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Abstract

Given a constant weight linear code, we investigate its weight hierarchy and the Stanley-Reisner
resolution of its associated matroid regarded as a simplicial complex. We also exhibit conditions
on the higher weights sufficient to conclude that the code is of constant weight.
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1 Introduction and notation

In [6] one found the hierarchy of higher Hamming weights for constant weight linear codes over
a finite field Fq, and one also found some sufficient conditions to conclude that a linear code is of
constant weight (if it is of constant weight of some "higher order"). In the present paper we will first
give some other sufficient conditions. Then we will proceed to give more refined information about
constant weight codes by studying the associated matroids derived from parity check matrices. From
a more abstract perspective, since [2], it is well known that if one regards a matroid as a simplicial
complex (using independent sets as faces), then the Stanley-Reisner ideal of its Alexander dual
has a pure, linear N-graded resolution. Furthermore it is clear from Corollary 4.4 of [4] that the
Stanley-Reisner ideal of a matroid itself has a pure, linear resolution if and only its restriction to its
set of non-isthmuses is uniform. Here we will exhibit finite matroids (those derived from constant
weight codes), which themselves have pure N-graded resolution of their Stanley-Reisner rings, but
being far from linear. Before giving more details (at the end of this section) about our results we
will explain our notation and concepts.

Let Fq be a finite field. A linear q-ary code C is a linear subspace of Fn
q for some n ∈ N. We

denote by k the dimension of the code as a vector space over Fq. A codeword c is an element of the
code, and a subcode is a linear subspace of C. We denote by Ci(C) the set of subcodes of dimension
i of C. Let c = (c1, · · · , cn) be a codeword and x ∈ {1, · · · , n}. We will sometimes write c|x for cx.
Let D ⊂ C a subcode. Its support is

Supp(D) = {x ∈ {1, · · · , n}, ∃d ∈ D, d|x 6= 0}

and its weight is
w(D) = #Supp(D).

The weight of a codeword is the weight of the subcode generated by it. The minimum (Hamming)
distance d of a code is the minimal weight of its non-zero codewords or equivalently of its 1-
dimensional subcodes. A [n, k, d]q code is a linear q-ary code in Fn

q of dimension k and minimum
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distance d.
In [3], one generalizes the minimum distance to subcodes of higher dimension, namely, for 1 6 i 6 k,

di = min {w(D), D ∈ Ci(C)} .

In particular, d1 = d.
For our purpose, a code can be given in two equivalent ways: either by a generator matrix or a
parity check matrix. A generator matrix GC of the code C is a k× n matrix whose row space is C.
A parity check matrix HC of the code C is a (n− k)× n matrix such that

c =
[

c1 · · · cn
]

∈ C ⇔ cHt
C =

[

0 · · · 0
]

.

Such matrices are not unique for a given code.
A constant weight code is a code whose non-zero codewords have the same weight d.

We refer to [9] for the theory of matroids. A matroid ∆ on the set E = {1, · · · , n} can be
characterized by many equivalent definitions. We give one here: a matroid is defined by its set
B ⊂ 2E of bases satisfying the following properties:

• B 6= ∅,

• ∀B1, B2 ∈ B, ∀x ∈ B2 −B1, ∃y ∈ B1 −B2 such that B2 − {x} ∪ {y} ∈ B.

An independent set is a subset of a basis, and a circuit is a minimal dependent set. For any subset
σ ⊂ E, the rank of σ is

rank(σ) = max{#(B ∩ σ), B ∈ B},

and for any 1 6 i 6 n− rank(E), define the higher weights of the matroid by

di = min{#σ, #σ − rank(σ) = i}.

Let C be a [n, k, d]q code given by a parity check matrix HC . We can define a matroid ∆(HC)
in the following way: its ground set is E = {1, · · · , n} (the indices of the columns of HC) and its
set B of bases is

B =

{

σ ⊂ E, σ maximal such that the columns of HC

labelled by σ are linearly independant

}

.

It can be shown that (for example in [7]):

• two different parity check matrices give the same matroid,

• the rank of the matroid is n− k,

• the two sets of di defined in this section coincide (those for the code C and those for the
matroid ∆(HC)).

A simplicial complex ∆ on the finite ground set E is a subset of 2E closed under taking subsets.
We refer to [8] for a brief introduction of the theory of simplicial complexes, and we follow their
notation. A matroid is in a natural way a simplicial complex through its set of independent sets.
Given a simplicial complex ∆ on the ground set E, define its Stanley-Reisner ideal and ring in the
following way: let K be a field and let S = K[x] be the polynomial ring over K in #E indeterminates
x = {xe, e ∈ E}. Then the Stanley-Reisner ideal I∆ of ∆ is

I∆ =< x
σ, σ 6∈ ∆ >
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and its Stanley-Reisner ring is R∆ = S/I∆. This ring has a minimal free resolution as a NE-graded
module

0←− R∆
∂0←− P0

∂1←− P1 ←− · · ·
∂l←− Pl ←− 0 (1)

where each Pi is of the form

Pi =
⊕

α∈NE

S(−α)βi,α

and S(−α) is the free module generated in degree α, that is S(−α) ∼=< x
α > as NE-graded

modules. Here, P0 = S. The βi,α are called the NE-graded Betti numbers of ∆. We have βi,α = 0 if
α ∈ NE −{0, 1}E. The Betti numbers are independent of the choice of the minimal free resolution,
and for matroids, are also independent of the chosen field K ([1]). We can also look at R∆ as a
N-graded module or an ungraded module. The N-graded and ungraded Betti numbers of ∆ are
then respectively the

βi,d =
∑

|α|=d

βi,α

and the
βi =

∑

d

βi,d.

A code C gives rise to a matroid, and in turn to a simplicial complex. We shall refer to the
Stanley-Reisner ring of the code as R(C) = R∆(HC).

We illustrate this by an example:

Example 1.1 Let C be the [4, 2, 2]2 code defined by the generator matrix

[

1 1 0 0
0 1 1 1

]

.

A parity check matrix is
[

1 1 0 1
0 0 1 1

]

.

The set of bases of the associated matroid is

{{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}},

and the set of circuits (which in this case corresponds to the set of supports of non-zero codewords)
is

{{1, 2}, {1, 3, 4}, {2, 3, 4}}.

The Stanley-Reisner ring is therefore

R(C) = K[x1, x2, x3, x4]/ < x1x2, x1x3x4, x2x3x4 > .

A minimal free resolution of this ring is given by

0 R(C)oo Soo S3
[x1x2 x1x3x4 x2x3x4]
oo S2

[

x3x4 x3x4
−x2 0
0 −x1

]

oo 0oo .
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Using twists, we can rewrite it as

0 R(C)oo Soo S(−{1, 2})⊕ S(−{1, 3, 4})⊕ S(−{2, 3, 4})
[1 1 1]
oo

0 // S(−{1, 2, 3, 4})2

[

1 1
−1 0
0 −1

]

OO

In the sequel, we will omit the maps between the modules. Note that, while the Betti numbers are
unique, the maps are not. The N-graded and ungraded Stanley-Reisner resolution of its associated
matroid are

0← R(C)← S ← S(−2)⊕ S(−3)2 ← S(−4)2 ← 0

and
0← R(C)← S ← S3 ← S2 ← 0.

Our results are as follows. We start in Section 2 by giving two straightforward statements
(Proposition 2.1 and Corollary 2.2) which enable us to conclude that a code is of constant weight
using different assumptions than those in [6]. In Section 3 we prove the main result of the paper,
Theorem 3.1, which partly builds on, and partly generalizes the result from [6]. We determine the
N-graded Betti numbers of the Stanley-Reisner rings associated to the underlying matroid structures
of constant weight codes. As shown in [4], we can derive the weight hierarchy of the code from its
N-graded Stanley-Reisner resolution. In particular we find that for constant weight codes these
rings have pure (but not linear) resolutions. We also find a converse: Codes whose associated ring
are of the given form are constant weight codes; in particular it is enough to find the first Betti
number. At the end we show that the converse doesn’t hold if we restrict ourselves to ungraded
resolutions.

2 The weight hierarchy of a constant weight linear code

The weight hierarchies of constant weight codes were found in [6]. There one proves the results by
investigating value functions, and apply their results to a specific such value function. We will just
restate it here, and refer to [6]. Afterwards, we will give a converse, namely that a code with a given
weight hierarchy is of constant weight.

Theorem 2.1 ([6, Theorem 1]) Let C be a k-dimensional linear code over Fq. Let 1 6 s 6 k−1.
Suppose that all the s-dimensional linear subcodes of C have the same weight ds. Then for every
0 6 t 6 k, and every linear subcode Dt of dimension t of C, we have

w(Dt) = dt = ds
qk − qk−t

qk − qk−s
.

This shows that being constant weight is the same as being constant weight in any dimension,
except in dimension 0 and dimension k.

Corollary 2.1 Let C be a k-dimensional linear code over Fq. Suppose that C is of constant weight.
Then the weight hierarchy (d1, ..., dk) is given by

di = d
qi − 1

qi−1(q − 1)
,

where d is the weight of any non-zero codeword.
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Example 2.1 Let C be the ternary code given by the generator matrix

G =





1 0 1 2 0 1 2 0 1 2 0 1 2
0 1 1 1 0 0 0 1 1 1 2 2 2
0 0 0 0 1 1 1 1 1 1 1 1 1





This a constant weight code with weight 9. Its weight hierarchy is

(d1, d2, d3) = (9, 12, 13).

The converse of this corollary is also true, namely, if a linear code has the weight hierarchy of a
constant weight code, then it is itself a constant weight code. But there is an even stronger converse:

Proposition 2.1 Let C be a [n, k, d]q-code. Assume that dk = qk−1
qk−i(qi−1)

di for some 1 6 i < k.

Then C is a constant weight code with weight dk
qk−1(q−1)

qk−1 .

Proof The proof is based on an easy corollary of lemma 1 in [6]. We keep their notation.

Nr,1m(PG(k − 1, q)) 6 Nrϑ

and there is equality if and only if all the r-dimensional projective subspaces have the same value
ϑ. Since

di = dk −max{m(Pk−i), Pk−i is a (k − i)-dimensional projective subspace},

this amounts to

dk > di
qk−1

qk−i(qi − 1)

with equality if and only if all the (k−i)-dimensional subspaces have the same value, or equivalently
if and only if all the i-dimensional subcodes of C have the same weight. The proposition then follows
from Theorem 1 in [6].

Corollary 2.2 Let C be linear code over Fq of dimension k. Assume that there exists an integer α
such that

di = α
qi − 1

qi−1(q − 1)
∀1 6 i 6 k.

Then C is constant weight, of weight α.

Remark 2.1 The Griesmer bound says that for a [n, k, d]q code, then dk >
∑k−1

i=0 ⌈
d
qi
⌉. It is obvious

that constant weight codes meet their Griesmer bound. The previous corollary could indicate that
the converse is true. But it is not. Consider the [5, 2, 3]2 code given by the generator matrix

[

1 1 1 0 0
0 0 1 1 1

]

This is not a constant weight code, but it reaches its Griesmer bound.

5



3 Betti numbers of the Stanley-Reisner resolution associated

to a constant weight linear code

We are now able to give the N-graded resolution of a constant weight linear code. We use the
notation of [4]. As shown there, the Nn-graded Betti numbers βi,σ of the Stanley-Reisner resolution
of the matroid associated to the code are all zero, except for those subsets σ of the ground set that
are minimal (for the inclusion relation) such that #σ − rank(σ) = i. We write

Ni = {σ ⊂ {1, · · · , n}, #σ − rank(σ) = i} .

Our first goals in this section are to show that if σ ∈ Ni, then σ = Supp(C′) for a subcode C′ of C
of dimension i, and then to prove that there is a one-to-one correspondence between subcodes and
their supports.

The first part of our plan is valid for any code:

Lemma 3.1 Let C be a [n, k, d]q code. Let 0 6 i 6 k and σ ∈ Ni. Then there exists a subcode C′

of C of dimension i such that
σ = Supp(C′).

Proof Any circuit of the associated matroid is the support of a codeword. Namely a circuit is
a minimal dependent subset of the columns of a parity check matrix, and this corresponds to a
codeword (the converse is not true - see Example 3.1). Since σ ∈ Ni, we know from [4] that there
exists a non-redundant set of i circuits τ1, · · · , τi such that

σ =

i
⋃

j=1

τj .

As any circuit is the support of a codeword, we have found i codewords c1, · · · , ci such that

σ =

i
⋃

j=1

Supp(cj) = Supp(< c1, · · · , ci >).

It just remains to show that the subcode generated by these codewords is of dimension i. The
non-redundancy property is the same as saying that there exists i points {x1, · · · , xi} in {1, · · · , n}

such that xl ∈ Supp(cm) if and only if l = m. If
∑i

j=1 λjcj = 0 , then for every 1 6 l 6 i,
(

∑i
j=1 λjcj

)∣

∣

∣

xl

= λlcl|xl
= 0 which implies that λl = 0.

Corollary 3.1 All elements in Ni have the same cardinality di. The resolution is therefore pure.

Proof Theorem 2.1 shows that all the elements of Ni have the same cardinality. The second part
is [4].

The following is generally not valid for general codes, but it is for constant weight codes.

Lemma 3.2 Let C be a constant weight [n, k, d]q code. Let C′ be a subcode and c be a codeword.
Then we have

c ∈ C′ ⇔ Supp(c) ⊂ Supp(C′).
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Proof One way is trivial. Assume now that Supp(c) ⊂ Supp(C′). Write C′ =< c1, · · · , ci > where
the cj ’s are linearly independant. Let x ∈ Supp(c). We can assume that c|x = 1. Consider the
following codewords:

c′j = cj − (cj |x) c,

and the subcode C′′ =< c′1, · · · , c
′
i >. It is obvious that Supp(C′′) ⊂ Supp(C′) − {x}. From

Theorem 2.1, we know that
#Supp(C′) = di,

and therefore Supp(C′′) < di. Theorem 2.1 again shows that the dimension of the code C′′ is strictly
less that i, or equivalently that c ∈ C′.

Proposition 3.1 Let C be a constant weight [n, k, d]q code. Then the mapping

{Subcodes of C} −→ 2{1,··· ,n}

C′ 7−→ Supp(C′)

is injective.

Proof Indeed, if Supp(C′) = Supp(C′′), then any codeword of C′ is in C′′ and vice versa.

Example 3.1 The converses of Lemma 3.2 and Proposition 3.1 are not true. Consider namely the
binary code given by the generator matrix





1 0 0 1 0
0 1 0 1 0
0 1 1 0 1



 .

Then c1 = (1, 1, 1, 1, 1) is a codeword whose support is {1, 2, 3, 4, 5}. The subcode generated by the
codewords c2 = (1, 1, 0, 0, 0) and c3 = (0, 0, 1, 1, 1) has also support {1, 2, 3, 4, 5}. But c2 /∈< c1 >
and < c1 > 6=< c2, c3 >. Moreover, even if {1, 2, 3, 4, 5} is the support of a codeword, this is
not a circuit in the associated matroid (since it contains a smaller dependent subset, for example
{3, 4, 5} = Supp(c3).

Proposition 3.2 Let C be a constant weight [n, k, d]q code. Let 0 6 i 6 k. then

Ni = {Supp(C
′), C′ is a subcode of dimension i} .

Proof One inclusion is Lemma 3.1. Let now C′ be a subcode of dimension i. Then by Theorem 2.1,
we know that #Supp(C′) = di. If it wasn’t in Ni, then there would exists a subset X ( Supp(C′)
such that X ∈ Ni. By Lemma 3.1 again, we would find a subcode C′′ of dimension i such that
Supp(C′′) = X . But again by Theorem 2.1, we would get that

di = #Supp(C′′) = #X < #Supp(C′) = di

which is absurd.

From Proposition 3.2 we know that the non-zero contributions to the term of homological degree
i in the Stanley-Reisner resolution of the matroid ∆ associated to a constant weight linear code C
come from its subcodes of dimension i. We also know ([8, Hochster’s formula]) that

βi,σ = h̃|σ|−i−1(∆|σ,K).

Let ∆′ be the simplicial complex where the facets are the independent sets of the matroid
∆(HC′), for HC′ a parity check matrix of C′ (for example obtainable by adding an appropriate
number of rows to HC′).
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Lemma 3.3 Let C′ be a subcode of a linear code C of constant weight. If σ ⊂ Supp(C′), then
∆′|σ = ∆|σ. In particular

βi,σ(R(C′)) = βi,σ(R(C)).

Proof Clearly, if some columns of HC indexed by a subset τ of σ are independent, then the
corresponding columns of HC′ are independent. If, on the other hands the columns of HC indexed
by such a τ are dependent, then there is a codeword c ∈ C with support inside τ ⊂ σ ⊂ Supp(C′).
By Lemma 3.2 we then have c ∈ C′. Hence the columns indexed by τ are dependent in HC′ also.
Hence the lemma holds.

Example 3.2 The previous lemma doesn’t necessarily hold if the code is not constant weight. For
the code given in Example 3.1, the matroid ∆ associated to it has bases set

{{1, 5}, {2, 5}, {1, 3}, {3, 5}, {2, 3}, {3, 4}, {4, 5}}

while the subcode generated by c2, c3 has a associated matroid ∆′ with bases set

{{1, 3, 5}, {2, 3, 4}, {1, 4, 5}, {2, 4, 5}, {2, 3, 5}, {1, 3, 4}}.

Take σ = {1, 2, 3, 4, 5}. Then ∆|σ = ∆ 6= ∆′ = ∆′|σ.

Before proving our main theorem, we need a combinatorial relation between the number of
subcodes of a given dimension. A Grassmannian is a space that parametrizes all the linear subspaces
of a given dimension of a vector space. Translated to coding theory, a Grassmannian is a space that
parametrizes all the linear subcodes of a given dimension of a linear code. The number of linear
subspaces (alt. subcodes) of dimension r of a vector space (alt. code) of dimension k over Fq is
given by

[

k

r

]

q

=
f(k, q)

f(r, q)f(k − r, q)

where f(n, q) =
∏n

i=1(q
i − 1).

Lemma 3.4 Let k > 0. Then

k−1
∑

i=0

(−1)k+i−1

[

k

i

]

q

q
i(i−1)

2 = q
k(k−1)

2 .

Proof The result is obtained by taking t = −1 in Gauss binomial theorem ([5]):

k
∑

i=0

[

k

i

]

q

q
i(i−1)

2 ti =

k−1
∏

i=0

(1 + qit).

We can now prove the main theorem of this section, namely a description of the Stanley-Reisner
resolution of the matroid associated to a constant weight code.

Theorem 3.1 Let C be be a constant weight [n, k, d]q code. Then the N-graded Stanley Reisner
resolution of the matroid associated to the code is

0← R(C)← S ← · · · ← S(−di)
[ki]qq

i(i−1)
2

← · · · ← 0,

where di = d qi−1
qi−1(q−1) for 1 6 i 6 k.
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Proof We do it recursively on the dimension k of the code. For k = 1, all the non-zero codewords
have the same support, say a ⊂ {1, ..., n}, so that R(C) is of the form R(C) = K[x]/ < x

a > and
the Stanley-Reisner resolution is

0← R(C)← S ← S(−a)← 0.

Suppose that we have proved our result for all constant weight codes of dimension less than k. In

particular, for any constant weight code C′ of dimension i 6 k, βi,Supp(C′)(R(C′)) = q
i(i−1)

2 . By
Proposition 3.2 and [4], we know that the Nn-graded Stanley-Reisner resolution of the code is

0← R(C)← S ←
⊕

C′∈C1(C)

S(−Supp(C′))β1,Supp(C′)(R(C)) ← · · ·

←
⊕

C′∈Ck−1(C)

S(−Supp(C′))βk−1,Supp(C′)(R(C)) ← S(−Supp(C))βk,Supp(C)(R(C)) ← 0.

By Lemma 3.3 and the recursion hypothesis, we can assert that the Stanley-Reisner resolution is

0← R(C)← S ←
⊕

C′∈C1(C)

S(−Supp(C′))← · · · ←
⊕

C′∈Ci(C)

S(−Supp(C′))q
i(i−1)

2 ← · · ·

←
⊕

C′∈Ck−1(C)

S(−Supp(C′))q
(k−1)(k−2)

2 ← S(−Supp(C))βk,Supp(C)(R(C)) ← 0.

Since there are exactly
[

k
i

]

q
subcodes of dimension i, it gives that the ungraded resolution is

0← R(C)← S ← S
[k1]qq

1(1−1)
2

← · · · ← S
[ k

k−1]qq
(k−1)(k−2)2

← Sβk,Supp(C) ← 0.

In this resolution we study the terms of degree #Supp(C) in the Hilbert polynomials of each of the
terms. The alternating sum is zero (as is the contribution from R(C)), so

0 =

(

k−1
∑

i=0

(−1)i
[

k

i

]

q

q
i(i−1)

2

)

+ (−1)kβSupp(C),k

and from Lemma 3.4, this gives

βSupp(C),k = q
k(k−1)

2 .

Example 3.3 Take the same code as in Example 2.1. Then the Stanley-Reisner resolution of the
matroid associated to C is

0← R(C)← S ← S(−9)13 ← S(−12)39 ← S(−13)27 ← 0.

Of course, since the N-graded Stanley-Reisner resolution gives the weight hierarchy, the converse
of the previous corollary is true. But there is a stronger converse:

Proposition 3.3 Let C be a [n, k, d]q linear code. Suppose that the Stanley-Reisner resolution of
its associated matroids starts like

0← R(C)← S ← S(−d)[
k

1]q ← · · ·

Then C is a constant weight code of weight d.
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Proof Since in homology degree 1, the contribution of any subset σ of the matroids ground set is 1
if σ is a circuit, and 0 otherwise, the start of the resolution tells us that there are exactly

[

k
1

]

q
circuits

of weight d. We know that any circuit of the matroid corresponds to a vector space generated by
a codeword. So this tells us that there are at least

[

k
1

]

q
subspaces generated by a single codeword.

But there are
[

k
1

]

q
subspaces of dimension 1, which means that all the subspaces of dimension 1 are

generated by a codeword of weight d.

We know the N-graded Stanley-Reisner resolution of a constant weight linear code. As such,
we also know the ungraded Stanley-Reisner resolution (just remove the twists since this is a pure
resolution). A natural question would be to determine whether a code with such a ungraded
Stanley-Reisner resolution is constant weight. The answer is no, as the following example shows.

Example 3.4 Let C be the code of Example 1.1. Its ungraded Stanley-Reisner resolution is the
same as the ungraded Stanley-Reisner resolution associated to the [4, 2, 2]2 constant weight code
defined by the generator matrix

[

1 0 1 0
0 1 1 0

]
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