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Abstract

We present theory, implementation and applications of a recursive scheme for the

calculation of single residues of response functions which can treat perturbations that

affect the basis set. This scheme enables the calculation of non-linear light absorption

properties to arbitrary order for other perturbations than the electric field. We apply

this scheme for the first treatment of two-photon circular dichroism (TPCD) using

London orbitals at the Hartree–Fock level of theory. In general TPCD calculations

suffer from the problem of origin dependence which has so far been solved by using the

velocity gauge for the electric dipole operator. This work now enables comparison of

results from London orbital and velocity gauge based TPCD calculations. We find that

the results from the two approaches both exhibit strong basis set dependence but that

they are very similar with respect to their basis set convergence.
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1 Introduction

The calculation of single residues of response functions is an important element in the com-

putational treatment of any kind of electronic spectroscopy. Following the pioneering work

of Olsen and Jørgensen in 1985,1 several reformulations have been presented for a wide range

of levels of theory.2–6

From the single residue of the response functions, different kinds of linear- and non-linear

spectroscopic properties can be calculated, such as one-, two- and three-photon absorption,

at different levels of theory.7–14 As the expressions for higher-order properties can become

prohibitively long, we have developed a recursive open-ended response theory code capable

of calculating response functions15 and the corresponding single residues to arbitrary order5,6

but the single residues limited to electric dipole perturbations. We have demonstrated the

versatility of the approach by calculating cubic and quartic force fields16 and multiphoton-

absorption cross sections up to fifth order.6,17 Recursive programming has proved to be a very

efficient tool for treating these high-order properties: The initial effort invested in making a

recursive implementation pays off when considering high-order properties, since it removes

the need for the cumbersome theoretical derivations and programming efforts that would

otherwise be needed for ad hoc implementations for calculating such properties.

In this work, we will present an extension of the work reported in ref 6 to perturbation-

dependent basis sets. This will require that we consider the derivatives of the one- and

two-electron integrals and the overlap matrix, but also that the perturbation operator is no

longer necessarily linear in the field strength as is the case for the electric field.

Perturbation-dependent basis sets are necessary for several properties, such as elec-

tronic18–21 and two-photon circular dichroism22–24 (ECD and TPCD, respectively), which

for isotropic samples only are non-vanishing for chiral molecules. These properties describe

the differential absorption strengths of one or two circularly polarized photon(s) of different

circular polarization. Whereas ECD for isotropic systems depends on the electric and the

magnetic dipole operators, TPCD in addition involves the electric quadrupole operator.25,26
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As is the case for all molecular properties that depend on the magnetic dipole operator,

calculated ECD and TPCD are in general origin dependent when calculated in a finite

basis. For ECD, this problem is normally solved using so-called gauge-including orbitals,

also known as London orbitals,27,28 in self-consistent field (SCF)-based theory. London

orbitals depend explicitly on the magnetic field induction, and are correct to first order in

the external field induction for one-electron atomic systems.29 In addition to ensuring origin-

independent results for finite basis sets for variational methods, the use of London orbitals

also often leads to faster basis set convergence.30 An alternative is to express the electric

dipole operator in the velocity gauge.23,31,32 This approach gives gauge origin-independent

results for non-variational methods, but often at the cost of slower basis set convergence.

In the case of ECD, this approach has mainly been used in coupled-cluster theory where

the use of London orbitals is not straightforward.33,34 In contrast, for TPCD, the velocity

gauge formulation is so far the only approach developed in order to obtain origin-independent

results in SCF-based theories. This approach was originally introduced by Tinoco in 197525

and was rewritten in the framework of response theory by Rizzo et al. in 2006.23 The first

experimental realization of TPCD appeared in 1995.35 Today, most experimental studies

of TPCD are assisted by quantum-chemical calculations.36–39 London orbitals have neither

been used nor assessed in the calculation of two-photon circular dichroism. We here present

the first calculations of TPCD in the length gauge using London orbitals.

The rest of this paper is organized as follows: In Section 2, we discuss the general

theory of single residues of response functions for perturbation-dependent basis sets. In

Section 3, we give an overview of the theory of two-photon circular dichroism, including its

origin dependence and its quasi-energy formulation using London orbitals. In Section 4, we

discuss the technical details of our calculations before we in Section 5 present the first results

of calculations of TPCD using London orbitals, with particular emphasis on the basis-set

convergence of the London orbital and velocity gauge approaches. In Section 6 we give some

concluding remarks and an outlook.
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2 Theory: Single residues of response functions for perturbation-

dependent basis sets

In this section, the working equations for the single residues of response functions involving

perturbation-dependent basis sets are presented. All expressions can be considered extended

versions of the expressions in ref 6 also covering perturbation-dependent basis sets. We will

highlight the extension to higher orders through the recursive scheme of refs 6,15.

2.1 Density-matrix based response theory

Our expressions are formulated in the framework of the atomic orbital density-matrix based

response theory introduced by Thorvaldsen et al. in 2008,5 including a general formulation

for residue formation. We have already discussed an implementation of this formulation in a

recursive scheme for perturbations that do not affect the two-electron integrals (one-electron

perturbations) in ref 6, and we therefore here only briefly recapitulate this theory together

with the fundamentals of density-matrix based response theory.

2.1.1 Energy derivatives in density-matrix based response theory

As shown by Christiansen, Hättig and Jørgensen in 1998, the time dependence of a perturbed

system can be expanded in a Fourier sum of periodic perturbations.2 In analogy with the

energy of time-independent systems, a so-called time-averaged quasienergy is introduced for

the time-dependent systems, which is identical to the energy in the time-independent case.

An atomic-orbital density-matrix based quasienergy approach for Kohn-Sham theory was

formulated by Thorvaldsen et al. in 2008.5

In density-matrix based response theory, the first derivative of the time-dependent quasienergy

is the starting point for the perturbation expansion, because the quasienergy itself for sym-

metry reasons cannot be expressed in terms of the density matrix D̃ and its time derivative
˙̃D.5 In the notation we use here, a dot represents a time derivative whereas a tilde denotes
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that the quantity is expressed at a general perturbation field strength which in general is

time dependent. The first derivative of the time-averaged quasi-energy is

L̃a(D̃) = Ẽ0,a − S̃aW̃, (1)

where Ẽ0,a is the energy differentiated to first order with respect to the perturbation a and to

zeroth order with respect to the density matrix, whereas S̃a is the perturbed overlap matrix.

The generalized energy-weighted density matrix W̃ is defined as

W̃ = D̃F̃D̃ + i
2
( ˙̃DS̃D̃− D̃S̃ ˙̃D), (2)

where the Fock matrix F̃ is given by

F̃ = h̃ + G̃γ(D̃) + Ṽt + F̃xc − i

2
T̃, (3)

where h̃ is the one-electron Hamiltonian integrals and G̃γ(D̃) the two-electron integrals con-

tracted with the one-electron density matrix D̃. The superscript γ denotes the contribution

of exact exchange which depends on the choice of density functional. For pure GGA and

LDA functionals, γ is zero, for hybrid functionals it is between 0 and 1 and for Hartree-Fock

it is 1. The integrals Ṽt are the integrals of a one-electron perturbation operator and F̃xc is

the exchange-correlation contribution to the Fock matrix and is zero in Hartree-Fock (HF)

theory. The matrix T̃ is an anti-Hermitian matrix constructed from combinations of the

overlap matrix where the bra or the ket parts have been differentiated with respect to time.5

For the formation of response functions, we introduce a time-dependent quasienergy

Lagrangian of eq 1 which contains the expression for the time-dependent quasienergy as well

as two Lagrangian constraints

L̃a = L̃a(D̃)− λ̃aỸ − ζ̃aZ̃, (4)
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with the Lagrangian multipliers λ̃a and ζ̃a

λ̃a = [D̃aS̃D̃]	, (5)

ζ̃a =
[
Fa
(
DS− 1

2

)
−
(
FD− i

2

˙̃SD̃− iS̃ ˙̃D
)
S̃a
]⊕
, (6)

where the notations A	 and A⊕ were introduced and are given by

A	 = A−A†, (7)

A⊕ = A + A†, (8)

where adjungation is defined to happen before any differentiation with respect to field

strengths. The notation of F, D and S without a tilde denotes quantities evaluated at

zero field strength. The matrix Ỹ in Eq. 4 represents the time-dependent SCF (TDSCF)

equation

Ỹ =
[
F̃D̃S̃− i

2
S̃ ∂
∂t

(D̃S̃)
]	

= 0. (9)

Finally, the matrix Z̃ represents the idempotency relation for the density matrix and is given

by

Z̃ = D̃S̃D̃− D̃ = 0. (10)

Response functions can now be obtained as derivatives of eq. 4.

As our starting point is the derivative of the time-dependent quasienergy with respect

to a, the perturbation defined to be perturbation a plays a privileged role in this theory.

We therefore have to distinguish between collections of perturbations that involve a and

collections that do not involve a, as the terms in the quasienergy Lagrangian derivative will

not be symmetric with respect to all perturbations. We will therefore use a generalization of
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the well-known 2m + 1- and m + 1-rules of response theory by introducing two parameters

k and n. These parameters are used to denote the maximum level of differentiation that

it is necessary to consider for various constituent terms that are needed to evaluate the

differentiated eq 4, notably perturbed density and Fock matrices. Contributions that involve

terms perturbed to higher orders than the k and n rules dictate may be truncated and thus

need not to be considered. We define that k denotes the maximum level of differentiation

needed for constituent terms where the differentiation includes the perturbation defined as

a, whereas n denotes the same kind of maximum level, but this time for cases where the

differentiation does not include perturbation a. We have, generally, that n+k = N−1 (with

N being the total number of perturbations) and we are free to choose an integer k in the

interval [0, (N + 1)/2] (with (N + 1)/2 rounded down for even N).

2.1.2 Perturbed density matrices

In contrast to the classical formulation of response functions expressed in terms of molecular

orbitals,2 the perturbed parameters in density-matrix based response theory are expressed in

terms of perturbed density matrices DK , where the superscriptK can mean any combination

of perturbations. Following the approach in ref 5, the perturbed density matrix can be

partitioned as

DK = DK
P + DK

H , (11)

where DK
P and DK

H are referred to as the particular and homogeneous contributions, respec-

tively. The general theory for determining the homogeneous contribution has been presented

in refs 5,6 and is therefore not discussed further here.

The general expression for the particular contribution to the perturbed density matrix
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is5

DK
P = PKK−1P† −QKK−1Q†, (12)

where we introduced the projection operators

P = DS (13)

and

Q = 1−DS (14)

and the matrix KK−1

KK−1 = −(DSD)KK−1, (15)

where the subscript index K − 1 means that only density matrices perturbed up to one

order lower than the order of K are taken into account. Consequently, DK
P contains only

contributions involving overlap matrices perturbed up to the order of the perturbation K,

and density matrices perturbed up to the next order lower than the one of K.

Explicit expressions for the particular contribution to the first- and second-order per-

turbed density matrices are given as

Db
P = DSbD−DSDSbD−DSbDSD, (16)

Dbc
P = DS(DS)bDc + DS(DS)cDb + DSDbScD + DSDcSbD + DSDSbcD+ (17)

(DS)bDcSD + (DS)cDbSD + DbScDSD + DcSbDSD + DSbcDSD−

(DS)bDc − (DS)cDb −DbScD−DcSbD−DSbcD.
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The rapidly increasing complexity seen in eq 17 demonstrates the benefits of using a recursive

approach if even higher-order contributions are to be considered.

2.2 The formation of residues

As the general principles of residue formation in atomic orbital density-matrix based response

theory have been discussed in refs 5,6, we refer the reader to the literature for details about

residue formation. We will here only recapitulate the general principles in order to define

the necessary formalism and notation.

The single residue of a response function res(〈〈A;B,C,D〉〉) that depends on the frequen-

cies ωb, ωc and ωd, with −ωa = ωb + ωc + ωd, is obtained as

res
(
〈〈A;B,C,D〉〉

)
= lim

ωK→ωq

(ωK − ωq)〈〈A;B,C,D〉〉, (18)

where ωK can either be one of the frequencies ωa, ωb, ωc or ωd or any sum of n of these

frequencies, where 1 ≤ n ≤ (N − 1) and N is the number of perturbations. ωq is an

excitation energy of the system. From now on, we will only consider residues which depend

on single frequencies, and for the remainder of this work, K will therefore be used as a

variable for the index of one perturbation (although the theory is also applicable if K is a

combination of different perturbations).

Using the principles shown in refs 5,6, the formation of the residue in eq 18 can be done

using the following simple rules:

1. Remove from the expression for the response function all terms that do not depend on

DK either in the homogeneous or in the particular contribution to a perturbed density

matrix.

2. Replace DK by DK→q, where DK→q is defined as

DK→q = DSXK→q −XK→qSD, (19)
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where XK→q is the residue of the perturbation parameter matrix corresponding to the

excitation into state q.

3. For higher-order perturbed density matrices depending on lower-order perturbed den-

sity matrices, the expressions have to be simplified in an analogous manner.

A number of terms always vanish from the expression for the response function upon

residue formation. In refs 5,6, it was also shown that the homogeneous part of the per-

turbed density matrix DK
H can be obtained by scaling the excitation eigenvector Xq by the

scalar obtained by contracting the right-hand-side vector MK
RHS with the adjoint excitation

eigenvector X†q

XK→q = −XqTr
(
X†qM

K
RHS

)
. (20)

2.2.1 The residue of the linear response function

The linear response function corresponds to the second derivative of the (quasi)energy and

therefore, depending on the kind of perturbations applied, describes properties such as molec-

ular Hessians or electric dipole–magnetic dipole polarizabilities (which determines the opti-

cal rotation of a system). Its residues are essential for calculating either electronic circular

dichroism or first-order non-adiabatic coupling matrix elements.40

The residue can be written as

lim
ωb→ωq

(ωb − ωq)〈〈A;B〉〉 Tr=E1,aDb→q − SaWb→q, (21)

where the perturbed intermediates

Wb→q = [Db→qFD]⊕ + DF b→qD + 1
2
ωq[D

b→qSD]	, (22)

F b→q = E2(Db→q), (23)
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have been used. The superscript number index on E denotes derivatives with respect to the

density matrix, whereas the superscript letters indicate the perturbations with respect to

which E is differentiated. Note that the perturbed energies EK... and overlap matrices SK...

are not frequency dependent, in contrast to the perturbed density matrices DK... and their

residues DK→q. For brevity, this frequency dependence is not shown explicitly in this work.

2.2.2 Transition matrix elements

Eq 20 shows that the solution of the response equations is replaced by the excitation eigenvec-

tor (see refs 5,41) multiplied with the scalar Tr(X†qM
K
RHS) when forming the residue. MK

RHS

is obtained from the derivative of the TDSCF equations5,6 and depends on the perturbation

K. Its contraction with the adjoint of the excitation eigenvector is called the right transition

matrix element or transition moment MK
q→0. There is also a left transition matrix element

MK
q←0 which can be considered to be the residue of the response function divided by the

right transition matrix element. We can therefore write eq 21 as

lim
ωb→ωq

(ωb − ωq)〈〈A;B〉〉 =−Ma
q←0Mb

q→0, (24)

with the two transition matrix elements

Mb
q→0

Tr
=X†pM

b
RHS, (25)

Ma
q←0 =Tr

(
lim
ωb→ωq

(ωb − ωq)〈〈A;B〉〉
)(

Mb
q→0

)−1
, (26)

Tr
=E1,aDq − SaWq. (27)

where Dq is the excitation density matrix that can be obtained from eq 19 according to

Dq = DSXq −XqSD, (28)
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which resembles the original formulation of the residue of the perturbed density matrix (eq

19) where the right transition moment (eq 25) has been factored out. Therefore,

Db→q = −DqMb
q→0. (29)

The right-hand-side vector Mb
RHS in eq 25 determines the inhomogeneous part of the per-

turbed parameters Xb and is defined when perturbation-dependent basis sets are used as

Mb
RHS = [F̆

b
DS + FDb

PS + FDSb]	 − 1
2
ωb[SD

b
PS + SDSb]⊕, (30)

where F̆
b
contains all contributions to F b which do not depend on the homogeneous con-

tribution to Db. Mb
RHS can be obtained from the TDSCF equation following the procedures

outlined in ref 5. In SCF-based theories, Mb
q←0 and Mb

q→0 are related by complex conju-

gation and therefore only one of them has to be calculated.

The principles outlined here can be applied to higher-order response functions in a similar

manner. In the appendix we show this for the quadratic response function.

2.2.3 Residues of higher-order response functions

Going beyond the linear response function, it is quickly realized that the expressions rapidly

become more complex. The effort required for a tailored formulation of the working equa-

tions and its subsequent implementation may quickly become intractable at higher orders,

although quadratic and cubic response functions have been derived and implemented using

explicit derivation of the working equations.7,42–44

To overcome this obstacle, Ringholm, Jonsson and Ruud recently introduced and im-

plemented a recursive scheme for the open-ended treatment of response functions.15 This

scheme is founded on five algorithms that together allow for the identification and assembly

of response functions to arbitrary order. An extension of this scheme, presented in ref 6,

includes the addition of a sixth algorithm, enabling the calculation of single residues for
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electric dipole perturbations. These algorithms work by treating the problem of calculating

a response function (or residue) in an order-by-order manner, where, in general terms, each

perturbation in turn is allowed to act on the result of having acted with the preceding per-

turbations on the various quantities necessary for the calculation of the property of interest.

The extension to the use of perturbation-dependent basis sets for single residues is straight-

forward, combining the recursive response theory implementation of ref 15 with the residue

formulation described in ref 6.

3 Origin independence of chiroptical properties

The quantum-chemical treatment of chiroptical properties requires the use of the magnetic

dipole operator. In a finite basis, the properties calculated with this operator are not origin

independent. This problem has received a lot of attention in the literature and different

approaches to resolve or reduce this problem have been presented.27,28,45–47

The origin dependence of TPCD has been thoroughly discussed by Rizzo and coworkers

in 2006 where it was shown that the approach by Tinoco25 is origin independent.23 This

approach is analogous to methods using the velocity gauge for calculating optical rotation

or ECD.21,34,48

A general two-photon transition strength tensor W defined with respect to an arbitrary

operator w and an electric dipole operator µ can be written

Wαβ =
1

~
∑
P

∑
n6=0

(wα)0n(µβ)nq

ωα − ωn
, (31)

where the summation over P is the summation over all operator-frequency pairs, and n runs

over the manifold of excited states.23 In this expression, the dipole operator is given in its

length-gauge representation. If we now substitute the length representation of the electric

dipole operator µ by its velocity representation µp, we get, for the relation between the
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different formulations of the tensor,1,23

Wp
αβ = −iωβWαβ, (32)

where Wp
αβ can be obtained from eq 31 by substituting the dipole operator in length gauge

with the dipole operator in velocity gauge, corresponding to the momentum operator, and

ωβ is the frequency of the photon related to perturbation β. This relation is discussed in

more detail in ref 23 and is based on properties of response functions discussed in ref 1. Let

H be the electronic Hamiltonian, eq 32 is fulfilled when the commutator relations (in atomic

units)

[µj,H] = ipj, (33)

[µj, lj] = 0, (34)

are fulfilled, which is the case for variational methods in an infinite basis. In this equation,

l is the angular momentum operator. Most studies of basis set convergence of the length

and velocity gauges have been performed for coupled-cluster theory, where velocity gauge

based approaches are the only possibility to get origin-independent results.48 For optical

rotation, the velocity gauge has been shown to display good basis set convergence.32 For a

comparison of the basis set convergence for the length gauges (with and without London

orbitals), see e.g. ref 49. However, coupled-cluster theory in general displays slower basis set

convergence than SCF-based approaches due to the handling of electron correlation effects.

The 1999 study of ECD by Pedersen, Koch and Ruud also showed that there is a significant

dependence on the presence of diffuse basis functions in such coupled-cluster calculations.48

An alternative to the velocity gauge is the use of London atomic orbitals27,28

ξj(rM ,A
e
M) = χj(rM)e−iA

e
Mr, (35)
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where χj is a spatial component of an atomic orbital centered on nucleus M with position

RM , and where rM is the difference vector between the position vector of the electron r

and RM . The potential Ae
M defines the dependence of the atomic orbital on the external

magnetic field strength B:

Ae
M =

1

2
B×ROM ; ROM = RM −O, (36)

where O is the global gauge origin.

4 Computational details

4.1 Molecules and structures

We have calculated the two-photon circular dichroism for three chiral molecules: hydrogen

peroxide, propylene oxide and R-1,1′-bi(2-naphthol) (R-BINOL). Hydrogen peroxide was

studied by Rizzo et al., investigating the origin dependence of TPCD.23 For hydrogen per-

oxide we used the same frozen chiral geometry as in their work. For propylene oxide, we

used the structure by Srebro et al.,50 optimized at the B3LYP level51 with the 6-311G(d,p)

basis set.52,53 Finally, as a large-scale application, we consider R-BINOL using the geometry

of ref 36.

4.2 TPCD calculations

All TPCD calculations have been performed using the augmented Dunning-style basis sets

aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ and aug-cc-pV5Z54,55 as well as their doubly aug-

mented analogues. Both the velocity gauge approach by Tinoco23,25 and the length-gauge

approach (referred to as the ω0 approach in ref 23) have been used for the magnetic dipole

operator. To ensure origin independence of the results in the length-gauge approach, London

atomic orbitals have been used. All calculations have been carried out at the Hartree-Fock
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level of theory. While the length gauge calculations have been carried out using the code

outlined earlier as a submodule of the DALTON program, the velocity-based calculations

were done using DALTON.56

The two-photon circular dichroism σTPCD measures the differential two-photon absorp-

tion cross sections for left and right circularly polarized photons and is obtained from the

equation23

σTPCD = σ2P
L − σ2P

R =
4

15

4π2NAω
2g(2ω)

c30(4πε0)
2
· fRTPCD, (37)

where NA is Avogadro’s number, ω is the energy of the incident photons (half the excitation

energy in this work) and g(2ω) is the lineshape function, c0 is the speed of light in vacuo

and ε0 is the electric constant. In this work, we use a Lorentzian lineshape function with a

full-width of 0.1 eV at half maximum. The Lorentzian is centered at the excitation energy

of the state considered. The quantity fRTPCD is the two-photon rotatory strength. It is

important to note that eq 37 is the same for both approaches used in this work, and that

the methods only differ in the determination of fRTPCD.

4.2.1 Rotatory strength in the Tinoco approach

The rotatory strength is obtained from23,25,57

fRTPCD,TI = −b1B1 − b2B2 − b3B3, (38)

where b1, b2 and b3 are coefficients depending on the propagation direction and polarization

of the incident photons. In this study, we investigate TPCD as a difference between the

absorption cross sections for two left and two right circularly polarized photons propagating

parallel to each other and orthogonal to the polarization plane, and for this setup b1 = 6,
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b2 = 2, and b3 = −2.23,25 The three transition strength contributions are defined as

B1 =
1

ω3

∑
ab

Mp,0q
ab P q0

ab , (39)

B2 =
1

2ω3

∑
ab

T+,0q
ab P q0

ab , (40)

B3 =
1

ω3

∑
ab

Mp,0q
aa P q0

bb , (41)

where Mp,0q and P0q are the electric dipole–magnetic dipole transition moment tensor and

the electric dipole–electric dipole transition moment tensor, respectively with the electric

dipole operator expressed in in velocity gauge. In the sum-over-states approach, they can be

expressed as

Mp,0q
ab =

1

~
∑
P

∑
n6=0

m0n
a µ

p,nq
b

ωa − ωq
, P 0q

ab =
1

~
∑
P

∑
n6=0

µp,0na µp,nqb

ωa − ωq
, (42)

wherem is the magnetic dipole operator. The summation
∑

P is a sum over all permutations

of the perturbations a and b and their frequencies. The elements of the tensor T+,0q are

obtained from the electric dipole–electric quadrupole transition moment tensor according to

T+,0q
ab =

1

~
εbcd
∑
P

∑
n 6=0

T 0n
ac µ

p,nq
d

ωa − ωf
, (43)

where εbcd is the Levi–Civita antisymmetric tensor and the matrix elements of the electric

quadrupole operator in velocity gauge are defined using atomic units as

Tab = parb + pbra, (44)

where p and r are matrix elements of the momentum and length operators, respectively.

Note that excitation strength tensors are marked with the superscript index 0q whereas

deexcitation tensors are marked with q0. These two kinds of tensors are connected by
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complex conjugation in the SCF-based theory we are considering in this work.

4.2.2 Rotatory strength in London orbitals/length gauge approach

The London orbitals/length gauge (LL) approach we use in this work is based on the length

gauge ω0 approach discussed in ref 23. In contrast to the approach in ref 23, we use London

orbitals for the treatment of the magnetic dipole operator. In both the ω0 and the LL

approach, the rotatory strength is therefore obtained as

fRTPCD,LO = −ib1B1 + b2B2 − ib3B3, (45)

which looks very similar to eq 38 with the exception of some signs and the imaginary unit

i related to the imaginary character of the magnetic dipole operator. The coefficients b1, b2

and b3 are chosen in the same way as for the Tinoco approach. The contributions are defined

as

B1 =
∑
ab

M0q
abS

q0
ab , (46)

B2 =
ω

2

∑
ab

Q+,0q
ab Sq0ab , (47)

B3 =
∑
ab

M0q
aaS

q0
bb , (48)

where M0q is the electric dipole–magnetic dipole transition strength tensor and Sf0 is the

electric dipole–electric dipole transition strength tensor, constructed according to

M0q
ab =

1

~
∑
P

∑
n6=0

m0n
a µ

nq
b

ωa − ωq
, (49)

S0q
ab =

1

~
∑
P

∑
n6=0

µ0n
a µ

nq
b

ωa − ωq
. (50)
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In contrast to the Tinoco approach, the dipole operator µ is here expressed in the length

gauge. The elements of the transition-strength tensor Q+,0q are obtained from the electric

dipole and electric quadrupole operators, both expressed in the length gauge as

Q+,0q
ab =

1

~
εbcd
∑
P

∑
n6=0

Q0n
acµ

nq
d

ωa − ωq
. (51)

The operator Q is the traced form of the quadrupole operator, which in atomic units is

defined as

Q = rrT , (52)

where r is the length operator.

As shown in ref 23, the contributions B1 and B3 are origin dependent, whereas B2 is

origin independent by construction. The problem of origin dependence is solved by using

London orbitals for the electric dipole–magnetic dipole transition moment tensor,58 which is

then used to calculate both B1 and B3.

5 Applications

In this section, we will compare the basis set dependence of the different approaches for the

calculation of TPCD. As we are not comparing with experimental results, we do not focus

on the complete TPCD rotatory strength, but rather on the different contributions in order

to explore whether they behave differently in the different approaches.

5.1 TPCD of hydrogen peroxide

For hydrogen peroxide, we studied the lowest-energy state that has π∗ → σ∗ character. The

occupied orbital is the π∗-antibonding orbital between the two oxygen atoms, whereas the

virtual orbital is the corresponding σ∗ O—O orbital.
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Our results for hydrogen peroxide are listed in Table 1. Plots for the three contributions

are shown in Figure 1. From these results, we note that the different contributions depend

strongly on the basis set and that the basis-set convergence differs for the two approaches

used. In general, basis-set convergence is faster for the length gauge. B1 can be considered

converged already at the aug-cc-pVDZ level in both approaches, whereas B3 requires at least

aug-cc-pVQZ for converged results. The results obtained with doubly augmented basis sets

are very similar to the ones for the singly augmented ones.

B2 shows the largest deviations for small basis sets. However, with the LL approach and

the aug-cc-pVQZ basis set, the contribution can for both approaches be considered to be

converged with respect to the basis set. Compared to the other two contributions, B2 is quite

small and its influence on the rotatory strength is therefore modest. In general, we have to

distinguish between convergence with respect to the basis and the agreement between the

two approaches. The data for the three contributions show that convergence with respect

to the basis set is reached for the aug-cc-pVDZ basis set in the LL approach, whereas the

Tinoco approach requires at least an aug-cc-pVTZ (B1, B2) or aug-cc-pVQZ (B3) basis set,

respectively, to reach convergence. Also this contribution shows nearly the same behaviour

with doubly augmented basis sets.

As for the intermediate quantities, the basis set convergence of fRTPCD is faster for the

LL approach. It is worth noting that the aug-cc-pVDZ basis set shows notable deficiencies

in the description of all contributions to the rotatory strength in the Tinoco approach, as

well as for the rotatory strength itself.

For hydrogen peroxide we also studied the origin dependence of the length gauge ap-

proach. We used three shifted geometries of the hydrogen peroxide molecule, one in which

the origin was shifted to one of the hydrogen atoms (in the original geometry it is on one of

the oxygen atoms), one in which the y component of the Cartesian coordinates was shifted by

5 a.u. and one in which the shift in the y coordinates was 100 atomic units. Calculations have

been performed using the aug-cc-pVDZ basis set. The results are listed in Table 2. These
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Table 1: TPCD and the different contributions for hydrogen peroxide for different basis sets.
∆E is the excitation energy.

B1 B2 B3 fRTPCD

∆E LL Tinoco LL Tinoco LL Tinoco LL Tinoco
[a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.]

aug-cc-pVDZ 0.21336 -1.608 -0.232 0.033 -1.629 -1.505 -7.694 6.702 -17.254
aug-cc-pVTZ 0.21665 -1.644 -1.792 0.031 -0.097 -1.597 -2.932 6.731 4.698
aug-cc-pVQZ 0.21687 -1.696 -1.629 0.027 -0.009 -1.633 -1.844 6.963 6.071
aug-cc-pV5Z 0.21693 -1.713 -1.669 0.027 -0.004 -1.650 -1.734 7.031 6.536

d-aug-cc-pVDZ 0.21350 -1.686 1.109 0.023 -1.460 -1.604 -7.038 6.953 -23.648
d-aug-cc-pVTZ 0.21671 -1.732 -1.614 0.022 0.015 -1.658 -2.617 7.118 4.483
d-aug-cc-pVQZ 0.21689 -1.727 -1.568 0.022 0.021 -1.660 -1.766 7.087 5.916
d-aug-cc-pV5Z 0.21693 -1.725 -1.665 0.022 0.021 -1.660 -1.718 7.076 6.594
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Figure 1: Plotted results for the different contributions B1 (top left), B2 (top right) and B3
(bottom left) to the TPCD rotatory strength fRTPCD (bottom right) of hydrogen peroxide.
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Table 2: Comparison between shifted and non-shifted geometries for hydrogen peroxide.
The columns marked LL contain the results from our London-orbital length gauge approach
while the numbers in columns marked ω0 were obtained using the complete length-gauge
approach without London orbitals reported by Rizzo et al.23

non-shifted shifted on H shifted, 5 a.u. in y shifted, 100 a.u. in y
LL ω0 LL ω0 LL ω0 LL ω0

[a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.]
B1 -1.6076 -1.6284 -1.6076 -1.6348 -1.6076 -1.5674 -1.6075 -4.0785
B2 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0328 0.0333
B3 -1.5050 -1.5092 -1.5050 -1.5354 -1.5050 -1.2562 -1.5050 3.5519
fR 6.7021 6.8188 6.7021 6.8043 6.7020 6.9587 6.7006 31.6415

results illustrate that there is a significant difference between the LL- and the ω0 results in

general, but that this is very moderate for the non-shifted geometry and for the one with the

origin at one of the hydrogen atoms. For the geometries with larger shifts, the differences

become more significant and we note that for the results with the shift of 100 a.u. even the

results with the London orbitals show a small but visible deviation from the results for the

more moderate shifts due to numerical errors arising from the finite convergence threshold

used when determining the response vectors. However, we note a strong origin dependence

on the results from the ω0 approach for the strongly shifted geometries.

5.2 TPCD of propylene oxide

For propylene oxide, we investigated the TPCD of the S1 state which is dominated by the

transition from the highest occupied molecular orbital to the lowest unoccupied molecular

orbital. The state is of Rydberg character.

Our results for the propylene oxide molecule are collected in Table 3 and plotted in

Figure 2. Comparing them with the results for hydrogen peroxide, we note that for the two

magnetic contributions, the two approaches give similar results already for aug-cc-pVDZ,

but that basis set convergence requires a basis set of at least aug-cc-pVTZ quality.

For the quadrupole term B2, basis set convergence of the Tinoco approach is somewhat
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faster than for the LL approach, but the basis set dependence of this term is in general

smaller than that of the magnetic terms. The rotatory strength is converged both with

respect to the basis set and the approach with the aug-cc-pVTZ basis set.

Table 3: TPCD and the different contributions for propylene oxide for different basis sets.
∆E is the excitation energy.

∆E B1 B2 B3 fRTPCD

LL Tinoco LL Tinoco LL Tinoco LL Tinoco
[a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.]

aug-cc-pVDZ 0.32481 -3.799 -3.636 2.907 2.425 -8.513 -8.153 11.580 10.362
aug-cc-pVTZ 0.32444 -3.103 -3.153 2.659 2.205 -7.520 -7.338 8.898 8.653
aug-cc-pVQZ 0.32434 -3.052 -3.052 2.489 2.237 -7.214 -7.184 8.862 8.421
aug-cc-pV5Z 0.32418 -2.996 -2.981 2.399 2.284 -7.091 -7.049 8.591 8.358

5.3 The R-BINOL molecule

The R-BINOL molecule has C2-symmetry. This has special implications for the evaluation

of the TPCD. In this work, the 1B state is considered, which is the lowest excited state

for all three basis sets used. The results are tabulated in Table 4. Note that there is no

B3 contribution to the TPCD rotatory strength for this state as the diagonal elements of

both the electric dipole–electric dipole and electric dipole-magnetic dipole transition moment

tensors are zero. The structure of the R-BINOL molecule is shown in Figure 3.

The results show that the contribution of B1 is again significantly larger than B2. In

contrast to the propylene oxide molecule, the basis set dependence of B1 is significantly

larger than that of B2. Comparing the two approaches, we note that there are significant

differences for the B2 contribution, whereas for the B1 contributions, both approaches yield

rather similar results.

The difference between the methods is not only significant for the B2 contribution, but

also for the rotatory strength which only for the aug-cc-pVTZ basis set displays convergence

of the two approaches. The difference in the two approaches for the rotatory strength is still
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Figure 2: Plotted results for the different contributions B1 (top left), B2 (top right) and B3
(bottom left) to the TPCD rotatory strength (bottom right) of propylene oxide.

24



Figure 3: Molecular structure of R-BINOL.
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significant for the aug-cc-pVDZ basis set, with the results from the Tinoco approach being

closer to the ones for the larger basis sets in this case.

Table 4: TPCD and the different contributions for R-BINOL for different basis sets. The B3
contribution is not listed as it is zero for symmetry reasons. ∆E is the excitation energy.

∆E B1 B2 fRTPCD

LL Tinoco LL Tinoco LL Tinoco
[a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.]

aug-cc-pVDZ 0.17038 -5.657 -5.739 -0.038 2.610 33.865 39.652
aug-cc-pVTZ 0.16982 -6.222 -6.306 0.051 0.360 37.437 38.556

6 Conclusion and Outlook

We have presented an open-ended recursive approach for the calculation of single residues of

response functions to arbitrary order for perturbation-dependent basis sets, allowing for stud-

ies of both magnetic-field perturbations using London orbitals and geometrical distortions.

We have used the implementation to present the first calculations of TPCD using London

atomic orbitals, allowing for gauge-origin independent results also in the length gauge. We

have compared the use of London orbitals in the length gauge with the conventional velocity-

gauge approach, showing that the two approaches converge to the same limit when increasing

the size of the basis set. There is not a uniform basis set convergence behaviour for the differ-

ent contributions to the TPCD rotatory strength. Whereas the magnetic field contributions

converge quite well in most cases, the quadrupole component (which does not require the

use of London orbitals) is quite challenging. Convergence with respect to the approach is

only achieved for basis sets of at least aug-cc-pVTZ size. In the case of propylene oxide,

the quadrupole contribution required even larger basis sets for convergence. This, however,

did not affect the results for the rotatory strength significantly. Double augmentation of

the basis sets does not seem to change this remarkably. For hydrogen peroxide, we showed

that the regular length gauge is origin dependent, but that the London orbitals can rectify
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this to within the numerical accuracy of the results determined by the finite threshold of

convergence of the response equations.

Our study has shown that the use of London orbitals in the length-gauge formulation of

TPCD allows for origin-independent rotatory strengths. We have also demonstrated that

the LL approach does not lead to significantly faster basis set convergence than the results

obtained with the velocity gauge, lending support to the quality of the results presented in

the literature to date. Nevertheless, it may be worthwhile to explore the basis set convergence

of the two approaches also for somewhat larger molecules than studied here. At present this

methodology is only available at the Hartree-Fock level of theory, but the implementation

of a DFT version is in progress.

This study is an extension of our previous work on the use of London atomic orbitals for

calculating different nonlinear optical birefringences and dichroisms,59 such as Buckingham

birefringence,60,61 the Cotton–Mouton effect,62 Jones birefringence63 and magnetic circular

dichroism.64 Our present study is the second example of the use of London atomic orbitals

in the calculation of single residues of a nonlinear response function, but in contrast to the

case of magnetic circular dichroism for which the magnetic field is static, the magnetic-field

component is frequency dependent in the case of TPCD.

The great diversity in linear and nonlinear properties that can be calculated using London

orbitals is now further accentuated through the use of recursive programming techniques.6,15

This demonstrates the versatility of London atomic orbitals as a means to achieve origin-

independent molecular properties. In many cases, the use of London atomic orbitals also

leads to faster basis set convergence63,65 However, this is not universal, and for properties

such as optical rotation66 and the Cotton–Mouton effect,62 there is not any significant im-

provement in basis set convergence from the use of London atomic orbitals except for very

small basis sets. The results presented here for TPCD also suggest that faster basis set con-

vergence is not guaranteed, although the results are not conclusive. Nevertheless, our work

represents an important step towards a general approach for calculating gauge-origin inde-
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pendent transition moments and excited-state birefringences and dichroisms using London

atomic orbitals.
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A Residues of the quadratic response function

The quadratic response function using k = 1 and n = 1 (see Section 2.1.1) is

〈〈A;B,C〉〉ωb,ωc

Tr
=Eabc1,1 − (SW)abc(1,1)W

− SaWbc
1′ − λaYbc

1′ − ζaZbc1′ , (53)
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where 1′ denotes that the corresponding intermediates only contain perturbed parameters

(i.e. Fock, density, and overlap matrices) up to first order. The intermediate quantities are

Eabc1,1 =E0,abc + E1,abDc + E1,acDb + E2,a(Db)Dc + F bc
1 D

a, (54)

F bc
1 =E1,bc + E2,b(Dc) + E2,c(Db) + E3(Db,Dc), (55)

(SW)abc(1,1)W
=SabcW + SabWc + SacWb + SbcWa (56)

Wbc
1′ =[DbF cD + DbFDc + DcF bD]⊕+ (57)

1
2
[ωb(D

bScD + DbSDc) + ωc(D
cSbD + DcSDb)]	,

Ybc
1′ =[F b(DcS + DSc) + F c(DbS + DSb) + F(DbSc + DcSb)]	− (58)

1
2
[ωbS

c(DbS + DSb) + ωcS
b(DcS + DSc)]⊕ + 1

2
(ωb + ωc)

(
[S(DbSc + DcSb)]⊕

)
,

Zbc1′ =[DbScD + DbSDc + DcSbD]⊕. (59)

The residue for the response function in eq 53 is

lim
ωc→ωq

(ωc − ωq)〈〈A;B,C〉〉ωb,ωc

Tr
=E1,abDc→q + E2,a(Db)Dc→q+ (60)

F b(c→q)
1 Da − SabWc→q − SaW

b(c→q)
1′ −

λaY
b(c→q)
1′ − ζaZb(c→q)1′ .
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The residues of the quantities introduced in Eqs. 54–59 are defined as

F b(c→q)
1 =E2,b(Dc→q) + E3(Db,Dc→q), (61)

Wc→q =[Dc→qFD]⊕ + DF c→qD + 1
2
ωq[D

c→qSD]	, (62)

W
b(c→q)
1′ =[DbF c→qD + DbFDc→q + Dc→qF bD]⊕+ (63)

1
2
[ωb(D

bSDc→q) + ωc(D
c→qSbD + Dc→qSDb)]	,

Y
b(c→q)
1′ =[F bDc→qS + F c→q(DbS + DSb) + FDc→qSb]	− (64)

1
2
[ωqS

bDc→qS]⊕ + 1
2
(ωb + ωq)

(
SDc→qSb

)⊕
,

Z
b(c→q)
1′ =[DbSDc→q + Dc→qSbD]⊕. (65)

Another formulation of the quadratic response function can be set up using k = 0 and

n = 2:5

〈〈A;B,C〉〉ωb,ωc

Tr
=E0,abc + E1,abDc + E1,acDb + E1,aDbc + E2,a(Db)Dc (66)

− SaWbc − SabWc − SacWb,

with the perturbed energy-weighted density matrix

Wbc =[DbcFD + DbF cD + DbFDc]⊕ + DF bcD + 1
2
ωb

[
DbScD+ (67)

DbSDc
]	

+ 1
2
ωc

[
DcSbD + DcSDb

]	
+ 1

2
(ωb + ωc)

[
DbcSD

]	
,

for which also a residue can be formed

lim
ωc→ωq

(ωc − ωq)〈〈A;B,C〉〉ωb,ωc

Tr
=E1,aDb(c→q) + E1,abDc→q + E2,a(Db)Dc→q (68)

− SaWb(c→q) − SabWc→q,
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using the intermediate quantity

Wb(c→q) =[Db(c→q)FD + DbF c→qD + DbFDc→q + Dc→qF bD]⊕ + DF b(c→q)D+ (69)

1
2
ωb

[
DbSDc→q

]	
+ 1

2
ωq

[
Dc→qSbD + Dc→qSDb

]	
+ 1

2
(ωb + ωc)

[
Db(c→q)SbD

]	
.

The formulation using k = 0 and n = 2 contains no terms depending on Lagrangian

multipliers, but instead it depends on second-order perturbed parameters. The choice of

rule can in some circumstances drastically affect the size of the calculation, particularly

when one or more of the perturbations are size-extensive (e.g. geometrical perturbations).

In eq 68, we note that there are the nested density matrix residues Db(c→q). These density

matrices are obtained from perturbed parameters of second order. For details we refer to eq

20 and ref 5,6. The single residue of a doubly perturbed perturbation parameter is

Xb(c→q) = lim
ωc→ωq

(ωc − ωq)Xbc =
(
E[2] − (ωb + ωq)S

[2]
)−1

M
b(c→q)
RHS , (70)

with the right-hand-side vector Mb(c→q)
RHS formulated using residues of first-order parameters

M
b(c→q)
RHS = lim

ωc→q
(ωc − ωq)Mbc

RHS (71)

=[FD
b(c→q)
P S + F bDc→qS + F c→q(DS)b + FDc→qSb]⊕− (72)

1
2
[ωqS

bDc→qS + (ωb + ωq)(SD
b(c→q)
P S + SDc→qSb)]⊕.

The particular contribution to the density matrix D
b(c→q)
P is

D
b(c→q)
P = DS(DS)bDc→q + DSDc→qSDb + DSDc→qSbD+ (73)

(DS)bDc→qSD + Dc→qSDbSD + Dc→qSbDSD−

(DS)bDc→q −Dc→qSDb −Dc→qSbD.

As discussed in section 2.2.2, we can extract the first-order transition moment from the
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expressions in both formulations of the single residues and therefore obtain the second-order

transition moments for k = n = 1 as

Mab
0→q

Tr
=E1,abDq + E2,a(Db)Dq + F b

q,1D
a− (74)

SabWq − SaWb
q,1′ − λaYb

q,1′ − ζaZbq,1′ ,

where the intermediates marked q can be obtained by exchanging the residue of the perturbed

density matrix Dc→q by the density matrix Dq.

For the choice k = 0 and n = 2, the second-order transition moment is

Mab
0→q

Tr
=E1,aDq + E1,abDc

q + E2,a(Db)Dq (75)

− SaWq − SabWq. (76)
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