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ABSTRACT  

Introduction 

Static parameters of maternal cardiovascular function have been studied well using a variety of 

methods. However, studies on dynamic assessment of maternal cardiovascular function are 

scarce.  Gestational age related serial changes in maternal preload reserve have not been studied, 

and there is a need to establish normal reference intervals for functional hemodynamic 

parameters during pregnancy. Furthermore, how functional hemodynamics may be affected in 

high-risk pregnancies and whether it could be used to predict pregnancy complications has not 

been properly explored. 

Objectives 

The aim of this thesis was to investigate maternal functional hemodynamics in normal 

pregnancies and in pregnancies at risk of developing placental dysfunction disorders. 

The main objectives were: 

A. To investigate functional hemodynamic response to passive leg raising (PLR) in healthy 

pregnant women at 22-24 weeks of gestation and compare with non-pregnant women. 

B. To investigate cardiovascular response to PLR in healthy pregnant women and establish 

longitudinal reference ranges for the second half of pregnancy. 

C. To compare cardiac function, systemic hemodynamics and preload reserve among 

women with increased and normal uterine artery pulsatility index (UtA PI) at 22-24 

weeks of gestation. 

Methods 

Systemic hemodynamics and cardiac function were evaluated during rest and after PLR to 

assess cardiovascular response to a change in preload using noninvasive impedance 

cardiography (ICG). Utero-placental circulation in pregnant women was evaluated using 

Doppler ultrasonography. 

In a prospective cross-sectional study, 108 low-risk pregnant women (22-24 weeks of gestation) 

and 54 non-pregnant women (in the follicular phase of menstrual cycle) were examined to 

investigate differences in functional hemodynamics in response to PLR. 

In a longitudinal study, cardiovascular function was serially assessed at baseline and after PLR 

at approximately 4-weekly intervals in 98 healthy pregnant women during 20-41 weeks of 

gestation to establish normal reference ranges for maternal functional hemodynamics. 

In another prospective cross-sectional study, functional hemodynamics and utero-placental 

circulation were assessed in 620 unselected pregnant women during 22-24 gestational weeks to 
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investigate whether pregnant women at increased risk of developing placental dysfunction 

disorders as identified by abnormal UtA PI have a different functional hemodynamic profile 

compared to low-risk women. 

Results 

PLR caused significant changes in the majority of hemodynamic variables both in pregnant (at 

22-24 weeks of gestation) and non-pregnant women. The hemodynamic response to PLR was 

similar in both groups with similar trend and magnitude of change (∆ %). Approximately, 15% 

of pregnant women and 11% of non-pregnant women increased their stroke volume (SV) above 

10% after 90s of PLR. For the cardiac output (CO) the proportion was 13% and 18.5%, 

respectively. 

The effect of modified preload caused by PLR on cardiac function and hemodynamics varied 

by gestation, and varied among individual pregnant women at different gestations. There was 

no significant association between the gestational age and % change in SV and heart rate (HR) 

from baseline to PLR. During PLR there was an increase in SV from 20+0 to 31+6 weeks of 

gestation, but later in gestation the SV was slightly decreased by PLR. The CO decreased after 

24 weeks in response to PLR. The HR, blood pressure and cardiac contractility decreased by 

PLR throughout the second half of pregnancy. In response to PLR, the systemic vascular 

resistance (SVR) was reduced until 32 weeks, and then it slightly increased until term. 

The mean arterial pressure (MAP) and SVR were significantly higher at baseline among 

pregnant women with high mean UtA PI compared to controls. 28.6% of women with high UtA 

PI developed pregnancy complications compared to 9.5% in the control group. However, the 

functional hemodynamic response to PLR was not different between groups. The SV increased 

significantly (4-5%) following PLR in both groups. whereas cardiac output remained 

unchanged. 

Conclusions 

Maternal hemodynamics is different in healthy pregnant women compared to non-pregnant 

women. In healthy pregnancies, the physiological response to PLR was not modified at 22-24 

weeks of gestation. 

Longitudinal reference ranges for maternal functional hemodynamics were established for the 

second half of pregnancy. Healthy pregnant women appear to have limited preload reserve, 

especially in the third trimester, and might be vulnerable to fluid overload and cardiac failure. 

The functional hemodynamic profile of pregnant women with high UtA PI at 22-24 weeks 

was similar to that of controls, suggesting that its assessment is unlikely to improve the value 

of UtA Doppler in predicting pregnancy complications. 
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1 INTRODUCTION 

Measurements of heart rate (HR), stroke volume (SV), cardiac output (CO), mean arterial 

pressure (MAP), central venous pressure (CVP) and systemic vascular resistance (SVR) are 

generally used to assess maternal systemic hemodynamics. Non-invasive methods, such as 

Doppler echocardiography, impedance cardiography (ICG) and cardiac magnetic resonance 

imaging (cMRI) are often used to evaluate cardiovascular function, and have in many clinical 

situations replaced the more invasive methods that require cardiac catheterization. With the 

development and validation of noninvasive techniques it has become easier to perform repeated 

measurements and longitudinal studies during pregnancy. Methods that allow continuous 

measurement and monitoring of cardiovascular function over a time period are more useful in 

clinical settings. Although static measures of cardiovascular function are reasonably well 

studied during pregnancy, dynamic assessment of cardiovascular function has rarely been 

performed to assess physiological changes that occur with advancing gestation and to evaluate 

the role of functional hemodynamics in the prediction, diagnosis and management of 

pregnancy complications. 

2 CARDIOVASCULAR PHYSIOLOGY 

The cardiovascular system, which consists of the heart and the blood vessels, transports oxygen 

and nutrients to cells and tissues of the body, and removes carbon dioxide and waste products. 

The cardiac function is the ability of the heart to pump blood into the aorta and the pulmonary 

arteries resulting in adequate tissue perfusion required to meet metabolic demands of different 

organs. The cardiac cycle consists of two phases: diastole, when the ventricles relax and are 

filled with blood, and systole when the ventricles contract and pump blood into the systemic 

and pulmonary circulation. The total cardiac cycle can be divided into four different 

phases/periods: isovolumic ventricular relaxation and ventricular filling (rapid filling, slow 

filling and atrial contraction) constituting the diastole, and isovolumic ventricular contraction 

and ejection constituting the systole. The cardiac cycle is generally assumed to start with atrial 

contraction (P-wave on electrocardiogram) and end when the slow filling of the ventricle ends. 

Dynamic changes in myocardial motion (deformation) and ventricular pressure occur during 

the cardiac cycle. Changes in ventricular volume occur except during the isovolumic phases. 
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2.1 Factors affecting cardiac function 

Cardiac function can be described by the ventricular pressure-volume changes that occur during 

the cardiac cycle and the time intervals of different phases/periods of the cardiac cycle. Cardiac 

function is affected by several intrinsic and extrinsic factors. The SV is the difference between 

the ventricular end-systolic volume (ESV) and the end-diastolic volume (EDV). The ejection 

fraction (EF), calculated as: EF=SV/EDV x 100 %, is a widely used parameter describing 

systolic function of the heart. CO is the product of SV and HR. SVR is calculated as: MAP-

CVP/CO. 

Myocardial Contractility 

The heart consists of cardiac muscle fibers made up of two types of cardiac muscle cells, 

cardiomyocytes and cardiac pacemaker cells. The atria and ventricles consist of about 99% of 

cardiomyocyte cells, and each cell contains specialized myofibrils (sarcomeres), which are the 

contractile units of the muscle cells. These cells have the intrinsic ability to shorten and to 

lengthen the muscle fibers. The cardiac muscle contracts as a response to impulses (action 

potential) from the pacemaker cells (1%), which constitute the conducting system distributed 

throughout the heart. 

Sympathetic and parasympathetic nerve fibers innervate the cardiac muscle cells (and the 

conducting system) coordinating contraction and relaxation of the cardiac muscle tissue to 

obtain an efficient pumping action of the heart. However, heart can pump efficiently even 

without any nerve supply or cardiac pacing (such as following cardiac transplantation) 

maintaining the CO and balance between systemic and pulmonary circulation. 

Sympathetic stimulation by norepinephrine and epinephrine stimulates the cardiac muscle to 

contract faster and stronger. Sympathetic stimulation over a longer time period can cause 

cardiac hypertrophy, an increase of the ventricles wall thickness. There are two types of cardiac 

hypertrophy, eccentric and concentric hypertrophy. Eccentric hypertrophy results from e.g. 

aerobic training and pregnancy, and is caused by an increase of blood volume returning to the 

heart (volume overload) resulting in new sarcomeres in series by lengthening rather than 

thickening of the muscle. The ability of the heart to expand by receiving greater volume of 

blood enables the ventricle to generate greater forces. Concentric hypertrophy results from 

disease as a response to pressure overload, such as chronic hypertension. This results in an 

increase of the cardiac muscle mass that causes cardiac stiffness, but not the heart’s ability to 

pump blood. 

 



11 

2.2 Preload  

Preload is described as the wall stress of the ventricle by initial stretching of the cardiac 

myocytes just prior to contraction depending on the amount of blood returning into the ventricle 

[1]. Preload determines end-diastolic sarcomere length and therefore, the force of contraction. 

In an intact heart the length of sarcomeres, myofibrils, cannot be measured. However, the end-

diastolic pressure (EDP) and the EDV are related to the degree of stretching of the myocytes, 

and can be used to describe preload. 

The venous blood pressure, the circulating blood volume and the rate of venous return affect 

preload. The two main body “pumps” affect venous return: 

1. The respiratory pump, where the intra-thoracic pressure is decreased during inspiration with 

an increase in the abdominal pressure followed by squeezing of the abdominal veins and 

increase of blood flow towards the right atrium. 

2. The skeletal muscle pump, where the surrounding muscles squeeze the veins and pump blood 

back towards the heart. 

Changes in venous compliance affect preload. Increased venous compliance (e.g. during spinal 

anesthesia) reduces preload, and a decrease in venous compliance (e.g. due to hemorrhage 

leading to vasoconstriction) results in an improved venous return and an increase in preload. 

The EDP of the left ventricle correlates with left atrial pressure, which can be indirectly 

measured as pulmonary capillary wedge pressure (PCWP) using pulmonary artery 

catheterization (Swan-Ganz catheter). 

The EDV is another surrogate for preload. The main factor determining the EDV is the 

ventricular filling time. The faster the heart rate, the shorter is the filling time, leading to a 

reduced EDV. Sympathetic stimulation of the venous system increases the venous return to the 

heart and the ventricular filling. An opposite response occurs by parasympathetic stimulation. 

The ventricular wall stress can be expressed based on Laplace’s law as: Wall stress = (pressure 

x radius)/2 x wall thickness. Preload can be calculated using echocardiography as: (LVEDV x 

LVEDR)/2h, where LVEDV is left ventricle end diastolic volume. LVEDR is left ventricle end 

diastolic radius (at the ventricle’s midpoint) and h is thickness of the ventricle. 

2.3 Afterload 

Afterload is the load the ventricular myocardium faces during active force development, and it 

determines the degree of myocardial fiber shortening. In order to open the aortic and pulmonary 

valves, the pressure in the left and the right ventricle must be greater than the systemic and the 

pulmonary pressures, respectively. The SVR reflects the afterload of the cardiovascular system 
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and it is the main determinant of myocardial oxygen consumption. SVR represents the force or 

pressure the ventricle must overcome to eject blood into the aorta [2]. The pressure is assessed 

by measurement of the gradient between the beginning of the circuit (MAP) and the end (CVP). 

This value is then divided by the volume of blood flow i.e. CO. SVR = 1333.22 x (MAP-

CVP)/CO. A conversion factor of 1333.22 is used to adjust the value into the units of force for 

SVR as dyne.s.cm-5 (1 mmHg = 1333.22 dynes.cm-2 and ml = cm3). This can be simplified to: 

SVR, dyne.s.cm-5 = 80 (MAP, mmHg – CVP, mmHg)/CO, l/min. Some researchers have 

reported SVR as total peripheral vascular resistance (PVR or TVR) calculated as 

80x(MAP/CO) mmHg/ml disregarding the CVP which is normally quite low [3] [4]. Normal 

SVR is 800-1200 dynes.s.cm-5. An increase in afterload caused by, e.g. systemic hypertension 

or aortic valve disease, is followed by a decreased SV and CO. 

 

Frank-Starling mechanism 

The Frank-Starling mechanism was established from studies performed by Otto Frank and 

Ernest Starling in the late 19th and early 20th century. Frank observed that the strength of the 

ventricular contraction increased when the ventricle was stretched. Starling found that increased 

venous return to the heart and increased left ventricular EDP (LVEDP) resulted in an increase 

of SV.   

The Frank-Starling mechanism (also called Starling’s law of the heart) refers to the ability of 

the heart to change its contractility and stroke volume in response to changes in venous return 

and ventricular filling pressure. The force of ventricular contraction is directly proportional to 

the initial length of muscle fiber. During exercise increased volume of blood returns to the heart 

that causes an increase of venous return and end-diastolic volume resulting in stretching of the 

heart muscle. Thus, the more the ventricular muscle is stretched the more forceful is the 

ventricular contraction (within certain limits). The distension of the ventricle leads to greater 

ejection pressure and increased ventricular contractility, which will increase the SV and the CO 

due to increased preload (end-diastolic volume). An opposite effect occurs with a reduction in 

the velocity of fiber shortening and the velocity of ejection of blood resulting in reduced CO 

and SV [1].  

2.4 Vascular physiology 

The vascular system includes the systemic and the pulmonary circulation. In the adults under 

physiological conditions there is a balance between systemic and pulmonary circulations, i.e. 

pulmonary blood flow (Qp) = systemic blood flow (Qs). The blood volume and blood pressure 
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are the main determinants of end-diastolic volume (EDV), SV and CO. Approximately 70% of 

the total blood of the systemic circulation is stored in the venous system [5] and serves as a 

reservoir of blood. Veins are more compliant compared to arteries having the ability to 

accommodate changes in blood volume by being more distensible. Venous compliance is 

defined as; ∆V / ∆P, where ∆V is the change in volume of blood within a vein (or venous 

system) and ∆P is the change of intravenous distending pressure [5]. 

2.5 Factors affecting blood flow 

Blood flows from high pressure to low-pressure regions. Blood flow (Q) = Pressure 

(P)/Resistance (R). Vascular resistance is determined by two factors; a) blood viscosity (ŋ) and 

b) blood vessel size [the length (L) and radius (r)], and it can be determined using the following 

formula: R= (ŋ L/r4) x (8/π) or R = 8Lη/πr4. According to Poiseuille’s law Q = πr4 (P1-P2)/8Lη. 

Blood viscosity increases with increasing hematocrit of the blood. This can have an important 

effect on the resistance to flow in certain conditions. The most important determinant of 

changes in resistance is the radius of the blood vessel. If the radius increases two-fold, the 

resistance decreases sixteen-fold, resulting in sixteen-fold increase of flow at a constant 

pressure. 

The major sites of resistance to flow are the arterioles participating in the regulation of arterial 

blood pressure. In low-resistance vessels, blood flows to organs with little loss in pressure. They 

act as pressure reservoir for maintaining blood flow during ventricular relaxation. 

3 CARDIOVASCULAR ADAPTATION TO PREGNANCY 

Pregnancy causes significant changes in the cardiovascular system by alteration in maternal 

cardiac function and hemodynamics [2, 6-9]. A century ago Lindhard showed that pregnant 

women have higher cardiac output (CO) than non-pregnant women [10]. Since then several 

studies on maternal hemodynamics have been performed using invasive and non-invasive 

methods (Tables 1, 2 and 3). Many of these studies have shown variable results depending on 

their study design, methodology and the position of the participant during examination [6]. 
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Table 1. Studies on maternal hemodynamics in normotensive women using invasive methods. 

No of 

participants 

Study 

design 

Method Position Gestation 

(weeks) 

CO 

(L/min) 

range  

SVR 

(dyne s/cm5) 
range 

MAP 

(mmHg) 

range 

SV 

(ml)    

range 

HR 

(beats/min) 

range 

Author 

1 L Fick Sitting 23-40 5.2-5.5     Lindhard (1915) [10] 

68 C Fick Not described 6-40 4.29-4.60     Hamilton (1949) [11] 

84 C Fick Not described 12-40 6.2-5.7     Palmer (1949) [12] 

46 C Fick Not described 14-40 6.53-5.53 986-1244  70-58 99-96 Bader (1955) [13] 

46 C Fick Not described 14-40 6.53-5.53 986-1244  70-58 99-96 Rose (1956) [14] 

30 L Dye  Not described 8-43 7.01-6.19   91-79 77.55-78.86 Walters (1966) [15] 

5 L Fick Lateral  11-37 6.10-6.26  81.6-86.2 75.6-75.8 81.4-84.2 Lees (1967) [16] 

11 L Dye Left lateral  20-40 6.9-5.7   94.5-69.0 73.4-83.2  Ueland (1969) [17] 

10 C Dye  Left lateral 36-39    95.5 78.2 Milsom (1983) [18] 

10 C TD Left lateral 36-38 6.2 1210 90.3  83 Clark (1989) [19] 

20 L Fick Sitting  8-40 3.8-4.6#   50 - 50 83-87# Spätling (1992)# [20] 

Dye, dye dilution and TD, thermodilution. C, cross sectional and L, longitudinal. CO, cardiac output; SVR, systemic vascular resistance; MAP, mean arterial pressure; 

SV, stroke volume and HR, heart rate. Hemodynamic parameters from cross sectional studies presented as mean values. #Spätling: value estimated from figure (box 

and whisker plot) given in manuscript. 
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Table 2. Studies on maternal hemodynamics in normotensive women using echocardiography. 

No of 

participants 

Study 

design 

Position Gestation 

(weeks) 

CO 

(L/min) 

range 

SVR 

(dyne s/cm5) 
range 

MAP 

(mmHg) 

range 

SV 

(ml)   

range 

HR 

(beats/min) 

range 

Author 

13 

15 

12 

C Left lateral 

 

 

13-23 

24-32 

40 

6.05 

6.15 

5.88 

  74.1 

72.3 

69.7 

84.5 

84.9 

85.1 

Rubler (1977) [21] 

19 L Left lateral 12-38 5.71-8.56  68-66 75-97 77-88 Katz (1978) [22] 

18 C Semi-recumbent 3.Tr 6.6 996 76.8 81.5 82.7 Easterling (1987) [23] 

16 L Left lateral  10-38 4.3-5.5 1519.9-1328.7 76.9-79.6 58.5-63.6 75-87.9 Mashini (1987) [3] 

14 

16 

C  

 

Left lateral 

Left lateral 

10-13 

35-40  

5.6 

6.7 

1143 

988 

76.3 

76.1 

78.6 

82.1 

71.4 

83.6 

Easterling (1988) [24]  

8 L Left lateral 8-24 5.2-5.7 969-930 62-67 79-81 68-73 Capeless (1989) [25] 

13 L Left semi-lateral 5-38 5.40-7.22 1213-966 80.3-86 68.6-83.6 79-87 Robson (1989) [26] 

20 L Left lateral  15-35 6.13-7.25 1328-1151 97-100 77.3-83.0 74-82 Bolter (1990) [27] 

16 C Supine 24-36 8.41 821 76.71 95.79 83.8 Droste (1992) [28] 

10 L Semi-left lateral 5-35 5.24-5.78 1252-1257  90-91 74-68 76-85 Duvekot (1993) [29] 

40 L Left lateral 20-38 6.48-7.54     Thomsen (1993) [30] 

18 L Left lateral  8-39 6.7-8.5 1008-829 84-88 85-98 80-88 Mabie (1994) [31] 

26 L Left lateral 24-40 5.0-5.7 1360-1302 83-91 60-71 86-82 Hennessy (1996) [32] 

30 L Left-lateral  8-38 5.90-6.91 1080-946 80-82 92-96 64-72 Clapp (1997) [33] 

34 L Left lateral  10-38 5.8-7.35 1076.1-818.2 75.6-78.0 82.4-96.6 71.6-78.3 Geva (1997) [34] 

76 L Left lateral  15-36 5.0-5.8 1027-941 59-62 66-70 75-82 Gilson (1997) [35] 

14 L Left lateral 12-31 6.8-7.9 885-743 71-70 95-99 70-80 Poppas (1997) [36] 

37 L Left lateral 10-34 4.6-6.0 1485-1143 83-82 62-71 74-87 Mesa (1999) [37] 

43 L Semi-recumbent 12-33 5.6-6.6 1188-1023  79.6-79.9 67-77  Valensise (2000) [38] 

13 L Left lateral  10-34 6.75-6.85 1037-912   81.5-75.9 81.9-78.6  81.6-87.2   Del Bene (2001)# [39] 

46 L Not described 9-33 4.5-6.7 1386-895 85.1-82.6 64-76 71-89 Schannwell (2002) [40] 

35 L Left lateral 14-37 4.96-6.94 1214-902 74-74 66-87 75-79 Desai (2004) [41] 

41 C Lateral 28-31 6.75 949 78 77 87 Valensise (2006) [42] 

104 C Left lateral 11-38 6.34 995.39 76.47 79.60 79.87 Bamfo (2007) [43]   

26 C Left lateral 20-36  6.1 1088 79.5 73.6 84.3 Bamfo (2007) [44]  
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Table 2. Continuation. 

Study 

design 

No of 

participants 

Position Gestation 

(weeks) 

CO 

(L/min) 

range 

SVR 

(dyne s/cm5) 
range 

MAP 

(mmHg) 

range 

SV 

(ml) 

range 

HR 

(beats/min) 

range 

Author 

17 C Left lateral 33-38 7.31 932.63 82.09 89.78 82.64 Bamfo (2007) [45] 

16 L Left lateral 12-34 5.6-5.7   81-75 70-78 Rang (2007) [46] 

2352§ 

2337& 

C 

 

Left lateral 11-13±6 5.6 

5.2  

1190.8 

1253.7  

83.3 

83.3  

73.5 

70.5  

76.0 

75.0  

Turan (2008)§& [47] 

1119 C Lateral  24 6.61 990 80 83 80 Valensise (2008) [48] 

429 C Lateral 24 6.57 1009 80 82 80 Vasapollo (2008) [49] 

17 C Left lateral 13-40 5.8-6.7 2062-1858 78-80 80-88 73-77 Abdullah (2012) [50] 

26 C Left lateral ≥ 32 5.8 993  74  Burlingame (2013) 

[51] 

63 L Left lateral  14-36 5.7-6.0 15-14.5  82.8-84.8 78-75 73-80 Estensen (2013) [52] 

105 C Left lateral 20-23 5.6 1067 80 72 81 Melchiorre (2013) [53] 

29 C Left lateral 37 5.6   79.4 71.8 McIntyre (2015) [54] 

109 

105 

102 

96 

C 

 

Left lateral 11-14 

20-23 

28-32 

37-39 

5.7 

5.9 

6.4 

6.8 

1059 

1093 

977 

1000 

77 

79 

83 

83 

76 

78 

80 

83 

75 

76 

82 

79 

Melchiorre (2016) [55] 

C, cross sectional and L, longitudinal. CO, cardiac output; SVR, systemic vascular resistance; MAP, mean arterial pressure; SV, stroke volume and HR, heart rate. 

Hemodynamic parameters from cross sectional studies presented as mean or median values. #Del Bene: SV calculated as left ventricular end-diastolic volume – left 

ventricular end-systolic volume. §&Turan: § = parous women and & = nulliparous women.  
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Table 3. Studies on maternal hemodynamics in normotensive women using impedance cardiography. 

No of 

participants 

Study  

design 

Position Gestation 

(weeks) 

CO 

(L/min) 

range 

SVR 

dyne s/cm5) 

range 

MAP 

(mmHg) 

range 

SV 

(ml) 

range 

HR 

(beats/min) 

range 

Author 

30 C Left lateral 16-38 7.45   94.22 80.9 Lechner (1978) [56] 

19 L Left lateral 8-40 6.8 -5.0   90-65  Atkins (1981) [57]  

14 L Supine 15-40 7.2-6.6  82-90 103-86 71-76 Myhrman (1982) [58] 

20 C Left lateral 45° 36-40 6.6 869.0 70.8 93.2 71 Milsom (1984) [59] 

49 L Left lateral 5-41 5.32-4.55 1341-1912  67.3-54.2 79-84 Heilmann (1993)# [60] 

50 L Sitting 10-42 7.26-6.37 966-1118 87-86 85-70 87-92 van Oppen (1996) [61] 

18 C Left lateral  37  7.07 827.75 71.5 80 84.06 San-Frutos (2005) [62] 

100 C Left lateral 36-39 6.8   79.7 86.1 Tamás (2007) [63] 

20 L Not described 10 - >30 6.91-5.76 918.40-1244.00 78-86 92.53-65.31 74-88 Moertl (2009) [64] 

53 L Supine 45° 22-40 5.5-5.8 1112-1179 78-87 74-70 75-82 Flo (2010) [7] 

103 C Lateral  38 6.10 1103.27 88.05 65.13 95.25 Jia (2010) [65] 

48 L Left lateral 12-35 6.7-5.9  74.5-80.6 89.6-71.3 75.9-84.7 Moertl (2012) [66] 

26 C Left lateral ≥ 32 6.4 921  84  Burlingame (2013) [51] 

28 L Supine 45° 12-36 7.0-7.0 911-946   89.5-79.1 81-90 D’Silva (2014) [67] 

32 C Supine 45° 22-24 6.12 1020.63 80.23   Flo (2014) [68] 

13 C Supine 38 7.6  95 84 95 Gyselaers (2014) [69] 

23 

23 

21 

C 

 

 

Supine lateral tilt 20-27 

28-33 

34-40 

6.7 

6.6 

5.6 

824 

1020.6 

1164 

76.6 

78.0 

82.0 

77.8 

74.0 

64.2 

87.7 

90.2 

89.8 

Morris (2014) [70] 

218 C Standing 12 7.1  85 75 94 Oben (2014) [71] 

108 C Supine 45° 22-24 6.61 938.61 78.88 84.16  81.17 Vårtun (2014)*  

22 C Standing 37 7.3  99.5 77.5 97 Gyselaers (2015) [72] 

47 C Supine 45° 39 7.8 893 84 98 80 Marques (2015) [73] 

29 C Left lateral 37 6.1   83.1 74.2 McIntyre (2015) [54] 

98 L Supine 45° 20-40 6.58-7.11 956.73-971.22 80.10-86.56 82.97-81.68 82.13-90.37 Vårtun (2015)**  

557 C Supine 45 22-24 6.26 993.34 78.66 80.73 79.91 Vårtun (2015)*** 

C, cross-sectional study and L, longitudinal study. PLR, passive leg raising. CO, cardiac output; SVR, systemic vascular resistance; MAP, mean arterial pressure; SV, 

stroke volume and HR, heart rate. #Heilman: CO calculated from SV and HR given in the manuscript. *Vårtun: paper I; **Vårtun: paper II and ***Vårtun: paper III.    
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In early pregnancy there is a significant fall in mean arterial pressure (MAP) and SVR. These 

alterations are also shown in the mid-luteal phase even before pregnancy occurs [74]. As a 

response to the fall in SVR, the CO, HR and SV increase already from 5 to 8 weeks of gestation 

[6, 25, 29, 33, 75-77]. Circulating blood volume increases by approximately 50%. The increase 

in plasma volume is larger than the increase in the red cell mass resulting in a physiological 

hemodilution [8, 75, 77-79]. Hytten and Paintin observed a gradual increase in plasma volume 

reaching a plateau of 1250 ml above non-pregnant level in the third trimester [75]. Pirani et al 

found a 40 % increase in plasma volume from 2635 ml at around 12 weeks to 3700 ml at 30-34 

weeks among 56 primigravidae [79]. Similar observations were made by others reporting an 

increase in plasma volume from gestational weeks 6-8 until 28-30 weeks [9, 80]. The 

cardiovascular responses in early pregnancy result in decreased afterload and increased preload 

persisting until approximately the end of the second trimester. Thereafter, the hemodynamic 

variables remain relatively stable or fall slightly until term [6, 26, 81, 82]. Failure to increase 

plasma volume is probably involved in the development of complications such as pre-eclampsia 

(PE) and intrauterine growth restriction (IUGR) [83]. The maternal cardiovascular changes and 

adaptations during pregnancy are necessary to maintain adequate utero-placental perfusion, 

which is essential to supply the growing fetus with oxygen and nutrition [2, 9, 82]. 

3.1 Blood pressures 

The ability to perfuse the maternal organs and the feto-placental unit depends on the maternal 

blood pressure, which is the product of CO and SVR [2]. MAP represents the average blood 

pressure during the cardiac cycle, and is calculated as DBP + (SBP-DBP)/3, where DBP is 

diastolic blood pressure and SBP is systolic blood pressure. Maternal blood pressure decreases 

by approximately 10% at 7-8 weeks of gestation reaching the lowest value (nadir) at gestational 

weeks 16-20 [26, 33, 77]. Other reports have shown that the blood pressure and the SVR fall to 

a nadir at 22-24 weeks of gestation [7, 33, 81]. DBP decreases significantly until 20 gestational 

weeks, then rises progressively towards term, whereas SBP is relatively constant until 36 weeks 

of gestation [26]. Clark et al observed no significant difference in MAP between pregnant 

women at 36-38 weeks of gestation and non-pregnant women 11-13 weeks postpartum [19]. 

During early pregnancy, the hormonal milieu is changed with an elevation of progesterone level 

and secretion of local mediators such as prostaglandins and nitric oxide (NO) exerting a 

vasodilatating effect on the arterial and venous vasculature [29, 81]. The atrial compliance is 

increased leading to a decrease in SVR to accommodate for the increased blood volume [84]. 
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Chapman et al found that arterial vasodilation stimulates activation of renin-angiotensin-

aldosterone system resulting in a decrease of SVR [74]. 

3.2 Heart rate 

The heart rate increases from about 5 weeks of gestation [6, 29] throughout pregnancy as a 

compensatory response to the decrease in SVR [6, 26, 29, 31]. In a longitudinal study, Mabie 

et al found an increase in HR by 29% from the first to the third trimester [31]. Hunter and 

Robson, and Flo et al report a maximum increase of HR at 32 and 34 weeks, respectively, with 

a slight decrease towards term [6, 7]. Mahendru et al made similar observations, and they found 

a significant increase of HR until the third trimester by about 13 beats per minute [82]. The HR 

was significantly higher among multiparous women compared to nulliparous women, and HR 

reversed to pre-pregnancy level at 14-17 weeks after delivery [82]. Clapp and Capeless found 

that the heart rate returned to baseline level at 12 weeks postpartum [33]. 

3.3 Stroke volume 

The SV increases from eight to 20 weeks of gestation to approximately 20-30% above the non-

pregnant values [6, 25, 29, 33]. Clapp and Capeless observed a maximum increase in SV to 97 

ml at 24 weeks [33]. During the third trimester of pregnancy, the SV is relatively stable or 

slightly lower towards term [6, 29, 33]. 

3.4 Cardiac output  

CO increases by 40-50% above non-pregnant values from 5 weeks of gestation reaching 

maximum at 28-32 gestational weeks [6, 13, 17, 26, 29]. The increase in CO is approximately 

1.5 L above the pre-pregnancy values [11], resulting from an increase in HR and SV [6, 33, 34, 

81]. There are conflicting observations regarding changes in CO from the second half of 

pregnancy until term. Some authors have reported a steady state [6, 33] whereas others report 

a steady increase towards term [22]. In a longitudinal study, Flo et al found that CO increased 

significantly from 5.5 L/min at 22 weeks to 5.8 L/min at 34 weeks of gestation with no further 

change until term [7]. Others have found a decrease of CO in the second half of normal 

pregnancies until term [13, 29, 34]. The variation in absolute values of CO may be explained 

by inter-individual differences among pregnant women, maternal position during investigation, 

study design and method used to measure the CO [22, 85-87]. In addition, several studies have 

estimated changes of CO using postpartum values at various time intervals to represent non-

pregnant values [52]. 
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Clapp et al investigated 30 healthy women before pregnancy, throughout gestation and 12, 24 

and 52 weeks postpartum [33]. They found significant differences between pre-pregnancy CO 

and lower CO values in pre-pregnancy state compared to postpartum [33]. The observed 

reduction of CO during investigation in the supine position in late pregnancy may result from 

compression of inferior vena cava by the enlarged uterus causing reduced venous return to the 

heart [88, 89]. Approximately 5% of women experience hypotension in the flat supine position 

during late gestation with symptoms of dizziness, headache or nausea [88]. 

3.5 Systemic vascular resistance 

SVR is affected by changes in blood volume, vessel diameter and viscosity of the blood, all of 

which are affected by pregnancy. A study from Robson et al has shown a progressive fall of 

SVR by 34% from early pregnancy (5 weeks) to 20 gestational weeks in accordance with 

reduction in the DBP [26]. They observed a small increase of SVR towards term [26]. Other 

studies have reported similar reduction of SVR from six gestational weeks, reaching a nadir 

between 14 and 24 weeks of gestation, followed by an increase to pre-pregnancy values towards 

term [7, 13, 19, 29, 33, 81, 90]. Flo et al demonstrated an increase of SVR from gestational 

weeks 22 until term [7]. The plasma volume increases in pregnancy, but the CVP and the 

pulmonary capillary occlusion pressure (PAOP) remain unchanged [19]. This might be a result 

of reduced SVR and ventricular dilatation due to increased end-diastolic volume (preload). 

Summary of results of CO, SVR, MAP, SV and HR from previously published studies are 

presented in Table 1, 2, 3 and 4. 
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Table 4: Studies on maternal hemodynamics in normotensive women at different body positions using invasive and noninvasive methods. 

No of 

participants 

Study 

design 

Method Position Gestation 

(weeks) 

CO 

(L/min) 

range 

SVR 

(dyne /cm5) 

range 

MAP 

(mmHg) 

range 

SV 

(ml) 

range 

HR 

(beats/min) 

range 

Author 

5 L 

 

Fick Lateral 

Supine 

11-37 

 

6.10-6.26 

6.06-5.31 

    Lees (1967) [16] 

11 

 

 

L  

 

Dye  

 

Supine 

Lateral 

Sitting 

20-40 6.4-4.5 

6.9-5.7 

5.9-5.2 

 

 

 

 88.3-52.2 

94.5-69.0 

73.6-57.8 

74.4-85.5 

73.4-83.2 

83.4-89.4 

Ueland (1969) [17] 

12 C  

 

Echo Left lateral 

Supine 

40  5.88 

4.63 

  69.7 

54.6 

85.1 

86.3 

Rubler (1977) [21] 

19 L  

 

Echo Left lateral 

Supine 

12-38  

 

5.71-8.56 

6.21-8.01 

 68-66 

73-79 

75-97 

82-87 

77-88 

76-92 

Katz (1978) [22] 

30 C 

 

 

ICG Standing 

Supine 

Left lateral 

16-38 7.36 

6.90 

7.45 

  80.28 

85.54 

94.22 

96.5 

83.5 

80.9 

Lechner (1978) [56] 

14 

 

L  

 

 

ICG Supine 

Left lateral 

Right lateral 

15-40 7.2-6.6 

6.2-5.3 

6.2-5.9 

 82-90 103-86 

89-78 

89-83 

71-76 

70-68 

70-71 

Myhrman (1982) [58] 

10 

 

 

10 

C 

 

 

 

ICG 

 

 

Dye  

Left lateral 

Right lateral 

Supine 

Left lateral 

Right lateral 

Supine 

36-39 

 

 

36-39 

   83.8 

71.7 

68.8 

95.5 

84.7 

74.5 

78.2 

84.5 

87.0 

Milsom (1983) [91] 

10 C  

 

 

ICG Left lateral 45° 

Supine 

Right lateral 45° 

Lithotomy 

Standing 

36-40 6.6 

5.5 

5.9 

5.9 

7.1 

869.0 

1335.5 

1143.2 

1150.7 

1000.8 

70.8 

87.2 

82.7 

82.0 

86.7 

93.2 

75.5 

82.3 

84.0 

89.9 

71 

73 

73 

71 

79 

Milsom (1984) [59] 
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Table 4: Continuation. 

No of  

participants 

Study 

design 

Method Position Gestation 

(weeks) 

CO     

(L/min)  

range 

SVR        

(dyne s/cm5)  

range 

MAP     

(mmHg)   

range 

SV            

(ml)         

range 

HR         

(beats/min) 

range 

Author 

14 

 

 

16 

C  

 

 

C 

 

Echo Left lateral 

Sitting 

Standing 

Left lateral 

Sitting 

Standing 

10-13 

 

 

35-40 

5.6 

4.4 

3.8 

6.7 

5.7 

5.0 

1143 

1552 

1730 

988 

1213 

1367 

76.3 

80.9 

80.0 

76.1 

80.6 

81.1 

78.6 

53.3 

39.9 

82.1 

66.5 

51.3 

71.4 

82.9 

97.1 

83.6 

87.1 

100.3 

Easterling (1988) [24] 

16  Echo Supine 

Standing 

24-36 8.41 

6.22 

821 

1157 

76.71 

85.84 

95.79 

65.17 

83.8 

95.0 

Droste (1992) [28] 

13 L  

 

 

Echo Standing  

Left lateral  

Standing  

10-34 5.84-6.66 

6.75-6.85 

5.60-6.80 

1301-1079  

1037-912  

1299-1031  

89.1-87.6 

81.5-75.9 

86.6-84.1 

57.6-61.9 

81.9-78.6 

59.4-69.4  

100.8-109.0  

81.6-87.2  

93.9-98.0  

Del Bene (2001)* [39] 

100 C 

 

ICG Supine 

Left lateral 

36-39 6.7 

6.8 

  71.2 

79.7 

95.5 

86.1 

Tamás (2007) [63] 

20 C  

 

 

ICG Supine 45° 

Left lateral 

Supine 45° 

Left lateral 

32-35 

 

36-39 

5.9 

5.6 

5.5 

5.4 

  72.1 

75.9 

72.0 

74.5 

86.0 

77.0  

79.0 

73.1 

Flo (2010) [7] 

6 

 

8 

C CMR Supine 

Left lateral 

Supine 

Left lateral 

20 

 

32 

6.5 

6.5 

5.6 

6.9 

  76.0 

90.9 

71.2 

94.8 

80.5 

72.3 

80.8 

75.2 

Rossi (2011) [92] 

26 C 

 

ICG Left later 

Seated 60º 

≥ 32 6.4 

6.1 

921 

1050 

 84 

78 

 Burlingame (2013) [51] 

28 L 

 

ICG Supine 45° 

Standing 

Supine 45° 

Standing 

12-36 

 

26-28 

7.0-7.0 

7.0-7-6 

7.4 

7.8 

911-946 

1002-940 

860 

872 

 89.5-79.1 

75.7-77.6 

86.0 

81.3 

81-90 

94-99 

88 

98 

D’Silva (2014) [67] 

 



23 

Table 4: Continuation. 

No of 

participants 

Study 

design 

Method Position Gestation 

(weeks) 

CO     

(L/min)  

range 

SVR         

(dyne s/cm5)  

range 

MAP     

(mmHg)   

range 

SV            

(ml)         

range 

HR         

(beats/min) 

range 

Author 

1108 C  

 

ICG Supine 45° 

PLR 45° 

22-24 6.61 

6.62 

938.61 

894.72 

78.88 

75.32 

84.16 

85.74 

81.17 

78.72 

Vårtun (2014)*  

447 C 

 

ICG Supine 45° 

PLR 45° 

PLR left lateral 

PLR right lateral 

39 7.8 

7.7 

7.8 

7.6 

893 

906 

913 

960 

84 

85 

86 

88 

98 

98 

101 

99 

80 

78 

77 

77 

Marques (2015) [73] 

114 L CMR Left lateral 

Supine 

12-36 5.8-6.3# 

5.5-5.7# 

 76-80 81-84# 

81-72# 

70-74 

69-80 

Nelson (2015)# [93] 

998 L 

 

 

ICG Supine semi-

recumbent 

PLR 45° 

20-40 6.58-7.11 

 

6.54-6.73 

956.73-971.22 

 

906.22-976.59 

80.10-86.56 

 

75.52-83.29 

82.97-81.68 

84.11-80.68 

82.13-90.37 

 

79.59-85.32 

Vårtun (2015)**   

5557 C ICG Supine semi-

recumbent 

PLR 45° 

22-24 6.26 

 

6.31 

993.34 

 

941.61 

78.66 

 

75.88 

80.73 

 

83.33 

79.91 

 

77.67 

Vårtun  (2015)*** 

Dye, dye dilution; Echo, echocardiography; ICG, impedance cardiography and CMR, cardiac magnetic resonance. C, cross-sectional and L, longitudinal. PLR, 

passive leg raising. CO, cardiac output; SVR, systemic vascular resistance; MAP, mean arterial pressure; SV, stroke volume and HR, heart rate. Hemodynamic 

parameters from cross sectional studies given as mean or median values. *Del Bene: SV calculated as left ventricular end-diastolic volume – left ventricular end-

systolic volume. #Nelson: values estimated from the figures (graphs) given in the article. *Vårtun: paper I; **Vårtun: paper II and ***Vårtun: paper III. 
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3.6 Cardiac function in pregnancy 

Pregnancy causes structural changes of the heart induced by altered preload, afterload and HR 

[81]. The increased blood volume following a rise in venous return and venous filling leads to 

an increased stretching of cardiac muscle fibers before contraction. The left ventricle (LV) mass 

and wall thickness increase from 12 weeks of gestation until the third trimester [22, 26]. The 

structural changes of the LV cause alteration of the heart’s position. The elevated diaphragm 

due to the enlarged gravid uterus pushes the heart upwards and rotates it forwards [94, 95]. 

Echocardiographic studies using Doppler have shown that the LV wall is thickened and the 

cardiac mass increased during pregnancy [22, 26, 96]. Robson et al observed a progressive 

increase in both LV mass and thickness from gestational weeks 12-38 by 52% and 28% above 

pre-pregnancy values, respectively [26]. Kametas et al report similar results; they found 52% 

increase in LV mass, and LV end-diastolic and end-systolic diameters increased by 12% and 

20%, respectively [97]. In addition, they found a 40% increase in left atrial diameter, 12% 

increase in LV end-diastolic diameter, and a 20% increase in LV end-systolic diameter during 

gestation compared to non-pregnant. Simmons et al found in their study among normotensive 

women that the LV wall thickness increased by 11% during pregnancy [96]. Similar results 

were reported by Estensen et al, who observed a slight increase in LV wall thickness from the 

second to the third trimester [52]. They found an increase of 23% in LV EDV with a decrease 

of 11% in LV EF indicating that the LV contractility is reduced during normal pregnancy. Other 

studies report different results regarding to the heart’s contractility during pregnancy. Mone et 

al and Geva et al also report decreased cardiac contractility during pregnancy [34, 98]. Two 

other studies report increased cardiac contractility during pregnancy [21, 35]. Clark et al 

observed that pregnancy is not associated with hyperdynamic LV function [19], and recently 

Melchiorre et al showed that the remodeling of the heart with a hypertrophy of the LV maintains 

the performance of the LV and the myocardial oxygenation in pregnancy [84]. 

Analysis of systolic time intervals such as the left ventricular ejection time (LVET) and the pre-

ejection period (PEP) provide information about the function of the left ventricle and the cardiac 

performance. LVET and PEP represent the duration of left ventricular ejection (mechanical 

systole) and the phase of isovolumetric ventricular contraction time (electrical systole), 

respectively [71]. The systolic time ratio (STR) is defined as the ratio of PEP and LVET (STR 

= PEP/LVET). Burg et al found that PEP decreased from the first to the second trimester [99]. 

Thereafter, they observed an increase towards term. LVET decreased throughout pregnancy. 

Katz et al observed similar reduction of LVET [22]. Liebson et al found that PEP increased and 
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LVET decreased during gestation [100]. These two variables relating to the systolic time 

intervals indicate decreased cardiac contractility among normotensive women during 

pregnancy. All three studies showed an increase in LVET during postpartum period. Burg et al 

and Liebson et al report contrasting results regarding PEP in postpartum period, showing an 

increase and a decrease, respectively [99, 100]. Estensen et al observed reduction of LV 

contractility during normal pregnancy due to reduced LVET and ejection fraction compared to 

6 months postpartum [52]. Their findings suggest that pregnancy induces a larger load on the 

cardiovascular system than previous studies have assumed. Other variables have been used to 

describe cardiac contractility and systolic function using impedance cardiography, such as the 

acceleration index (ACI), the velocity index (VI), and left ventricle work index (LCWI) 

representing cardiac work [51, 65, 69, 71]. 

3.7 Utero-placental circulation 

The left and right uterine arteries originate from the internal iliac arteries, supply the uterus and 

form anastomoses with the respective ovarian arteries. The uterine arteries branch into arcuate 

arteries, then into radial arteries, and finally into spiral arteries penetrating the outer and middle 

thirds of the myometrium [101, 102]. Approximately 80 % of the total utero – placental blood 

flow comes from the uterine arteries [103]. 

Development of placenta starts with the trophoblast cell lineage 4-5 days after conception. As 

pregnancy advances, the trophoblast cells further differentiate into specialized subtypes such as 

multinucleated syncytiotrophoblasts and mononuclated cytotrophoblasts [104, 105]. Following 

this, a fluid-filled space occurs within the syncytiotrophoblast layers forming a large lacuna that 

surrounds the embryo. The syncytium enables invasion and implantation into the interstitium 

of the endometrium (decidual stroma), thereby establishing direct contact with the maternal 

blood cells [104]. Thereafter, the cytotrophoblast cells differentiate into villous structures as 

chorionic villi protruding into the intervillous space [104]. The chorionic villi continue to grow 

throughout the pregnancy causing an increase in placental mass and surface, to secure adequate 

exchange of gases, nutritional substrates and metabolic waste products between the fetus and 

the mother [106]. The extravillous trophoblast cells invade and replace the endothelial and 

muscular layer of the maternal spiral arteries [102, 104]. Following this, the spiral arteries open 

into the intervillous space allowing the maternal blood flow to the fetus. The trophoblast 

invasion is complete at 18-20 weeks of gestation [107]. Physiological changes resulting from 

spiral artery remodeling by the trophoblast cells and subsequent vasodilatation cause increased 

artery diameter and reduced vascular resistance [103, 105, 108].  
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3.8 Utero-placental Doppler indices 

Indices related to the blood flow of the uterine arteries (UtA) such as pulsatility index (PI), 

resistance index (RI) and systolic /diastolic ratio (S/D) have been used to predict risk of adverse 

pregnancy outcomes such as PE, IUGR, and placental abruption. These indices are calculated 

from the Doppler derived blood flow velocity waveforms of the UtA and increased values of 

these indices have been implied to be surrogate measures of increased uterine vascular 

resistance [109]. Diastolic notching in the early diastolic phase of the cardiac cycle in the UtA 

waveform is another indirect sign of reduced blood flow and increased UtA vascular resistance 

[110]. An increase of UtA PI or RI, and unilateral or bilateral notching may indicate an 

increased risk of developing pregnancy complications [111]. However, UtA notching may be a 

normal finding in the first trimester before the utero-placental circulation is fully established 

[112]. 

Several studies have used Doppler ultrasonography in the evaluation of UtA blood flow pattern 

to obtain information about the utero-placental circulation [113, 114]. The reduction in 

impedance to flow in the UtA during pregnancy reflects trophoblastic invasion of the spiral 

arteries and their conversion into low-resistance vessels [115]. Campbell et al were the first to 

report the use of Doppler ultrasonography of the UtA to identify risk of pregnancy 

complications [116]. There are discrepancies between studies regarding the value of UtA 

Doppler indices in predicting pregnancy outcomes. This might be due to differences in 

measurement techniques, the definition of abnormal blood flow velocity waveform pattern and 

cut off values of indices used [117]. Previous studies have used different cut-offs or percentiles 

values of PI or RI together with or without bilateral notches for screening women for the risk 

of developing pregnancy complications. Papageorghiou et al found that 2.2% of pregnant 

women developed PE with a mean UtA PI >1.6 (95% percentile), and the presence of bilateral 

notches were highly associated with high PI when examined during 22-24 weeks of gestation 

[118]. Rizzo et al found that 4.7 % of pregnant women at 20-24 weeks with mean PI >1.63 and 

bilateral notches developed PE [119]. Abnormal uterine artery blood flow is a good predictor 

of early-onset PE, but has limited value in predicting late-onset PE [120]. Measurements 

performed in the second or third trimesters have a higher predictive value than those performed 

in early pregnancy. Among women with pre-existing cardiac disease a higher incidence of 

abnormal UtA flow is found, as the utero-placental flow probably depends on maternal cardiac 

performance [121]. 
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4 PLACENTAL DYSFUNCTION DISORDERS 

Placental dysfunction can cause miscarriage, hypertensive pregnancy disorders, gestational 

diabetes, intra-uterine growth restriction and fetal death. These conditions have long-term 

consequences for the mother and her offspring. 

4.1 Hypertensive disorders 

The hypertensive disorders of pregnancy include gestational hypertension, pre-existing chronic 

hypertension, PE and eclampsia [122]. 

4.2 Gestational hypertension 

Gestational hypertension is characterized by an increase of maternal SBP and DBP ≥ 140/90 

mmHg, measured at least two times 4-6 hours apart after 20 weeks of gestation [123-126]. 

Blood pressure ≥ 140/90 mmHg before 20 weeks of gestation is defined as chronic or pre-

existing hypertension, and the risk of adverse pregnancy outcome is increased [124, 127]. Blood 

pressure ≥ 160/110 mmHg for at least 6 hours is considered to be severe hypertension [128]. 

4.3 Pre-eclampsia 

PE is a complication affecting 2-8% of pregnant women worldwide, and is characterized by 

new onset of hypertension with proteinuria after 20 weeks of gestation [123, 129]. Proteinuria 

is defined as urine protein concentration of 300 mg/L or more (≥1+ on dipstick) at least on two 

occasions and 4-6 hours apart [123, 124]. PE can affect several organs including kidney, liver, 

brain and the clotting system [42, 106, 124, 130-132]. The disorder is a major cause of maternal 

and perinatal morbidity and mortality [42, 106, 123, 124, 130, 133]. Maternal deaths from pre-

eclampsia and eclampsia account for up to 15% of maternal mortality, and it is 100 to 200 times 

higher in developing countries (Africa and Asia) than developed countries (Europe and North 

America) [130, 134]. The rate of PE in developed countries vary from 1.4% to 4%, and the 

overall risk of developing PE in Norway is 3.6% [135, 136]. 

PE causes changes in maternal hemodynamics. The SVR is increased and CO is often lowered 

compared to normotensive pregnancy [53, 90]. The pathogenesis of PE is currently thought to 

arise from placental dysfunction affecting the maternal endothelium resulting in systemic 

vascular complications [106, 131, 137]. Several acute maternal complications can evolve 

following PE including eclamptic fits, stroke, placental abruption, HELLP syndrome 

(hemolysis, elevated liver enzymes, and low platelets), pulmonary edema, liver hemorrhage or 

rupture, renal failure and death [134]. Neonatal complications from PE include preterm 

delivery, IUGR, hypoxia, neurologic injury and perinatal death depending on gestational age 
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and severity of the disease [123]. Pre-eclampsia is a heterogeneous condition, and term PE 

probably includes different diseases. Early-onset PE is defined as onset before 34 weeks of 

gestation, and late PE when the condition is diagnosed after 34 gestational weeks [48]. Early-

onset PE is often associated with placental abnormality due to insufficient utero-placental blood 

flow. IUGR, premature delivery, and severe maternal morbidity are associated with the early-

onset form of PE [48, 106, 125, 131, 138, 139]. Late-onset PE is considered to be superimposed 

upon a pre-existing maternal cardiovascular condition such as high blood pressure, diabetes or 

various organ diseases [140]. Approximately 80 % of PE worldwide, is late onset PE associated 

with an appropriately grown baby [138]. A previous study by Valensise et al observed 

significantly higher CO and lower TVR among women with late onset PE compared to early 

onset PE [48]. Risk factors for developing PE are previous PE, pre-existing hypertension, 

primiparity, maternal age < 18 or > 40 years, multiple pregnancy, renal or rheumatic disease, 

obesity and a family history of hypertensive disorders of pregnancy [120, 123, 131, 141, 142]. 

However, more than 50% of the women who develop PE have no risk factors in their history, 

and many women with risk factors mentioned above do not develop the disorder. Women 

developing PE are at increased risk of cardiovascular diseases (CVD) later in life, and additional 

risk factors such as high levels of cholesterol, glucose and abdominal obesity increase the 

remote risk for CVD further [132, 143-145]. The causes of PE are unknown, and currently there 

are no precise criteria for prediction or prevention of PE [106, 123, 131, 139]. Early 

identification of women at risk for developing PE is crucial to assure adequate antenatal care 

and eventually prophylactic treatment [146]. Delivery and removal of the placental tissue is the 

only definite cure [137]. 

4.4 Intrauterine growth restriction 

A fetus or neonate is defined as small for gestational age (SGA) when the (estimated) weight is 

below a certain percentile, usually the < 10th percentile [147]. The majority of these babies are 

healthy and only constitutionally small. During pregnancy they will generally grow 

appropriately although in the lower percentiles [4]. 

IUGR is characterized also by low birth weight, most commonly defined as weight < the 10% 

percentile. These fetuses have failed to reach their genetically determined growth potential. 

There is often asymmetric growth with an abdominal size that is smaller compared to the size 

of the head, and the fetal growth is slower than expected. Mostly, IUGR is caused by placental 

insufficiency and the umbilical (and/or UtA) Dopplers are usually abnormal [113]. 
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5 METHODS OF ASSESSING MATERNAL CARDIOVASCULAR 

FUNCTION 

Different methods have been used to investigate systemic hemodynamics and cardiac function 

in pregnant women, and to monitor critically ill patients. Two basic categories are available, 

invasive and non-invasive methods. In clinical settings both methods are used. Non-invasive 

methods are more appropriate for research purposes among especially in healthy pregnancies. 

5.1 Invasive methods 

5.1.1 Fick principle 

The Fick principle was first described and developed by Adolf Eugen Fick in 1870 and used 

for the assessment of CO. The method has been described as the “gold standard” for 

determination of CO, based on oxygen consumption by an organ by calculating the difference 

between the arterial (A) and the venous (V) oxygen content. 

Oxygen is the most commonly used marker in the determination of CO. The oxygen consumed 

over time is calculated from measurement of oxygen concentration of venous and arterial blood 

using the Fick’s equation; VO2 = (CO x CA) – (CO x CV), where VO2 is oxygen consumption 

in ml of pure gaseous oxygen per minute, CA is oxygen concentration of arterial blood, CV is 

oxygen concentration of mixed venous blood. From these measurements cardiac output can be 

calculated as; CO = VO2 / (CAO2 – CVO2), where (CAO2 – CVO2) is the arteriovenous oxygen 

content difference [148, 149]. Among critically ill patients who are hemodynamically unstable, 

and need breathing assistance, expired air measurement and arterial blood sampling are 

necessary for the determination of CO. It is one of the most accurate techniques when the CO 

is low, but requires repeated measurements, and is not very practical in clinical and research 

settings. 

5.1.2 Dye indicator dilution 

During the 1890’s, Stewart introduced an indirect method for determination of CO [150]. Later 

Hamilton refined this technique. The technique is based on injection of a known amount of an 

indicator dye into one site of the circulatory system, and the measurement of the concentration 

of the dye at another site after certain time intervals. Then a dilution curve of the dye can be 

constructed, from the concentration of the dye obtained at different time intervals. Cardiac 

output is calculated from the time-concentration plot by using the equation: CO = (I x 60)/(C x 

t), where I is the amount of dye injected (mg), 60 is conversion factor from seconds to minutes, 

C is the mean concentration of dye (mg/L) during curve duration, t is time during curve duration 
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in seconds [151]. This method is more accurate when the CO is high. The drawbacks of this 

method are the need for multiple blood samples and a device for measuring of the concentration 

of the indicator. 

5.1.3 Thermodilution  

The thermodilution technique to measure CO was first described in the 1950’s [152]. In the 

1970’s this method was shown to be reliable and reproducible by Swan and Ganz using a 

temperature sensing pulmonary artery catheter (PAC), known as the Swan-Ganz catheter. The 

method is based on the indicator dilution principle measuring temperature change of the 

indicator as heated or cooled fluid. A solution with known temperature is injected rapidly into 

the pulmonary artery via a catheter. This provides direct access to the right heart. The 

temperature of the blood is measured downstream at a known distance in the pulmonary artery 

by a thermistor bead embedded in the same catheter. CO is determined from a time-temperature 

change curve using the modified Stewart-Hamilton equation; CO = (Ta-Tb) x VI x K /ƒdT/dt, 

where Ta is the temperature before injection, Tb is the temperature after injection, VI is the 

volume of the injected substance, K is a constant, and dT/dt is the change in temperature per 

change in time [148]. Calculation of CO from a measured time-temperature curve shows 

reproducible values, as the degree of temperature change is directly proportional to the CO. A 

slow temperature change indicates a low CO; a rapid shift of temperature indicates a high CO, 

and averaging repeated measurements improves the accuracy of the method. Swan-Ganz 

thermodilution method is a useful tool for clinicians and it is used in the assessment and guide 

management of critically ill patients. The method is referred to as the clinical “gold standard” 

method of hemodynamic monitoring when new technologies are compared and validated. 

5.2 Noninvasive methods 

Noninvasive methods are simpler to use and constitute less risk compared with the invasive 

methods. Such techniques offer assessment of absolute values as well as trend analysis of 

cardiac output and other hemodynamic variables. 

5.2.1 Impedance cardiography 

The ICG technique, also referred to as thoracic electrical bioimpedance, has been used for the 

last 50 years to measure hemodynamic and cardiovascular variables [153, 154]. This technique 

is based on changes in the thoracic impedance during the cardiac cycle. The method measures 

SV and other cardiovascular parameters including cardiac contractility directly [51, 81, 155]. 

The basic principles of ICG were established in Russia during the 1940s, and improved during 
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the 1960s when it was used to measure CO among astronauts in a space program. In 1966 

Kubicek et al. introduced the four-electrode impedance system using aluminum band electrodes 

applied around the abdomen and neck as the cylinder model to calculate SV from the original 

equation [156, 157] as: SV = p x L2 / Z0
2 x (dZ/dt) max x LVET, where p is a constant for the 

electrical resistivity of blood, L represents the mean distance between the two inner electrodes 

(cm), Z0 is the basic impedance between the two inner electrodes (ohms), (dZ/dt) max is the 

maximum value of the first derivative of the impedance waveform and LVET is the LV ejection 

time [155, 156].  

Later, Sramek modified Kubiceks’ equation considering the chest as a truncated cone [158], 

and proposed a new formula to calculate SV as: SV = (0.17 x H) 3 / 4.2 x (dZ/dt) max / Z0 x 

LVET, where the constant L in the above equation is approximated as 17 % of the height (cm) 

in a normal adult. Bernstein further modified the equation by adding a weight correction factor, 

δ, representing the modified ratio of the observed weight to the so-called ideal weight [159]. 

This modification would determine a more correct volume of the thorax [153, 156, 159] as 

follows: SV = δ x (0.17 x H) 3 / 4.2 x (dZ/dt) max / Z0 x LVET. 

The ICG technology has recently been improved further by more advanced data processing and 

software [51, 153, 155, 156, 160]. ICG is painless, without risk, operator independent, and has 

the ability to obtain continuous hemodynamic data and allows evaluation of trends and changes 

of cardiovascular variables over time by performing repeated measurements [51, 153, 160]. 

5.2.2 Bioreactance 

Bioreactance is a new noninvasive technique similar to ICG using an electrical current of low 

amplitude with known frequency applied on the chest between two leads [161]. This technique 

is based on detection of the relative phase shifts (frequency shifts) between the two leads, the 

applied current and the received signal, which is created due to changes in the blood volume of 

the aorta [162]. The advantage of this technique is that the frequency modulations and phase 

shifts are independent of the distance between the applied and detected signal. The SV is 

proportional to the product of ventricular time (VET), the maximum phase shift (dϕ/dt max) and 

a constant of proportionality is C [161, 162]: SV = VET x dϕ/dt max x C. There are only few 

published studies with small sample sizes using this method. 

5.2.3 Echocardiography 

Echocardiography combined with Doppler ultrasound has been in use since the 1980s for 

investigation of hemodynamics and cardiac function. This method is widely used in the 

diagnosis and management of patients with cardiac diseases as well as in clinical research [38, 
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163]. For measuring the CO, the diameter of the aorta is measured at the aortic valve level, and 

the aortic cross-sectional area (CSA) is calculated as: CSA = π (D/2) 2, where D is the diameter 

of the aorta [76, 164]. Transthoracic Doppler ultrasound is used to measure blood flow velocity 

at the aortic valve during systole, and the time velocity integral is measured (VTI) [23, 161]. 

Then the SV is determined from the formula: CSA x VTI. CO is calculated as SV x HR. 

Measurement of CO with echocardiography correlates well compared with the invasive “gold 

standards” i.e. thermodilution and Fick methods by a correlation coefficient of 0.91 and 0.93, 

respectively [23, 76]. Lee et al found that the correlation between echocardiography and 

thermodilution performed among pregnant women was 0.94 for CO and 0.86 for SV [165]. 

Easterling et al observed a correlation coefficient of 0.92 between different operators for CO 

measurements ([166]. A study by Robson et al shows a high reproducibility of 3.1-3.7% within 

patient [76]. One limitation of Doppler echocardiography is that it does not provide continuous 

hemodynamic measurements [161]. Another limitation is that Doppler echocardiography is 

operator-dependent, and requires a trained operator to obtain correct measurements of the vessel 

diameter and the blood flow velocity [164]. However, Doppler ultrasonography is not very 

difficult to learn, and it is a useful tool in studying hemodynamics, as well as identifying and 

monitoring heart diseases in clinical settings [161, 164]. 

5.2.4 Cardiac magnetic resonance 

The cardiac magnetic resonance imaging (CMRI) is a method that is increasingly used for the 

diagnosis of cardiac disease and evaluation of the cardiovascular system [167, 168]. The CMRI 

technique is based on strong magnetic fields and radio waves converting echoes from released 

energy into images, and combining sequences of electrocardiography (ECG) at each stage of 

the cardiac cycle from multiple cardiac cycles displaying cardiovascular function as cine 

imaging loops [168]. Assessment of cardiac blood flow can be performed in a single scan with 

good image quality compared to transthoracic echocardiography (TTE), which requires several 

assumptions for evaluation of systemic hemodynamics [93]. 

Until now, few studies have been published using the CMRI in the evaluation of maternal 

hemodynamics and cardiac function during pregnancy [92, 93, 169]. Ducas et al found good 

correlation between the CMRI and TTE measured SV and CO among women in the third 

trimester, but reporting consistently lower values for TTE compared to CMRI [169]. 

The advantage of CMRI is the fast imaging combined with good quality images. Safety, 

accuracy and reproducibility of CMRI are comparable to echocardiography [169]. Investigation 

using CMRI requires an experienced and skilled operator and expensive equipment and 
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repeated measurements may not be practical. However, this non-invasive method can be useful 

in the assessment of pregnant women with pre-existing or suspected cardiac disease or 

pregnancy complications. 

5.2.5 Gas re-breathing technique 

Investigation and assessment of CO can also be performed using the gas re-breathing technique 

[170]. This method is used for measuring effective pulmonary blood flow (QEP) that in the 

absence of intrapulmonary shunt flow is equivalent to CO [170]. The system consists of an 

accurate infrared photo acoustic gas analyzer continuously analyzing gas concentrations of the 

ventilator. It is a closed system including a mouthpiece with a three-way respiratory valve and 

a re-breathing bag that is connected to the gas analyzer. The re-breathing bag contains a gas 

mixture of blood-insoluble gas, N2O, and O2 in N2. The software of the gas analyzer calculates 

the QEP from the rate of uptake of N2O into the blood. Then CO is determined according to the 

formula as: CO = QEP + shunt flow, where the shunt flow is based on shunt fraction of O2 

content in arterial and mixed venous blood samples. This method might be useful in assessing 

patients with cardiovascular diseases such as pulmonary hypertension and heart diseases as well 

as for cardiovascular research [170]. 

5.3 Functional hemodynamics 

Previous studies evaluating cardiac function and systemic hemodynamics in different maternal 

body positions show differences both between methods and between studies using the same 

equipment (Tables 1-3). Variation in results from studies among pregnant women may reflect 

factors such as: inaccurate description of body position during examinations, differences in 

study design, gestational age, methods used and small number of participants. Some researchers 

describe the position just as left, right lateral or supine without precisely describing if the upper 

part of the body is elevated or flat during examination (Figure 1). 
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Figure 1. Different maternal positions during examination of cardiac function and systemic 

hemodynamics, left lateral (A), right lateral (B), supine flat (C), and supine semi-recumbent 

(D). 

Static measurements of hemodynamic variables are not sufficient to understand maternal 

cardiovascular adaptation in pregnancy. Therefore, investigations in different body positions 

(functional hemodynamics) have also been performed to evaluate the physiological 

cardiovascular response (Table 4). Functional hemodynamics in pregnant women may also be 

important to identify and monitor complications during pregnancy. Static measures of 

hemodynamic variables among critically ill patients have shown limitations in response to fluid 

therapy when change in SV was used to assess fluid responsiveness [171]. Fluid responsiveness 

is generally defined as a 10-15% increase in CO or SV [161]. Dynamic measurements perform 

better in evaluating fluid responsiveness (preload reserve) helping to unmask hypovolemia 

[161, 171]. 

Katz et al found a significant increase in SV from the first to the third trimester in the lateral 

position, but not in the supine position [22]. Lees et al on the other hand, reported a reduction 

in SV measured in the supine position compared to the lateral position in the late third trimester 

of pregnancy [172]. This difference between positions might be due to pressure of the gravid 

uterus on the inferior vena cava with a subsequent reduction of venous return. Using ICG, 

Myhrman et al measured 14% and 20% decrease in CO during early and late pregnancy, 

respectively when changing maternal position from supine to left or right lateral [58]. Milsom 

et al found a decrease of 17% in CO by posture change from lateral (45°) to supine [59]. Some 

other studies report no changes of CO during postural change in late pregnancy [7, 63]. 

Burlingame et al observed a decrease of CO as well as SV, and an increase of SVR by changing 

from left lateral to seated (60º) position in the third trimester [51]. Katz et al observed that 

A 
B 

C D 
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LVET was reduced throughout pregnancy, from first trimester to term, measured with 

echocardiography in the left lateral decubitus as well as in the supine position [22]. Change of 

body position from the supine to the standing posture may affect the cardiovascular system due 

to gravitational effect leading to decreased venous return as blood pools in the vessels of the 

lower part of the body. This leads to a reduction in blood pressure, which is followed by an 

activation of the baroreflex receptors to maintain pressure by increasing vascular tone and SVR. 

Easterling et al observed that the maternal CO decreased by 1.7-1.8 L/min both in early and late 

gestation with increasing orthostatic stress by changing body position from the left lateral 

recumbent to sitting and then to the standing positions [24]. Both HR and SVR increased by the 

change of body position [24]. 

Recently, several investigators have used passive leg raising (PLR) as a dynamic test to predict 

fluid responsiveness (preload reserve), particularly in intensive care units [173, 174]. PLR 

induces changes of CO and SV independent of breathing conditions. This method may be useful 

for assessing volume status and fluid responsiveness in pregnant women. It has been shown to 

be useful in monitoring fluid management in oliguric women suffering from severe 

preeclampsia [175]. 

 

6 AIMS OF THE STUDY 

The aim of this thesis was to investigate maternal functional hemodynamics in normal 

pregnancies and in pregnancies at risk of developing placental dysfunction disorders. 

The main objectives were: 

1. To investigate functional hemodynamic response to PLR in healthy pregnant women 

at 22-24 weeks of gestation and compare with non-pregnant women. 

2. To investigate cardiovascular response to PLR in healthy pregnant women and 

establish longitudinal reference ranges for the second half of pregnancy. 

3. To compare cardiac function, systemic hemodynamics and preload reserve among 

women with increased and normal UtA PI at 22-24 weeks of gestation.  
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7 MATERIAL AND METHODS 

7.1 Ethical approval 

The studies were approved by the Regional Committee for Medical and Health Research Ethics 

- North Norway (Ref. nr.5.2005.1386. Date of approval: 12.03.2010 (Paper I). Ref. 

nr.2010/575-2. Date of approval: 10.02.2010 (Paper II). Ref. nr.5.2005.1386 and 2010/586 

(Paper III). 

7.2 Study design 

The studies were prospective and observational. The cross-sectional studies (article I and III) 

were performed in the second trimester during 22-24 weeks of gestation. The longitudinal study 

(article II) was carried out on pregnant women from 20 weeks of gestation until term and 

examinations were performed at approximately 4-weekly intervals. 

7.3 Study population 

The study population consisted of 54 non-pregnant women of reproductive age and 826 

pregnant women. 

7.4 Non-pregnant women 

Healthy non-pregnant women of reproductive age were recruited from among the nursing, 

administrative and laboratory staff of the hospital and the university. They were asked to attend 

for hemodynamic assessment during the follicular phase between day 5 and 10 of the menstrual 

cycle. Exclusion criteria were women with a previous history of pregnancy complications or 

with a known disease, and those on regular medication. Examinations were performed in a non-

fasting state. 

7.5 Pregnant women 

The pregnant women attending the antenatal clinic at the University Hospital of North Norway 

for routine ultrasound screening at 17-20 weeks of gestation were recruited to the study. They 

were informed about the study and invited to participate if they were aged >18 years, had a 

singleton pregnancy and the ultrasound scan did not show any fetal or placental abnormality. 

Multiple gestation and inability to communicate in Norwegian or English were exclusion 

criteria. Additionally, in study I and II, only women with low risk pregnancy were included and 

those with a previous history of PE, gestational diabetes, IUGR and preterm delivery were 

excluded. Examinations of the participants were performed during 8:00 to 14:00 hours in a quiet 

room with ambient temperature maintained at approximately 22 degree Celsius. 
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8 METHODS  

8.1 Anthropometry 

Height was measured in centimeters using an altimeter (Charder Electronic Co, Taichung City, 

Taiwan). Body weight was determined by weighing the woman on a precision scale (Soehnle, 

Leifheit AG, Nassau, Germany) in light clothing without shoes. The weight was recorded to in 

kilograms. Body mass index was calculated as: weight/height2 and the body surface area (BSA) 

was calculated as: BSA = 0.007184 × height 0.725 × weight 0.425. 

8.2 Impedance cardiography 

Cardiac function and systemic hemodynamic variables were measured using ICG (Philips 

Medical Systems, Androver, MA, USA) together with a sphygmomanometer cuff placed on left 

arm connected to the ICG instrument. Height and weight of the participants were inserted in 

the machine before measurements were performed. The CVP and PAOP were preset to 4 and 8 

mmHg, respectively. Measurements were performed at baseline and after PLR. The participants 

were instructed not to move and speak during the measurements. Four pairs of sensors were 

used for assessing ICG signals, and applied on the body shown in Figure 2. 
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Figure 2. Assessment of maternal cardiac function and systemic hemodynamics using 

impedance cardiography (ICG) in a women at 29 weeks of gestation (upper) and a schematic 

representation showing placement of ICG sensors (four outer, purple and blue, electrodes 

transmit the current and four red inner electrodes detect the impedance signals). 

The blood pressure cuff is placed on the left arm. The measured variables are continuously 

displayed on the ICG screen (lower right). 

 

Two pairs of sensors were placed vertically on each side of the thorax at the anterior axillary 

line, whereas the other two pairs were placed on each side of the neck. The outer electrodes on 

the sensor are electrodes transmitting current through the chest to the aorta with the least 

resistance. The inner electrodes of the sensor are voltage electrodes measuring impedance 

signals that change as blood volume and velocity is changes with each heartbeat. Impedance 

changes together with electrocardiogram (ECG) and blood pressure measurements are used for 

the calculation of the systemic hemodynamic parameters. 
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The measurements were performed after approximately 10 minutes of rest in a supine 

recumbent position on an electronically steerable bed with the upper part of the bed at a 45° tilt 

(Figure 3A). Thereafter the upper part of the bed was lowered to a flat supine position and PLR 

was achieved by elevating both legs to a 45° tilt (Figure 3B). 

 

 

Figure 3. The position of the study participant during the assessment of systemic 

hemodynamics. A) Baseline measurement after 10 minutes of rest. B) Measurement after 90 

seconds of passive leg raising. 

 

The cardiac function and hemodynamic parameters (CO, HR, SBP, DBP, MAP, SVR, systemic 

vascular resistance index (SVRI), SV, stroke index (SI), TFC, ACI, LCWI, LVET and PEP) 

were continuously measured as displayed on the screen (Figure 2). Cardiac index (CI) was 

calculated as: CI = CO/BSA. 

LVET is the interval from the opening to the closing of the aortic valve, called the mechanical 

systole. PEP is the time interval from the beginning of the electrical stimulation of the ventricles 

to the opening of the aortic valve, called the electrical systole. Systolic time ratio (STR) is the 

ratio of electrical systole to mechanical systole: (PEP/LVET) x100 in percent. Acceleration 

index (ACI) reflects the maximum acceleration of blood flow in the aorta during systole. 

Velocity index (VI) is the peak velocity of blood flow in the aorta during systole. Left 

ventricular work index (LWCI) is the left cardiac work normalized to body surface area (BSA). 

BSA is calculated as: 0.0136 x (MAP-PAOP) x SV. Thoracic fluid content (TFC) is an indicator 

of the chest fluid status, denoted as 1/kOhm. 

8.3 Doppler ultrasonography of uterine arteries 

The blood flow velocity waveforms were obtained from the maternal UtAs using Acuson 

Sequoia 512 ultrasound system (Mountain View, CA, USA) with a 2.5-6 MHz curvilinear 

transducer. Doppler ultrasonography was performed keeping the exposure to ultrasound energy 

low according to the ALARA (as low as reasonably applicable) principle [176]. During 

examination the pregnant women were lying in a semi-recumbent position to avoid compression 
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of inferior vena cava by the gravid uterus. Color-directed pulse-wave Doppler was used for 

visualizing the UtAs. Blood velocity waveforms were recorded (Figure 4) from both UtAs (left 

and right) proximal to the apparent crossover with the external iliac artery. Three to six uniform 

Doppler velocity waveforms were recorded and online measurements of velocities were 

performed. UtA PI was calculated as: (peak systolic velocity – end-diastolic velocity)/time-

averaged maximum velocity. Values of three successive cardiac cycles were averaged and 

recorded. The PI values of the left and the right UtA was averaged and used for statistical 

analysis. Presence of bilateral or unilateral diastolic notch was also recorded. 

 

A           B 

  
 

Figure 4. Pulsed-wave Doppler images showing blood velocity waveforms of the uterine 

arteries (UtA). Normal UtA blood flow velocity waveform (A), and abnormal UtA blood flow 

velocity waveform with diastolic notch indicated by the red arrow (B). 

8.4 Outcome measures 

The participants had standard follow up during pregnancy and the course and outcome of 

pregnancy including information on the neonate was recorded in electronic medical records. 

The outcome data were obtained from all the participants. Information on any complications 

arising during pregnancy, mode of delivery, gestational age, birth weight, Apgar score, 

umbilical artery pH and base excess, and placental weight was recorded. In addition, 

information on neonatal outcome was also obtained. 

8.5 Statistical analysis  

The IBM Statistical Software for Social Sciences for Windows (SPSS, Inc., Chicago, IL, USA) 

was used for statistical analysis of cross-sectional data. Independent samples t-test was used for 

analysis of difference between groups. Continuous variables are presented as mean±standard 

deviation or median (range). Categorical variables are presented as n (%). Differences in 

proportions between groups were analyzed using chi-squared test. Comparison between 

baseline measurements and measurements obtained after PLR on the same individuals in each 

group was performed using paired sample t-test. 
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The Statistical Analysis Software, version 9.3 (SAS Institute INC., Cary, NC, USA) was used 

for statistical analysis of the longitudinal data. The number of study participants required to 

establish normal reference intervals was estimated to be approximately 100 based on the 

assumption that 20 observations per gestational week (i.e. a total of 400 observations between 

20-40 weeks) would be sufficient to calculate reference intervals with adequate precision [177]. 

Each variable was checked for normality. Logarithmic or power transformations were 

performed to achieve normal distribution as required. Fractional polynomials were used to 

obtain best fitting curves in relation to gestational age accommodating for nonlinear association. 

Multilevel regression modeling using proc mixed in SAS was used to investigate gestational 

age associated changes in functional hemodynamics and estimate the reference percentiles 

accounting for possible dependency between repeated measures [178, 179]. Individual 

observations were fitted as a linear function for the fractional polynomial term of time, i.e. the 

gestational age. A random intercept term for each individual and a random slope were included 

for the fractional polynomial term of gestational age. Statistical significance was set to a p-

value of <0.05. 

9 SUMMARY OF RESULTS 

9.1 Paper I 

Functional hemodynamic measurements may be more informative than just the static measures 

of cardiovascular function. We investigated functional hemodynamic response to 45° of PLR 

using impedance cardiography. A total of 108 healthy pregnant women were examined cross-

sectionally at 22-24 weeks of gestation using ICG and compared with 54 non-pregnant women. 

Parameters describing cardiac function and systemic hemodynamics were obtained at baseline 

and 90 seconds after PLR. Percent change in the value of measured variables from baseline to 

PLR represented the preload reserve. 

Static measurements of systemic hemodynamics and cardiac function at baseline were different 

between pregnant and non-pregnant women. The CO and SV were observed to be 27.6% and 

5.1% higher, respectively among healthy pregnant women, whereas the MAP and SVR were 

6.9% and 27.3% lower, respectively compared to healthy non-pregnant women. 

The variables describing cardiac contractility (ACI, VI, PEP, LVET) and work (LCWI) were 

statistically different between pregnant and non-pregnant women (p=0.050 to <0.001). 

PLR led to significant changes in the majority of hemodynamic parameters compared to 

baseline in both pregnant and non-pregnant women with similar trends. The SV increased by 
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2.15% (p=0.042) in pregnant women and by 2.44% (p=0.018) in non-pregnant women as a 

result of PLR, but the CO did not increase significantly in both groups. PLR caused a significant 

reduction in MAP and SVR (p<0.001 and p<0.005). 

We observed a reduction of cardiac contractility and work as assessed by ACI, VI, PEP and 

LCWI in both groups during PLR. The duration of ventricular ejection during systole 

represented by the LVET was significantly increased by PLR. 

The physiologic response to PLR was similar among pregnant and non-pregnant women. Less 

than 15% of the pregnant women were found to be preload responsive (i.e. had >10% increase 

in SV or CO in response to PLR) in the second trimester of pregnancy at 22-24 weeks. 

9.2 Paper II 

There are only a few studies with small sample size that have investigated hemodynamic 

responses to postural changes in healthy pregnant women (Table 4). We investigated maternal 

systemic hemodynamics at baseline and cardiovascular response to PLR serially during the 

second half of pregnancy. A total of 98 healthy pregnant women were examined approximately 

at 4-weekly intervals during 20+1 – 40+5 weeks of gestation (441 observations) and gestational 

age specific longitudinal reference ranges (graphs and percentile charts) were constructed 

(Figures 3 and 4 and Tables S2-S13). The variables describing maternal cardiovascular function 

were significantly associated with gestational age, except for CI and SVR. We found an increase 

of CO from 6.3 L/min at 20 weeks to 7.0 L/min at 37 weeks, remaining stable thereafter until 

term. The SV decreased from 83 ml at 20 weeks to 78 ml at term, the HR increased 

progressively during the second half of pregnancy, and the SVR remained stable. 

Maternal cardiovascular response to PLR was also significantly associated with gestational age. 

We observed a 1.2% reduction in CO at 24 weeks and 5.4% reduction at term compared to 

baseline values following 90 seconds of PLR. Whilst PLR led to an insignificant but small 

increase in SV from 20+1 to 31+6 weeks, thereafter the SV was slightly lowered by PLR 

compared to baseline until term. The SVR was also significantly altered by PLR showing a 

decrease until 31+6 weeks, and a slight increase thereafter until term. Our study showed that 

healthy pregnant women have limited preload reserve especially in the third trimester. We have 

established gestational age specific longitudinal reference ranges of maternal systemic 

hemodynamics (Tables S2-S13) and functional hemodynamic response to PLR during the 

second half of pregnancy (Figures 3 and 4, and Tables 5-16 in Appendix). 
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9.3 Paper III 

UtA Doppler velocity waveforms with PI and/or presence of early diastolic notching have been 

used to identify women at risk of developing pregnancy complications such as PE and IUGR. 

This has been shown to be a useful screening test especially in high-risk populations of pregnant 

women. However, this is not an effective screening tool in low-risk pregnancies. As many 

women who develop placental dysfunction disorders may have underlying cardiovascular 

predisposing factors, combining UtA Doppler with functional hemodynamic assessment might 

improve the predictive value of UtA Doppler. We examined 620 pregnant women at 22-24 

weeks of gestation using Doppler ultrasound to measure UtA PI and ICG to assess maternal 

systemic hemodynamics and cardiac function. Functional hemodynamic response to PLR was 

also evaluated by performing ICG at baseline in a supine semi-recumbent position and during 

PLR and pregnant women with increased UtA PI (mean PI ≥1.16), were compared to those with 

normal UtA PI  (mean PI <1.16). 

We observed that 17.5% of women with abnormal UtA PI developed PE compared to 3.8% of 

controls. The CO, SV and HR were not different between groups, but at baseline the SVRI and 

MAP were significantly higher in the abnormal PI group compared to controls. The 

cardiovascular response to PLR was similar in both groups at 22-24 weeks of gestations. The 

PLR led to slightly higher increase of SV among pregnant women with high UtA PI compared 

to women with normal UtA PI (3.4 ml versus 2.6 ml). We found 26.3% of women with high 

UtA PI to be preload responsive (i.e. increased SV by >10% following PLR) compared to 23.1% 

of women with normal UtA PI (p=0.656). 

10 DISCUSSION 

Assessing maternal hemodynamics can be useful in identifying women at risk of developing 

pregnancy complication as well as monitoring women with severe disease. However, static 

measures of cardiovascular function may not provide sufficient insight into changes in maternal 

hemodynamics occurring during pregnancy. Studies presented in this thesis were performed to 

investigate maternal functional hemodynamics to better understand the physiological 

cardiovascular adaptations that take place during the course of normal pregnancy and maternal 

functional hemodynamic profile in pregnancies at increased risk developing placental 

dysfunction disorders. 
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10.1 Preload reserve in pregnancy 

We found no differences in the magnitude or trend of response to PLR between non-pregnant 

women and healthy pregnant women at 22-24 gestational weeks. Our study showed that less 

than 15% of healthy pregnant women were preload responsive at 22-24 weeks of gestation, and 

the results were not significantly different compared to non-pregnant women. Volume depletion 

has been shown to increase preload reserve during PLR [180]. However, preload reserve seems 

to be low in well-hydrated individuals. Furthermore, increased circulating blood volume in 

pregnancy may cause an attenuation of baroreflex activity and increased tolerance of orthostatic 

stress [181]. 

In the longitudinal study we found that PLR led to a small, but insignificant increase in SV 

during 20+0 – 31+6 gestational weeks. Thereafter the SV actually decreased in response to PLR 

until term. We found significant decrease in CO from 24 weeks of gestation to term. The 

decrease in CO in response to PLR during the third trimester is in concordance with the 

observations made by Marques et al in a cross-sectional study at term [73]. Paradoxically, the 

PLR resulted in a reduction in cardiac contractility in the second half of pregnancy, and reduced 

cardiac contractility could be one possible explanation for the decreased preload reserve after 

32 gestational weeks. We observed an increase in SVR after 32 weeks in spite of reduced blood 

pressure, indicating reduced ability of the heart to increase CO towards the end of pregnancy. 

We compared preload functional hemodynamic response to PLR between pregnant women with 

normal and abnormal UtA PI. Functional hemodynamic variables did not differ significantly 

between groups. However, we found different trends in LCWI and VI in the response to PLR, 

indicating that women with abnormal UtA PI may be volume depleted compared to those with 

normal UtA PI. Pregnant women who subsequently develop early onset PE are known to have 

lower CO and higher SVR [48, 182]. We found that pregnant women with high UtA PI have 

significantly higher MAP and SVR, and lower SV and CO compared to women with normal 

UtA PI. There are only few published studies evaluating cardiovascular function during postural 

changes, and no other longitudinal studies assessing response to PLR during pregnancy to 

compare our results.  Further studies are needed to validate our findings. 

10.2 Cardiac contractility in pregnancy 

The PEP and LVET, STR, VI, ACI and LCWI provide information of ventricular systolic 

function. The trend of change in these variables indicates that the contractility of the left 

ventricle was not altered by PLR both in pregnant and non-pregnant women. Our results during 

the second half of pregnancy showed a reduction in ACI and VI, prolongation of PEP, and 



45 

shortening of LVET at baseline with advancing gestational age (Paper II). This may reflect 

decreased contractility of the left ventricle in the third trimester of pregnancy in accordance 

with other reports [34, 52]. 

Women with high UtA PI had lower values of ACI and VI compared to women with normal 

UtA PI. The physiological response to PLR was not significantly different between the groups 

with regards to the parameters of cardiac contractility and work, but the VI and LCWI changed 

in opposite directions; PLR led to a small increase in LCWI and VI in women with high UtAPI, 

and a decrease in the normal UtA PI group. Overall our results do not indicate that the pregnant 

women with high UtA PI have overt cardiac dysfunction. However, larger studies are needed 

to confirm our findings. 

10.3 Static measures of maternal systemic hemodynamics 

The CO was significantly higher among pregnant women at 22-24 weeks compared to non-

pregnant women (Paper I), which is in accordance with the study by Droste et al [28]. Tables 

1-3 gives an overview of previously published studies performed using different methods 

showing differences in the absolute values of CO and SV reported previously. CO has been 

shown to increase from early pregnancy plateauing at mid- gestation and then decreasing 

toward term, or increasing throughout pregnancy [22]. A recent meta-analyses of 39 studies 

concluded that CO increases during pregnancy peaking in the early third trimester [183]. 

Invasive methods such as dye dilution [17] appear to show higher CO in left-lateral position 

compared to supine. Echocardiographic studies performed in left-lateral position (Table 2) 

show an increase of CO from 5.24 L/min at 5 weeks [29] to 8.5 L/min at term [31]. Only nine 

longitudinal studies applying ICG method to investigate maternal hemodynamics have been 

published previously, which report variable findings (CO is stable, increases or decreases with 

advancing gestational age). In our longitudinal study, we found that the CO increased from 6.58 

L/min to 7.11 L/min from 20 weeks of gestation to term (Paper II). 

 

10.4 Functional hemodynamics in pregnancy 

Maternal position may affect hemodynamics especially in late pregnancy. However, few studies 

have investigated cardiovascular response to postural changes in pregnancy and the reports vary 

in their findings. Some studies report higher values of SV and CO in left lateral compared to 

supine or standing position [22, 24], whilst others found no difference between supine and left 

lateral position at 36-39 weeks [7]. The adaptive cardiovascular response to active postural 

changes in pregnancy is complex and affected by the activity as well as mechanical (e.g. 
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pressure of gravid uterus on the inferior vena cava), gravitational (e.g. pooling of blood in the 

lower body in a standing position) and autonomic (e.g. baroreflex response to decreased aortic 

pressure on standing from a supine position) factors. These have to be taken into account when 

interpreting the findings of functional hemodynamic investigations during pregnancy based on 

position changes. PLR causes an increase in venous return to the heart without changing other 

physiological variables and allows evaluating cardiovascular response to an increase in preload. 

However, the amount of autotransfusion effected by PLR can not be readily assessed and 

individual responses may vary. 

10.5 Validity of the studies 

All examinations were performed in a standardized manner with the women in a supine semi-

recumbent position to avoid compression of the inferior vena cava by the gravid uterus. 

Regarding the validity of methods used to investigate hemodynamics, use of noninvasive 

methods, such as ICG and Doppler ultrasonography, is important in studies on pregnant women 

where repeated measurements are necessary. 

ICG is a risk free, noninvasive method that provides continuous assessment of multiple 

parameters of the cardiovascular function in a single session. The method has been used for the 

last 50 years [154]. Several studies have investigated the validity of ICG in clinical and research 

settings. Although some concerns have been expressed regarding the validity using ICG in 

pregnancy [66], recent studies have demonstrated its accuracy, reliability and repeatability to 

be good [7, 51, 155, 184]. Masaki et al and Clark et al have reported an excellent correlation 

(0.91 and 0.915), respectively between CO measured by ICG and thermodilution in complicated 

and healthy pregnancies, respectively [86, 185]. Other validation studies between ICG and 

invasive methods have been performed using band electrodes instead of the currently used spot 

electrodes, but report good correlation between measured parameters in healthy pregnancies 

[91, 186]. 

Several studies have used the ICG monitor, BioZ, with refined technology and compared with 

echocardiography in pre-eclamptic women and healthy pregnant women during the third 

trimester and report good agreement and correlation between methods [51] [187]. The ICG has 

been shown to be reliable in identifying women with severe forms of PE, stratifying pregnant 

women with various forms of hypertensive disorders [188]. Villacorte et al investigated 31 

patients (58% men) using ICG and CMRI and found a good agreement between methods for 

determining CO (r=0.79) and SV (r=0.88) [189]. 
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Tomsin et al report a good correlation (r≥0.80) comparing cardiac contractility parameters and 

TFC by position change in healthy and pre-eclamptic women using the third generation device 

[184]. Burlingame et al showed that ICG has the ability to detect small changes in maternal SV 

associated with change of position from left lateral to supine semi-recumbent [51], whereas 

echocardiography lacked the sensitivity to detect small changes in EF as the latter method 

cannot assess hemodynamics continuously. 

Although ICG is a relatively operator independent it requires attention to the details of the 

technique to obtain accurate hemodynamic measurements. These include correct positioning of 

the ICG electrodes to obtain correct signals [185]. The participant should not move during 

measurements, as an uncontrolled motion during examination may influence the results. 

Additionally, some conditions, such as heart disease with pulmonary edema, morbid obesity 

etc., may cause changes in baseline thoracic impedance. However, none of the participating 

women in our studies had such conditions. The ICG technology is user friendly, with a portable 

device, which is simple to use both in clinical and research settings. The use of ICG does not 

require special skills, as compared to Doppler echocardiography. Additionally, with ICG it is 

possible to obtain continuous measurements of cardiovascular variables, which makes it 

suitable for detecting trends over time. 

All ICG examinations were performed by a single operator (ÅV) and in the same room with 

stable temperature using the same electronically steerable bed and the same ICG device. The 

participants were told not to speak or move during the examinations. We performed a 

repeatability study in 20 pregnant women at different gestational ages showing good 

reproducibility of SV, HR, CO and SVR measured by ICG. 

Doppler ultrasonography of the UtA is a widely used method in clinical practice and has been 

shown to have a reasonable good reproducibility [190]. All the doctors who performed 

examinations were appropriately trained and had several years of experience in this 

methodology. 

Regarding internal validity, it could be argued that the recruitment of non-pregnant women (in 

study I) from among the hospital and university staff might have caused some selection bias. 

However, as all pregnant women residing in the area attend the same hospital for the second 

trimester routine ultrasound examination the pregnant population should be representative of 

the source population. 

Regarding external validity, our study population had a fairly homogeneous ethnic and 

socioeconomic background and we believe that our sample population is representative of the 

White European population. However, our findings, especially the reference ranges for the 
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static and functional parameters of cardiovascular function may not be generalizable to other 

multiethnic populations. 

10.6 Limitations of the study 

There are some limitations of our study. We did not examine the participants before pregnancy, 

in the first trimester or postpartum to evaluate changes from the pre-pregnancy state until after 

delivery. In Norway first trimester ultrasound is not offered as a routine investigation, therefore 

recruitment of the women to the study in early pregnancy is difficult. Additionally, we did not 

obtain blood samples from all the participants to evaluate possible relevant biochemical markers 

of cardiovascular function, which might have added more information to our study. 

 

11 CONCLUSIONS 

We studied functional hemodynamics in healthy pregnant women and women at increased risk 

of developing placental dysfunction disorders. Maternal hemodynamics was found to be 

different in healthy pregnant women compared to non-pregnant women. In healthy pregnancies, 

the physiological response to PLR was not modified at 22-24 weeks of gestation. 

Longitudinal reference ranges for maternal functional hemodynamics were established for the 

second half of pregnancy. Healthy pregnant women appear to have limited preload reserve, 

especially in the third trimester, and might be vulnerable to fluid overload and cardiac failure. 

The functional hemodynamic profile of pregnant women with high UtA PI at 22-24 weeks was 

similar to that of controls, suggesting that its assessment is unlikely to improve the value of 

UtA Doppler in predicting pregnancy complications. 

 

12 FUTURE PERSPECTIVES 

Future studies on maternal hemodynamics and cardiac function aiming at prediction of 

pregnancy complications could include measurement of biomarkers sensitive in identifying 

subtle cardiovascular dysfunction. Investigations of pregnant women during the first trimester 

and postpartum would add important knowledge about maternal cardiovascular adaptation in 

pregnancy. 
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Table 5. Longitudinal reference ranges of preload reserve for maternal stroke volume (ml) 

during second half of pregnancy. 

    Percentile    

Gestation 

(weeks) 

2.5th 5th 10th 50th 

 

90th 95th 97.5th 

20 -19.9 -16.3 -12.2 2.3 16.7 20.8 24.4 

21 -20.2 -16.6 -12.5 2.0 16.4 20.6 24.1 

22 -20.4 -16.9 -12.8 1.7 16.2 20.3 23.8 

23 -20.7 -17.1 -13.0 1.5 15.9 20.0 23.6 

24 -20.9 -17.4 -13.2 1.2 15.7 19.8 23.4 

25 -21.1 -17.6 -13.5 1.0 15.5 19.6 23.2 

26 -21.3 -17.8 -13.6 0.8 15.3 19.4 23.0 

27 -21.5 -17.9 -13.8 0.7 15.1 19.2 22.8 

28 -21.7 -18.1 -14.0 0.5 15.0 19.1 22.6 

29 -21.8 -18.2 -14.1 0.3 14.8 18.9 22.5 

30 -22.0 -18.4 -14.3 0.2 14.7 18.8 22.3 

31 -22.1 -18.5 -14.4 0.1 14.5 18.6 22.2 

32 -22.2 -18.7 -14.5 -0.1 14.4 18.5 22.1 

33 -22.3 -18.8 -14.7 -0.2 14.3 18.4 22.0 

34 -22.4 -18.9 -14.8 -0.3 14.2 18.3 21.8 

35 -22.5 -19.0 -14.9 -0.4 14.1 18.2 21.7 

36 -22.6 -19.1 -15.0 -0.5 14.0 18.1 21.6 

37 -22.7 -19.2 -15.1 -0.6 13.9 18.0 21.5 

38 -22.8 -19.3 -15.2 -0.7 13.8 17.9 21.5 

39 -22.9 -19.4 -15.2 -0.8 13.7 17.8 21.4 

40 -23.0 -19.4 -15.3 -0.8 13.6 17.7 21.3 

 



Table 6. Longitudinal reference ranges of preload reserve for maternal heart rate (/min) during 

second half of pregnancy. 

    Percentile    

Gestation 

(weeks) 

2.5th 5th 10th 50th 90th 95th 97.5th 

20 -17.7 -15.2 -12.4 -2.5 7.5 10.3 12.7 

21 -17.7 -15.3 -12.4 -2.5 7.4 10.3 12.7 

22 -17.8 -15.3 -12.5 -2.6 7.4 10.2 12.6 

23 -17.8 -15.4 -12.6 -2.6 7.3 10.1 12.6 

24 -17.9 -15.4 -12.6 -2.7 7.3 10.1 12.5 

25 -18.0 -15.5 -12.7 -2.8 7.2 10.0 12.4 

26 -18.0 -15.6 -12.8 -2.8 7.1 9.9 12.4 

27 -18.1 -15.7 -12.9 -2.9 7.0 9.8 12.3 

28 -18.2 -15.8 -12.9 -3.0 6.9 9.7 12.2 

29 -18.3 -15.9 -13.0 -3.1 6.8 9.7 12.1 

30 -18.4 -16.0 -13.1 -3.2 6.7 9.5 12.0 

31 -18.5 -16.1 -13.3 -3.3 6.6 9.4 11.9 

32 -18.6 -16.2 -13.4 -3.4 6.5 9.3 11.8 

33 -18.8 -16.3 -13.5 -3.6 6.4 9.2 11.6 

34 -18.9 -16.5 -13.6 -3.7 6.2 9.1 11.5 

35 -19.0 -16.6 -13.8 -3.8 6.1 8.9 11.4 

36 -19.2 -16.7 -13.9 -4.0 6.0 8.8 11.2 

37 -19.3 -16.9 -14.1 -4.1 5.8 8.6 11.1 

38 -19.5 -17.1 -14.3 -4.3 5.6 8.4 10.9 

39 -19.7 -17.2 -14.4 -4.5 5.4 8.3 10.7 

40 -19.9 -17.4 -14.6 -4.7 5.3 8.1 10.5 

 



Table 7. Longitudinal reference ranges of preload reserve for maternal cardiac output (L/min) 

during second half of pregnancy. 

    Percentile    

Gestation 

(weeks) 

2.5th 5th 10th 50th 90th 95th 97.5th 

20 -18.3 -15.3 -11.8 1.0 14.1 17.9 21.3 

21 -18.9 -15.9 -12.4 0.3 13.5 17.3 20.6 

22 -19.4 -16.4 -12.9 -0.2 12.9 16.7 20.0 

23 -19.9 -16.9 -13.4 -0.7 12.4 16.2 19.5 

24 -20.3 -17.3 -13.9 -1.2 11.9 15.7 19.0 

25 -20.7 -17.8 -14.3 -1.6 11.5 15.3 18.6 

26 -21.1 -18.1 -14.6 -2.0 11.1 14.9 18.2 

27 -21.4 -18.5 -15.0 -2.4 10.7 14.5 17.8 

28 -21.7 -18.8 -15.3 -2.7 10.4 14.1 17.4 

29 -22.0 -19.1 -15.6 -3.0 10.0 13.8 17.1 

30 -22.3 -19.4 -15.9 -3.3 9.7 13.5 16.8 

31 -22.6 -19.6 -16.2 -3.6 9.4 13.2 16.5 

32 -22.8 -19.9 -16.4 -3.9 9.2 12.9 16.2 

33 -23.0 -20.1 -16.6 -4.1 8.9 12.7 16.0 

34 -23.2 -20.3 -16.9 -4.3 8.7 12.5 15.7 

35 -23.4 -20.5 -17.1 -4.5 8.5 12.2 15.5 

36 -23.6 -20.7 -17.3 -4.7 8.3 12.0 15.3 

37 -23.8 -20.9 -17.4 -4.9 8.1 11.8 15.1 

38 -24.0 -21.0 -17.6 -5.1 7.9 11.6 14.9 

39 -24.1 -21.2 -17.8 -5.3 7.7 11.5 14.7 

40 -24.3 -21.4 -17.9 -5.4 7.5 11.3 14.6 

 



Table 8. Longitudinal reference ranges of preload reserve for maternal mean arterial pressure 

(mmHg) during second half of pregnancy. 

    Percentile    

Gestation 

(weeks) 

2.5th 5th 10th 50th 90th 95th 97.5th 

20 -14.7 -13.1 -11.3 -5.6 -0.5 0.9 2.1 

21 -14.3 -12.7 -11.0 -5.3 -0.2 1.1 2.3 

22 -14.0 -12.5 -10.7 -5.1 -0.0 1.3 2.5 

23 -13.8 -12.2 -10.5 -4.9 0.2 1.5 2.7 

24 -13.6 -12.0 -10.3 -4.7 0.3 1.7 2.9 

25 -13.4 -11.9 -10.1 -4.6 0.5 1.9 3.0 

26 -13.3 -11.7 -10.0 -4.4 0.6 2.0 3.1 

27 -13.2 -11.6 -9.9 -4.3 0.8 2.1 3.3 

28 -13.1 -11.5 -9.8 -4.2 0.9 2.2 3.4 

29 -13.0 -11.4 -9.7 -4.1 1.0 2.3 3.5 

30 -12.9 -11.3 -9.6 -4.0 1.1 2.4 3.6 

31 -12.8 -11.3 -9.5 -3.9 1.2 2.5 3.7 

32 -12.8 -11.2 -9.5 -3.9 1.2 2.6 3.8 

33 -12.7 -11.2 -9.4 -3.8 1.3 2.7 3.9 

34 -12.7 -11.1 -9.4 -3.7 1.4 2.8 3.9 

35 -12.6 -11.1 -9.3 -3.7 1.4 2.8 4.0 

36 -12.6 -11.0 -9.3 -3.6 1.5 2.9 4.1 

37 -12.6 -11.0 -9.2 -3.6 1.6 2.9 4.1 

38 -12.5 -11.0 -9.2 -3.5 1.6 3.0 4.2 

39 -12.5 -10.9 -9.2 -3.5 1.6 3.0 4.2 

40 -12.5 -10.9 -9.2 -3.5 1.7 3.1 4.3 

 



Table 9. Longitudinal reference ranges of preload reserve for maternal mean systemic vascular 

resistance (dyne s/cm5) during second half of pregnancy. 

    Percentile    

Gestation 

(weeks) 

2.5th 5th 10th 50th 90th 95th 97.5th 

20 -23.9 -21.7 -18.9 -7.3 6.4 10.6 14.4 

21 -22.7 -20.4 -17.6 -6.2 7.1 11.2 14.9 

22 -21.7 -19.4 -16.6 -5.3 7.9 12.0 15.5 

23 -21.0 -18.7 -15.8 -4.4 8.7 12.8 16.4 

24 -20.4 -18.1 -15.2 -3.7 9.6 13.6 17.2 

25 -20.0 -17.7 -14.7 -3.0 10.4 14.5 18.2 

26 -19.8 -17.3 -14.3 -2.5 11.2 15.4 19.1 

27 -19.5 -17.1 -14.0 -1.9 12.0 16.3 20.0 

28 -19.4 -16.9 -13.8 -1.5 12.7 17.1 20.9 

29 -19.3 -16.7 -13.6 -1.0 13.4 17.8 21.8 

30 -19.2 -16.6 -13.4 -0.6 14.1 18.6 22.6 

31 -19.2 -16.5 -13.3 -0.3 14.7 19.3 23.3 

32 -19.2 -16.5 -13.2 0.0 15.3 19.9 24.1 

33 -19.1 -16.4 -13.1 0.3 15.8 20.5 24.8 

34 -19.1 -16.4 -13.0 0.6 16.3 21.1 25.4 

35 -19.1 -16.4 -12.9 0.8 16.8 21.7 26.0 

36 -19.2 -16.3 -12.9 1.1 17.2 22.2 26.6 

37 -19.2 -16.3 -12.8 1.3 17.6 22.6 27.1 

38 -19.2 -16.3 -12.8 1.5 18.0 23.1 27.6 

39 -19.2 -16.3 -12.7 1.6 18.4 23.5 28.0 

40 -19.2 -16.3 -12.7 1.8 18.7 23.9 28.5 

 



Table 10. Longitudinal reference ranges of preload reserve for maternal thoracic fluid content 

(1/kOhm) during second half of pregnancy. 

    Percentile    

Gestation 

(weeks) 

2.5th 5th 10th 50th 90th 95th 97.5th 

20 -9 -7 -5 4 15 19 22 

21 -9 -7 -5 4 15 18 22 

22 -9 -7 -5 4 15 18 21 

23 -9 -7 -5 4 15 18 21 

24 -9 -8 -5 4 15 18 21 

25 -9 -8 -5 4 14 18 21 

26 -10 -8 -5 4 14 18 21 

27 -10 -8 -6 3 14 18 21 

28 -10 -8 -6 3 14 18 21 

29 -10 -8 -6 3 14 17 20 

30 -10 -8 -6 3 14 17 20 

31 -10 -8 -6 3 14 17 20 

32 -10 -8 -6 3 14 17 20 

33 -10 -8 -6 3 14 17 20 

34 -10 -8 -6 3 13 17 20 

35 -10 -8 -6 3 13 17 20 

36 -10 -8 -6 3 13 17 20 

37 -10 -8 -6 3 13 16 19 

38 -10 -9 -6 2 13 16 19 

39 -10 -9 -6 2 13 16 19 

40 -10 -9 -7 2 13 16 19 

 



Table 11. Longitudinal reference ranges of preload reserve for maternal acceleration index 

(1/100 s2) during second half of pregnancy. 

    Percentile    

Gestation 

(weeks) 

2.5th 5th 10th 50th 90th 95th 97.5th 

20 -37 -33 -27 -2 31 42 51 

21 -38 -33 -27 -2 30 41 50 

22 -38 -34 -28 -3 29 40 49 

23 -39 -34 -28 -4 29 39 49 

24 -39 -34 -29 -4 28 38 48 

25 -39 -35 -29 -5 27 38 47 

26 -40 -35 -30 -5 27 37 46 

27 -40 -35 -30 -6 26 36 46 

28 -40 -36 -30 -6 25 36 45 

29 -40 -36 -31 -7 25 35 44 

30 -41 -36 -31 -7 24 34 44 

31 -41 -37 -31 -7 24 34 43 

32 -41 -37 -31 -8 23 33 43 

33 -41 -37 -32 -8 23 33 42 

34 -41 -37 -32 -8 22 33 42 

35 -42 -37 -32 -9 22 32 41 

36 -42 -38 -32 -9 22 32 41 

37 -42 -38 -33 -9 21 31 41 

38 -42 -38 -33 -10 21 31 40 

39 -42 -38 -33 -10 21 31 40 

40 -42 -38 -33 -10 20 30 39 

 



Table 12. Longitudinal reference ranges of preload reserve for maternal velocity index 

(1/1000s) during second half of pregnancy. 

    Percentile    

Gestation 

(weeks) 

2.5th 5th 10th 50th 90th 95th 97.5th 

20 -34 -30 -26 -7 15 21 27 

21 -34 -30 -26 -7 15 21 27 

22 -34 -31 -26 -7 15 21 27 

23 -35 -31 -26 -7 15 21 27 

24 -35 -31 -26 -7 15 21 27 

25 -35 -31 -26 -7 15 21 27 

26 -35 -31 -26 -7 15 21 27 

27 -35 -31 -26 -7 15 21 27 

28 -35 -31 -26 -7 15 21 27 

29 -35 -31 -26 -7 15 21 27 

30 -35 -31 -26 -7 15 21 27 

31 -35 -31 -26 -7 15 22 27 

32 -35 -31 -26 -7 15 22 28 

33 -35 -31 -27 -7 15 22 28 

34 -36 -32 -27 -7 15 22 28 

35 -36 -32 -27 -7 15 22 28 

36 -36 -32 -27 -7 15 22 28 

37 -37 -32 -27 -7 15 22 29 

38 -37 -33 -28 -8 16 23 29 

39 -37 -33 -28 -8 16 23 29 

40 -38 -33 -28 -8 16 23 30 

 



Table 13. Longitudinal reference ranges of preload reserve for maternal pre-ejection period 

(ms) during second half of pregnancy. 

    Percentile    

Gestation 

(weeks) 

2.5th 5th 10th 50th 90th 95th 97.5th 

20 -43 -39 -34 -14 9 17 24 

21 -41 -37 -33 -13 11 19 26 

22 -40 -36 -31 -11 13 21 28 

23 -39 -35 -30 -9 16 23 30 

24 -38 -33 -28 -7 18 25 32 

25 -36 -32 -27 -6 20 27 35 

26 -35 -31 -26 -4 21 29 37 

27 -34 -30 -24 -3 23 31 38 

28 -33 -29 -23 -1 25 33 40 

29 -32 -28 -22 -0 26 34 41 

30 -32 -27 -22 1 27 35 43 

31 -31 -27 -21 1 28 36 43 

32 -31 -26 -21 2 28 36 44 

33 -31 -26 -21 2 28 37 44 

34 -31 -27 -21 1 28 36 44 

35 -32 -27 -21 1 27 36 43 

36 -32 -28 -22 -0 26 34 42 

37 -33 -29 -23 -2 24 33 40 

38 -35 -30 -25 -3 22 30 38 

39 -36 -32 -27 -6 20 28 35 

40 -38 -34 -29 -8 16 24 31 

 



Table 14. Longitudinal reference ranges of preload reserve for maternal left ventricular ejection 

time (ms) during second half of pregnancy. 

    Percentile    

Gestation 

(weeks) 

2.5th 5th 10th 50th 90th 95th 97.5th 

20 -21.9 -17.9 -13.1 5.1 25.2 31.2 36.4 

21 -21.8 -17.8 -13.1 5.0 24.8 30.7 35.9 

22 -21.7 -17.8 -13.1 4.9 24.5 30.3 35.4 

23 -21.6 -17.7 -13.1 4.7 24.2 29.9 35.0 

24 -21.6 -17.7 -13.1 4.6 23.9 29.6 34.7 

25 -21.6 -17.7 -13.1 4.4 23.6 29.3 34.3 

26 -21.6 -17.8 -13.2 4.3 23.4 29.1 34.1 

27 -21.6 -17.9 -13.3 4.1 23.2 28.8 33.8 

28 -21.7 -18.0 -13.4 4.0 23.0 28.7 33.6 

29 -21.9 -18.1 -13.5 3.8 22.9 28.5 33.5 

30 -22.0 -18.2 -13.7 3.7 22.8 28.4 33.4 

31 -22.2 -18.4 -13.9 3.6 22.7 28.3 33.3 

32 -22.4 -18.7 -14.1 3.4 22.6 28.3 33.3 

33 -22.7 -18.9 -14.3 3.3 22.6 28.3 33.3 

34 -23.0 -19.2 -14.6 3.1 22.6 28.3 33.4 

35 -23.3 -19.5 -14.8 3.0 22.6 28.4 33.5 

36 -23.6 -19.8 -15.1 2.8 22.6 28.5 33.7 

37 -24.0 -20.1 -15.4 2.7 22.7 28.6 33.9 

38 -24.4 -20.5 -15.8 2.6 22.8 28.8 34.1 

39 -24.8 -20.9 -16.1 2.4 22.9 29.0 34.4 

40 -25.3 -21.3 -16.5 2.3 23.0 29.2 34.7 

 



Table 15. Longitudinal reference ranges of preload reserve for maternal systolic time ratio (%) 

during second half of pregnancy. 

    Percentile    

Gestation 

(weeks) 

2.5th 5th 10th 50th 90th 95th 97.5th 

20 -51 -47 -42 -19 13 24 35 

21 -50 -46 -41 -17 16 27 38 

22 -49 -45 -39 -15 19 30 41 

23 -48 -43 -38 -13 21 33 44 

24 -47 -42 -37 -11 24 36 47 

25 -46 -41 -35 -9 26 38 50 

26 -45 -40 -34 -8 29 41 53 

27 -44 -39 -33 -6 31 43 55 

28 -43 -38 -32 -5 33 45 57 

29 -42 -37 -31 -3 34 47 59 

30 -41 -37 -30 -2 36 49 61 

31 -41 -36 -30 -2 37 50 62 

32 -41 -36 -29 -1 38 51 63 

33 -41 -36 -29 -1 38 51 63 

34 -41 -36 -30 -1 37 50 62 

35 -41 -36 -30 -2 36 49 61 

36 -42 -37 -31 -3 35 48 60 

37 -43 -38 -32 -5 33 45 57 

38 -44 -39 -33 -7 30 42 54 

39 -46 -41 -35 -9 26 39 50 

40 -47 -43 -37 -12 22 34 45 

 



Table 16. Longitudinal reference ranges of preload reserve for maternal left ventricular work 

index (Kg m/m2) during second half of pregnancy. 

    Percentile    

Gestation 

(weeks) 

2.5th 5th 10th 50th 90th 95th 97.5th 

20 -26.4 -23.2 -19.4 -5.9 8.2 12.2 15.7 

21 -26.5 -23.3 -19.5 -6.0 7.9 11.9 15.4 

22 -26.5 -23.4 -19.7 -6.2 7.7 11.7 15.2 

23 -26.7 -23.5 -19.8 -6.4 7.4 11.4 14.9 

24 -26.8 -23.7 -20.0 -6.6 7.3 11.2 14.7 

25 -27.0 -23.8 -20.1 -6.7 7.1 11.1 14.5 

26 -27.2 -24.1 -20.3 -6.9 6.9 10.9 14.4 

27 -27.5 -24.3 -20.6 -7.1 6.8 10.8 14.3 

28 -27.8 -24.6 -20.8 -7.3 6.7 10.8 14.3 

29 -28.1 -24.9 -21.1 -7.5 6.7 10.7 14.3 

30 -28.5 -25.2 -21.4 -7.6 6.6 10.7 14.3 

31 -28.8 -25.6 -21.7 -7.8 6.6 10.7 14.4 

32 -29.3 -25.9 -22.1 -8.0 6.6 10.8 14.5 

33 -29.7 -26.4 -22.4 -8.2 6.6 10.9 14.6 

34 -30.2 -26.8 -22.8 -8.3 6.6 11.0 14.7 

35 -30.7 -27.2 -23.2 -8.5 6.7 11.1 14.9 

36 -31.2 -27.7 -23.6 -8.7 6.8 11.2 15.1 

37 -31.7 -28.2 -24.0 -8.9 6.9 11.4 15.4 

38 -32.3 -28.7 -24.5 -9.1 7.0 11.6 15.7 

39 -32.9 -29.2 -24.9 -9.2 7.1 11.8 16.0 

40 -33.5 -29.8 -25.4 -9.4 7.2 12.1 16.3 

 


