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Abstract 

Background: Staging of oral squamous cell carcinoma is based on the TNM system, which has been deemed 

insufficient for prognostic purposes. Hence, better prognostic tools are needed to reflect the biological diversity of 

these cancers. Previously, high numbers of specialized blood vessels called high-endothelial venules have been 

reported to be associated with prolonged survival in patients with breast cancer. In this study, we analysed the 

prognostic value and morphological characteristics of tumour-associated high-endothelial venules in oral cancer. 

 

Methods: The presence of tumour-associated high-endothelial venules was evaluated by immunohistochemistry 

in 75 patients with oral squamous cell carcinoma and analysed with correlation to clinicopathological parameters, 

patients’ survival, and vessel morphology. Ten of the samples were analysed at multiple levels to evaluate 

intratumoural heterogeneity. 

 

Results: The presence of tumour-associated high-endothelial venules was found to be associated with lower 

disease-specific death in multivariate regression analyses (P=0.002). High-endothelial venules were present in all 

(n=53) T1-T2 tumours, but only in two-thirds (n=14) of the T3-T4 tumours. The morphology of high-endothelial 

venules was heterogeneous and correlated with lymphocyte density. High-endothelial venules were found to be 

distributed homogeneously within the tumours. 

 

Conclusion: We found the presence of tumour-associated high-endothelial venules to be an easy-to-use, robust, 

and independent positive prognostic factor for patients with oral cancer. Absence of these vessels in advanced-

stage tumours might identify patients with more aggressive disease. Evaluating the presence of tumour-associated 

high-endothelial venules might help to tailor the treatment of oral cancer patients to their individual needs. 

 

Keywords 

Oral squamous cell carcinoma, prognostic factor, high-endothelial venules, peripheral node addressin, 

inflammation, lymphocyte trafficking 
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Introduction 

The far majority (>90%) of malignancies in the oral cavity and the oropharynx are squamous cell carcinomas 

(SCCs), which are generally aggressive and frequently metastasize to lymph nodes at an early phase (1). The TNM 

staging system, which describes tumours based on the size and invasion features of the primary tumour (T), the 

presence of lymph node metastases (N), and distant metastases (M) (2) is currently the most reliable way to predict 

the outcome for patients with oral SCCs (OSCCs) (3, 4). However, the TNM grading does not reflect the 

considerable biological diversity of these tumours (5). Numerous studies on potential prognostic markers to foresee 

the outcome and therapeutic needs of individual OSCC patients have been performed (6-8). Despite concerted 

efforts, none of these biomarkers are routinely used in clinical practice. Thus, there is a great need to identify new 

and better prognostic tools that are both reliable and easy to implement in clinical routines. Furthermore, a better 

understanding of the biology of OSCCs could guide the development of new, targeted therapies for OSCC patients.  

Angiogenesis is one of the hallmarks of cancer and, as such, generally associated with tumour progression and 

poor clinical outcome (9). However, formation of specialized blood vessels called high-endothelial venules 

(HEVs) has recently been found to be associated with a favourable prognosis in breast cancer patients, probably 

by facilitating anti-tumour responses through recruitment of cytotoxic lymphocytes to the tumour site (10, 11). 

HEVs appear normally in lymph nodes where they support high levels of lymphocyte extravasation from the blood 

(10, 12). As their name implies, HEVs are characterized by cuboidal endothelial cells, which express specialized 

ligands for lymphocytes such as the chemokine peripheral node addressin (PNAd) on their luminal surface (13). 

By binding to L-Selectin, PNAd anchors circulating, naive lymphocytes to the HEV wall (14). Lymphocyte 

extravasation is mediated through discontinuous, ‘spot-welded’ junctions, which are characteristic for HEV 

endothelial cells (12, 15, 16), and which differ from the tight-junctions that characterize capillary and arterial 

endothelium (17). High density of tumour-infiltrating lymphocytes (TILs) has earlier been shown to have 

beneficial effects on patient survival in several human solid tumours (18, 19). TILs are sometimes organized in 

so-called tertiary lymphoid structures (TLSs), which resemble lymphoid follicles in lymph nodes, but typically 

appear in non-lymphoid tissue under terms of chronic inflammation (20). HEVs are thought to be key players in 

the recruitment of lymphocytes to the TLSs, and TLS formation has  been  associated with improved survival rates 

in lung-, breast-, colorectal- and oral cancer (11, 21-23). In human cancers, presence of HEVs, both in TLSs and 

independent of these structures, is a recent discovery (10). Tumour HEV density and phenotype have been found 

to be highly heterogeneous and dependent on the surrounding tissue, suggesting that HEVs shape their tissue 

microenvironment and vice versa (24). HEVs were seen to form independently from T- and B-lymphocytes but 
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strongly required signalling from dendritic cells (13, 25, 26). Remodelling of tumour HEVs from lymphocyte-

carrying vessels into dilated, blood-carrying vessels with thin walls has been proposed as an early prognostic 

marker of sentinel lymph node metastasis in breast and oral cancer patients (27, 28). Different from their 

counterparts within peripheral lymph nodes, tumour-associated HEVs and HEVs within TLSs are still poorly 

understood (29). However, a better understanding of the mechanisms regulating tumour HEVs might have a 

promising potential in modulating tumour growth and developing new therapeutic strategies for cancer patients 

(24). 

The present study was performed to assess the morphology and prognostic value of tumour-associated HEVs in 

OSCCs as well as their correlation to clinicopathological characteristics. Immunohistochemical staining for HEVs 

was conducted on tumour samples from 75 OSCC patients. We found that the presence of HEVs is an independent 

prognostic marker for lower disease-specific death (DSD), and that lack of these vessels in advanced-stage tumours 

identifies patients with more aggressive disease. Thus, the presence of HEVs might be a useful hallmark to stratify 

OSCC patients and to help select patient subsets for individual therapeutic approaches.
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Materials and Methods 

Patients 

The study broadly adheres to the REMARK recommendations for tumour marker prognostic studies (30). 

Formalin-fixed, paraffin-embedded tumour samples from 75 patients with histologically verified primary SCC of 

the oral cavity were collected from the archives of the Department of Clinical Pathology, University Hospital of 

North Norway (UNN). Inclusion criteria were availability of both tissue from the primary tumour and clinical 

information. Patients with prior radiotherapy to the head and neck area and patients with previous oral and 

pharyngeal cancer were excluded from the study. Large biopsies covering the subepithelial areas were evaluated 

from the patients who were not resected. Data on clinicopathological features, including treatment procedures and 

the HPV status were acquired from the patients’ hospital files, pathology reports and the Statistics of Norway, 

Cause of Death Registry, and are presented in Table 1. The tumours were staged according to the newest TNM 

classification at the time of diagnosis (31-34). The classification of cancers of the lip and oral cavity remained 

unchanged between the different editions during the registration periods thus giving no consequence for the study. 

The patients were diagnosed in the period 1986–2002 and the last day of follow-up was January 1st, 2012. The 

Regional Committee for Medical and Health Research Ethics, Northern Norway, approved the use of the patients’ 

tissue and the collection of the clinical information (REK-number 22/2007).  

Immunohistochemistry 

Immunohistochemical studies of HEVs were performed on formalin-fixed, paraffin-embedded, four-micrometer-

thick tumour tissue sections. Manual staining for HEVs, including evaluation of antibody specificity, were carried 

out as previously described (23, 35). In brief, after rehydration, heat-induced antigen retrieval, and blocking steps, 

sections were incubated with the PNAd primary antibody (#120801, Rat anti-PNAd, clone MECA-79, Biolegend, 

San Diego, dilluted 1:25) for 30 minutes. Afterwards, HRP-labelled goat anti-rat light chain secondary antibody 

(#AP202P, Millipore, Temecula, CA, dilluted 1:250, incubated 30 minutes) and diaminobenzidine (Dako 

EnVision + System-Horseradish Peroxidase, Dako,) were used for detection. Counterstaining was done with Harris 

hematoxylin (Sigma-Aldrich, St. Louis, MO). As previously described(23), formalin-fixed, paraffin-embedded 

human lymph nodes served as positive controls. Antibody specificity was evaluated by immunohistochemical 

staining of consecutive sections of OSCC cancer tissue from six different patients as well as three normal oral 

mucosa samples with the PNAd antibody, the blood vessel marker CD34, and the lymphatic endothelial cell marker 

D2-40. A few CD34+ vessels, but no D2-40+ lymphatic vessels displayed sporadic PNAd-staining in consecutive  
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OSCC tissue sections, whereas the three normal oral mucosa tissue sections were entirely negative for the PNAd 

antibody. No other HEV markers were used for verification of PNAd-positive vessels, as the PNAd antibody 

displayed only little unspecific staining. Sections where the primary antibody was omitted were used as negative 

controls. 

High-endothelial venule count and morphological analysis 

Seventy-five patients were included in the study. In 65 of them, the presence of HEVs was assessed based on 

evaluation of the PNAd staining at a single level in the tumour tissue block. In the remaining 10 patients, the 

blocks were cut down completely and presence of HEVs was assessed at 100µm distance throughout the tumour 

sample. All sections were stained with the endothelial cell marker PNAd as described above. The cutoff-value for 

PNAd-positivity was obtained from hotspot analyses, as a modification of the method published by Weidner et al 

(36). The sections were assessed by light microscopy at low power magnification (100×) to recognize the areas 

with highest HEV density (hotspots). Only distinct brown PNAd-staining in clusters of more than one cell were 

considered as HEVs. Micrographs of the five areas with highest HEV density were taken with a Leica DFC 420 

camera on a Leica DM2000 microscope (Leica, Wetzlar, Germany) at high power magnification (400×), and the 

number of HEVs in the photographs was counted manually. For each tumour, the number of HEVs in each hotspot 

was added and the total number was then divided by five, giving a mean number of tumour-associated HEVs per 

section. Some tumours had less than five HEV positive areas. In these cases, the total sum of HEVs was also 

divided by five. The median number of HEVs per hotspot for the whole group of patients was used as cutoff-value 

for positive and negative HEV count, respectively. To verify PNAd staining, whole-slide digital images of the 

same tumour sections were manually reinvestigated for presence of HEVs at very high magnification under the 

virtual objective of the virtual microscope using the same cutoff-value for HEV-positivity as derived by hotspot 

analyses. This approach mainly aimed to avoid false-negative results due to weak PNAd staining in sporadic 

sections, which might be hard to detect using conventional light microscopy. Moreover, there is a growing interest 

in using whole-slide imaging for different applications in pathology practice (37), and we wanted to test practical 

issues including efficiency of PNAd detection. For these reasons, and for being able to study HEV morphology, 

all slides were scanned with a Zeiss Mirax Scanner at 400× magnification, and the whole-slide digital images were 

investigated at high-magnification (up to 63.76×) using the image analysis Mirax Viewer Software (3d Histech, 

Budapest, Hungary). Digital line measurement-tools, developed in the Mirax Viewer Software, were used to 

analyse (minimal) distances between outer vessel wall of HEVs and nearest tumour cells, vessel wall thickness, 

and inner vessel diameter. For quantitative estimation of the association between morphologic alteration of HEVs 
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and level of inflammation, vessel wall thickness and lumen diameter of 100 HEVs were analysed in areas with 

low and high levels of inflammation, respectively. Level of inflammation was evaluated semi quantitatively in the 

digitized PNAd stained sections with a cutoff of 50 lymphocytes/field of vision at high power magnification. 

Branched vessels and vessels without evident lumina were not taken into account when evaluating vessel wall 

thickness and inner lumen diameter. In general, no PNAd-positive single cells were counted as HEVs. HEVs have 

earlier been found in the same tissue sections in relation to TLSs (23), and these lymph node-like structures might 

also arise in the salivary glands, unrelated to the tumour. Thus, to exclude HEVs that were not tumour-associated, 

only HEVs within 700µm distance from the tumour front were taken into account. A trained pathologist 

histologically evaluated this. All studies were carried out manually. 

Statistical Analysis 

Statistical analyses were performed using the SPSS software version 22.0 for Windows (IBM, Armonk, NY) and 

Microsoft Excel 2013 (Microsoft, Redmond, WA). Inter-observer variability for HEV count was quantified by the 

Spearman correlation test. Vessel wall and lumen diameter data produced by image analysis deviated from a 

normal distribution. Therefore, a Mann-Whitney U test was used to determine if there was a significant difference 

in vessel wall thickness and lumen diameter between HEVs found in areas with high and low levels of 

inflammation, respectively. Correlation analyses for possible associations between different variables were 

performed using the Pearson's Chi-square test. Univariate Kaplan Meier analyses were used to evaluate disease-

specific death (DSD) rates and disease-specific survival (DSS) curves. Significant differences between the groups 

of patients were estimated by the log-rank test. Statistically significant determinants in the univariate analysis were 

entered into multivariate Cox regression analyses. A stepwise forward multiple Cox regression analysis was 

carried out to determine independent prognostic factors. Validity of the proportional hazards assumption was tested 

by plotting log-minus-log plots. P-values <0.05 were considered statistically significant. 
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Results 

High-endothelial venules were present in the majority of oral squamous cell carcinomas and homogeneously 

distributed within each tumour 

Seventy-five patients with SCC of the oral cavity were evaluated for presence of HEVs by immunohistochemical 

staining for the MECA-79-reactive ligand PNAd. We first defined a cutoff value for PNAd-positivity by analogue 

hotspot analysis. The total number of tumour-associated HEVs was counted in five hotspots from each section. 

According to a median count of 0.5 HEVs per hotspot, we defined tumours with a total number of < 3 tumour-

associated HEVs per section as HEV-negative and those with a total number of ≥ 3 HEVs per section as HEV-

positive. The reproducibility for hotspot analysis between the two investigators (EHO and AMW) was very good 

with the Spearman's Rho correlation coefficient for mean HEV count per tumour section being 0.970. The cutoff 

value was subsequently applied to whole-slide digital images of the same tissue sections. Digital image analyses 

at high-power magnification using the designed cutoff-value for PNAd-positivity revealed that 68 (90.7%) of the 

OSCC samples were positive and the remaining 7 (9.3%) were negative. The final evaluation of the sections with 

high magnification revealed more vessels than the first hotspot analyses. We therefore recommend using high-

power magnification to detect vessels with less intensive staining and avoid false-negative results. HEVs were 

preferentially located peripherally in the tumour stroma within marked accumulations of inflammatory cells. The 

tissue samples that were investigated for HEVs on multiple levels showed a full correlation in HEV score 

(positive/negative) between the levels. Nine of the 10 tissue blocks were positive for HEVs on multiple levels 

throughout the tumour sample, whereas one tissue block was entirely negative for HEVs on multiple levels.  

High-endothelial venules in oral squamous cell carcinoma displayed heterogeneous morphology related to the 

inflammatory infiltrate in oral squamous cell carcinoma 

The HEVs in our OSCC patient cohort displayed a heterogeneous morphology, and the three main phenotypes 

were: vessels with a thick wall and a small lumen (Figure 1A), vessels with a thin wall and a larger lumen (Figure 

1B), and branched vessels (Figure 1C). Dilated and especially branched vessels were characterized by a gradual 

loss of their specific marker PNAd (Figure 1B and C, arrows). Morphologic alterations of HEVs were also 

evaluated in association to their surrounding tissue microenvironment (Figure 2). In highly inflammatory regions, 

mainly HEVs with a thick wall and a small or no lumen were seen (Figure 2A), whereas HEVs in regions with 

less infiltrating immune cells usually presented with thinner walls and a larger lumen (Figure 2B). Quantitative 

analysis of vessel wall thickness and lumen diameter of 100 HEVs in areas with low and high level of 
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inflammation, respectively, showed that vessel walls of HEVs were significantly thicker in areas with high 

compared to areas with low grade of inflammation (U=1724.5; P<0.001; Figure 2D). Lumen diameter, however, 

was significantly larger in HEVs located within low-grade inflammatory regions (U=3219.0; P<0.001; Figure 2E). 

Branched vessels were found in locations with various levels of inflammation (Figure 2, asterisks). Only few 

HEVs were seen in areas with very low inflammation (Figure 2C). Each of the tumour samples usually contained 

a heterogeneous mixture of the 3 HEV morphologic phenotypes (Figure 2, overview picture) and no single 

phenotype was exclusively found in any of the tumours. In association with the TLSs, however, only thick-walled 

HEVs with a very small or no lumen were found (data previously presented in (23)). 

Presence of tumour-associated HEVs is an independent positive prognostic factor in patients with oral squamous 

cell carcinoma 

Presence of HEVs was analysed with correlation to the patients' clinicopathological features and 5-year DSD 

(Tables 1 and 2). As presented in Table 1, presence of HEVs was significantly associated with tumour 

differentiation, T stage, and HPV-status. In univariate analysis, positive HEV status was significantly associated 

with longer 5-year survival rate (73.5% compared to 14.3% in HEV-negative patients, P<0.001; Figure 3B). 

Significant adverse prognostic factors in univariate analysis included tumour site different from the mobile tongue 

as well as increasing T stage and positive N- and M stages, as indicated in Table 2. The T- and the N stages as 

well as the tumour site and the HEV-status were entered into multivariate Cox regression analyses. The cases with 

the unknown T- and N stages as well as the M status were taken out from the calculations because of unequal 

group size. All variables satisfied the proportional hazards assumption (Figure S1). Both the T stage (P<0.001) 

and the HEV-status (P=0.002) were independently predictive for DSD (Table 3). HEVs were found in all (n=53) 

of the T1-T2 tumours, but only in two-thirds (n=14) of the T3-T4 tumours (Table 1). For this reason, separate 

univariate analyses were conducted on the 21 patients with T3-T4 OSCCs. In these tumours, the absence of HEVs 

was a statistically significant predictor for lower 5-year survival (14.3% compared to 28.6% in HEV-positive 

patients, P=0.004; Figure 3A). No multivariate analyses were carried out on this patient subset due to small sample 

size.
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Discussion 

In this study, we have presented tumour-associated HEVs as a robust and easy-to-use, independent positive 

prognostic marker for patients with oral cancer. Sixty-eight (90.7%) of the 75 OSCC samples were defined as 

HEV-positive and the remaining 7 (9.3%) were negative. Univariate analysis showed that patients with HEVs had 

a significantly lower 5-year DSD rate compared to patients without HEVs (P<0.001). In multivariate analyses both 

the HEV-status and the T stage were significant independent predictors of DSD (P=0.002 and P<0.001, 

respectively). HEVs were found in all T1-T2 tumours, but only in two-thirds of the T3-T4 tumours, suggesting 

tumour-associated HEV-status as a promising prognostic factor in patients with advanced cancer. Previously, 

tumour HEVs were found to be independently associated with favourable clinical outcome in breast cancer (10). 

To the best of our knowledge, this is the first study to report HEVs as an independent positive prognostic factor 

for primary OSCC cancer patients. 

Tumour HEVs have earlier been shown to display a broad heterogeneity (10, 38). Previously, tumour HEVs were 

observed in human solid cancers, such as melanomas, breast cancers, colon, lung, and ovarian carcinomas in 

approximately 70% of the patients (10, 11, 24, 39). In oral cancer, however, we found approximately 90% of the 

patients to be HEV-positive. This might be  due to intertumoural heterogeneity as well as different methodical 

approaches including individual cut-off points for HEV-positivity. The majority of the HEV negative tumours 

were found in oral locations other than the tongue, suggesting that HEVs may form more readily in some 

environments than others. In non-small-cell lung cancer, HEVs have been exclusively associated with ectopic 

lymphoid accumulations of immune cells called TLSs (40). We have previously reported the presence of HEVs in 

association with TLSs in the same OSCC patient cohort as in the present study (23). In contrast to the report from 

non-small-cell lung cancer, we here demonstrate that the majority of HEVs were unrelated to TLSs, as 68 of the 

75 patients were HEV-positive while TLSs were only found in 17 of the tumours (23). Presence of HEVs was 

significantly associated with HPV-status, assessed by p16 immunohistochemical staining, where a higher 

proportion of the HPV-negative tumours were HEV-positive. Due to the low number of HPV-positive tumours in 

our study, this correlation needs to be confirmed in larger studies. Intratumour heterogeneity displays great 

challenges for the identification of suitable prognostic markers (41). In our study, we therefore performed multiple 

level assessments of 10 tissue blocks showing that analysis for HEV-positivity on a single level can be considered 

representative for the whole tumour. These results underpin the value of HEVs as a simple and robust, positive 

prognostic marker that might be easily implementable in clinical routines for patients with oral cancer.  
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Recent findings indicate that HEVs have an important role in cancer progression and that their plasticity might be 

a critical feature (24, 27, 28). Martinet et al. conducted a study on breast carcinoma sections, where the highest 

density of tumour HEVs was found within the in situ and not the invasive component (42). In our study, HEVs 

were found in all of the T1-T2 tumours, but were not observed in one-third of the T3-T4 tumours, suggesting that 

these vessels might play an important role for the progression of oral cancer, perhaps by suppressing tumour 

growth. HEVs have however been shown to be plastic and able to differentiate and dedifferentiate upon various 

stimuli, such as from the tumour microenvironment (13). Thus, in larger tumours, HEVs might transdifferentiate 

to normal blood vessels and gradually lose their specific marker PNAd. Several studies have reported that such a 

remodelling is associated with poor prognosis (27, 28). Dendritic cells are thought to be important regulators of 

HEV-mediated lymphocyte trafficking to lymph nodes (24). In the absence of dendritic cells, mature HEVs were 

seen to revert to an immature phenotype, and HEV-mediated lymphocyte recruitment to lymph nodes was inhibited 

(26). Thus, it might be that more advanced tumours have found ways to disarm the dendritic cells causing HEV 

regression. Generation and maturation of dendritic cells, however, might vary with tumour grade and also within 

the tumours, which might then result in heterogeneous HEV phenotypes. We found dilated and especially branched 

HEVs to be characterized by a gradual loss of their PNAd staining. Moreover, these morphologically altered HEVs 

were generally associated with low grade of inflammation. Accordingly, HEVs with a thick wall and a small lumen 

– resembling the lymphocyte trafficking functional phenotype – were mostly located in areas with more prominent 

lymphocytic infiltration. These findings are consistent with previous results, where HEVs lined by a cuboidal 

endothelium were surrounded by more lymphocytes than those lined by a flat endothelium (39). In our patient 

cohort, HEVs with different morphologies were found in the same tumours. Tumour growth from a single cell is 

a stepwise progression, and the heterogeneity of HEV morphology within a single  tumour might be due to 

transition processes in tumour immunogeneity.  

It has earlier been shown that remodelling of HEVs in lymph nodes of human breast cancer and OSCC patients is 

a poor prognostic factor (27, 28). In the present study, we have not investigated the presence and morphology of 

HEVs in metastatic lymph nodes of these patients. However, in future studies, it would be of great interest to 

investigate the HEV status in the respective lymphatic basin. Further, we did not evaluate the association between 

specific morphological phenotypes and clinicopathological characteristics, but rather the presence of HEVs 

irrespective of their morphologic features, as many tumours displayed several morphological HEV phenotypes. 

Hence, we can only hypothesize that morphologically altered vessels might have adverse effects on tumour 

progression. Additionally, it would be interesting to see if HEVs with weak PNAd-staining start expressing blood 
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vessel markers, and if HEV phenotype is associated with presence or absence of dendritic cells. Another weakness 

of our study is that we conducted semi-quantitative analyses of HEV surrounding lymphocytes, but did not 

distinguish between different subsets of lymphocytic cells. In future studies, it would be of great interest to better 

characterize the inflammatory infiltrate in which HEVs arise, as cell-type-specific transcription factors are 

probably involved in the development and maintenance of HEVs (13). Studying different subsets of immune cells 

and specific chemokines might be an interesting supplement to better understand possible interactions between 

HEVs and the tumour microenvironment. Finally yet importantly, our results have to be confirmed in larger 

studies. 

 

In conclusion, we report that the presence of tumour-associated HEVs in OSCCs is significantly correlated with 

lower DSD. Tumour HEVs were commonly found in early-stage OSCCs, but only in two-thirds of the T3-T4 

tumours. Thus, evaluation of this biomarker might be important to identify patients with more aggressive T3-T4 

OSCCs. Our results on HEV morphology indicate an intricate relationship between HEVs and the surrounding 

microenvironment. HEVs are highly plastic and shifting from a lymphocyte- to a blood-carrying vessel might be 

associated with tumour progression. Thus, identification of markers and genes for HEV development and 

regulation in cancer-associated inflammation may open new opportunities for targeted therapies and genetic 

manipulation. As immunohistochemical detection of HEVs is simple, and the distribution of these vessels seems 

to be even throughout a tumour, this may be a valuable supplement to the TNM-staging for prognosis assessment 

and treatment stratification in OSCC patients. 
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Tables 

Table 1: Comparison of clinicopathological variables between 75 OSCC patients with and without high-

endothelial venules (HEVs) using Pearson's Chi-square test. 

 
 HEV-negative HEV-positive  

(N = 7) (no. (%)) (N = 68) (no. (%)) P-value 

Gender       

Male 6 (85.7) 37 (54.4) 

0.227 Female 1 (14.3) 31 (45.6) 

Age at diagnosis, years       

Mean  68.29 62.26 0.795 

0-59 2 (28.6) 26 (38.2) 

0.706 ≥ 60 5 (71.4) 42 (61.8) 

Smoking history       

Never smoker   1 (14.3) 16 (23.5) 

0.821 

Former smoker 1 (14.3) 9 (13.2) 

Current smoker 4 (57.1) 39 (57.4) 

Unknown 1 (14.3) 4 (5.9) 

Alcohol consumption       

Never 1 (14.3) 11 (16.2) 

0.156 

≤ 1 times weekly 0 (0.0) 27 (39.7) 

> 1 times weekly or daily 3 (42.9) 17 (25.0) 

Unknown 3 (42.9) 13 (19.1) 

Tumour site       

Mobile tongue 1 (14.3) 34 (50.0) 

0.071 All others 6 (85.7) 34 (50.0) 

Tumour differentiation       

Well 3 (42.9) 25 (36.8) 

0.036 

Moderate 2 (28.6) 40 (58.8) 

Poor 2 (28.6) 3 (4.4) 

T stage        

T1/T2 0 (0.0) 53 (77.9) 

<0.001 

T3/T4 7 (100.0) 14 (20.6) 

Unknown 0 (0.0) 1 (1.5) 

N stage       

N0 3 (42.9) 48 (70.6) 

0.326 

N+  3 (42.9) 15 (22.1) 

Unknown 1 (14.3) 5 (7.4) 

M stage       

M0 6 (85.7) 63 (92.6) 0.668 
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M+  0 (0.0) 1 (1.5) 

Unknown 1 (14.3) 4 (5.9) 

HPV/p16       

Negative 4 (57.1) 61 (89.7) 

0.011 

Positive 1 (14.3) 5 (7.4) 

Unknown 2 (28.6) 2 (2.9) 
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Table 2: Clinicopathologic variables as predictors for 5-year disease-specific death in univariate Kaplan-Meier 

analysis for 75 patients with OSCC. 

 Patients (N= 75) 5-Year DSD  

(no. (%)) (%) P-value 

Gender       

Male 43 (57.3) 37.2 
0.206 

Female 32 (42.7) 25.0 

Age at diagnosis, years       

0-59 28 (37.3) 28.6 
0.578 

≥ 60 47 (62.7) 34.0 

Smoking history       

Never smoker     17 (22.7) 23.5 

0.654 
Former smoker 10 (13.3) 20.0 

Current smoker 43 (57.3) 37.2 

Unknown 5 (6.7) 40.0 

Alcohol consumption       

Never 12 (16.0) 16.7 

0.347 
≤ 1 times weekly 27 (36.0) 29.6 

> 1 times weekly or daily 20 (26.7) 35.0 

Unknown 16 (21.3) 43.7 

Tumour site       

Mobile tongue 35 (46.7) 17.1 
0.024 

All others 40 (53.3) 45.0 

Tumour differentiation       

Well 28 (37.3) 28.6 

0.679 Moderate 42 (56.0) 33.3 

Poor 5 (6.7) 40.0 

T stage       

T1/T2 53 (70.7) 15.1 

<0.001 T3/T4 21 (28.0) 76.2 

Unknown 1 (1.3) 0.0 

N stage       

N0 51 (68.0) 21.6 

<0.001 N+  18 (24.0) 66.7 

Unknown 6 (8.0) 16.7 

M stage       

M0 69 (92.0) 31.9 

0.014 M+  1 (1.3) 100.0 

Unknown 5 (6.7) 20.0 
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HPV/p16       

Negative 65 (86.7) 32.3 

0.570 Positive 6 (8.0) 16.7 

Unknown 4 (5.3) 50.0 

HEV       

Negative 7 (9.3) 85.7 
<0.001 

Positive 68 (90.7) 26.5 

 

P-values were calculated using the log-rank test. 
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Table 3: Multivariate analysis of 5-year disease-specific death according to Cox’s proportional hazards model*. 
Variable Hazard ratio 95% C.I. P-value 

T stage (T1/T2 [n= 49] v. T3/T4 [n=20]) 8.296 3.120 – 22.062 <0.001 

HEV (negative [n = 6] v. positive [n = 63]) 0.147 0.044 – 0.490 0.002 

*Only 69 patients were analysed because the cases with the unknown T- and N stages were taken out from the 

calculations. 
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Figures 

Figure 1: Different phenotypes of high-endothelial venules in oral squamous cell carcinoma. The pictures 

show representative immunohistochemical stainings for high-endothelial venules (HEVs). Both HEVs with a thick 

wall and a small or no lumen (A) as well as HEVs with a thinner wall and a larger lumen (B) were found. Some 

of the HEVs were also seen to branch out (C). Dilated and branched vessels gradually lost their specific marker 

PNAd (arrows, B and C). PNAd+ vessels are stained brown and cell nuclei are stained blue by hematoxylin. Scale 

bars indicate 50µm. 
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Figure 2: Qualitative and quantitative analysis of distribution of morphologic altered high-endothelial 

venules in the tumour microenvironment of oral squamous cell carcinoma. Pictures A-C show representative 

immunohistochemical stainings for high-endothelial venules (HEVs) in areas with various levels of lymphocyte 

infiltration. In sections with high level of inflammation (A), HEVs had a significantly thicker wall (D) and smaller 

lumen (E) compared to sections with lower level of inflammation (B). In regions with very low or no inflammation, 

very few or no PNAd+ vessels were seen, respectively (C). Branched vessels were found in areas with various 
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levels of inflammation (asterisks in overview picture). PNAd+ vessels are stained brown and cell nuclei are stained 

blue by hematoxylin. Scale bars indicate 500µm in the overview picture and 50µm in the enlarged sections (A-C). 

Columns indicate average vessel wall thickness (D) and lumen diameter (E). Error bars represent one standard 

deviation. **, P<0.001 relative to HEVs found in areas with low level of inflammation.
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Figure 3: Kaplan-Meier analysis of 5-year disease-specific survival for patients with oral squamous cell 

carcinoma with and without high-endothelial venules. The presence of high-endothelial venules (HEVs) is 

associated with improved survival in A) 21 patients with T3-T4 oral squamous cell carcinoma (OSCC) (P=0.004) 

and in B) all 75 OSCC patients in our cohort (P<0.001). In the T3-T4 tumours (A), the Kaplan-Meier curve shows 

a 5-year disease-specific survival (DSS) rate of 28.6 % for HEV-positive patients and 14.3 % for HEV-negative 

patients. The 5-year DSS rate for all HEV-positive patients in our cohort (B) was 73.5 %. The P-value was 

calculated using the log-rank test. 
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Supplemental data 

 

Figure S1: Log minus log plots for proportional hazards checking; (A) T stage; (B) N stage, (C) tumour site, (D) 

high-endothelial venules (HEVs). 

 


