DT (F) have illegal edges {15, 25} and {25}, respectively, and DT (∅) has no illegal
edge. Replacing edge {15} in T (F) by edge {36} is a D-flip.

Fact 1. An F -constrained triangulation T (F) can be converted to DT (F) by at most O(n2)
D-flips, taken in any order. (Lemma 4, [10]).

If P has four or more co-circular points, using a linear transformation as described in [6],
we may transform P into a point set P̄ with a unique DT (F) so that P and P̄ have the
same number of non-crossing Laman frameworks since the transformation does not change
the relative order with respect to x- and y- coordinates among any three points. We will
assume in what follows that P has a unique DT (F).

Two points a and b are visible (with respect to F) if no edge of F properly intersects the
segment ab. ab is visible to point c (with respect to F) if the triangle abc is not properly
intersected by an edge of F . Then the following fact gives another characterization of F -
constrained Delaunay triangulation.

Fact 2. Let F be a non-crossing edge set on P . An F-constrained Delaunay Triangulation
contains the edge ab between points a and b in P if and only if a is visible to b, and some circle
through a and b contains no point of P visible to segment ab. We call ab a Delaunay-edge (
with respect to F). (Definition 1, [10])

Let H(F) be a non-crossing edge set on P containing F , and let us consider H(F)-
constrained Delaunay triangulation DT (H(F)). We observe the following facts that will be
often utilized later. First note that all illegal edges in DT (H(F)) are contained in H(F). This
is because all edges of DT (H(F))−H(F) are legal edges by Definiton 3. We also notice that
if an edge e ∈ H(F) is not a legal edge in DT (H(F)), we have DT (H(F)) = DT (H(F) − e)
since all edges of DT (H(F)) − (H(F) − e) are legal in DT (H(F)). On the other hand
DT (H(F) − e) cannot contain e if e is illegal. In fact DT (H(F) − e) can be obtained from
DT (H(F)) after performing at least one D-flip. Note in addition that a D-flip increases the
angle vector lexicographically. This can be used to prove the following.

Fact 3. DT (F) has the lexicographically maximum angle vector of all F -constrained trian-
gulations on P . (Theorem 1, [10]).

Now let us consider non-crossing Laman frameworks.

6

L(F) L(F)-15 L(F)-15 L(F)-15+35

DT(L(F)) DT(L(F)-15) DT(L(F)-15+35)

Remove 15. Add 35.

Draw 15

in dotted. D-flip.

Draw 35

in solid.

Figure 4: An example of L-flip described in the proof of Theorem 1. The bold lines represent
F = {13, 16, 23, 25, 27, 47, 57, 67}, and the dotted lines represent additional edges for the
constrained Delaunay triangulations.

Definition 4. An F-constrained Delaunay Laman Framework, DL(F), is an F -constrained
Laman framework that is a subset of DT (F).

Note that, unlike DT (F), DL(F) is not uniquely defined in general. In the sequel we will
often make use of a constraining edge set F that is either a Laman framework L or a 1dof
mechanism L − e.

Definition 5. (L-flip) An L-flip is an edge insertion and deletion that takes a Laman frame-
work L to a new Laman framework L′.

Theorem 1. Every F -constrained non-crossing Laman framework L(F) can be transformed
to a DL(F) by at most O(n2) L-flips.

Proof. Construct the L(F)-constrained Delaunay triangulation T = DT (L(F)). If T =
DT (F), then in fact L(F) is a DL(F) and we are done. Otherwise T contains some illegal
edge ac /∈ F by Definition 3. Now all edges in T − L(F) are legal edges with respect to T ,
so ac must be an edge of L(F) − F . Consider now the constrained Delaunay triangulation
DT (L(F)−ac) which contains L(F)−ac. We apply Lemma 1 with F and T (F) in the lemma
replaced by L(F)−ac and DT (L(F)−ac) respectively. By the lemma, DT (L(F)−ac) contains
a (L(F)−ac)-constrained Laman framework L′. Since L′ contains L(F)−ac it must contain
one additional edge, say st, and so L′ = L(F) − ac + st. In other words L′ is obtained from
L(F) by an L-flip. Observe that L′ is F -constrained since ac /∈ F .

Now we can construct DT (L(F) − ac) from DT (L(F)) by a series of D-flips, starting by
deleting the illegal edge ac. Each of these D-flips lexicographically increases the angle vector.
If DT (L(F) − ac) is not DT (F) then we repeat the above procedure. From Fact 1, using a
maximum of O(n2) D-flips we will obtain DT (F). The corresponding Laman framework L′

is a DL(F), and will have been obtained by using at most O(n2) L-flips.

In Figure 4 we show an example of L-flip described in the proof of Theorem 1 in which
L(F) is not a DL(F): deleting the illegal edge 15 in DT (L(F)) − F , and updating the
constrained Delaunay triangulation to DT (L(F) − 15) we find another non-crossing Laman
framework shown in the rightmost and upper corner of Figure 4.

7

For edges e = ij with i < j and e′ = kl with k < l, we use the notation e ≺ e′ or
e′ ≻ e when e is lexicographically smaller than e′ i.e., either i < k or i = k and j < l, and
e = e′ when they coincide. For an edge set A we use the notations max{e | e ∈ A} and
min{e | e ∈ A} to denote the lexicographically largest and smallest edges in A, respectively.

Definition 6. (Lexicographic edge list) Let E = {e1 ≺ e2 ≺ . . . ≺ em} and E′ = {e′1 ≺ e′2 ≺
. . . ≺ e′m} be the lexicographically ordered edge lists. Then E is lexicographically smaller than
E′ if ei ≺ e′i for the smallest i such that ei 6= e′i.

Theorem 2. Let L1(F) and L2(F) be two F -constrained non-crossing Laman Frameworks
on a point set P . Then L1(F) can be transformed to L2(F) by at most O(n2) L-flips.

Proof. By Theorem 1, starting from L1(F) we can perform L-flips O(n2) times to reach a
DL(F), say L(F). Let L∗(F) be the DL(F) with lexicographically smallest edge list. We
show that we can do edge flips from L(F) to L∗(F), at most n − 3 times, maintaining the
non-crossing Laman property.

Consider the Laman matroid with base graph DT (F). Both L(F) and L∗(F) are bases
in this matroid, i.e., they are Laman subgraphs of DT (F). Delete from L(F) the lexico-
graphically largest edge ac in L(F)−L∗(F). By the matroid properties, there will always be
an edge st in L∗(F) − L(F) such that L′(F) = L(F) − ac + st is an F -constrained Laman
framework. L′(F) is non-crossing since it is a subgraph of the non-crossing graph DT (F). A
triangulation on n points has at most 3n−6 edges and a Laman framework has 2n−3 edges,
so after at most n − 3 such L-flips we reach L∗(F).

A similar argument shows that we can start with L2(F) and reach L∗(F) in at most O(n2)
L-flips, completing the proof of the theorem.

4 Algorithm

Let L(F) be the set of F -constrained non-crossing Laman frameworks on P , and DL(F) be
the set of F -constrained Delaunay Laman frameworks. Clearly DL(F) ⊆ L(F) holds. Let
L∗(F) be the DL(F) with the lexicographically smallest edge list as denoted in Section 3.
We define the following parent function f : L(F) − {L∗(F)} → L(F) based on Theorems 1
and 2.

Definition 7. (Parent function) Let L(F) ∈ L(F) with L(F) 6= L∗(F). Then L′(F) =
L(F) − ac + st is the parent of L(F), where
Case 1: L(F) ∈ DL(F),
ac = max{e | e ∈ L(F) − L∗(F)} and st = min{e ∈ L∗(F) − L(F) | L(F) − ac + e ∈ L(F)},
Case 2: L(F) ∈ L(F) −DL(F),
ac = max{e ∈ L(F)−F | e is illegal in DT (L(F))} and st = min{e ∈ DT (L(F)−ac)−L(F) |
L(F) − ac + e ∈ L(F)}.

To simplify the notations, we denote the parent function depending on Case 1 and Case
2 by f1 : DL(F) − {L∗(F)} → DL(F) and f2 : L(F) −DL(F) → L(F), respectively.

The reverse search algorithm can be considered on the underlying graph in which each
vertex corresponds to a non-crossing Laman framework and two frameworks are adjacent if

8

Algorithm Enumerating F -constrained non-crossing Laman frameworks.

1: L∗(F) := a DL(F) with lexicographically smallest edge list;
2: L′(F) := L∗(F); i, j := 0; Output(L′(F));
3: repeat

4: while i ≤ |L′(F)| do

5: do {i := i + 1; e1 := elistL′(i); } while(e1 ∈ F);
6: while j ≤ |Kn| do

7: do {j := j + 1; e2 := elistKn
(j); } while(e2 ∈ L′(F));

8: if Adj(L′(F), i, j) 6= null then

9: L(F) := Adj(L′(F), i, j);
10: if f1(L(F)) = L′(F) or f2(L(F)) = L′(F) then

11: L′(F) := L(F); i, j := 0;
12: Output(L′(F));
13: go to line 4;
14: end if

15: end if

16: end while

17: end while

18: if L′(F) 6= L∗(F) then

19: L(F) := L′(F);
20: if L(F) ∈ DL(F) then L′(F) := f1(L(F));
21: else L′(F) := f2(L(F));
22: determine integers pair (i, j) such that Adj(L′(F), i, j) = L(F);
23: i := i − 1;
24: end if

25: until L′(F) = L∗(F) and i = |L′(F)| and j = |Kn|;

Figure 5: Algorithm for enumerating F -constrained non-crossing Laman frameworks.

and only if one can be obtained from the other by a L-flip. Then, for L′(F) ∈ L(F) the
adjacency function, Adj, is defined as follows:

Adj(L′(F), e1, e2) :=

{

L′(F) − e1 + e2 if L′(F) − e1 + e2 ∈ L(F),
null otherwise,

where e1 ∈ L′(F) − F and e2 ∈ Kn − L′(F). The number of candidate edge pairs (e1, e2) is
O(n3).

Let elistL′ and elistKn
be lists of edges of L′(F) and Kn ordered lexicographically, and let

elistL′(i) and elistKn
(i) be the i-th elements of elistL′ and elistKn

, respectively. We also denote
the above defined adjacency function by Adj(L′(F), i, j) for which e1 = elistL′(i) with e1 /∈ F
and e2 = elistKn

(j) with e2 /∈ L′. Then, based on the algorithm in [3, 4], we describe our
algorithm in Figure 5. An example of the search tree on a set of F -constrained non-crossing
Laman frameworks on seven points are illustrated in Figure 6.

As we will show later, both the parent function and the adjacency function need O(n2)
time for each process. The while-loop from line 4 to 17 has |L′(F)| · |Kn| iterations which

9

require O(n5) time if the tests in lines 8 and 10 are performed naively. In order to improve
O(n5) time to O(n3) time we will use the following two lemmas:

Lemma 2. Let L(F) and L′(F) be two distinct F -constrained Delaunay Laman frameworks
for which L(F) = Adj(L′(F), e1, e2) for e1 ∈ L′(F) − F and e2 ∈ Kn − L′(F). Then,
f1(L(F)) = L′(F) holds if and only if e1 and e2 satisfy the following conditions:

(a) e1 ∈ L∗(F),

(b) e2 ∈ DT (L∗(F)) − L∗(F),

(c) e1 ≺ min{e ∈ L∗(F) − L′(F) | L′(F) − e1 + e ∈ L(F)},

(d) e2 ≻ max{e | e ∈ L′(F) − L∗(F)}.

Lemma 3. Let L(F) and L′(F) be two distinct F -constrained non-crossing Laman frame-
works for which L(F) = Adj(L′(F), e1, e2) for edges e1 ∈ L′(F) − F and e2 ∈ Kn − L′(F)
with L(F) ∈ L(F) − DL(F). Then, f2(L(F)) = L′(F) holds if and only if e1 and e2 satisfy
the following conditions:

(a) e1 is a legal edge in L′(F),

(b) e2 ∈ Kn − DT (L′(F)),

(c) e1 ≺ min{e ∈ DT (L′(F)) − L′(F) | L′(F) − e1 + e ∈ L(F)}.

(d) e2 = max{e ∈ (L′(F) − e1 + e2) − F | e is illegal in DT (L′(F) − e1 + e2)}.

We will explain later (in the proof of Theorem 3) how Lemmas 2 and 3 are used to
obtain O(n3) time for generating each output of our algorithm. Notice that for L′(F) and
L(F) ∈ L(F) such that L(F) = L′(F) − e1 + e2, at most one of f1(L(F)) = L′(F) and
f2(L(F)) = L′(F) holds from the conditions (b) of Lemmas 2 and 3. In the following proofs
of Lemmas 2 and 3 we write L for L(F), L′ for L′(F), etc., for simplicity because the
constraining set F is fixed throughout.

Proof of Lemma 2. (“only if”-part.) Since f1(L) = L′, e1 and e2 must be chosen as st and ac
in Case 1 of Definition 7. From Definition 7, e2(= ac) ∈ L−L∗. Since L ∈ DL, L ⊂ DT (L∗)
holds, and we have (b). Similarly since e1(= st) ∈ L∗ − L ⊂ L∗, we have (a). From e1 = st,
we have

L′ − e1 = (L − ac + st) − e1 = L − ac. (1)

Let e′ = min{e ∈ L∗ − L′ | L′ − e1 + e ∈ L}. Suppose (c) does not hold, and e′ ≺ e1

holds. (Note that the equality does not hold since e1 ∈ L′ − F .) Then from Eq.(1) and
e′ ≺ e1 = st ≺ ac (which comes from Definition 7),

e′ = min{e ∈ L∗ − (L − ac + st) | L − ac + e ∈ L} (from Eq.(1))
= min{e ∈ L∗ − L | L − ac + e ∈ L} (from e′ ≺ st ≺ ac).

Thus, e′ would have been selected instead of e1 when the parent function f1 is applied to L,
which contradicts e1 = st. Hence, (c) holds.

10

Let e′′ = max{e | e ∈ L′ − L∗}, and suppose that (d) does not hold. A similar argument
leads a condtradiction. Thus, (d) holds.

(“if”-part.) From (a) and (b), L = L′ − e1 + e2 is DL(F). Since e1 ∈ L∗ from (a),

e2 ≻ max{e | e ∈ L′ − L∗} (from (d))
= max{e | e ∈ (L + e1 − e2) − L∗} (from L = L′ − e1 + e2)
= max{e | e ∈ (L − e2) − L∗} (from e1 ∈ L∗)

holds. Thus, e2 = max{e | e ∈ L−L∗}, and hence f1 chooses e2 for an edge ac to be deleted
from L. From this we obtain L − ac = L′ − e1 + e2 − ac = L′ − e1. Since e2 /∈ L∗ from (b),

e1 ≺ min{e ∈ L∗ − L′ | L′ − e1 + e ∈ L} (from (c))
= min{e ∈ L∗ − (L + e1 − e2) | L − ac + e ∈ L} (from L − ac = L′ − e1)
= min{e ∈ L∗ − (L + e1) | L − ac + e ∈ L} (from e2 /∈ L∗)

holds. Since e1 ∈ L∗ −L, we obtain e1 = min{e ∈ L∗−L | L− ac+ e ∈ L}. Thus, f1 chooses
e1 for an edge to be added, and f1(L) returns L′.

Proof of Lemma 3. (“only if”-part.) Since f2(L) = L′, e1 and e2 must be chosen as st and
ac in Case 2 of Definition 7. As in the proof of Lemma 2, we have Eq.(1) from e2 = ac. Since
st ∈ DT (L − ac) − L holds from Definition 7 and from Fact 2, st is a Delaunay edge with
respect to L − ac and then there exists a circle through both endpoints of st containing no
point visible to st with respect to L− ac. Since such a circle still contains no point visible to
st with respect to L− ac + st, st is still the Delaunay edge with respect to L− ac + st = L′,
which implies that st is not illegal in DT (L′). Thus, from e1 = st, (a) holds. Moreover we
observe that

DT (L′) = DT (L′ − e1) = DT (L − ac) (2)

holds since e1 is not illegal edge in DT (L′).
Let us consider e2. Since ac is illegal in DT (L) from Definition 7, we have ac = e2 /∈

DT (L − ac). Therfore e2 /∈ DT (L′) holds from Eq. (2). Thus (b) holds. Also (d) must hold
since the parent function removes the lexicographically largest illegal edge in DT (L) − F .

Finally let us consider e1. Let e′ = min{e ∈ DT (L′) − L′ | L′ − e1 + e ∈ L}. Suppose
that (c) does not hold. Then e′ ≺ e1 holds. (Note that the equality does not hold since
e1 ∈ L′ − F .) Therefore, we have

e′ = min{e ∈ DT (L − ac) − (L − ac + e1) | L − ac + e ∈ L} (from Eq.(1) and (2)),
= min{e ∈ DT (L − ac) − (L − ac) | L − ac + e ∈ L} (from e′ ≺ e1).

Then, e′ would have been selected when the parent function is applied to L, which contradicts
e1 = st. Hence (c) holds.

(“if”-part.) From (a), e1 is legal in DT (L′). Then, we have DT (L′) = DT (L′ − e1). The
condition (d) says that e2 is the lexicographically largest illegal edge in DT (L) − F . Thus,
f2 chooses e2 for an edge ac to be deleted from L, and L′ − e1 = L − ac.

From L′ − e1 = L − ac and DT (L′) = DT (L′ − e1) = DT (L − ac) the condition (c)
implies e1 ≺ min{e ∈ DT (L − ac) − (L − ac + e1) | L − ac + e ∈ L}. Thus, e1 = min{e ∈
DT (L−ac)−L | L−ac+e ∈ L}. (Note that e1 ∈ DT (L−ac) and ac /∈ DT (L−ac), because
DT (L − ac) = DT (L′), and now we have e1 ∈ DT (L′) and ac = e2 /∈ DT (L′) from (a) and
(b), respectively.) Thus, f2 chooses e1 for an edge to be added, and f2(L) returns L′.

11

Using Lemmas 2 and 3, we will describe an O(n3) algorithm in the proof of the following
theorem. First we give a simple observation for checking the condition (d) in Lemma 3
efficiently:

Observation 1. Let DT (F) be an F -constrained Delaunay triangulation constrained by edges
of a non-crossing edge set F , and let e1 ∈ F be a legal edge in DT (F) and e2 ∈ Kn −DT (F)
be an edge intersecting no edge of F . Then DT (F − e1 + e2) = DT (F + e2).

Proof. Since e1 is the legal edge in DT (F), we have DT (F) = DT (F − e1). Then there
exists a circle through both endpoints of e1 containing no point visible to e1 with respect to
F − e1 from Fact 2. And, when inserting e2 into F − e1, this circle clearly does not contain
any point visible to e1 with respect to F − e1 + e2. Thus e1 remains a Delaunay edge with
respect to F − e1 + e2, and this implies that DT (F − e1 + e2) contains e1 from Fact 2 and
DT (F + e1) = DT (F − e1 + e2).

Theorem 3. The set of all F -constrained non-crossing Laman frameworks on a given point
set can be reported in O(n3) time per one F -constrained non-crossing Laman framework using
O(n2) space, or O(n4) time using O(n) space.

Proof. As described in Section 3, we use a linear transformation if necessary to get a unique
DT (F). The complexity of testing the uniqueness of a DT (F) is O(n2) by simply testing the
circumcircle of each triangle in the DT (F) to see there is another point other than vertices
of the triangle on the circumcircle.

Given a non-crossing Laman framework L′(F) ∈ L(F) and L′(F)-constrained Delaunay
triangulation DT (L′(F)), the algorithm will either check if f1(Adj(L′(F), e1, e2)) = L′(F) or
if f2(Adj(L′(F), e1, e2)) = L′(F) at line 10 depending on the edge pair (e1, e2). Here we will
show that each condition in Lemmas 2 and 3 can be checked in O(1) time for each of the
O(n3) edge pairs (e1, e2) by the following way.

First, for all edges e2 ∈ elistKn
, we calculate the number of edges e1 ∈ L′(F) intersecting

e2, which we denote by cross n(e2, L
′(F)). If cross n(e2, L

′(F)) > 1, we delete e2 from elistKn

since L′(F) − e1 + e2 is never non-crossing for any e1 ∈ elistL′ . If cross n(e2, L
′(F)) = 1, we

associate with e2 a pointer cross e(e2, L
′(F)) to the edge e1 which intersects it.

Next, for each e1 ∈ elistL′ , we attach two flags to e1 which represent that e1 satisfies the
conditions (a) of Lemmas 2 and 3, respectively. These help us to check the conditions (a) in
Lemmas 2 and 3 in O(1) time. Similarly, we attach two flags to e2 ∈ elistKn

which represent
that e2 satisfies the conditions (b) of Lemmas 2 and 3 to check them in O(1) time for each e2.
Additionally we calculate the lexicographically largest edge in L′(F) − L∗(F) in O(n) time
to check the condition (d) in Lemma 2 in O(1) time for each e2. This preprocessing can be
done in O(n2) time using the precomputed sorted edge list of L∗(F) and DT (L(F)).

Now let us consider how to identify a set of edges e2 ∈ elistL′ satisfying the condition
(d) in Lemma 3 in O(n3) time with O(n2) space. (In the case of O(n4) time algorithm
this process must be skipped, and the condition (d) in Lemma 3 will be checked simply by
updating DT (L′(F)) to DT (L′(F)− e1 + e2) for each pair (e1, e2) using O(n) time and O(n)
space by applying the algorithm by Chin and Wang [11].) It can be done regardless of the
removed edge e1 when condition (a) in Lemma 3 is satisfied. From Observation 1 we can say
that the condition (d) holds if and only if e2 is the lexicographically largest illegal edge in
DT (L(F) + e2) − F when cross n(e2, L

′(F)) = 0. It is sufficient to check condition (d) only

12

in DT (L(F)−cross e(e2, L
′(F)) + e2) when cross n(e2, L

′(F)) = 1. Updating the Delaunay
triangulation takes O(n) time (see [2, 11, 12] for a linear time update of the constrained
Delaunay triangulation). Thus we can attach a flag to each e2 ∈ elistKn

in O(n) time which
represents whether e2 satisfies (d) of Lemma 3 or not, and this preprocessing for all edges in
elistKn

takes O(n3) time.
By using the above mentioned data, we will show that for a fixed e1 ∈ elistL′ , the inner

while-loop from line 6 to 16 can be executed in O(n2). In order to efficiently test the condition
(c) of Lemmas 2 and 3, we prepare the data structure proposed by Lee, Streinu and Theran
[20, 21] in O(n2) time for maintaining rigid components of L(F) − e1. This data structure
supports a pair-find query which determines whether two vertices are spanned by a common
component in O(1) time using O(n2) preprocessing time with O(n2) space, or O(n) time using
O(n2) preprocessing time with O(n) space. From this, we can calculate Adj(L′(F), e1, e2) (i.e.,
determine whether L′(F)−e1 +e2 ∈ L(F)) in O(1) time with O(n2) space, or O(n) time with
O(n) space, for each edge e2 ∈ elistKn

. Also, we can compute e′ = min{e ∈ L∗(F) − L′(F) |
L′(F) − e1 + e ∈ L(F)} and e′′ = min{e ∈ DT (L′(F)) − L′(F) | L′(F) − e1 + e ∈ L(F)} in
O(n) time with O(n2) space, or O(n2) time with O(n) space. Using e′ and e′′ we can check
condition (c) in Lemmas 2 and 3 in O(1) time.

Thus, we have confirmed that all conditions of Lemmas 2 and 3 can be checked in O(1)
time for each pair (e1, e2) by taking O(n3) preprocessing time with O(n2) space, or O(n)
time for each (e1, e2) with O(n) space.

By using the above mentioned data structure for maintaining the rigid components, we
can perform both parent function and adjacency function in O(n2) time with O(n2) space,
or O(n3) time with O(n) space. Thus, we have an O(n3) algorithm using O(n2) space, or
O(n4) algorithm using O(n) space.

5 Conclusions

We have presented an algorithm for enumerating all the constrained non-crossing Laman
frameworks. We note in passing that the techniques in this paper can also be used to generate
all F -constrained non-crossing spanning trees of a point set since they also form bases of the
graphic matroid on any triangulation of P . The unconstrained case was considered in [1, 4].

An open problem, that is of considerable practical importance, is to generate efficiently
all non-crossing Laman Frameworks that do not contain any edge from a given set. This is
equivalent to generating all non-crossing Laman frameworks that are subgraphs of a given
geometric graph. An indication that this problem may be challenging, is that it is known
that determining if a geometric graph contains a non-crossing spanning tree is NP-complete
[15].

6 Acknowledgements

The authors would like to thank an anonymous referee for many ideas that lead to an improved
presentation of this research.

13

References

[1] O. Aichholzer, F. Aurenhammer, C. Huemer, and B. Vogtenhuber. Gray code enumeration
of plane straight-line graphs. In Proc. 22th European Workshop on Computational Geometry
(EuroCG ’06), pages 71–74, Greece, 2006.

[2] M. V. Anglada. An Improved incremental algorithm for constructing restricted Delaunay trian-
gulations. Computer and Graphics, 21(2):215–223, 1997.

[3] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of ar-
rangements and polyhedra. Discrete and Computational Geometry, 8:295–313, 1992.

[4] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathematics, 65(1-
3):21–46, March 1996.

[5] D. Avis, N. Katoh, M. Ohsaki, I. Streinu, and S. Tanigawa. Enumerating planar minimally
rigid graphs. In Proc. 12th International Computing and Combinatorics Conference (COCOON
2006), volume 4112 of Lecture Notes in Computer Science, pp.205–215, Springer, 2006. Graphs
and Combinatorics, to appear.

[6] I. Beichl, and F. Sullivan. Coping with degeneracies in Delaunay triangulation. In Modelling,
Mesh Generation and Adaptive Numerical Methods for Partial Differential Equations, J.E. Fla-
herty et al. eds., pages 23–30, Springer, New York, 1995.

[7] M. P. Bendsøe and O. Sigmund. Topology Optimization: Theory, Methods and Applications.
Springer, 2003.

[8] S. Bereg. Enumerating pseudo-triangulations in the plane. Comput. Geom. Theory Appl.,
30(3):207–222, 2005.

[9] A. Berg and T. Jordán. Algorithms for graph rigidity and scene analysis. In G. D. Battista and
U. Zwick, editors, Proc. 11th Annual European Symposium on Algorithms (ESA), volume 2832
of Lecture Notes in Computer Science, pages 78–89. Springer, 2003.

[10] M. Bern and D. Eppstein. Mesh generation and optimal triangulation. Computing in Euclidean
Geometry, 2nd Edition, Du and Hwang eds., 23–90, 1992.

[11] F. Chin and C. A. Wang. Finding the constrained Delaunay triangulation and constrained
Voronoi diagrams of a simple polygon in linear time. SIAM J. Comput., 28(2):471–486, 1998.

[12] L. de Floriani and A. Puppo. An on-line algorithm for constrained Delaunay triangulation.
Computer Vision, Graphics and Image Processing, 54(3):290–300, 1992.

[13] J. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity. Graduate Studies in Mathe-
matics vol. 2. American Mathematical Society, 1993.

[14] D. J. Jacobs and B. Hendrickson. An algorithm for two-dimensional rigidity percolation: the
pebble game. Journal of Computational Physics, 137:346 – 365, November 1997.

[15] K. Jansen and G. J. Woeginger. The complexity of detecting crossingfree configurations in the
plane. BIT 33(4):580–595, 1993.

[16] N. Katoh, M. Ohsaki, T. Kinoshita, S. Tanigawa, D. Avis and I. Streinu. Enumeration of
optimal pin-jointed bistable mechanisms. In Proc. 4th China-Japan-Korea Symp. of Structural
and Mechanical Systems, Kunming, Nov 2006.

[17] A. Kaveh. Structural Mechanics: Graph and Matrix Methods. Research Studies Press, Somerset,
UK,, 3rd edition, 2004.

14

[18] A. Kawamoto, M. Bendsøe, and O. Sigmund. Planar articulated mechanism design by graph
theoretical enumeration. Struct Multidisc Optim, 27:295–299, 2004.

[19] G. Laman. On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathe-
matics, 4:331–340, 1970.

[20] A. Lee and I. Streinu. Pebble game algorithms and sparse graphs. In Proc. EUROCOMB, Berlin,
September 2005.

[21] A. Lee, I. Streinu, and L. Theran. Finding and maintaining rigid components. In Proc. Canad.
Conf. Comp. Geom., Windsor, Canada, August 2005.

[22] M. Ohsaki and S. Nishiwaki. Shape design of pin-jointed multi-stable compliant mechanisms
using snapthrough behaviour. Struct. Multidisc. Optim., 30:327–334, 2005.

[23] I. Streinu. Pseudo-triangulations, rigidity and motion planning. Discrete and Computational
Geometry, 34:587–635, December 2005.

[24] D. J. A. Welsh. Matroids: Fundamental Concepts In Handbook of Combinatorics Vo.I,
R.L.Graham, M.Grötschel, and L.Lovász eds. North-Holland, 1995, 481-526.

[25] W. Whiteley. Matroids from discrete geometry In Matroid Theory, J. Bonin, J. Oxley and B.
Servatius eds. AMS Contemporary Mathematics, 171-313, 1997

15

Figure 6: An example of the search tree of our algorithm on seven points. The constraint
edges F are illustrated by the bold edges, and each edge of the search tree is distinguished
by using the dotted or bold line according to whether it corresponds to Case 1 or Case 2 of
Definition 7.

16

