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Abstract:  19 

Nitrogen (N) mineralization, nutrient availability, and plant growth in the Arctic are often restricted by low 20 

temperatures. Predicted increases of cold-season temperatures may be important for plant nutrient availability and 21 

growth, given that N mineralization is also taking place during the cold season. Changing nutrient availability 22 

may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, 23 

and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season 24 

soil temperatures in high Arctic Svalbard in two vegetation types spanning 3 moisture regimes. We measured 25 

growing-season availability of ammonium (NH4
+), nitrate (NO3

-), total dissolved organic carbon (DOC) and 26 

nitrogen (TON) in soil; C, N, δ15N and chlorophyll content in Salix polaris leaves; and leaf sizes of Salix, Bistorta 27 

vivipara, and Luzula arcuata at peak season. Nutrient availability was significantly higher with increased snow 28 

depth in the two mesic meadow vegetation types, but not in the drier heath vegetation. Nitrogen concentrations 29 

and δ15N values of Salix leaves were significantly higher in all vegetation types, but the leaf sizes were 30 

unchanged. Leaves of Bistorta and Luzula were significantly larger but only significantly so in one moist 31 

vegetation type. Increased N and chlorophyll concentrations in leaves indicate a potential for increased growth (C 32 

uptake), supported by large leaf sizes for some species. Responses to cold-season soil warming are vegetation 33 

type- and species-specific, with potentially stronger responses in moister vegetation types. This study therefore 34 

highlights the contrasting effect of snow in a tundra landscape and has important implications for projections of 35 

whole tundra responses to climate change. 36 

 37 

Keywords: winter processes; mineralization; Arctic; Svalbard; plant growth 38 

 39 
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Cold temperatures and long cold-seasons in the Arctic keep nutrient availabilities and thereby primary production 41 

low (Shaver & Chapin III, 1980; Nadelhoffer et al., 1992). Accelerated mineralization of the large stocks of soil 42 

organic matter (SOM) stored in the active layer under a warming climate could increase nutrient availability in 43 

Arctic soils  (Nadelhoffer et al., 1992; Weintraub & Schimel, 2003; Schimel et al., 2004), causing plants to grow 44 

faster and increase assimilation of CO2 from the atmosphere (Shaver & Chapin III, 1980; Wookey et al., 1994, 45 

1995; Sturm et al., 2005), and increasing N content of plant tissues (Welker et al., 2005). Indeed, previous 46 

decades’ warming in the Arctic may already be increasing its carbon (C) sink capacity through increased plant 47 

growth (Epstein et al., 2013).  48 

Arctic ecosystem future C budgets, however, are unknown due to a poor understanding of complex interactions of 49 

ecosystem processes and climate variables. For instance, warming of soils during the cold season has been shown 50 

to increase decomposition and whole year C effluxes in the Arctic (Morgner et al., 2010; Björkman et al., 2010). 51 

Together with growth induced increases of litter availability, this could (a) match C uptake by plant growth and 52 

keep the net C exchange unchanged, (b) may be insufficient to match C uptake (Sistla et al., 2013), or (c) exceed 53 

plant C uptake and storage and lead to ecosystems serving as net C sources (Mack et al., 2004; Cornelissen et al., 54 

2007). The relative strength of each flux, i.e. from atmosphere to ecosystem through plant assimilation and the 55 

reverse through ecosystem respiration,  will determine the net C budget change of active layer soils in the Arctic.  56 

Besides litter quantity and temperature constraints, litter quality might be equally important for mineralization 57 

rates, hence adding to the complexity of C budget models. Berg (2000) showed that high concentrations of small 58 

molecular nitrogen (N) compounds increase mineralization rates during early stages of decomposition. In later 59 

stages, however, N seems to chemically react with lignin to form humic acids and other recalcitrant compounds 60 

which are relatively stable. Thus, litter with initially high N content (low C:N ratio) could decrease C 61 

mineralization rates during later stages of decomposition when litter turns into SOM and chemically stabilize soil 62 

C. From that perspective, raised nutrient concentrations in soil leading to increased litter N content could initially 63 

increase net ecosystem respiration (Reco). However, in the long run this could decrease Reco and retain C in the 64 

ecosystem (Weintraub & Schimel 2003).  65 
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Net nitrogen mineralization in Arctic soils might be mainly a cold-season process (Hobbie & Chapin III, 1996; 66 

Schimel et al., 2004), driven by restricted access to soil C for microbes in frozen soils, while N limitation during 67 

thawed periods caused by simultaneous microbial and plant uptake leading to competition (Schimel & Bennett, 68 

2004) promotes microbial immobilization of mineral N (Schimel et al., 2004). Most Arctic ecosystems are N 69 

limited and nutrient addition leads to increased plant growth (Shaver & Chapin III, 1986; Parsons et al., 1994; 70 

Wookey et al., 1994, 1995). Mineralization rates for both C and N are temperature-dependent (Weintraub & 71 

Schimel, 2003; Schimel et al., 2004; Grogan & Jonasson, 2006). Thus, given the long duration of the cold-season 72 

in Arctic ecosystems, SOM accumulates in the organic soil horizon (Post et al., 1982; Gorham, 1991). The 73 

dependency of microbial activity on temperature in frozen soils is larger than that of thawed soils (Morgner et al., 74 

2010). Therefore, even a small increase of cold-season soil temperatures could stimulate mineralization of Arctic 75 

tundra soils, leading to increased CO2 emissions during the cold-season (Nobrega & Grogan, 2007; Morgner et 76 

al., 2010; Björkman et al., 2010), release of N bound in SOM (Jonasson et al., 1999; Schimel et al., 2004) and 77 

increased N availability during the growing-season, with all the above mentioned implications on plant growth 78 

and decomposition (Schimel et al., 2004; Sturm et al., 2005; Welker et al., 2005). Indeed, cold-season 79 

temperatures are already rising, and a further increase is suggested by general circulation models (ACIA, 2005; 80 

Solomon et al., 2007; Førland et al., 2011).  81 

Despite the importance of nitrogen to Arctic carbon budgets, and the role of winter conditions in controlling N 82 

availability, only few studies have investigated how winter temperatures affect winter N dynamics and how that 83 

may influence the following growing season N-plant growth dynamics. However, a series of studies from Toolik 84 

Lake, Alaska have shown that higher winter temperatures can increase plant available N in the soil (Schimel et 85 

al., 2004) and that litter N may  increase accordingly (Welker et al., 2005).  86 

In this study we test the hypothesis that plant growth and leaf N content responds positively to warmer cold-87 

season soil conditions caused by deepened snow. Therefore, we measured the availability of ammonium (NH4
+), 88 

nitrate (NO3
-), and total dissolved organic nitrogen (TON) in active layer soil and the corresponding plant 89 

performance measured as C, N, and chlorophyll contents of plant leaves.  90 
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 91 

Materials and methods 92 

 93 

Study site 94 

The study site in Adventdalen is about 12 km East of Longyearbyen, Western Spitsbergen (78º17’N, 16º07’E). 95 

Situated on the SW Advent river bank, an area of approximately 2 km2 is dominated by the two evergreen dwarf 96 

shrubs Dryas octopetala and Cassiope tetragona, and the deciduous dwarf shrub Salix polaris. See Morgner et al. 97 

(2010) and Cooper et al. (2011) for details. Soil development at the site is poor and based on a parent material 98 

dominated by aeolian and fluvial deposits (Tolgensbakk et al., 2000) and continuous permafrost at 80-100 cm 99 

depth. A typical soil profile (Strebel et al., 2010) consists of an upper O-horizon ranging from 0.2 to 6 cm  with 100 

slightly decomposed organic matter and many plant roots. Below that, a dark brown A-horizon of 1 to 5 cm 101 

overlay a B/C-horizon consisting of grey silt. Living plant roots are found to a depth of about 45 cm. The soil 102 

texture varies from the soil fraction finer than 63 µm representing 20-40% by mass. The mean grain size is about 103 

200 µm. Soil in situ pH values range from 5.0 to 6.5 down the profiles and assigned to moderately acidic soils. 104 

The content of SOC and total N are highest in the top-soil and decreased with depths. At the mesic site, SOC is 105 

27% in the O-horizon, 15-25% in the A-horizon, 3-8% in the top of B/C and below 3% in the deeper B/C-106 

horizons. At the wetter sites, SOC is 28% in the H-horizon, 6% in the A-horizon, 3.5-5.5% in the top B/C-horizon 107 

and 2.5-3.0% in the deeper B/C-horizons. The C/N ratio generally decreases with depth and is about 15-25 in the 108 

upper 25 cm of the soil profile. 109 

Mean July temperatures (1975-2012) of 6.4°C were recorded at the closest meteorological station at Svalbard 110 

Airport, Longyearbyen (WMO station 99849), located approximately 15 km from the research site. The coldest 111 

month is March with an average temperature of -13.7°C. Annual precipitation sums are low (c. 190 mm), most of 112 

which falls as snow during the November-May period (c. 120 mm). The background snow conditions at the study 113 

site were similar to those observed at the airport (Morgner et al., 2010). 114 
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 115 

Experimental setup and design 116 

The influence of snow depth on soil and leaf nutrition status and plant growth was tested within an experimental 117 

setup of snow fences (6m long and 1.5m high) which were erected before first snowfall in 2006 perpendicular to 118 

the prevailing winter wind direction along the valley from south-east. The fences reduce wind speed and deposit 119 

wind transported snow on their lee side, thereby creating a snow patch of approximately 1.5m depth at the deepest 120 

point approximately 3 to 12m distance from the fences. This kind of snow addition has several environmental 121 

implications including warmer ground temperatures during winter, delayed snow melt and therefore start of the 122 

growing season as well as colder and wetter soils in early growing season. The experimental setup is described in 123 

more detail elsewhere (Morgner et al., 2010). Data used for this study was collected during the snow-free season 124 

2012.  125 

Two snow depth regimes were investigated, Normal (natural unmanipulated snow cover 10-35 cm deep, 126 

representative of most of the study area) and Deep (experimentally increased snow cover approx. 150 cm deep, 3-127 

12m behind fences), in eight replicates. The  fences each had a buffer zone of approximately 50x50m and were 128 

arranged in 3 blocks (with 2 and 3 plots each) to compare the snow regimes in the three different vegetation types. 129 

One of the three blocks was in Cassiope heath, dominated by Cassiope tetragona and Dryas octopetala, 130 

interspersed with a few graminoids. The soil here was shallow, rocky and dry with a soil solution pH of around 131 

6.1. The other two blocks were in mesic Meadow, dominated by graminoids such as Alopecurus magellanicus and 132 

Luzula arcuata ssp. confusa, with Dryas and Cassiope present but the graminoid dominance was stronger than the 133 

evergreen dwarf shrub component. Both Meadow blocks had a soil solution pH of around 5.7. The generalist 134 

deciduous dwarf shrub Salix polaris was equally present across the whole study area. 135 

 136 

Sampling procedures, equipment and protocols 137 
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Sampling of soil and leaves started 20 July 2012, approximately 45 and 31 days after snow melt in Normal and 138 

Deep, respectively (Semenchuk et al., 2013), and well into the growing season, i.e. approx. 22 and 1 day after the 139 

majority of Salix leaves emerged in Normal and Deep (Cooper et al. 2011; own observations). Sampling was 140 

conducted weekly until 20 September, i.e. approximately 3-4 weeks after the majority of Salix leaves were 141 

senesced and the leaves of all other observed species had partly or fully senesced (Cooper et al. 2011; own 142 

observations). 143 

Soil from the top 5 cm was collected approximately weekly from 20 July to 20 September 2012 (see Fig. 1). 144 

Within each plot and snow regime, one sub-plot (0.5x0.5m) was designated for soil collection, and one 5cm deep 145 

soil core was collected at each sampling date with a 5cm wide steel cylinder. Each core was cleaned of above 146 

ground plant material (alive and litter) and divided into 0-2cm and 2-5cm depth sections. Within 24h after 147 

collection, three grams of each sample were suspended in 30ml distilled water and the extraction water filtered 148 

through a 0.45µm syringe filter. Values of pH of the extraction water were measured directly after filtering with a 149 

WTW Multiparameter (WTW, Weilheim, Germany). The filtered extraction water were then frozen at -18 °C 150 

until analyzed for NO3
- (water) and NH4

+ (water) with a flow injection analyzer (5000 FIASTAR, Höganäs, 151 

Sweden), for total dissolved organic N (TON) with a 0.5M K2SO4 extraction of the same soil samples in the same 152 

flow injection analyser, and for total dissolved organic C (TOC) in the water extraction using the non-purgeable 153 

organic carbon (NPOC) method with a Shimadzu TOC-5000A.  154 

Each time a soil core was collected, water content of the surrounding soil was measured three times with a Theta 155 

Probe ML2x (Delta-T Devices, Cambridge, UK), which measured volumetric soil water content integrated over 156 

the 6cm surface layer. The probe was inserted into soil without vegetation cover to ensure full contact of the 157 

electrodes. These water content measurements were used to transpose the other soil variables into units per g dry 158 

soil. Leaves of Salix polaris were collected approximately weekly from 20 July to 14 September 2012 (see Fig. 159 

3). At each sampling date, 10 leaves were randomly chosen within each plot and snow regime based on specific 160 

distances to the snow fences and that leaves representing all parts of individual plants. Before collection, the 161 

combined chlorophyll a+b content of each leaf was measured five times with a non-destructive method using a 162 
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hand-held Dualex Scientific instrument (optical transmittance of two near-infrared wavelengths; Force-A, Orsay 163 

Cedex, France). Leaves of other species were not used as they were too small to fill the instrument chamber. The 164 

Salix leaves were then collected, oven-dried at 55 °C for 36h, all ten leaves per sampling date and snow regime 165 

pooled, and pulverized in a ball mill. Finally, 3-4mg of the homogenized leaf samples were then put in tin 166 

capsules and analyzed in a Eurovector EA coupled to an Isoprime isotope ratio mass spectrometer for N and C 167 

concentrations and δ15N.  168 

Peak growing season sizes of Salix polaris and Luzula arcuata ssp. confusa individuals were measured as the 169 

summed lengths of all green leaves per individual (excluding petiole or ligule). For the peak sizes of Bistorta 170 

vivipara (syn. Polygonum viviparum) individuals, leaf lengths and widths were measured and leaf areas were 171 

calculated as ellipses. Four individuals in six permanently installed sub-plots per plot and snow regime were 172 

measured with calipers once during the growing season. Measuring date, i.e. the time at which peak size was 173 

assumed, was obtained from weekly growth measurements in the same experiment during the preceding year 174 

(Rumpf et al., 2014) and determined by assessing the number of snow free days needed to reach peak size per 175 

sub-plot and species. The number of days needed post- snow melt to reach peak size in Normal and Deep were 56 176 

and 69 respectively for Bistorta, 44 and 55 for Luzula, and 53 and 54 days for Salix..  177 

Statistical analyses 178 

All data were analyzed with linear mixed effects models (LMEs) or generalized LMEs of the lme4 package in R 179 

v. 2.15.2 (R Development Core Team, 2012; Bates et al., 2013) to examine the effect of snow regime and 180 

vegetation type (i.e. block) and their interaction on each parameter. Due to the nature of the data (pooled or 181 

individual measurements, time series or single measurement), different mixed effects and covariates including 182 

interactions were used for different response variables. Prior to analysis, the distributions of all response variables 183 

were examined visually and data transformations or generalized LMEs applied accordingly. We present back-184 

transformed estimates of all data which required transformation. Although we base our conclusions mainly on full 185 

model estimates, model simplification with AIC was performed for each model and is referred to when trends 186 
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from the full models were on the border of being significant. We chose this approach to be able to show and 187 

interpret the full range of variables in the model including the non-significant ones, since model selection would 188 

remove the non-significant terms.  189 

Soil chemistry data (i.e. NO3
-, NH4

+ , TON and TOC) were collected weekly and measured in two depths (0-2cm 190 

and 2-5cm), and sampling date and depth and their interaction with snow regime were included as covariates, 191 

respectively. Only one sample was taken per plot, so the random effects were plot within block. All data is 192 

Gamma distributed, however, NO3
- and NH4

+ data include zeroes which represent values below the detection limit 193 

of the instrument and could therefore not be discarded. For that reason, log-transformation over the whole dataset 194 

was not possible (log of zero is not defined). Instead, we divided the analysis in two parts. (1) Occurrences below 195 

the detection limit (i.e. zero) were modeled as presence-absence data with a generalized LME on a binomial 196 

distribution. (2) Values above the detection limit were modeled independently excluding zeroes. In that case, log-197 

transformation was used to normalize the Gamma distributed data. Nitrate and NH4
+ data required only step 2. 198 

Leaf chemistry data (i.e. N concentration, C concentration, C:N ratio, δ15N, and chlorophyll) were collected 199 

weekly and sampling date and its interaction with snow regime were included as covariate. Due to the pooling of 200 

leaf material, random effects in the leaf chemistry models were defined as plot within block, whereas availability 201 

of chlorophyll data of each individual leaf and replicate measurement required the random effects of replicate 202 

within leaf within plot within block. C:N ratio was Gamma distributed, and we log-transformed the data to 203 

normalize it. The other variables were Gaussian distributed and did not require transformation.  204 

Plant size measurements were collected only once, i.e. at growing season peak, so the sampling date was not 205 

included as a covariate. Since leaf size data was collected sub-plot wise, the random effect structure was sub-plot 206 

within plot within block. Leaf size was Gamma distributed, and we log-transformed the data to normalize it.  207 

 208 

Results 209 
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Soil temperature and moisture, and melt out 210 

Soil temperatures during the cold-season 2011-12 were more stable and 0 -12 °C warmer in Deep than in Normal, 211 

due to the insulation effect of the deepened snow pack; this was typical for all cold-seasons since the fences were 212 

erected in 2006 (Morgner et al 2010, Semenchuk et al. 2013). Post snow-melt soil temperatures did not differ 213 

significantly between snow regimes, but were ca. 1 degC warmer in Deep than in Normal when averaged over the 214 

whole growing season (see Semenchuk et al. (2013) for details). In 2011 the increased snowpack delayed 215 

snowmelt by up to 16 days (average snowmelt at day of year 166 and 155 in Deep and Normal, respectively, 216 

linear mixed model estimates) and Salix leaf emergence was delayed by 2 days (day of year 184 in Normal and 217 

186in Deep, linear mixed model estimates, data not shown), while Salix leaf senescence occurred 12 days later in 218 

Deep (day of year 231 in Normal and 243in Deep, linear mixed models estimates, data not shown).  219 

Volumetric soil moisture fluctuated during the sampling period due to rainy and dry periods, but was significantly 220 

higher in Deep than in Normal during the first weeks, i.e. mid-growing season, but was not significantly different 221 

during the end of the season (Fig. 1). However, increased soil moisture reported in Deep was due to the strong 222 

effect in the Heath site, but not in the other sites. Under Normal conditions, the Heath site was drier than the 223 

Meadow sites, but was elevated to Meadow moisture levels in Deep. Meadow 2 was the moistest site under Deep 224 

conditions, but it was not significantly moister than Meadow 1 under Normal conditions.  225 

Soil solution 226 

Soil solution pH was not altered by snow regime and did not vary with soil depth. However, the soil solution from 227 

the Heath site was significantly less acidic than soil from Meadow sites (Fig. 1).  228 

Nitrate (NO3
-) concentrations in the soil solution were around 0.06 µg g-1 dry soil in Deep and below the detection 229 

limit in Normal (median) throughout the entire sampling period. The higher concentrations in Deep were only 230 

significant in the 2-5cm soil horizon (Fig. 2e) and the Meadow 2 site, not in Heath (Fig. 2i). No significant 231 

temporal trends can be seen during the sampling period, i.e. summer and autumn (Fig. 2a). The probability of 232 
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measuring values above the detection limit was around 0.83 for Normal and 0.99 for Deep throughout the entire 233 

sampling period (data not shown). 234 

Ammonium (NH4
+) concentrations in the soil solution were around 0.28 and 0.1 µg g-1 dry soil in Deep and 235 

Normal, respectively (median), throughout the entire measurement period. This increase was significant in both 236 

soil horizons, but much stronger in 2-5cm depth (Fig. 2f). The interactions between snow regime and vegetation 237 

types as well as the additive effect of vegetation type were removed during model selection with AIC, so there 238 

were no significant differences between vegetation types (Fig. 1j). A temporal trend was only seen during the first 239 

two sampling dates in Deep (i.e. after green up and before senescence), after which the NH4
+ concentrations 240 

decreased to a constant level for the rest of the sampling period (Fig. 2b). The probability of measuring values 241 

above the detection limit was close to 1 in both snow regimes (data not shown).  242 

Soil solution TON and TOC concentrations were not different between snow regimes or vegetation types (Fig. 2k, 243 

l). Some fluctuations could be seen throughout the sampling period, with no clear trends (Fig. 2c, d).  244 

Salix polaris leaf chemistry 245 

The N concentrations in Salix leaves decreased in the course of the sampling period from ca. 4 and 3% during 246 

mid-growing season to around 1.5 and 1% at the end of senescence in Deep and Normal, respectively (Fig. 3a). 247 

This trend was most pronounced from onset of senescence to leaf shedding. There was a trend of higher N 248 

concentrations in leaves in the two Meadow sites than in Heath but this was not significant (Fig. 3f). Salix leaf C 249 

concentrations were not different between snow depth regimes, but decreased slightly from around 44 to 42% in 250 

the course of the sampling period (Fig. 3b). This trend remained also after model simplification with AIC. 251 

Interestingly, the C concentrations in leaves were similar in Heath and Meadow 2, but significantly lower in 252 

Meadow 1 (Fig. 3g).  253 

The C:N ratio of Salix leaves was always significantly higher in Normal than in Deep and that difference 254 

increased toward the end of the measurement period (Fig. 3c). In both regimes, C:N increased towards the end of 255 
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the measurement period. No difference was found between vegetation types, and this was supported by model 256 

simplification (Fig. 3h). 257 

Except for the first two sampling dates, the chlorophyll a+b contents of Salix leaves were significantly higher in 258 

Deep than in Normal. In both regimes, chlorophyll content was constant (Normal) or increased slightly (Deep) in 259 

late July/ early August, but decreased in parallel towards the end of the growing season (Fig. 3d) as senescence 260 

progressed in both snow regimes. Chlorophyll content was higher at deeper snow depth from Heath < Meadow 2 261 

< Meadow 1, and that effect was strongest in Deep (Fig. 3i).  262 

The δ15N content of Salix polaris leaves were significantly higher in Deep than in Normal, both across the 263 

growing season (Fig. 3e) and across vegetation types (Fig. 3j). The δ15N followed the trend in N concentration and 264 

showed an effect of vegetation type, with slightly elevated values in Deep, with no interaction between vegetation 265 

type and treatment. 266 

 267 

Plant sizes 268 

Bistorta vivipara plants in Normal were largest in heath and smallest in Meadow 1, while in Deep no vegetation 269 

type difference was observed. Treatment effects were therefore only significant (according to model 270 

simplification) in Meadow 1 where deeper snow gave rise to plants with a larger leaf area (Fig. 4a). 271 

Luzula arcuata plants in Normal had longer leaves in Meadow 2 than in Heath or Meadow 1 (Fig. 4b). In Deep, 272 

Luzula leaves were longer in Meadow 1 than in the other two vegetation types. Treatment effects were thus seen 273 

for both Meadow 1 and 2 so that plants in Deep were larger than in Normal in Meadow 1, but smaller than in 274 

Normal in Meadow 2. This trend retained in the model after model simplification and was significant.  275 

Salix polaris in Normal had approximately the same leaf length across all vegetation types and both snow regimes 276 

(Fig. 4c). In Meadow 2, Salix leaf lengths in Deep were shorter than in Normal; this was not significant following 277 

model simplification.  278 
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 279 

Discussion 280 

Soil nutrient concentrations (especially NH4
+), measured 6 years after continuous snow depth enhancement with 281 

resulting soil temperature increase, were elevated during the growing-season, especially in the meadow sites. An 282 

increase of soil NH4
+ and NO3

- concentrations as a result of thicker snow cover and therefore warmed cold-283 

seasons has also been reported at Toolik Lake, Alaska (Schimel et al., 2004). These soils were isolated from plant 284 

roots, while in our study plant roots were intact and successfully competed with microbial immobilization and 285 

assimilated some of the extra N available prior to the first sampling date, i.e., during 30 to 45 days after snow 286 

melt. This corresponds to recent findings of high plant N uptake during the cold season or early spring (Larsen et 287 

al., 2012), potentially soon after soil thaw. The concentrations of NO3
- and NH4

+ may have been higher at the end 288 

of the cold-season and prior to microbial and vegetative competition of nutrients, i.e., before we started sampling. 289 

The decreasing values of NH4
+ in Deep after the first two sampling dates, i.e., 4 and 5 weeks after snow melt, 290 

could thus be interpreted as the remaining peak of N after snow melt. These observations, however, have to be 291 

interpreted with caution, since they might be confounded by the combination of simultaneous microbial 292 

mineralization and immobilization by both microbes and plants (Hobbie & Gough, 2002). In the Alaskan study by 293 

Schimel et al. (2004), the effects were more pronounced in moist tussock tundra than in dry heath tundra. 294 

Similarly, in our study we find smaller or no effects in the drier, coarse grained Heath soil, while effects were 295 

consistent across both Meadow sites. Welker et al. (2005) found similar differences in foliar N content between 296 

vegetation types in the same study site in Alaska following winter warming. This suggests a generally greater 297 

stability of drier as opposed to moister vegetation types, which may be attributable to the dominating species or 298 

functional groups in the respective vegetation types.  299 

Salix polaris leaves from deepened snow plots had higher N content, which corresponds to the findings of Welker 300 

et al. (2005) from the aforementioned Toolik lake study. In addition, we show that Salix chlorophyll content and 301 

δ15N were also increased. All these three plant-related variables are signs of enhanced growing-season soil N 302 
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availability and demonstrate successful competition for N by plants in their interaction with microorganisms. It 303 

has previously been shown that high plant δ15N may reflect high N availability, both on a regional scale in the 304 

Arctic (Michelsen et al., 1998) and at the global scale (Craine et al., 2009) This is firstly because when N 305 

availability is high, N lost from the ecosystem is more likely to be depleted in 15N, which increases the δ15N of 306 

leaves. Gaseous N loss during nitrification and the leaching of 15N-depleted nitrate can cause the remaining N 307 

pool (and subsequently plants) to be enriched in 15N. Secondly, plants experiencing high N availability are less 308 

dependent on mycorrhizal fungi for N acquisition than at low N availability, and less exposed to 15N depletion 309 

during transfer of N from mycorrhizal fungi to host plants (Craine et al., 2009). Furthermore ammonium-N has a 310 

higher δ15N than organic N, of which a high content in the latter characterizes many nutrient poor arctic soils 311 

(Yano et al., 2009), and slow decomposition of plant materials that are often depleted in 15N (i.e., ericoid and 312 

ectomycorrhizal plants) is the likely reason for the large pool size and 15N depletion of the organic N pool (Yano 313 

et al., 2009). Altogether, this suggests that the inorganic N supply was ample in Deep but more limited in Normal 314 

snow depth in all vegetation types.  315 

Salix leaves from deepened snow, however, were neither longer nor more numerous than leaves in unmanipulated 316 

plots. In fact, in Meadow 2, the Salix leaves were shorter in Deep than Normal.  No difference or a slight 317 

reduction in growth of Salix in the deep snow regime in the same experiment the previous year was also reported 318 

by Rumpf et al. (2014). For this species the increase in N may not offset the shorter growing season following 319 

delayed snowmelt, or K and P availability may limit the plants’ growth response to increased N. Increased soil 320 

nutrient availability was reflected in larger leaf sizes of Bistorta vivipara and Luzula arcuata ssp. confusa in one 321 

of the two meadow sites. Both meadow sites had increased soil N in the deeper snow regime, but the soil K 322 

concentration and pH of Meadow 2 were lower than the other sites, which may have been limiting factors in the 323 

utilization of increased N for plant growth. However, as we could not destructively sample a large area because 324 

the plots needed to be protected for longer term sampling, we cannot exclude that C is also allocated to other 325 

organs than leaves, for instance woody stems, below ground runners, overwintering corms, roots, or reproductive 326 
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structures (Parsons et al., 1994; Wookey et al., 1994; Sullivan & Welker, 2005), which calls for cautious 327 

interpretation of the data presented here and in Rumpf et al. (2014).  328 

Increased leaf N levels could have several possible effects on decomposition processes in this system, with 329 

implications on long-term carbon balance and feedbacks on plant growth. Assuming that the litter of the most 330 

productive deciduous species reacted similarly and had higher N concentrations in winter warmed plots to those 331 

shown in Welker et al. (2005), soil C could be stabilized through humification processes by chemical reaction of 332 

lignin degradation products with NO3
- and NH4

+ after an initial increase of mineralization rates during early 333 

phases of decomposition of undecomposed litter (Berg, 2000; Weintraub & Schimel, 2003). Increased leaf litter N 334 

could lead to a possible feedback mechanism between N and C mineralization, with two hypothetical pathways 335 

influencing the C balance during the Arctic growing season: (1) increased N could stabilize soil C through 336 

formation of humic acids during later stages of composition of heavily decomposed material, which deprives 337 

microbes of easily accessible C during the growing-season and thereby reduces respiration, as found by our group 338 

in the same study site (Semenchuk et al., in prep). A reported loss of C after 20 years of nutrient addition reported 339 

by Mack et al. (2004) supports this hypothesis by attributing fertilization mediated C losses to stimulation of 340 

decomposition of organic material in decomposed stages prior to stabilization processes (Weintraub & Schimel, 341 

2003). It is possible that initial losses of labile C were large compared to C inputs and might have ceased at any 342 

point during the 20 years of fertilizer addition, which is impossible to track by single pool size measurements as 343 

done there (Mack et al., 2004). (2) The excess mineral N increases plant growth and C uptake from the 344 

atmosphere and thereby adds more C to the ecosystem’s stocks without adding C available for mineralization and 345 

recycling to the atmosphere. However, no clear conclusion on the fate of this C can be deducted from the 346 

literature yet, and more experiments have to be done to quantify relative C flux changes and to verify or falsify 347 

these two hypothetical pathways or to identify new potential mechanisms which link N and C cycles.  348 

Litter quality of a given habitat, and thereby SOM quality and mineralization rates, is largely plant species-349 

specific and therefore a product of the habitat’s species composition. Different species inherently produce litter 350 

with varying C:N ratios, lignin and secondary compound contents (Hobbie, 1996; Cornelissen et al., 2007; Aerts 351 
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et al., 2012) that influence decomposition and mineralization processes. However, the conditions under which 352 

plants grow also provoke changes of litter quality (Shaver & Chapin III, 1980; Körner, 1989; Kudo et al., 1999; 353 

Aerts et al., 2012) and thereby influence litter and SOM qualities. As a result, effects of environmental 354 

perturbations such as soil temperature increase on N and C dynamics can vary across vegetation types (Weintraub 355 

& Schimel, 2003; Schimel et al., 2004; Welker et al., 2005) and can additionally be expected upon vegetation 356 

composition changes (Sturm et al., 2005). This study does not have the capacity to show species specific changes 357 

in leaf chemistry after cold-season warming – the aperture of the Chlorophyll instrument was too small for other 358 

species, and only Salix leaves were analyzed. This does therefore not allow conclusions on overall litter quality of 359 

the whole system. However, we did show that Salix reacted consistently across vegetation types with increased N 360 

content after warmed cold-seasons. Since this species is present in both vegetation types in similar frequencies 361 

(own observations), and is a major contributor to the annual litter pool, we can conclude that the total annual 362 

litter-N pool is increased across the whole study area, independently of vegetation type. 363 

Finally, we want to emphasize that this studyfocuses on the upper layers of the active layer, and not on underlying 364 

permafrost layers. Permafrost is known to contain large quantities of C which is thermally stabilized, i.e., 365 

decomposition is slowed down by low temperatures and restricted access to unfrozen water. Increased soil 366 

temperatures willthaw the upper layers of permafrost soil and likely release a lot of the here stored labile C (e.g. 367 

Zimov et al., 2006; Schuur et al., 2008) in a pulse which in magnitude could potentially offset all other processes 368 

treated in this article. However, we do believe that some of the hypothesized mechanisms described here could 369 

also apply for long term thawing of permafrost, e.g., chemical stabilization of heavily decomposed material by 370 

release of N compounds.  371 

This study shows how multi-year increased snow depth has changed soil and plant N concentrations through 372 

temperature-induced increases of cold-season mineralization which carried over to growing-season N availability 373 

and plant N uptake. This has been shown in previous studies from Toolik lake (Schimel et al., 2004; Welker et al., 374 

2005), strengthening the findings of these studies. By comparing with respiration data from the same study site 375 

(Semenchuk et al., in prep), we also hypothesize that perturbations of the N cycle could be tightly linked and 376 
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directly connected to the C cycle by changing both C assimilation patterns through the plant growth pathway and 377 

C mineralization patterns through chemical stabilization of soil C. Future studies are needed to test that hypothesis 378 

and to produce reliable sink and source strengths to be able to forecast future trends of the recent Arctic C cycle.  379 
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Figure Legends 489 

 490 

Fig. 1 Observed volumetric water content (a, d, g), pH (b, e, h), and K+ (c, f, i) in water extracted from 5 cm 491 

deep soil cores. Results are shown for two experimental snow depth regimes as seasonal changes during the 2012 492 

growing season (a-c); for two depth intervals (d-f) and for the three vegetation types (g-i). The 95% confidence 493 

intervals are shown as error bars. Normal: unmanipulated snow depth as found representative for most of the 494 

study area; Deep: manipulated snow depth with snow fences. 495 

Fig. 2 Observed concentrations of NO3
- (a,e.i), NH4

+ (b,f,j), TON (c,g,k), and TOC (d,h,l) extracted from 0-5 496 

cm soil cores. Results are shown for two experimental snow depth regimes as seasonal changes during the 2012 497 

growing season (a-d); for two depth intervals (e-h) and for the three vegetation types (i-l).. The 95% confidence 498 

intervals are shown as error bars. Normal: unmanipulated snow depth as found representative for most of the 499 

study area; Deep: manipulated snow depth with snow fences. 500 

Fig.3 Observed concentrations of %N (a, f), %C (b, g), C:N ratio (c, h), chlorophyll a+b (d, i) and δ15N (‰) (e, 501 

j) of Salix polaris leaves sampled in two different experimental snow depth regimes  during the 2012 growing 502 

season. Results are shown as seasonal changes during the 2012 growing season (a-e) and for the three vegetation 503 

types (f-j). The 95% confidence intervals are shown as error bars. Normal: unmanipulated snow depth as found 504 

representative for most of the study area; Deep: manipulated snow depth with snow fences. 505 

Fig. 4 Observed peak sizes of Bistorta vivipara (a), Luzula arcuata ssp. confusa (b) and Salix polaris (c) 506 

individuals sampled in two experimental snow depth regimes at peak plant size during the 2012 growing season. 507 

The 95% confidence intervals are shown as error bars. Normal: unmanipulated snow depth as found 508 

representative for most of the study area; Deep: manipulated snow depth with snow fences. 509 
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Figure 1. Semenchuk et al. 2014 515 
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Figure 2. Semenchuk et al. 2014 519 
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Figure 3. Semenchuk et al. 2014 522 
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Figure 4. Semenchuk et al. 2014 529 
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