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Abstract

Background

Though the associations between low serum 25-hydroxyvitamin D (25(OH)D) levels and

health outcomes such as type 2 diabetes (T2D), myocardial infarction (MI), cancer, and

mortality are well-studied, the effect of supplementation with vitamin D is uncertain. This

may be related to genetic differences. Thus, rs7968585, a single nucleotide polymorphism

(SNP) of the vitamin D receptor (VDR), has recently been reported as a predictor of compos-

ite health outcome. We therefore aimed to evaluate whether rs7968585 predicts separate

clinical outcomes such as T2D, MI, cancer, and mortality in a community-based Norwegian

population.

Methods and Findings

Measurements and DNA were obtained from the participants in the Tromsø Study in 1994–

1995, registered with the outcomes of interest and a randomly selected control group. The

impact of the rs7968585 genotypes was evaluated with Cox proportional hazards. A total of

8,461 subjects were included among whom 1,054 subjects were registered with T2D, 2,287

with MI, 3,166 with cancer, and 4,336 with death. Mean follow-up time from birth was 60.8

years for T2D and MI, 61.2 years for cancer, while mean follow-up time from examination

date was 16.5 years for survival. Mean serum 25(OH)D levels did not differ across the

rs7968585 genotypes. With the major homozygote genotype as reference, the minor homo-

zygote subjects had hazard ratios of 1.25 (95% CI 1.05–1.49) for T2D and 1.14 (1.02–1.28)

for MI (P = 0.011 and 0.023, respectively, without the Bonferroni correction). No significant
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interaction between serum 25(OH)D status and the rs7968585 genotype was found for any

of the endpoints.

Conclusions

The VDR-related SNP rs7968585 minor allele is a significant and positive predictor for T2D

and possibly for MI. Since the functional mechanism of this SNP is not yet understood, and

the association with T2D is reported for the first time, confirmatory studies are needed.

Introduction
Vitamin D is a biologically active substance important not only for maintenance of calcium
homeostasis but also for several nonskeletal metabolic pathways [1]. Despite the association
between low serum 25-hydroxyvitamin D (25(OH)D) levels and increased risk of type 2 diabe-
tes (T2D), cardiovascular diseases, cancer, and mortality [1–5], intervention studies with vita-
min D thus far have been inconclusive [6]. Possibly, this may be due to genetic differences in
vitamin D metabolism [7].

The vitamin D receptor (VDR) has been identified in most of the body’s tissues, including
pancreatic islets, myocardium, and fibroblasts [8, 9]. The activated VDR regulates approxi-
mately 3% of all genes [10, 11] and may protect against diabetes by regulating insulin secretion
and resistance and by reducing inflammatory damage to the pancreatic islets [12, 13]. Further-
more, the VDR regulates calcium homeostasis, may act antiatherosclerotic, may suppress the
renin system, and may protect against myocardial hypertrophy and heart failure as well as cor-
onary artery disease (CAD) [1, 14, 15]. In cancer pathogenesis, the activated VDR is suggested
to act antiproliferatively and to regulate cell differentiation and apoptosis [16, 17]. Thus, the
role of the VDR and its individual variations, instead of the serum concentration of vitamin D
metabolites per semight be important in the pathogenesis of diabetes, myocardial infarction
(MI), cancer, and mortality.

Many recent studies have focused on VDR polymorphisms as risk factors for these health
outcomes, and some VDR single nucleotide polymorphisms (SNPs) are reported to be associ-
ated with risk of T2D [18], several forms of cancer including breast, prostate cancer, and malig-
nant melanoma [19, 20], cancer-related mortality [21] and CAD [22–25], but not overall
mortality [26].

Recently, the association between the common VDR gene variant rs7968585 and risk of a
composite health outcome including hip fracture, MI, cancer, and mortality has been reported
in subjects with low serum 25(OH)D levels [27]. However, in a subsequent study no associa-
tions between rs739837, a SNP in high linkage disequilibrium (LD) with rs7968585, and cardi-
ometabolic outcomes were found [28].

The Tromsø Study is a large community-based study in northern Norway with repeated
surveys every 6–7 years [29]. In the fourth survey performed in 1994–1995, lifestyle informa-
tion and blood samples were collected from more than 27,000 subjects [30], and detailed end-
point registers were created. We were therefore able to evaluate the reported association
between the rs7968585 genotypes, serum 25(OH)D and separate clinical outcomes such as
T2D, MI, cancer, and mortality. Furthermore, since we also had genotype data on five other
VDR SNPs (FokI (rs2228570/rs10735810), BsmI (rs1544410), TaqI (rs731236), ApaI
(rs7975232) and Cdx2 (rs11568820)), we used the same approach to evaluate their association
with the above mentioned outcomes.
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Materials and Methods

The Tromsø Study
The Tromsø study initiated in 1974 is a longitudinal, community-based multipurpose Nor-
wegian study focusing on lifestyle-related diseases [29]. It is performed in the Tromsø munic-
ipality, which is situated at 69° North with a current population of about 72,000 subjects. In
the fourth survey in 1994–1995, all individuals aged 25 years or older were invited to partici-
pate; 77% participated, comprising a total of 27,158 subjects [30] of whom 26,956 were
included in our analysis. A group of subjects were invited for a second visit for more extensive
clinical examination and measurements, and 7,965 subjects, or 78% of the invited, partici-
pated [31].

Selection of the study subjects
The selection of subjects for the genetic studies has been described in detail previously [32].
Briefly, the subjects were primarily selected for evaluation of genetic polymorphisms and
clinical endpoints registered in the Tromsø Study, including T2D, MI, cancer, and death.
Since these endpoints were of potential interest regarding genetic polymorphisms, and lim-
ited funding did not allow genetic analyses of the entire Tromsø Study cohort, a case—
cohort design was used with randomly selected controls from the entire cohort who partici-
pated in the fourth survey [33]. Accordingly, genotyping was performed in all subjects
included in the endpoint registers as well as the randomly selected controls and was success-
ful for 11,752 subjects. Since this control group was randomly selected from the entire
cohort, the group included numerous subjects with one or more endpoints. When analyzing
a specific endpoint, subjects in the control group with that specific endpoint were moved to
the case group. Therefore, the size of the control groups varied depending on the endpoint in
question.

Definition of T2D, MI, cancer, and death endpoints
The identification of subjects with endpoints has also previously been described in detail [34,
35]. In short, subjects with T2D were identified with self-reported diabetes questionnaires, ele-
vated HbA1c (�6.5%), and a search in medical records and national registries. Differentiation
between T1D and T2D was based on clinical judgment and blood tests (C-peptide, anti-glu-
tamic acid decarboxylase (anti-GAD)) when available. Cases of unknown types of diabetes
were excluded from the analyses.

Subjects with MI were identified by searching the related diagnoses in all available registries
and records using the World Health Organization (WHO) Multinational MONItoring of
Trends and Determinants in CArdiovascular Disease/MOnica Risk, Genetics, Archiving and
Monograph (MONICA/MORGAM) diagnostic criteria [36]. Silent MIs defined with electro-
cardiogram only were not included as cases because of difficulties in determining the exact date
of the event. The T2D and MI endpoints were included until the end of 2011 but completely
updated until the end of 2010.

Cancer events were obtained from the Cancer Registry of Norway, with endpoints registered
until the end of 2010. The whole cancer group was also divided into four subgroups according
to location: breast, lung, colorectum, and prostate.

Information about death was retrieved from the Causes of Death Registry, and information
about participants who moved out of the Tromsø area was obtained from the Norwegian Reg-
istry of Vital Statistics, updated until January 2013.
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Measurements
Baseline information was collected by physical examination, nonfasting blood samples, and
self-administered questionnaires in 1994–1995. Blood pressure, weight, height, total choles-
terol, and HbA1c were measured/analyzed as previously described [37]. Information on current
smoking and current physical activity was collected from these questionnaires. Physical activity
was defined as the presence or absence of light or hard physical activity during leisure time.
Body mass index (BMI) was calculated as weight divided by height squared.

Sera, collected during the second visit of the Tromsø Study in 1994–1995, were stored at –
70°C, thawed in 2008, and analyzed for serum 25(OH)D using an automated clinical chemistry
analyzer (Modular E170, Roche).

DNA was prepared with the manual isolation method from whole blood samples collected
during the first visit. Genotyping was performed using the KASP (KBioScience Allele-Specific
Polymorphism) SNP genotyping system as previously described [32].

Statistical analyses
Distribution of the variables serum 25(OH)D, systolic blood pressure, BMI, total cholesterol,
and HbA1c were evaluated with skewness, kurtosis, and visual inspection of histogram and
found normal except for HbA1c, which, however, could not be normalized with log transforma-
tion. Trends across the VDR SNP genotypes were evaluated with linear regression for continu-
ous variables, using age, gender, and for 25(OH)D also season (months, using dummy
variables), as covariates. For categorical variables, trends across genotypes were evaluated with
the chi-square test with linear-by-linear association, and for HbA1c, the Kruskal—Wallis test
was used for testing differences between the genotypes. Since serum 25(OH)D levels in smok-
ers are overestimated when analyzed with the Modular E170 (Roche) [38], smokers and non-
smokers were analyzed separately unless otherwise specified. The Student’s t-test, Mann-
Whitney U test, or Pearson’s chi-square test was used to compare variables in endpoint groups
and their controls.

The genotype frequencies were evaluated for Hardy-Weinberg equilibrium using the chi-
square test [39].

The hazard ratio (HR) of the VDR SNP genotypes for T2D, MI, cancer, and mortality was
estimated with Cox regression with the major homozygote genotype used as the reference.
Observation time was from birth until the event of interest for all endpoints except for death,
where the observation time was from 1994.

In Model 1, for all endpoints, an adjustment for age and gender was made. In Model 2 for
T2D and MI additional adjustment for data obtained in 1994/1995 on BMI, systolic blood pres-
sure, total cholesterol, current smoking, and physical activity was performed. For MI, T2D was
additionally included in Model 3. Since the effects of genotypes on cancer and mortality risk
were not significant in any model regardless of covariates included, only Model 1 results were
presented.

Additionally, serum 25(OH)D levels below or above the 20th percentile as well as serum 25
(OH)D used as a continuous variable were evaluated for association with T2D, MI, cancer, and
death with age and gender as covariates. Similarly, interaction between serum 25(OH)D below
or above the 20th percentile as well as 25(OH)D as a continuous variable and the VDR SNP
genotypes were also tested with Cox regression with age and gender as covariates. In the analy-
sis of a specific endpoint other endpoints were not included as covariates unless related to
rs7968585 genotypes which was the case only for MI and T2D.

In the 20th percentile analyses, smokers and nonsmokers were analyzed together using
month-specific 20th percentile cutoffs calculated separately for smokers and nonsmokers.
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When 25(OH)D was used as a continuous variable, smokers and nonsmokers were analyzed
separately. These analyses with 25(OH)D were performed on incident cases only (observation
time from Tromsø 4, 1994–1995).

The data are shown as mean ± standard deviation (SD). All tests are presented two-sided,
and P-value<0.05 was considered statistically significant. The data were analyzed with IBM
SPSS Statistics 22 (SPSS Inc., Chicago, IL, USA). The data are presented without correction for
multiple analyses unless specified in the text if the Bonferroni correction was applied (P-value
multiplied by a factor of 4 (four main endpoints)).

Ethics
The study was approved by the Regional Committee for Medical and Health Research Ethics
(REK Nord) (reference 2010/2913-4). Only participants with valid written consent were
included.

Results
The baseline characteristics of the entire Tromsø Study and the endpoint groups relevant for
those successfully genotyped for rs7968585 are shown in Table 1. Serum 25(OH)D values both
for smokers and nonsmokers were lower in the T2D and mortality groups than in the respec-
tive control groups. There were significantly more men and smokers in all case groups com-
pared to the respective control groups. The rs7968585 genotype frequencies were not found to
deviate.

Age, sex, systolic blood pressure, BMI, total cholesterol, HbA1c, physical activity, and serum
25(OH)D values in the 11,752 subjects successfully genotyped for rs7968585 are presented in
Table 2 with no significant trends observed across the genotypes.

Among the 11,752 successfully genotyped subjects for rs7968585, 4,198 had been randomly
selected for the control cohort, 1,054 subjects were registered with T2D, 2,287 subjects had
confirmed MI, 3,166 had cancer, among whom there were 431 breast, 385 lung, 501 colorectal,
and 406 prostate cancer cases, and 4,336 deaths. Mean follow-up time from birth was 60.8
years for T2D and MI, 61.2 years for cancer, while the mean follow-up time from examination
date was 16.5 years for death. The distribution of major endpoints within the rs7968585 geno-
type groups is presented in Table 3, with significant trend across genotypes for T2D and MI
(P<0.05).

The HRs for all endpoints in regard to rs7968585 genotype are shown in Tables 4 and 5.
Considering major homozygote (T:T) as a reference, subjects with the minor homozygote (C:
C) had a significantly (P = 0.044 after Bonferroni correction) 25% increased risk of developing
T2D in Models 1 and 2. Similarly for MI, subjects with the minor homozygotes had a 14% and
13% increased risk in Models 1 and 2, respectively, but the P-value was>0.05 after the Bonfer-
roni correction for multiple testing. Furthermore, when T2D was included as a covariate, the
increased risk of MI in subjects with the minor homozygote genotype was reduced to 11%
(P = 0.080). No significant impact of the rs7968585 genotypes on the risk of total cancer (as
well as for the four subtypes breast, lung, colorectal, and prostate, data not shown) and mortal-
ity was observed.

There were ~8,500 subjects successfully genotyped for FokI, BsmI, TaqI, ApaI and Cdx2
groups within the control cohort and the endpoint groups. However, we did not observe signif-
icant trends across their genotypes for serum 25(OH)D status. Furthermore, none of the FokI,
BsmI, TaqI, ApaI and Cdx2 genotypes showed significantly increased risk of any of the four
endpoints in Cox regression analyses after Bonferroni correction (data not shown).
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Serum 25(OH)D status was significantly associated with T2D, MI, and death but not cancer.
When the cohort was divided according to the serum 25(OH)D 20th percentile, the subjects in
the low serum 25(OH)D group had an 73% increased risk of T2D (95% confidence interval
(CI) 1.40–2.14, P<0.01), a 20% increased risk of MI (95% CI 1.02–1.41, P<0.05), and a 21%
increased risk of death (95% CI 1.09–1.34, P<0.01). Same trend was observed analyzing serum
25(OH)D as a continuous variable: HR per SD decrease was 1.45 for T2D in smokers, 1.26 in
nonsmokers. For MI, HR per SD decrease was 1.14 in smokers, not significant in nonsmokers.
For mortality, HR per SD was 1.10 in smokers and 1.07 in nonsmokers.

The 20th percentile for serum 25(OH)D was 33.9–46.6 nmol/L in nonsmokers and 50.4–
64.2 nmol/L in smokers, differing according to the month. The number of subjects with serum
25(OH)D below the 20th percentile (month and smoking specific) was 115, 182, 188, and 471
for the T2D, MI, cancer, and mortality case groups, respectively. However, there were no signif-
icant interactions between serum 25(OH)D status (above/below 20th percentile, as well as
when serum 25(OH)D was used as a continuous variable) and rs7968585 genotype regarding
any of the endpoints.

Table 1. Baseline characteristics in 1994–1995 in the entire Tromsø Study population and in the endpoint groups related to the rs7968585 analy-
ses. The Tromsø Study.

Entire
Tromsø
Study
population

T2D cases T2D
controls

MI cases MI
controls

Cancer
cases

Cancer
controls

Death cases Death
controls

N 26,956 1,054 3,509 2,287 3,166 3,166 3,137 4,336 2,109

Age (years) in
1994/95

46.9 ± 15.1 59.9 ± 12.2** 65.0 ± 12.7 63.0 ± 12.7* 63.9 ± 12.8 58.9 ± 13.5** 64.6 ± 13.0 66.9 ± 12.6** 58.1 ± 10.7

Sex (%
females)

52.5 45.8** 57.5 35.7** 59.9 51.8** 59.0 48.9** 58.9

Current
smokers (%)

32.7 31.4* 28.3 37.6** 27.6 36.8** 26.7 35.1** 28.0

Systolic BP
(mmHg)

135 ± 21 152 ± 23** 148 ± 25 151 ± 24** 147 ± 24 143 ± 23** 149 ± 25 152 ± 25** 142 ± 22

BMI (kg/m2) 25.2 ± 3.9 28.8 ± 4.6** 25.6 ± 3.9 26.6 ± 4.0** 25.8 ± 4.1 25.7 ± 4.1* 25.9 ± 4.1 26.0 ± 4.3 26.0 ± 3.9

Total
cholesterol
(mmol/L)

6.05 ± 1.31 6.71 ± 1.22 6.68 ± 1.33 6.91 ± 1.27** 6.62 ± 1.32 6.45 ± 1.30** 6.71 ± 1.33 6.72 ± 1.32* 6.62 ± 1.30

HbA1c (%)a 5.45 ± 0.66 6.27 ± 1.40** 5.39 ± 0.36 5.61 ± 0.83** 5.46 ± 0.67 5.50 ± 0.65 5.51 ± 0.79 5.61 ± 0.87** 5.43 ± 0.49

Serum 25(OH)
D (nmol/L)
smokersb

72.4 ± 20.0 66.6 ± 17.4** 73.9 ± 19.9 70.2 ± 18.8* 73.9 ± 20.4 72.6 ± 18.2 73.5 ± 20.2 70.4 ± 18.6** 75.3 ± 20.9

Serum 25(OH)
D (nmol/L)
nonsmokersc

52.4 ± 16.6 48.5 ± 16.3** 51.9 ± 16.3 51.6 ± 17.4 51.3 ± 16.1 52.7 ± 17.5* 50.9 ± 15.7 50.4 ± 17.2* 52.0 ± 15.8

Physical
activity (%
active)

54.6 32.2 30.7 32.1 32.5 36.5** 30.8 25.0** 39.8

aMeasured only in those attending the second visit of the Tromsø Study in 1994–1995, N = 7,182.
bMeasured only in those attending the second visit of the Tromsø Study in 1994–1995, N = 2,334
cMeasured only in those attending the second visit of the Tromsø Study in 1994–1995, N = 4,826

*P<0.05,

**P<0.01 vs. respective control group; Student’s t-test, Mann-Whitney U test or Pearson’s chi-square test

doi:10.1371/journal.pone.0145359.t001
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In particular, for T2D, the positive association with low serum 25(OH)D (below the 20th

percentile compared to those above) was seen for subjects in all three rs7968585 genotypes
with an increased risk of 123% for major homozygotes (95% CI 1.54–3.22, P<0.01) 46% for
heterozygotes (95% CI 1.30–2.19, P<0.05), and 79% for minor homozygotes (95% CI 1.10–
2.92, P<0.05).

Discussion
In our large, community-based study of 8,461 subjects, we found that the minor allele (C) at
rs7968585 is a significant risk factor for T2D, possibly also for MI, but not for cancer or death.
To our knowledge, the association between rs7968585 and T2D is reported for the first time;
meanwhile, the relation between this genotype and MI was probable, based on previous obser-
vation by Levin et al., where the risk of a composite health outcome including MI was found to
be modified by the minor allele of the rs7968585 genotype in subjects with low serum 25(OH)
D levels [27].

Table 2. Baseline characteristics of the 11,752 subjects in 1994 according to rs7968585 genotype. The Tromsø Study.

T:T T:C C:C Total

N 3,621 5,729 2,402 11,752

Age (years) 57.9 ± 13.6 57.8 ± 13.5 57.8 ± 13.7 57.8 ± 13.6

Sex (% females) 54.9 55.4 54.4 55.0

Current smokers (%) 34.1 34.0 33.7 34.0

Physical activity (% active) 36.8 39.2 36.8 38.0

Systolic BP (mmHg) 143 ± 23 143 ± 23 143 ± 23 143 ± 23

BMI (kg/m2) 25.9 ± 4.1 25.8 ± 4.1 25.8 ± 4.0 25.8 ± 4.1

Total cholesterol (mmol/L) 6.56 ± 1.32 6.53 ± 1.31 6.57 ± 1.32 6.55 ± 1.32

HbA1c (%)a 5.44 ± 0.62 5.46 ± 0.70 5.46 ± 0.65 5.46 ± 0.66

25(OH)D (nmol/L) b, smokers 72.6 ± 19.9 72.4 ± 19.9 72.9 ± 20.5 72.6 ± 20.0

25(OH)D (nmol/L) c, nonsmokers 52.7 ± 17.2 52.4 ± 16.5 52.3 ± 16.2 52.5 ± 16.7

Trends across genotypes were not significant; chi-square test for linear-by-linear association, Kruskal—Wallis test or linear regression.
aMeasured only in those attending the second visit of the Tromsø Study in 1994–1995, N = 7,182.
bMeasured only in those attending the second visit of the Tromsø Study in 1994–1995, N = 2,334.
cMeasured only in those attending the second visit of the Tromsø Study in 1994–1995, N = 4,826.

doi:10.1371/journal.pone.0145359.t002

Table 3. Distribution of endpoints in rs7968585 genotype groups. The Tromsø Study.

Major homozygote (T:T) Heterozygote (T:C) Minor homozygote (C:C) Total
N (% within genotype) N (% within genotype) N (% within genotype) N

T2D cases* 296 (21.1) 530 (23.7) 228 (24.7) 1,054

T2D controls* 1,108 (78.9) 1,707 (76.3) 694 (75.3) 3,509

MI cases* 680 (40.0) 1,110 (41.8) 497 (45.2) 2,287

MI controls* 1,020 (60.0) 1,544 (58.2) 602 (54.8) 3,166

Cancer cases 969 (49.8) 1,560 (50.2) 637 (50.9) 3,166

Cancer controls 975 (50.2) 1,547 (49.8) 615 (49.1) 3,137

Death cases 1,353 (66.7) 2,089 (67.0) 894 (68.8) 4,336

Death controls 677 (33.3) 1,027 (33.0) 405 (31.2) 2,109

*P<0.05 chi-square test for linear-by-linear association.

doi:10.1371/journal.pone.0145359.t003
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The 25% increased risk of T2D in the rs7968585 minor homozygote subjects contrasts the
results from the 1958 British Birth cohort study where the VDR SNP rs739837 (which is in
high LD with rs7968585 (r2 = 0.87)) was not associated with T2D [28]. In addition to the possi-
ble effect of the slight genetic difference between the two SNPs, one possible explanation could
be the lack of power in the 1958 British Birth cohort study that included only 5,160 subjects. In
addition, the subjects were considerably younger than in our study, and therefore, probably
had fewer cases with T2D included. In support of our findings, there was a positive, although
not statistically significant, association between minor homozygote and T2D.

In addition to T2D, we also observed a 14% increased risk of MI in the minor homozygote
subjects. This increased risk was significant only before correction for multiple testing, but as
the pathogeneses of the endpoints probably are biologically separate, the necessity for the cor-
rection might be questionable. However, when T2D was included as a confounder in the Cox
regression for the risk of MI, the association between rs7968585 and MI was decreased, indicat-
ing that the genetic influence on MI was partly mediated by its effects on glucose metabolism.

Table 4. Hazard ratios (HR) for the rs7968585 genotypes regarding T2D, MI, cancer andmortality analyzed with the Cox regression, adjusted for
age and gender. The Tromsø Study.

T2D MI Cancer Mortality

Endpoint (N) 1,054 2,287 3,166 4,336

Controls (N) 3,509 3,166 3,137 2,109

Rs7968585
Model 1

HR (95% CI) Unadjusted P-
value

HR (95% CI) Unadjusted P-
value

HR (95% CI) Unadjusted P-
value

HR (95% CI) Unadjusted P-
value

Major
homozygote (T:T)

Reference Reference Reference Reference

Heterozygote (T:
C)

1.15 (1.00–
1.33)

0.054 1.04 (0.95–
1.15)

0.413 1.01 (0.94–
1.10)

0.732 0.99 (0.92–
1.06)

0.736

Minor
homozygote (C:
C)

1.25 (1.05–
1.49)

0.011* 1.14 (1.02–
1.28)

0.023 1.07 (0.97–
1.19)

0.164 1.01 (0.93–
1.10)

0.861

*P<0.05 after adjusting for multiple testing, unadjusted P-value multiplied by factor of 4.

doi:10.1371/journal.pone.0145359.t004

Table 5. Hazard ratios (HR) for the rs7968585 genotypes regarding T2D and MI analyzed with the Cox regression, adjusted for age, gender and
additional risk factors. The Tromsø Study.

T2D MI

Endpoint (N) 1,054 2,287

Controls (N) 3,509 3,166

Rs7968585 Model 2a HR (95% CI) Unadjusted P-value HR (95% CI) Unadjusted P-value

Major homozygote (T:T) Reference Reference

Heterozygote (T:C) 1.20 (1.04–1.38) 0.014 1.05 (0.95–1.15) 0.358

Minor homozygote (C:C) 1.25 (1.05–1.49) 0.011* 1.13 (1.01–1.27) 0.039

Rs7968585 Model 3b

Major homozygote (T:T) Reference

Heterozygote (T:C) 1.04 (0.94–1.14) 0.480

Minor homozygote (C:C) 1.11 (0.99–1.25) 0.080

*P<0.05 after adjusting for multiple testing, unadjusted P-value multiplied by factor of 4.
aModel 2 in T2D and MI groups: adjusted for age, gender, systolic BP, BMI, total cholesterol, smoking status and physical activity.
bModel 3 in MI: adjusted as in Model 2 and for T2D status.

doi:10.1371/journal.pone.0145359.t005
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The association between rs7968585 and MI was also reported by Levin et al. from the Cardio-
vascular Health Study Discovery Cohort that included 1,514 subjects with 214 cases with MI
[27]. Similar to our study, Levin et al. found a 20% increased risk for each additional minor
allele, but this did not reach statistical significance. However, when viewing the two studies
combined, a true association appears to be likely.

However, we could not replicate the positive association between the minor homozygote
rs7968585 and cancer as well as death reported in the Cardiovascular Health Study Discovery
Cohort [27]. We found only a slight nonpositive association with cancer but found no relevant
association for death. Accordingly, more studies are needed to establish associations between
rs7968585 and these clinical endpoints.

If such associations for rs7968585 are established, the plausible biological explanation
would be through an effect on the VDR [40]. Thus, rs7968585 is located in a noncoding region
close to the VDR gene and is in high to moderate LD with the most studied VDR SNPs Apal (r2

= 0.87), Taql (r2 = 0.65) and Bsml (r2 = 0.65) [41, 42]. The observed associations between
rs7968585 and T2D as well as MI could therefore reflect covariation with these or other SNPs
as well as effects on the VDR via still not proved coding of the VDR or the noncoding RNAs
[43].

Thus, the nuclear receptor VDR is expressed in pancreatic cells, is involved in regulating
insulin resistance, secretion, and inflammation of pancreatic islets [8, 12, 13], and may accord-
ingly play a role in pathogenesis of T2D. The VDR is also expressed in cardiomyocytes, vessels,
and other tissues involved in CAD pathogenesis, and when activated seems to protect for CAD
[1, 14, 15].

Finally, the VDR seems to modify cancer-related processes by regulating cell proliferation,
differentiation, and apoptosis [16, 17]. In line with this, the commonly studied VDR SNP FokI
(in low LD with rs7968585) appears to be associated with T2D, at least in Asian populations
[13, 18] and cancer [44, 45]; and the SNPs ApaI, BsmI, as well as TaqI appear to be associated
with CAD [22–24] as well as with cancer [44, 45] and cancer-related mortality [21]; and some
Cdx2 (in low LD with rs7968585) haplotypes appear to be associated with increased risk of
cancer [46]. However, in our study, none of the FokI, BsmI, TaqI, ApaI, Cdx2 SNPs showed
any significant associations with the risk for these outcomes, which might be due to inter-pop-
ulation genetic variances.

Another major objective of our study was to evaluate possible interactions between
rs7968585 and the serum 25(OH)D levels as described by Levin et al. regarding their composite
endpoint [27]. This interaction is plausible given that the rs7968585 minor allele makes the
VDR less active. If so, for subjects with minor alleles, the presumed positive effects by the VDR
would need higher serum 25(OH)D levels to be activated [40]. However, in spite of the
expected significant associations between serum 25(OH)D and subsequent T2D, MI and death
[1, 6], no interactions between rs7968585 and serum 25(OH)D levels regarding the clinical
endpoints were found, which might be due to generally sufficient serum 25(OH)D levels in our
population (48.5–52.7 nmol/L in nonsmokers) in contrast to the study of Levin et al. [27].
Thus, in our study the negative effects of the minor allele were seen regardless of serum 25
(OH)D levels, and a similar conclusion was reached by Vimaleswaran et al. regarding serum 25
(OH)D and T2D in their British Birth cohort study [28]. One probable explanation could be
that rs7968585 acts through modulating the response to vitamin D, independently from vita-
min D status as suggested by Barry et al. [47]. However, given the attractiveness of such an
interaction between serum 25(OH)D and the VDR, this should be tested not only for
rs7968585 but also in all studies in which both genetic as well as serum 25(OH)D data are
available.
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Our study has several limitations. Firstly, after the Bonferroni correction, the association
between rs7968585 and the endpoints was significant only for T2D. This may reflect that for
this type of study even a cohort of more than 8,000 subjects may be too small. Secondly, not all
subjects had serum 25(OH)D measurements, which substantially reduced the power for the
interaction part of the study. Thirdly, we relied on only one serum 25(OH)D measurement,
and even though there is a high degree of tracking for serum 25(OH)D [48], several consecutive
measurements would have been a great advantage. Finally, we do not know the consequences
of the rs7968585 SNP for the function of the VDR, and it is therefore difficult to fit this SNP
into a biological context.

Our study also has several strengths. The endpoint registers were of high quality and com-
munity-based in a large north Norwegian population with long-term follow-up. We also had
the opportunity to take advantage of a previous publications regarding rs7968585 and therefore
focused on this SNP only, which increased the statistical power.

In conclusion, we found a significant association between the VDR SNP rs7968585 and risk
of T2D and possibly also MI in a general population, whereas interactions between rs7968585
and serum 25(OH)D levels regarding clinical endpoints were not found. Confirmatory studies
are needed.
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