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Abstract  

Nanotechnology and nanomedicine provide a platform for advanced therapeutic strategies for 

dermal and transdermal drug delivery. The focus of this review is on the current state-of-art in 

lipid-based nanotechnology and nanomedicine for (trans)dermal drug therapy. Drug delivery 

nanosystems based on the (phospho)lipid constituents are characterized and compared, with the 

emphasis on their ability to assure the controlled drug release to the skin and skin appendages, 

drug targeting and safety. Different types of liposomes, biphasic vesicles, particulate lipid-based 

nanosystems and micro- and nano-emulsions are discussed in more details. Extensive research in 

preclinical studies has shown that numerous parameters including the composition, size, surface 

properties and their combinations affect the deposition and/or penetration of carrier-associated 

drug into/through the skin, and consequently determine the therapeutic effect. The superiority of 

the most promising nanopharmaceuticals has been confirmed in clinical studies. We have 

selected several common skin disorders and provided overview over promises of 

nanodermatology in antimicrobial skin therapy, anti-acne treatment, skin oncology, gene delivery 

and vaccines. We addressed the potential toxicity and irritation issues and provided an overview 

of registered lipid-based products  
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INTRODUCTION 

The skin conditions were reported to be the fourth leading cause of nonfatal disease burden at the 

global level. The skin disease prevention and treatment are to be included in the global health 

strategies of the future [1]. In parallel, recent trends in the pharmaceutical development of topical 

drug products are moving from a search for a new chemical entity towards development of new 

drug products based on the already approved drugs [2]. Nanotechnology, one of the fastest 

progressing fields in various research arenas, can enable development of superior drug products 

and is often seen as an intelligent design to treat complex diseases based on the inbuilt ability to 

perform temporal and spatial site-specific delivery [3-5].  

Nanodermatology, nanotechnology applied to dermatology, represents one of the most advanced 

fields both from the scientific as well as economic point of view. Nanodermatology offers novel 

directions in the medical diagnosis, monitoring and treatment of skin diseases [6]. These 

emerging drug delivery technologies that often involve self-assembled phospholipid-based 

vesicular carriers (liposomes, ethosomes), particulate carriers (lipid nanoparticles), emulsion-

based nanosystems (micro- and nano-emulsions) and similar and are in the focus of this review. 

We attempted to provide an unbiased overview of these nanosystems and comment on their 

advantages and limitations. Due to a limited space, we could not cite all of the reported findings 

and tried to cite the representative articles reporting the original delivery systems, those including 

mechanistic studies and in vivo data. Similarly, we could not include the nanocosmeceuticals 

destined for skin administration. This review encompasses all the lipid-based nanosystems 

(vesicular, particular, emulsion-based) intended for either topical skin delivery (dermal) or 

systemic (transdermal) delivery of drugs and provides the state-of-the art in the field. 
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BARRIERS FOR SKIN DELIVERY 

Numerous reviews have characterized the skin anatomy and physiology and the readers are 

referred to for example Bouwstra and Ponec [7], Prow and colleagues [8] and Banarjee [9].  

The barrier property of the skin is the synergy between the positive cooperation and interactions 

between stratum corneum macro and micro-structure, bi- and three-dimensional supramolecular 

organization of the lipid matrix and the whole composition of stratum corneum [10]. The 

macrostructure represents corneocytes cross-sectional organization often simplified as a “brick 

and mortar” model [11]. The microstructure refers to supramolecular organization of the 

intercorneocyte lipids [7]. Non-uniform cellular packing of stratum corneum representing the 

permeability barrier of intact skin was confirmed by Schätzlein and Cevc [12]. The surface of the 

healthy stratum corneum is of slightly acidic pH. pH gradient increases up to the central layers of 

the stratum corneum where the pH reaches the values identical to that in viable epidermis [11].  It 

is expected that lipid-based nanopharmaceuticals may, to a different extent, interact with the skin 

lipids, presumably through the fusion and mixing [13]. Their composition and physicochemical 

properties may enhance or limit the ingress and diffusion of drug into/through the skin [10]. The 

sweat glands and pilosebaceous units open on the skin surface representing the potential 

penetration pathway for nanosystems. However, the low density of those appendages and 

intrinsic epithelization should be taken into the consideration [11]. 

The hydration and/or occlusion of stratum corneum will reduce the barrier properties and assist in 

the penetration. When water saturates the skin its permeability significantly increases. Hydration 

may result from water diffusing from underlying epidermal layers or from perspiration that 

accumulates after the application of an occlusive vehicle or dressing [14]. These effects can be 
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achieved by the proper choice of nanosystem as well as a vehicle (base) often applied to improve 

the viscosity and achieve applications properties of liquid nanosystems [15-17]The interactions 

between the vehicle (nanosystem and/or base), skin and drug affect the release of the drug, its 

penetration through the stratum corneum, permeation through the skin layers leading to drug 

deposition (dermal delivery) or absorption into the blood (transdermal delivery). Release of the 

drug from the vehicle and uptake into the stratum corneum is dependent on the relative solubility 

in each skin layer and hence, the stratum corneum-vehicle partition coefficient. The diffusion 

coefficient (speed at which the drug moves within each skin layer) is dependent on the drug 

properties including the molecular weight, solubility, melting point, ionization and potential for 

binding within the environment (epidermal layers). General rule is that drugs less than 500 Da, 

with low melting point and those having log P of 2-3 can permeate via both the lipid and polar 

microenvironments within the intercellular route and are good candidate for (trans)dermal 

delivery [14]. 

The effects of the nanosystem and base on the skin penetration of the drug are described in more 

details in the very recent review by our group [18].  

 

NANODERMATOLOGY 

. In respect to the skin and wound therapy, the potential of nanopharmaceuticals in treating local 

skin and systemic diseases has yet to be fully realized, however the extensive research efforts are 

expected to result in improved therapy outcome [19,20].  Nanosized delivery systems offer an 

opportunity for extensive innovation in nanomedicine, making them an attractive target in drug 

product development. For more details on the skin properties relevant for the interaction between 

nanoparticles and skin the readers are referred to the extensive review published by Prow and 
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colleagues [8]. Nanosized drug delivery systems designed for improved skin therapy are expected 

to exhibit all or at least some of the desired features, namely to be able to protect drug from 

degradation as well as improve penetration of drug into/through the skin [3]. The limitations in 

the analytical tools and instrument sensitivity to detect nanoparticles, together with the variety of 

applied ex vivo and in vivo models, accompanied by the physiological factors (variations in 

epidermal thickness and hair follicle density among species and anatomical site) limit broader 

consensus in the field [21]. 

Although nanotechnology nanosystems may provide means to modulate the packing and phases 

of the lipid component of the stratum corneum by fluidization, the potential toxicity issues should 

not be neglected particularly for non-lipid based nanodermatologicals [9]. 

 

 

SKIN PENETRATION OF NANOSYSTEMS 

In spite of the fact that the size limit for nanosystem able to penetrate stratum corneum remains to 

be debatable, it is accepted by the Scientific Committee on Consumer Products that only very 

small particles, size range below 10 nm, are detectable in stratum spinosum in the epidermal layer 

[8]. DeLousie [21] proposed that the skin is a formable barrier to particle penetration; that the 

hair follicles serve as the collection sites for topically applied nanosystems and that their surface 

charge plays an important role in their penetration pattern, as the differences in the penetration 

have been observed for neutral and negatively charged particles. It seems that the nanocarriers 

penetrate preferably into the hair follicle canals rather than through stratum corneum. If this is the 

case, the skin penetration of nanocarrier-associated drugs will be the result of the carriers’ 

accumulation within the hair infundibulum, the release of the drug within the hair follicle canal 
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and finally diffusion of the substance. Nanosystems are expected to increase both the penetration 

depth and permeation rate of the substance [22]. Unsaturated fatty acids and phospholipids 

containing higher portion of unsaturated fatty acids (e.g. soy lecithin) play a role in the 

fluidization of the stratum corneum [9]. 

Several parameters including lamellarity, lipid composition, surface charge of the nanosystem, 

presence of the edge activators and/or penetration enhancers and total lipid concentration 

determine drug deposition into the deeper skin layers [18, 23,24]. 

The required size of nanosystems for successful trans(dermal) drug delivery remains to be 

extensively discussed [10]. For example, deformable liposomes with an average size of 120 nm, 

have been shown to enhance the penetration of hydrophilic fluorescent compound for more than 

5-fold into the deeper skin layers, as compared with larger vesicles (>190 nm) of the same lipid 

composition [25]. Decreasing the particle size of solid lipid nanoparticles has been confirmed to 

increase the occlusive effect on the skin consequently affecting skin hydration and drug 

permeability [26]. Besides the size effect, the effect of the nanosystem’s rigidity/elasticity is 

important, as this feature will influence interaction of nanosystem with the stratum corneum and 

skin in general. Considering the (trans)dermal drug delivery. The distinction between particles 

which are soft and rigid in their nature is the  feature that will affect nanosystems interaction with 

the stratum corneum and skin in general [22]. Typical examples of soft nanoparticles are elastic 

liposomes, whereas solid lipid nanoparticles (SLNs) represent rigid nanoparticles [26]. ]. It has 

been shown that the type and concentration of edge activator had great effect on the drug 

penetration via deformable liposomes through decreasing the particle size and increasing bilayer 

elasticity[24,27]. Furthermore, the surface charge of nanosystem has been also demonstrated to 

play a role in skin drug delivery [28].  
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NANOSYSTEMS (NANOPHARMACEUTICALS) 

Nanosystems, often referred to as nanoparticles, nanovesicles, or nanopharmaceuticals, are in 

general expected to increase the bioavailabilty, biocompatibility and safety profiles of associated 

drug molecules, serving as carrier systems with specific properties related to their nanosize. Their 

ability to prolong and, at least to certain extent, control the release of associated drugs would 

potentially decrease the doses and dosing frequency while assuring the desired therapeutic effect 

[29].  

Among different drug delivery systems investigated for improving (trans)dermal therapy, lipid-

based nanosystems are of particular interest. They are commonly composed of physiologically 

acceptable lipids, usually non-toxic and degraded to non-toxic residues [10]. A unique advantage 

of lipid nanocarriers lies in the compatibility of their ingredients with the physiologically 

occurring compounds, i.e. stratum corneum constituents. The overview of the nanosized lipid-

based systems classified as vesicular, particular or emulsion-based nanosystems is provided in the 

following chapters. In the second part on the review, the selected skin diseases and the tested 

nanopharmaceuticals are discussed in more details.  

 

 

PHOSPHOLIPID-BASED VESICULAR DRUG DELIVERY 

NANOSYSTEMS 

LIPOSOMES 

General considerations 
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Liposomes are fully physiologically acceptable nanovesicles consisting of one (unilamellar 

liposomes), several (oligolamellar liposomes) or many (multilamellar liposomes) concentrically 

arranged lipid bilayers surrounding inner aqueous compartment(s). In addition, they may have a 

multicompartmental structure (multivesicular liposomes) [30]. The compatibility between their 

constituents (phospholipids, cholesterol and water) and skin constituents makes them superior 

skin drug delivery nanosystems. They have been investigated for the skin drug delivery for over 

30 years [31]. Due to the specific structural properties liposomes are able to 

encapsulate/incorporate drugs of different sizes and lipophilicity. Hydrophilic drugs will be 

encapsulated into the aqueous compartment(s), lipophilic inside the bilayer, while amphiphilic 

will partition themselves between these two regions. Liposomal characteristics are determined by 

their lipid composition, membrane rigidity/elasticity, particle size, surface charge, number of 

lamellae and inner/outer aqueous phases [32]. Phospholipids were proposed to act as a 

penetration enhancers enabling alteration of the intercellular lipid matrix within the skin; 

therefore encapsulation of hydrophilic drugs in liposomes can increase their penetration 

into/through the skin [33]. Furthermore, liposomes may provide targeted delivery to skin 

appendages and assure localized depot of the lipophilic drug in the skin [33]. In addition, 

liposomes are able to incorporate poorly soluble drugs and alter their pharmacokinetics and skin 

bioavailability. Even empty liposomes have been shown to increase the skin hydration level 

which is of high importance in the treatment of xerosis cutis and atopic dermatitis [34]. 

Regarding the membrane properties, i.e. presence of surfactant or co-solvent in the bilayers, 

liposomes are categorized as conventional liposomes (with more rigid bilayers) and elastic 

liposomes (with pronounced bilayers elasticity), later including i) deformable liposomes, ii) 

ethosomes and iii) permeation enhancer containing vesicles, i.e. propylene glycol liposomes and 

invasomes (Figure 1). Considering the liquid nature of liposomal suspension and need for their 
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retention at the skin as administration site, liposomes are usually incorporated in the suitable 

bases such as gels, creams. 

 

Conventional liposomes 

Conventional liposomes are the first generation of liposomes comprising of the neutral 

phospholipids (phosphatidylcholine), or the combination of neutral and charged phospholipids, 

originating either from natural or synthetic sources with or without addition of cholesterol (Figure 

1A). Mezei and Gulasekharam [35] were the first to propose liposomes for skin application. They 

have claimed that triamcinolone acetonide incorporated in liposomes composed of 

dipalmitoylphoshatidylcholine and cholesterol increased drug deposition in rabbit’s epidermis 

and dermis, while concentrations of the drug in thalamic region (potential place for side-effects) 

and urinary excretions were significantly reduced in comparison to control formulation. Similar 

fate of liposomally encapsulated drug has been shown for hydrocortisone [36,37] and local 

anesthetics tetracaine [38] and lidocaine [39]. Liposomal delivery increases the efficacy of 

treatments even at the significantly lower concentrations of active substances as compared to the 

conventional formulations. For example, replacing the moisturizing cream with liposomes 

reduced the therapeutic concentration of 5-aminolevulinic acid in photodynamic therapy by a 

factor of 40 while maintaining the same effect [40]. Additional advantage of using liposomes in 

dermatological treatments is the reduced skin irritation caused by substances like retinoids [41]. 

Conventional liposomes increased the skin delivery of vitamin D3 and dithranol in the treatment 

of psoriasis [42]. In the case of the plaque type psoriasis, the entrapment of dithranol in 

liposomes has promoted its epidermal bioavailability and enabled the dose lowering, resulting in 
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the reduction of consequent dose-dependent side-effects [43]. Conventional liposomes have also 

been examined for the targeting to the skin appendages [44,45], for improved treatment of hair 

follicle disorders such as alopecia. The liposomes comprising of dimyristoyl phosphatidylcholine, 

cholesterol and dicetylphosphate (8:2:1, mole ratio) significantly increased the deposition of 

finasteride in the hair follicles compared to hydroalcoholic drug solution [46]. Similar findings 

have been reported for liposomal minoxidil [47].  

However, most of the studies confirmed that the conventional liposomes have negligible or no 

penetration potential across the stratum corneum and can therefore only slightly improve the 

delivery of drug to the deeper layers of skin and transdermally [32,33,48,49].  

 

Deformable (elastic) liposomes 

In the early 90th of the last century Cevc and Blume [23] introduced a new type of liposomes 

with increased bilayer elasticity, namely deformable liposomes (highly fluid vesicles), which 

become known as elastic, flexible, ultradeformable liposomes or under the trade name 

Transferosomes [50,51]. Deformable liposomes are commonly composed of lipids and an edge 

activator  that destabilizes the liposome bilayers thus increasing the membrane 

deformability/elasticity (Figure 1B). As a consequence, the vesicles should be able to squeeze 

through the pores in the stratum corneum smaller than 1/10 of the vesicle diameter and transport 

entrapped drug deeper into the skin when applied under the non-occlusive conditions. In such a 

setting the osmotic gradient operating from the dry skin surface (15% water) towards wet viable 

tissues (75% water) drives vesicles through stratum corneum [52]. Honeywell-Nguyen and 

colleagues [53] confirmed that the intact elastic vesicles penetrate into the stratum corneum under 

the non-occlusive dressing; however, only few intact vesicles were found in the deeper horny 
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layers. Cevc and Blume [54] confirmed the penetration of diclofenac through the skin using 

Transferosomes as a carrier system; the therapeutically relevant concentrations of the drug were 

obtained in the target tissue. When hydrocortisone, dexamethasone or triamcinolone-acetonide  in 

the deformable liposomes have been administered epicutaneously the drug levels were found to 

be comparable to those obtained by a subcutaneous injection of the same drugs. Interestingly, 

Transfersome-based corticosteroids were biologically active at doses several times lower than 

those currently used in the dermatologic formulations for the treatment of skin diseases [55]. 

Deformable liposomes have also been investigated as carriers for large molecular weight drugs, 

such as insulin. Applied under the non-occlusive dressing, Transferosomes have been shown to 

deliver insulin through the non-compromised skin barrier with reproducible pharmacokinetics 

and the pharmacodynamic effects comparable to the subcutaneous injection [56]. The efficacy of 

deformable vesicles in skin delivery of drugs has also been evaluated by other research groups. 

Jain and colleagues [57] tested deformable liposomes for transdermal delivery of levonorgestrel. 

The peak plasma concentration of the drug was achieved after 4 hours and was maintained for 48 

hours after a single topical application of deformable liposomes. Using deformable liposomes, 

the same group has also reported on the increased transdermal flux of poorly soluble zidovudine. 

The AUC (24 h) for elastic liposomes was found to be almost 12-fold higher than the control 

formulation; higher accumulation of antiviral drug has been found in target organs of 

reticuloendothelial system [58].  

Although the main target of deformable liposomes has been the increased transdermal delivery of 

numerous drugs [59], they have been also studied as means for improved dermal therapy, such as 

the treatment of deep dermal infections. The elastic liposomes containing neomycin sulphate 

assured the enhanced skin deposition while histological studies showed complete eradication of 
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Staphylococcal infections within 7 days [60]. Pandit and colleagues [61] demonstrated better 

penetration of miconazole nitrate across the skin and better antifungal activity in vivo in 

comparison to the conventional liposomes.  

Cadena and co-workers [62] proposed deformable liposomes with flavonoides for the weight loss 

treatment. Quercitin and resveratrol were encapsulated into phosphatidylcholine liposomes 

containing sodium deoxycholate as edge activator. This innovative phospholipid nanosystem was 

suggested as a novel approach for dissolving the subcutaneous fat when applied as a 

subcutaneous injection. However, no in vivo data on the efficacy of the system are available up to 

now. 

Trotta and co-workers [63] investigated topical administration of methotrexate, potent 

antipsoriatic drug known to cause numerous side-effects and hepatotoxicity when applied orally. 

Moreover, the drug is hydrophilic and mostly in a dissociated form, therefore its topical 

application is limited. The encapsulation of methotrexate in deformable liposomes resulted in the 

enhanced penetration of drug into the skin. In another study, methotrexate was entrapped in 

deformable vesicles containing oleic acid as an edge activator. Enhanced skin penetration of the 

drug through the stratum corneum with increased accumulation in the epidermis and dermis 

layers has been ascribed to the elasticity of vesicles and the penetration enhancing effect of oleic 

acid [64].  

Despite the generally accepted mechanism of intact vesicle penetration, there is still substantial 

discussion whether deformable liposomes penetrate intact through the skin or act as the 

penetration enhancer. El Maghraby and co-workers [65] compared the deformable and 

conventional liposomes as the carriers for skin delivery of 5-fluorouracil. Better in vitro skin 

delivery of the drug was obtained via deformable vesicles as compared to the conventional 

liposomes. However, due to limited drug partitioning inside the skin the authors suggested that 
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deformable liposomes are not penetrating intact into the skin rather then that the vesicle 

components act as the penetration enhancers promoting the skin deposition of the drug; contrary 

to claims proposed originally by Cevc and collaborators [23,52]. The similar speculations 

regarding the mechanism involved in the improved skin delivery of drug by elastic vesicles, i.e. 

penetration enhancing effect, has been suggested by Gillet’s group. Bethametasone entrapped in 

the aqueous compartment of the vesicles via cyclodextrin complexation was released and 

diffused as free molecules through the stratum corneum thus partitioning itself into the viable 

skin tissue [24]. These results are in accordance with those reported by Bahia and co-workers 

[66]. Using calcein as hydrohophilic marker entrapped in the deformable liposomes they proved 

the penetration-enhancing effects of sodium cholate and ethanol. Ex vivo skin permeation and in 

vivo transdermal studies on hairless mice showed the reduced transdermal flux of calcein in 

comparison to the solution forms, suggesting that the transdermal absorption of calcein from the 

deformable vesicles is controlled by the release of the drug from the formulation deposited onto 

the skin surface. Moreover, fluorescence measurements of the receptor fluid after the addition of 

Co2+ quencher have revealed that permeated calcein existed essentially in the free form, thus 

contradicting the proposed penetration of intact vesicles [66].  

 

Ethosomes  

Ethosomes are soft phospholipid vesicles originally developed by Touitou and her group [67] as a 

novel skin delivery system. They are composed of phospholipids and water as the conventional 

liposomes, but in addition include high ethanol content (20-45%, v/v) (Figure 1). Due to a well-

known skin permeation enhancing effect of ethanol, ethosomes are also categorized as the skin 

permeation-enhancing vesicles. The presence of ethanol enables the entrapment/incorporation of 
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drugs with limited water solubility with rather high efficiency. Compared to the conventional 

liposomes of the same phospholipid composition, ethosomes are of significantly smaller size that 

can be attributed to high ethanol content. Ethanol may affect dissociation degree of a partially 

charged molecule at bilayer surface that can subsequently reflect to increased negative net surface 

charge of vesicles affecting decreased particle size of ethosomes [68]. The encapsulation 

efficiency of lipophilic drugs in ethosomes is higher in comparison to the conventional and 

especially the deformable liposomes. This is a consequence of the solubilizing effect of ethanol 

and the multilamellar morphology of ethosomes confirmed by Touitou and co-workers [69]. 

Moreover, ethosomes exhibited improved intracellular delivery into fibroblasts [70]. A proposed 

mechanism of improved skin drug delivery by ethosomes involves the dual fluidizing effects of 

ethanol on both the ethosomal lipid bilayers and the intercellular lipid matrix of stratum corneum. 

Compared to the deformable liposomes, which are able to increase the skin delivery only when 

applied under the non-occlusive dressing [51], ethosomes are efficient both under the non-

occlusive [71,72] and occlusive conditions [71,73]. In vitro, animal and clinical studies have 

reported superiority of ethosomes in the skin delivery of minoxidil [67], trihexyfenidil HCl [71], 

cannabinoids [74], bacitracin [75], erithromycin [76,77] and testosterone [73].  

Ainbinder and Touitou (73) compared the efficiency of ethosomes in transdermal delivery of 

testosterone across the rat skin in vivo to a registered gel formulation of the drug. The AUC of the 

drug from ethosomal formulation was found to be 64% greater than with the gel formulation. 

However, their study lacks reliable evidence supporting the claim of carrier mediated, rather than 

facilitated transport. In a recent study with surfactant-modified testosterone propionate 

ethosomes, the higher transdermal flux and lower lag time were obtained in comparison to the 

conventional liposomes and ethanolic solution of the drug [78]. Ex vivo studies on dermatomed 
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human cadaver skins revealed the enhanced transdermal permeation of the ethosomal melatonin 

as compared to the conventional liposomes and alcoholic solution of the drug [79].  

Potential of ethosomes in the transdermal delivery of anti-inflammatory drugs (or isolated plant 

medicals) has been reported by several research groups. The assessment of transdermal delivery 

of diclofenac sodium from different phospholipid vesicles demonstrated similar transdermal flux 

of both ethosomes and deformable liposomes in comparison to the conventional liposomes [80]. 

Using the isolated human epidermis, Chourasia and co-workers [81] investigated potentials of 

ethosomes for transdermal delivery of ketoprofen. Paolino and colleagues [82] studied the 

penetration of ethosomal ammonium glycyrrhizinate through the isolated stratum corneum and 

viable epidermis as well as anti-inflammatory effect on human volunteers. Ethosomes have also 

been proposed for transdermal delivery of phytochemicals, such as capsaicin [83]. 

Ethosomes have been able to increase the effectiveness of topical anesthesia. Transdermal flux of 

lidocaine ethosomes was significantly greater than those obtained with the conventional 

liposomes and ethanolic solution of the drug [84].  

They were also studied for improved skin therapy in dermatology providing increased drug 

solubility and enhanced penetration through the stratum corneum. Clinical investigation of 

ethosomal acyclovir in the treatment of recurrent herpes labialis demonstrated advantages of 

using ethosomes over the commercial product; time necessary for crusting of the lesions and loss 

of crusts were significantly reduced by applying ethosomal formulation [85].  

Verma and Fahr [86] reported on potential of phospholipid vesicles embodying 10-20% (v/v) of 

ethanol in delivering the skin-impermeable drugs such as cyclosporine A for the treatment of skin 

inflammatory diseases, i.e. psoriasis and atopic dermatitis. Dubey and colleagues [87] tested 

ethosomes with methotrexate for the topical treatment of psoriasis. Ex vivo skin permeation 
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studies on dermatomed human cadaver skin showed better flux of the drug and skin deposition by 

ethosomes than with other vesicles. However, studies based only on in vitro and ex vivo 

penetration assessments do not always correlate to in vivo conditions as reported by Cevc and 

colleagues [88].  

For the treatment of alopecia, Meidan and Touitou [89] studied ethosomes with minoxidil in 

vitro. The quantity of the drug accumulated into the skin of nude mice after the application of 

ethosomes was 2.0, 7.0 and 5.0 fold higher as compared to the ethanolic phospholipid dispersion, 

hydroethanolic solution and ethanolic solution of the drug.  

Ethosomes have also been suggested for topical therapy of different skin allergies including 

urticaria, pollinosis and atopic dermatitis. Ex vivo skin permeation studies in the mice model 

showed high penetration potential of cetirizine compared to the conventional liposomes, while in 

vivo pharmacodynamic study proved the reduction in starching and erythema scores, skin 

hyperplasia and dermal eosinophil count [90]. The application of ethosomal tacrolimus in the 

treatment of atopic dermatitis enabled greater ex vivo penetration of the drug than with 

conventional liposomes in the mice skin model. Furthermore, pharmacodynamic study displayed 

the lowest ear swelling compared to the conventional liposomes and commercial ointment, and 

effectively impeded accumulation of mast cells in the ear of the mice, suggesting efficient 

suppression for the allergic reactions [91].  

Encapsulation of psoralen into ethosomes resulted in the increased penetration through the 

stratum corneum and skin deposition. In vivo skin microdialysis study showed that the peak 

concentration and area under the curve of psoralen from ethosomes were approximately 3 and 2 

times higher than those of psoralen from the tincture formulation indicating potential of 

ethosomal psoralen for improved treatment of vitiligo [92].  
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Penetration enhancer-embodying liposomes (PEVs) 

This term refers to elastic liposomes composed of the phospholipids and penetration enhancer as 

bilayer building compounds (Figure 1D). Propylene glycol or diethylene glycol monoethyl ether 

(Transcutol) have been commonly used as the penetration enhancers [93,94]; however, some 

authors used the cineole and capryl-caproyl macrogol 8-glyceride (Labrasol) [95]. The elastic 

vesicles containing terpens as the penetration enhancer also known as invasomes [96] are 

presented separately at the end of this chapter.  

Propylene glycol-containing liposomes (PG liposomes) have been proposed by Elsayed and 

colleagues [93] as a new type of phospholipid vesicles for improved skin drug delivery; however 

it is worth noting that these vesicles were investigated earlier for topical drug delivery via 

mucosal route under different name, i.e. the polyol dilution liposomes [16,97,98,]. Those 

liposomes were composed of phospholipids, propylene glycol (PG) and water and characterized 

by the increased entrapment efficiency for poorly soluble drugs due to the solubilizing effect of 

PG [17,99]. PG liposomes can be prepared using PG as a solvent for the phospholipids and lipid 

drug [93,97-99-87] or as a part of the aqueous phase of formulation [94,100]. The presence of PG 

or other penetration enhances in the phospholipid bilayer significantly increases the elasticity of 

vesicles [100,101]. Preliminary in vivo skin deposition study using an animal model has shown 

superiority of PG liposomes over the conventional, deformable liposomes and ethosomes in the 

skin delivery of local anesthetic cinchocaine [93]. Moreover, the PG liposomes were superior to 

deformable liposomes in delivery of diclofenac sodium in the permeation studies performed on 

the artificial stratum corneum-mimicking membranes [100].  

Manconi et al. [101] evaluated diclofenac (both as acid and salt form) loaded liposomes 

containing Transcutol. Increasing the concentration of penetration enhancer resulted in the 
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better drug encapsulation, while rheological experiments revealed that Transcutol was able to 

improve the bilayer fluidity. Compared to commercial gel, Transcutol-containing vesicles 

enabled enhanced penetration of the both drug forms into and through the skin. In another study 

PG liposomes were investigated for transdermal delivery of curcumin as anti-inflammatory agent. 

Comparison pf PG liposomes with other elastic vesicles, i.e. ethosomes and deformable 

liposomes revealed the highest entrapment of curcumin in the PG liposomes (> 90%). The same 

formulation also exhibited the highest transdermal flux across the rat skin. The superiority of PG 

liposomes was confirmed in in vivo anti-inflammatory study measuring the inhibition of the paw 

edema [102]. Evaluation of different penetration enhancers used for the preparation of PEVs with 

quercitin confirmed that PG and polyethylene glycol 400 enable similarly high drug 

accumulation into and through the skin [103]. The same group also reported on the potentials of 

PEVs for cutaneous delivery of minoxidil. Among different penetration enhancers examined, 

Labrasol- and cineole- containing PEVs were found to be able to deliver a higher amount of the 

drug than controls [104].  

The recent study by Wang and colleagues [105] reports on the use of novel penetration modifiers 

embodied into the bilayers of phosphatidylcholine liposomes, namely 1,2-hexanediol and 1,4-

cyclohexanediol, able to enhance the targeted delivery of ketoconazole into the skin. 

 

Invasomes 

Invasomes are a novel type of elastic phospholipid vesicles composed of phosphatidylcholine, 

ethanol and a mixture of terpenes as penetration enhancers. Invasomes containing 3.3% ethanol 

and 1% of the terpene mixture (cineole:citral:d-limonene=45:45:10) have shown to significantly 
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enhance the skin penetration and deposition of the highly hydrophobic photosensitizer temoporfin 

(mTHPC) in comparison to the vesicles without terpenes and conventional liposomes [96]. 

Invasomes could provide the efficient delivery of mTHPC in photodynamic therapy [106]. The 

precise mechanism of the penetration enhancing ability of invasomes is debatable and should be 

further investigated. It is hypothesized that synergistic effect of phospholipids, terpens, ethanol 

might play a role in increased delivery of active substances into the skin [106].  

 

Penetration enhancer-embodying deformable liposomes 

Hiruta and colleagues [107] formulated bleomycin-loaded ultra-deformable liposomes composed 

of egg phosphatidylcholine and sodium cholate and additionally containing beta-sitosterol 3-beta-

D-glucoside (Sit-G) as a penetration enhancer. The presence of Sit-G increased drug entrapment, 

in vitro stability, and significantly increased the distribution of bleomycin in the epidermis and 

dermis as compared to the ultra-deformable liposomes without Sit-G. 

 

The overview of main characteristics, advantages and limitations of described systems in 

provided in Table 1. 

 

OTHER PHOSPHOLIPID VESICLES FOR IMPROVED SKIN THERAPY 

pH-sensitive liposomes 
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pH-sensitive liposomes become destabilized in acidic pH such as in endosome inside the cells, 

enabling the release of the entrapped material into the cytoplasm. Although mostly studies to 

deliver the genetic material via parenteral route, two decades ago Yarosh and co-workers applied 

these type pf liposomes in dermatology. Yarosh and co-workers designed and evaluated pH-

sensitive T4N5 liposomes containing a DNA repairing enzyme (T4 endonuclease 5), specific for 

solar UV-induced skin DNA damage [108-109-100]. T4N5 liposomes applied after the UV 

exposure, penetrated human skin and delivered DNA repairing enzyme into keratinocytes and 

epidermal Langerhans cells in 15 volunteers with preceding skin cancers [111]. Moreover, daily 

applications of T4N5 liposome-based lotion for a period of one year to the 30 xeroderma 

pigmentosa patients with sun-damaged skin and with the history of skin cancer or actinic 

keratosis, lowered the rate of new actinic keratosis and basal cell carcinomas significantly [109]. 

To the best of our knowledge, this formulation reached the Phase III of clinical investigation 

[112].  

 

Biphasic vesicles 

The rationale behind these vesicles was to build the vesicles from excipients that provide 

synergistic skin permeation enhancement. Biphasic vesicles are structurally related to liposomes 

and represent the multicompartmental delivery systems. Those vesicles exhibit mixed lipid 

membrane characteristics, multicompartmental structure and positive charge. Biphasic vesicles 

appear to interact with the intercellular lipids of stratum corneoum and enhance the lipoidal 

pathway of penetration affecting the molecular rearrangement of intercellular lipids [113]. King 

and co-workers developed biphasic vesicles-based novel delivery system BiphasixTM as a 

superior delivery system for transdermal delivery of insulin. Basal levels of insulin were 
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observed in the serum of diabetic rats treated with Biphasix-insulin up to 3 days after patch 

application [114]. In consequent experiments, the authors proved that lymphatic transport of 

insulin after non-invasive topical administration is taking place [115]. Topical application of 

biphasic vesicles carrying interferon alpha in a guinea pig model resulted in sustained delivery of 

interferon locally into skin, exhibiting their potential in treatment of anogenital warts. BiphasixTM 

interferon-alpha-2b cream used in the animal study had a physical appearance of a soft cream 

[116]. Biphasic vesicles entrapping interferon alpha delivered clinically relevant levels of 

interferon across intact human skin and elicited marked therapeutic effect in patients [117]. 

 

 

PARTICULATE LIPID-BASED NANOSYSTEMS 

Solid lipid nanoparticles (SLNs) 

Solid lipid nanoparticles (SLNs) are comprised of lipids (0.1-30%, w/w) that are solid at room 

and body temperatures and surfactants (0.5-50%) serving as stabilizing agents (Figure 2A). They 

have been introduced in 1991 as an alternative to vesicular nanosystems, emulsions and 

polymeric nanoparticles. SLNs contain adhesive and occlusive excipients that form a thin film on 

the skin surface, thus reducing water evaporation and retaining skin moisture [26, 118,119,]. The 

occlusive property enhances drugs penetration into the skin and can be increased by decreasing 

the particle size (at given lipid concentration) or by increasing the lipid nanoparticles 

concentration (at given particle size) [120]. SLNs are biodegradable and biocompatible, having 

low toxicity and feasibility for scale up and sterilization. Physicochemical features and drug 

characteristics influence the drug loading and distribution within particles and dispersions. 

Generally, lipophilic drugs are better encapsulated than amphiphilic and hydrophilic drugs 

[121,122]. The lipid composition and drug lipid solubility determine drug distribution within the 
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particles that consequently reflect to release kinetics [123-125]. The interactions between SLNs 

and keratinocytes suggest that SLNs in nanosize range may  provide advanced skin therapy [126].  

SLNs were investigated to improve the treatment of skin diseases such as atopic dermatitis, 

psoriasis, acne, skin mycosis and inflammations [119]. To facilitate dermal application by 

achieving the appropriate viscosity of formulation, the fluid dispersions with low lipid content 

(<10%) can be incorporated into a gel or cream base compatible with nanoparticles, similarly like 

other vesicular nanosystems [127]. 

Well documented evidence supports the role of SLNs in improved delivery of antifungals. Recent 

study by Vaghasiya and co-workers [128] confirmed the ability of SLNs to improve retention of 

terbinafine hydrochloride inside the skin and to reduce fungal burden in rats in a shorter time than 

marketed formulation. In vivo evaluation of econazole nitrate containing SLNs confirmed a rapid 

penetration of the drug through stratum corneum and its increased diffusion in the deeper skin 

layers [129].  

By the right choice of lipid composition SLNs have been able to overcome limitations of 

conventional corticosteroid therapy in dermatology [130]. SLNs reduced percutaneous absorption 

of betamethasone-17-valerate in both the impaired and intact skin. When the barrier was intact, 

the reservoir effect was more evident and the drug partitioning into the different skin layers was 

dependent on the lipid properties of the SLNs [125].  

Investigations of reseveratrol as a naturally occurring anticarcinogenic compound for the 

treatment of skin cancers have been received particular attention. Teskač and Kristl [126] 

confirmed cellular uptake of resveratrol when loaded into SLNs and improved effects of the drug 

on the cellular fate. SLNs with a size below 180 nm passed rapidly through keratinocyte 

membranes causing no significant changes in cell morphology, metabolic activity or cell cycle. 
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SLNs were concentrated around nuclei, releasing resveratrol in a sustained manner to express its 

cytostatic effect with prominent S-arrest of cell cycle and a large drop of G2/M phase. The same 

group [126] investigated antioxidative potentials of liposomal resveratrol and found that 

liposome-mediated uptake of resveratrol was more effective for the improvement of the cell-

stress response. Resveratrol loaded into negatively charged oligolamellar liposomes (84 nm-

sized) protected cells from free radical damage [131]. 

Although SLNs have numerous advantages as discussed above, there are some limitations, too. 

One of them is poor loading capacity which is limited to about 10% of the amount of lipid 

(leading to about 1% of the final dispersion) to ensure stability of the system. Namely, highly 

ordered crystalline lipid matrix leave little place for drug incorporation that can expelled out 

during the storage [127]. To overcome these deficiencies, second generation of lipid 

nanoparticles, i.e. nanostructured lipid carriers (NLCs) were introduced in the late 90th of the last 

century [120]. NLCs are able to incorporated lipophilic drugs to a greater extent than SLNs; 

however the entrapment of hydrophilic drugs is limited. 

 

Nanostructured lipid carriers (NLCs) 

NLCs (Figure 2B) are produced using the blends of solid and liquid lipids (mixed in ratios 

ranging from 70:30 to up to 99.9:0.1) that are stabilized by surfactants as the SLNs. The presence 

of liquid lipids with different fatty acid chains prevents the formation of arranged lipid matrix, 

leading to formation of less ordered lipid matrix. Such imperfect matrix permits better 

accumulation of larger amounts of drug. Drug solubility is often higher in an oily phase 

contributing to increased loading efficiency [132]. The fluid lipid phase of NLCs can be 
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embedded into the solid lipid matrix or be localized at the surface of solid platelets and the 

surfactant layer [127]. NLCs include all advantages of SLNs reported earlier such as 

biodegradability, occlusion effect, modified drug release, delivery of drug to a specific sites of 

skin, increased drug stability, etc., and in addition enable improved drug loading and increased 

shelf life [127].  

Specific structure of NLCs can allow biphasic pattern of drug release with initial burst effect 

followed by a sustained release due to different melting points of solid and liquid lipids [133]. By 

changing the ratio of solid and liquid lipids in NLCs, the drug release, permeation and 

pharmacodinamyc activities can be modulated [134]. Physicochemical properties of NLCs such 

as the lipid composition, size and surface charge influence the delivery of encapsulated drug into 

the skin [127].  

Many attempts were employed to explore the potentials of NLCs in dermatology [119,120]. For 

example, Gomes and colleagues [135] investigated potentials of finasteride and minoxidil loaded 

NLCs for the treatment of alopecia in vitro. A high loading efficiency was achieved for 

finasteride (70-90%), while less than 30% was achieved for minoxidil nanoparticles. Both drug 

formulations were physically stable, provided prolonged release of the drugs and sufficient 

enabled penetration of drugs into the skin layers. 

The potential of NLCs in the therapy of psoriasis has been suggested by Agrawal and 

collaborators [136]. They have assessed acitretin NLCs-based gel in ex vivo and in clinical 

studies. The formulation showed increased penetration of acitrecin into the human cadaver skin 

compared with a reference gel. The double-blind clinical study on psoriatic patients reported 

improvement in a therapeutic response and reduction in the local side effects. However, the low 

number of patients (n=6) is considered as a limitation.  
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NLCs containing both calcipotriol and methotrexate in one formulation have been suggested to 

strengthen the topical therapy of psoriasis [137]. Ex vivo studies performed on hyperproliferative 

mice skin demonstrated increased skin permeation of metrotrexate, while the penetration of 

calcipotriol was reduced. Good correlation of obtained results has been confirmed in vivo by 

confocal laser scanning microscopy [137]. 

Modified NLCs for topical delivery of tacrolimus (T-MNLC) in the therapy of atopic dermatitis 

and other skin inflammation disorders have been shown to enable high entrapment efficiency of 

the poorly soluble drug, enhanced stability and improved skin deposition [138]. In vivo 

evaluation of T-MNLC based on restoration of skin barrier, therapeutic effectiveness and safety 

aspects imply the potential of developed formulation in the therapy of atopic dermatitis [139]. 

Several studies report on the potentials of NLCs in (trans)dermal delivery of NSAIDs for the 

local treatment of rheumatic diseases (by non-selective COX inhibitors) as well as skin 

inflammation diseases, e.g. tumors, injuries and wounds (by selective COX-2 inhibitors). For 

example, penetration of flurbiprofene through the rat skin was found to be 4-5-folds increased 

after 12 h by using NLCs compared to the solution of free drug [140]. Ricci et al. [141] reported 

on higher indomethacin transdermal flux and prolonged anti-inflammatory activity by NLC-

based gel in comparison to the control gel. In another study Joshi and Patarvale [134] compared 

NLCs-based celecoxib gel with control micellar gel. Ex vivo penetration of the drug from the 

NLC-gel was less than from the micellar-gel. The in vivo evaluation of the percentage edema 

inhibition produced by NLCs and micellar gel demonstrated a significantly higher inhibition by 

NLC-based gel up to 24 hours [134].  
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MISCELLANEOUS 

Micro- and nano-emulsions 

Literature reports on potential of micro- and nano-emulsions in dermatology often do not 

discriminate between microemulsions and nanoemulsions in respect to the size of the droplets. 

Physicochemically, microemulsions are thermodynamically stable colloidal dispersions of water 

and oil stabilized by a surfactant and, often, a cosurfactant [31]. The active compound (drug) is 

solubilized inside microemulsion, wherein the formulation ingredients facilitate the penetration 

into the skin. The selection of cosurfactant is usually based on its penetration enhancing potential.  

The occlusivity also acts on improving the drug penetration [142]. Nanoemulsions are metastable 

colloidal systems. The method of preparation is directly affecting their properties and can be 

manipulated to design and optimize the delivery systems [143]. Compared to the conventional 

emulsions, microemulsions are characterized by low interfacial tension due to the high ratio of 

surfactant and co-surfactant responsible for good physical stability of formulation. On the other 

hand, high ratio of surfactant may affect the system’s compatibility of formulation with the skin 

[144] . Recently, multiple W/O/W nanoemulsions as superior delivery system for acyclovir have 

been proposed [145]. 

 

Cohleates 

Cochleates are tubular shaped structures derived from liposomes. They are actually the 

precipitates obtained through the interaction between phosphatidylserine and calcium, able to 
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entrap wide variety of drugs [146]. Although designed mostly to target oral and parenteral routes 

of drug administration, cochleates, may have potentially serve as a topical drug depot system 

[147].  

 

 

(PHOSPHO)LIPID-BASED NANOPHARMACEUTICALS WITH POTENTIAL IN 

(SELECTED) SKIN DISEASES 

Antimicrobial skin therapy 

Skin represents a unique environment in respect to microbiome. An extensive review on the skin 

microbiome, including bacteria, fungi, viruses, archaea and small arthropods colonizing the skin 

surface, has been recently published by Kong and Segre [148]. Antimicrobial agents and 

antibiotics have been traditionally used topically to treat various skin diseases such as acne (e.g. 

Propionibacterium acnes) [149], persistent bacterial skin infections [150,151], methicillin-

resistant Staphylococcus aureus (MRSA) infections or infections of prosthetic devices implanted 

into the skin (Staphylococcus epidermidis) [152]. Particularly interesting are fungal skin and nail 

infections which remain a major reason for patient visits to dermatologists. Antifungal therapy is 

mostly based on poorly soluble azole agents, which suffer from limited bioavailability due to 

solubility issues [153]. Additional limitation for effective antimicrobial therapy is the increasing 

resistance against most potent antimicrobials.  It is expected that encapsulation of drug in specific 

nanosystem will enable its improved delivery to the target sites enabling dose reduction while 

increasing the specificity[152,154]. 

The limited success of skin antimicrobial therapy may be attributed to the challenge most of the 

antimicrobials face when acting against biofilms [151]. Bacterial biofilms are a common cause of 
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recurring infections that are unresponsive to drug therapy and are recognized as a serious 

challenge in antimicrobial therapy.  

 

Pevaryl Lipogel was the first approved antifungal liposome product promoting the advantages 

of liposomes in topical skin therapy [155]. Encapsulation of vancomycin within cationic 

liposomes has been shown to lead to enhanced inhibition of Stapyhylococcus epidermidis. 

Cationic liposomal surface enabled adsorption of vesicles onto biofilms and skin-associated 

bacteria. The adsorbed liposomes were also able release drug over 18 hour regrowth period, 

assuring prolonged antibacterial action [156].  

Benzyl penicillin (penicillin G) was successfully encapsulated in cationic liposomes and its 

activity against Staphylococcus aureus biofilms confirmed [157]. Metronidazole, one of the drugs 

with very limited solubility, was successfully encapsulated into various types of liposomal 

systems [15,158]. A very promising approach was proposed by Vogt et al. [159] of using PVP-

iodine in hydrosomes, specific type of liposomes in hydrogels, for reduced rejection of skin 

grafts.  

 

Ethosomes have been shown to improve delivery of various antimicrobials such as for example 

acyclovir [85] and erythromycin [76]. Godin and Touitou [75] demonstrated penetration of 

bacitracin into deep skin layers and co-penetration of both the drug and phospholipids into the 

fibroblasts. In vivo experiments have proven efficient healing of Staphylococcus aureus deep 

dermal infections when mice were treated with ethosomal erythromycin. On the contrary, no 

subdermal healing was observed in infected animals treated with hydroethanolic solution of the 
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drug [77]. Enhanced ex vivo and in vivo skin deposition of antifungal drug voriconazole has been 

confirmed as well [160].  

For the topical treatment of fungal infections, Elmoslemany et al. [161] prepared and evaluated 

miconazole nitrate-loaded PG liposomes. Compared to the conventional liposomes, PG 

liposomes exhibited stronger antifungal activity and enhanced skin deposition. 

 

SLNs and NLCs were proposed as controlled release delivery systems for topical clotrimazole 

therapy [162].  

 

 

ANTIACNE TREATMENT 

Acne is a chronic inflammatory dermatosis of the pilosebaceous unit with up to 80 % prevalence 

among adolescents. The readers are referred to the reviews on novel treatment approaches based 

on the use of delivery systems by Castro and Ferreira [163] and Date et al. [164]. Delivery of 

antiacne agents in vesicular and particulate nanosystems represents an innovative alternative to 

minimize the side effects, while maintaining the efficacy of the treatment, based on the controlled 

release properties and improved drug penetration into the skin or into the pilosebaceous unit 

[163]. Although no anti-acne therapy based on nanopharmaceuticals has reached the market yet, 

several promising approaches are listed below. 

The superiority of liposome-encapsulated clindamycin hydrochloride in the treatment of acne has 

been first proposed by Škalko and co-workers. In clinical trials, the liposome formulation 

significantly decreased the numbers of pustules as compared to the control formulation [165]. 

Similar findings have been later demonstrated by Honzak and Šentjurc [166]. Liposomal delivery 

systems based on antimicrobials for anti-acne treatment have been confirmed to be superior to 
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non-liposomal systems [31]. Liposomal delivery system for lauric acid, a natural compound from 

coconut oil, was proposed as innate, safe and effective therapeutic medication for acne treatment. 

Lauric acid-loaded liposomes have been shown to fuse with the membranes of 

Propionebacterium and release lauric acid directly into the bacterial membranes [149]. Improved 

treatment of Propionebacterium acnes with marked reduction in adverse symptoms has also been 

demonstrated with liposomes containing benzoyl peroxide [167].  

Advantages of using SLNs for the acne treatments have been exhibited by improved 

photostability of retinoids, enabling lesser drug irritancy and greater skin tolerance [168]. SLNs 

were shown to enhance skin penetration of cyproterone acetate for 4-folds, compared with 

nanoemulsion and cream. Incorporation of the drug into the lipid matrix of nanostructured lipid 

carriers and microspheres resulted in a 2-3-fold increase in cyproterone acetate absorption [169].  

Encapsulation of isotretinoin-hydroxypropyl-β-cyclodextrin (HP-β-CD) complex into the 

deformable liposomes has improved the skin delivery of isotretinoin for the treatment of acne. 

Transdermal flux was found to be 15-21-folds higher than that obtained from the drug in solution, 

and 4-5-folds higher than that obtained with the drug-cyclodextrin complex in a solution form. 

Moreover, the skin irritation study confirmed the significant reduction in irritation potential of 

isotretinoin elastic liposomal formulation in comparison to the free drug [170].  

 

 

DERMATO-ONCOLOGY 

Most of the advances of nanotechnology can be seen in the field of dermoscopy and confocal 

microscopy for the early detection of sub-clinical melanoma [2]. In respect to the treatment of 
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melanoma, several lipid-based delivery systems seems to offer means for improved drug 

delivery. 

Elastic liposomes have been studied for skin delivery of antitumor drugs. In vitro data revealed 

that the LD50 of bleomycin from Bleosome™ (elastic liposomes containing 10% sodium 

cholate) was 3-fold higher than the free bleomycin solution in the cells of human squamous cell 

carcinoma (SCC) and nearly 30 times higher in the human cutaneous keratinocytes [171].  

Paclitaxel-loaded ethosomes have been proposed for the treatment of actinic keratosis and 

squamous cell carcinoma. Improved permeation of paclitaxel through the stratum corneum- and 

isolated epidermis- membrane models have been proven as well as the increased anti-

proliferative activity in a squamous cell carcinoma model [172]. Several studies (reported in 

previous chapters on liposomes and SLNs) emphasize the role of lipid based nanosystems in 

delivery of enzymes (T4 endonuclease 5) and anti-inflammatory drugs (e.g. celecoxib) in the 

prevention of skin cancer, i.e. treatment of precancerous actinic keratosis. The high potential of 

different nanosystems (elastic liposomes, pH sensitive liposomes, nanoemulsions, NLCs) in the 

treatment and prevention of skin carcinoma has been confirmed in in vivo animal and clinical 

studies (Table 2). 

 

 

GENE DELIVERY AND PLASMID-BASED VACCINES 

Gene therapy is defined as the insertion of a gene into recipient cells [173]. The skin is a very 

attractive organ for gene therapy,  as it is easily accessible and the therapy outcome of skin 

treatment can be easily monitored.  



33 

 

Lipid-based nanosystems have been tested as means of non-invasive delivery of genetic material 

into/through the skin to their introduction as possible carriers for non-invasive gene delivery. For 

extensive review on liposomes as non-viral gene delivery system, the readers should refer to 

Jeschke et al. [174]. Enhancement of dermal and epidermal regeneration represents a crucial 

target for the treatment of wounds, including burns. New strategies for the delivery of growth 

factors were proposed based on gene therapy [174]. 

Cholesterol containing cationic liposomes encapsulating an expression plasmid vector for cDNA 

were shown to be able to deliver biologically active proteins to the skin. It is known that 

keratinocyte growth factor (KGF) stimulates epithelial cell differentiation and proliferation, 

major steps in successful wound healing. Liposomal cDNA gene complex was proposed as 

delivery system for KGF therapy. Clear improvements in the epidermal and dermal regeneration 

were seen in rats with acute wounds [175]. 

Kim et al. [176] showed that deformable cationic liposomes, prepared using a cationic lipid, 1,2-

dioleoyl-3-trimethylammoniumpropane (DOTAP), and sodium cholate, were able to transfect 

several cell lines and after a single administration on the intact mice skin transport the genes into 

several organs for 6 days. In another study, ultradeformable liposomes containing edge activators 

sodium cholate or sodium deoxycholate could also deliver DNA into mice transdermally [177]. 

Biphasix, biphasic lipid vesicles, used as a carrier for plasmid DNA were shown to induce the 

gene expression in the lymph nodes. Interestingly, intradermal injection resulted in expression in 

the skin and gene gun-delivered genetic material was found expressed both in skin and lymph 

nodes [178]. 

 

 

VACCINES 
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Topical vaccines based on the advancements in nanotechnology are one of the most promising 

pipelines in nanodermatology. Topical vaccination provides an efficient way to activate effector-

T-cells and induce immune responses. Currently, the main challenges for cutaneous 

immunization are to enhance the transport of antigens across the skin barrier and to improve the 

immunogenicity of topically applied subunit vaccines [179]. Hair follicles were also shown to be 

a penetration pathway and important target for topical vaccination [2]. 

Formulation of antigens in carriers of nanosize range for transcutaneous route is gaining more 

and more popularity [179-181]. 

Transferosomes® were used a carrier for different antigens, for example gap junction protein 

[182,183] and tetanus toxoid [184,185] and shown to induce immune response comparable to 

subcutaneous injection. Mishra and co-workers [186,187] showed the superiority of elastic 

liposomes with hepatitis B surface antigen. Recently, Chopra and Cevc [188] confirmed that 

epicutaneous immunization with tetanus toxoid in deformable liposomes protects mice against 

tetanus. 

Baca-Estrada and co-workers [189] proposed biphasic delivery system as a suitable carrier for 

antigens able to induce antigen-specific immune responses.  

More research is needed to determine the predominant route as well as the effect of the 

nanocarrier characteristics on the penetration and immunization potentials of various 

nanosystems. 

 

The potentials of different (phospho)lipid-based nanopharmaceuticals in the treatment of various 

skin diseases and transdermal administration of drugs and biologically potent molecules are 

confirmed in numerous in vivo and clinical studies (Table 2). The success of extensive research 
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resulted in several registered products, already available on the market. Table 3 summarizes the 

current state-of-art in the product development of nanosized lipid-based drug delivery systems. 

 

 

TOXICITY  

Nanosized systems carry intrinsic skin toxicity, in respect to their small size  and limited ability 

of the skin to bio-process the exogenous material [190]. In respect to skin, especially the skin 

with damaged barrier properties such as in atopic dermatitis for example nanotoxicity needs to be 

addressed [7]. The effects of a long term deposition of nanoparticles in the skin remain to be 

explored [22]. The advancements in fluorescence microscopy such as the development of 

superior fluorescent dyes and probes provided a deeper insight on cellular uptake and the 

trafficking of nanoparticles within the cellular environment [191]. The advanced dyes and 

accompanying methods provide means to optimize delivery systems in respect to both 

intracellular localization of nanoparticles and toxicity concerns related to that particular delivery 

system, with focus on the effect of particle size on both issues [126].  

Moreover, very little is known about the cumulative effects of exposure to various nanosized 

particles, especially cosmetic products. This concern was also addressed by EU through the 

project: Engineered Nanoparticles: Review of Health and Environmental Safety (ENRHES), 

funded by EU in 2008. Several initiatives were launched to address the exciting field of 

nanomedicine in dermatology, such as for example Nanodermatology Society (2010) focused on 

promoting a greater understanding of both scientific and medical aspects of nanotechnology in 

dermatology [21]. 

Phospholipid vesicle-based formulations for (trans)dermal drug delivery, such as Diractin®, have 

been proven in many cases to be completely safe for continuous use [192]. However, each 
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formulation needs to be carefully studied during the preclinical and clinical investigation before 

its recommendation for clinical use. Clinical investigations with soy lecithin/cholesterol 

liposomes containing econazole, hydrocortisone or local anesthetic indicated no adverse effects. 

Slight erythema was observed at the site of administration of liposomal tetracaine under the 

occlusive dressing in a few subjects, but it resolved spontaneously within 3 hours [38]. The 

clinical studies with liposomal econazole indicated less local irritation than econazole cream; the 

lipid vesicles minimized the irritation potential of the drug [155]. 

On the other hand, microemulsions, comprising of the relatively high surfactant concentration 

may cause toxic effects, especially if applied on the diseased skin with impaired function of the 

stratum corneum [31].  

 

CONCLUDING REMARKS 

It can be concluded that opportunities for improved skin therapy based on the advances in 

nanotechnology and development of nanosized delivery systems are expanding, both in the 

academia and industrial set up. (Trans)dermal route and recently revived hair follicles targeting 

[193-199]. Multidisciplinary approaches in nanodermatology are needed to understand the 

mechanisms of interactions between nanomaterials and the skin, particularly diseased skin. 

Remarkable number of (phospho)lipid-based nanopharmaceuticals for skin therapy are already on 

the market or in the late phases of clinical studies (Table 3). The patents in nanotechnology are 

being issued at a geometric rate indicating a strong focus of various industries, including 

pharmaceutical, cosmeceutical and biotechnological. However, many unanswered questions and 

technical challenges remain to be addressed, particularly the long term toxicity issues.  
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Figure and Table legends: 

 

Figure 1. Schematic drawings of different types of liposomes commonly studied in the skin 

delivery of drugs: conventional liposome (A), deformable liposome (B), ethosome (C), 

penetration enhancer embodying liposome (D, e.g. propylene glycol liposome). 

 

Figure 2. Schematic drawings of solid lipid nanoparticle (SLN, A) having more or less perfect 

crystalline structure (similar to brick wall) and nanostructured lipid carrier (NLC, B) consisting 

of a crystalline matrix with many imperfections leading to improved loading efficiency and 

stability.  

 

Table 1. Potentials and limitations of different (phospho)lipid vesicles for skin delivery of drugs 

 

Table 2. Overview of selected clinical and in vivo studies investigating efficiency of lipid-based 

nanosystems for skin delivery of drugs. 

 

Table 3. Examples of registered lipid-based nanosystems for (trans)dermal drug delivery. 

 

 


