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Current-to-Current Converter for Scientific
Underwater Cable Networks

Kenichi Asakawa, Member, IEEE, Junichi Kojima, Member, IEEE, Jun Muramatsu, Tatsuo Takada,
Katsuyoshi Kawaguchi, Member, IEEE, and Hitoshi Mikada, Senior Member, IEEE

Abstract—A new current-to-current converter, which is a key de-
vice to branch a constant direct current (dc) into two constant dcs,
was proposed [K. Asakawa ef al., Proc. OCEANS, pp. 1868-1873,
2003]. It has been verified, through computer simulations and ex-
periments using prototypes, to have good conversion efficiency and
stable operation. Because the basic circuit is simple, high reliability
is expected. The current-to-current converter is a key device to re-
alize a constant current (CC) power-feeding system for scientific
underwater cable networks having mesh topology, which is neces-
sary to enhance robustness against cable breakdowns and to deploy
sensors in 2-D and efficiently over a vast research area.

Index Terms—Constant current (CC), current-to-current con-
verter, scientific underwater cable network.

1. INTRODUCTION

CIENTIFIC underwater cable networks are anticipated to
Sbe the most promising means to achieve continuous real-
time, long-term, and 3-D underwater observation covering a
wide region, which is necessary to elucidate the nature of oceans
and the earth.

Accelerated by the recent evolution of the submarine optical
cable technology and related technologies such as computers,
Internet, electronics, etc., several ambitious scientific under-
water cable network projects have been proposed and initiated.
The United States and Canada have commenced the joint
project called the Northeast Pacific Time-Series Undersea
Networked Experiment (NEPTUNE),! which will emplace a
scientific underwater cable network in the northeastern Pacific
Ocean. In Monterey Bay, CA, and in the ocean around Victoria
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and Vancouver, Canada, respectively, the Monterey Acceler-
ated Research System (MARS)? and Victoria Experimental
Network Under the Sea (VENUS)?3 projects are also underway.
In Europe, the European Seafloor Observatory Network (ES-
ONET)# consortium has proposed ten scientific cable networks
in the submarine terrain around Europe. These networks will
be used for multidisciplinary investigations including those of
geophysics, oceanography, biology, chemistry, biochemistry,
and fisheries.

In Japan, eight scientific underwater cables have been con-
structed and they currently operate [1]. Because Japan is lo-
cated near plate boundaries where catastrophic earthquakes and
tsunamis occur periodically, seismology has a higher priority in
view of disaster mitigation.

Considering the previously described situations, the IEEE
Oceanic Engineering Society Japan Chapter has organized a
technical committee to promote a technical feasibility study
[2], [3] of scientific underwater cable networks. The committee
was established in February 2002 [9].

The proposed scientific underwater cable network [2], [3] is
named advanced real-time earth monitoring network in the area
(ARENA). Although the main mission of ARENA is seismic
observation, it is intended to be used multidisciplinarily.

Fig. 1 shows that ARENA has a mesh topology, which facil-
itates deployment of sensors over a vast observation area. It has
multiple landing stations. Various sensors are connected to ca-
bles through underwater hub units. The mesh topology is also ef-
fective to increase robustness against cable shunt faults. Because
the cable network is connected to multiple landing stations, each
observation node has plural routes to landing stations. For that
reason, even if one route is broken, it will be linkable to another
landing station through another route and observations can con-
tinue. This feature is necessary, especially as a countermeasure
against cable faults caused by earthquakes because it is a rare
chance to observe aftershocks and it is very important for dis-
aster mitigation and seismic studies.

In ARENA, underwater telecommunication cables will be
used as trunk cables because they have superior reliability.
Their configuration is simple and their cost is moderate. All
related technologies and tools for construction and repair work
are available. Because only one electric conductor exists, as
shown in Fig. 2, in the underwater optical telecommunication
cable, the return current flows in the seawater.

2Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA;
available at http://www.mbari.org/mars/

3University of Victoria, Victoria, BC, Canada; available at http://www.venus.
uvic.ca/

4University of Aberdeen, Newburgh, Aberdeenshire, U.K.; available at http:/
www.abdn.ac.uk/ecosystem/esonet/

0364-9059/$25.00 © 2007 IEEE
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Fig. 1. Image of ARENA.

Optical Fiber Unit

Water Blocking
Compound

3-Divided Steel
Segment

Steal Wire
Copper Tube

Polyethylene Sheath

Fig. 2. Typical cross-sectional view of lightweight optical telecommunication
cables.

For conventional underwater telecommunication cable sys-
tems, a constant current (CC) power-feeding system is used, be-
cause it has the following advantages.

1) It is robust against cable shunt faults. Because electric
power is usually supplied from both ends of the cable, even
if the cable is shunted to seawater at one point, electric
power can be supplied continuously to the entire cable
from both ends. Only the electrical potential distribution
of the cable changes.

2) In case of a cable shunt fault, the fault point can be lo-
calized by measuring the direct current (dc) resistance be-
tween the power-feeding line and the sea earth.

3) Itis easy to isolate underwater electric circuits in repeaters
electrically against seawater because there is no sea earth
brought into repeaters.

In case of shunt faults where current is flowing in from sea-
water to the conductor, electric corrosion will not occur and
we can continue to supply power. However, in case of shunt
faults where current is flowing out from a fault point to seawater,
the exposed conductor will corrode and the shunt impedance
will increase. In such a case, one means to continue to supply
power is to reverse the polarity of the current. Repeaters and
current-to-current converters should be bipolar. Adding a recti-
fying circuit at the input stage, repeaters and current-to-current
converters are easily rendered bipolar.

In the feasibility study, the three following power-feeding
systems were compared:

1) CC power-feeding system;

2) constant voltage (CV) power-feeding system;

3) hybrid system that includes a CC power-feeding system
and a CV power-feeding system.

Advantages for a CC power-feeding system for telecommu-

nication cable systems mentioned previously are applicable
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Fig. 3. Basic circuit diagram of the current-to-current converter.
to scientific cables, except for item 3), because a node or a p ‘
branching unit will necessitate a sea earth in the housing. Converter-1
However, there was no device to divide a CC into two CCs. 1
Such a device was necessary to supply a CC to cable networks » |/ | Converter2 >
having mesh topology. On the other hand, a CV power-feeding IR 0
system presents the advantage of easily dividing a CV power Input  +— Output
supply line into plural lines [4]. It is also suitable to provide «— |/ |Converter3| [ «—
large electric power because it is easy to divide electric power. | N
The NEPTUNE system adopted a CV power-feeding system ! | ]
[5], [6], which is now being developed. However, a new method Converter-4

should be developed to find cable shunt faults and to remove
faulted sections to continue operation when shunt faults occur.
Power supply systems in underwater devices must be more so-
phisticated than those for CC power-feeding systems, because
electric power for underwater devices should be taken from
higher dc voltage of several kilovolts.

The authors have proposed a new current-to-current converter
[7], which is akey device to divide a CC into two CCs. It enables
construction of a mesh-like cable network with a CC power-
feeding system. Results of experiments using two prototypes
and results of computer simulations are presented in this paper.
These results show promising characteristics of the proposed
current-to-current converter.

II. BAsIc CIRCUIT

Fig. 3 shows a basic circuit diagram of the converter.
The input dc current I;, is switched with switching devices
such as metal-oxide—semiconductor field-effect transistors
(MOSFETS) and is converted to the alternating current (ac) and
input to a transformer. The output current of the transformer is
rectified to produce another output dc I,. The ratio between the
input and the output current I;/I, is almost equal to Ny /N>
where N7 and N, are the winding numbers of the transformers.
The magnitude of the output current is almost proportional to
the magnitude of the input current. In other words, if the input
current is constant, the output current will also be constant; the
current-to-current converter divides a CC into two CCs. In the
design of the prototypes, we made N; and [V, equal.

Because the basic circuit is very simple and no feedback
loop exists, high reliability and high conversion efficiency are
expected.

Overvoltage and overcurrent sensors are put in the input
stage, but they are not shown in Fig. 3. The overvoltage sensor
is used to protect the converter in case of high impedance fault
in the cable. To increase the output voltage and the power,

Fig. 4. Connection of plural converters.

inputs and outputs of plural converters are connected in series,
as depicted in Fig. 4. Because current-to-current converters will
be placed on the seafloor, and because it is not easy to recover
and repair them when they fail, higher reliability and robustness
are required. In Fig. 4, converter-4 is shown as a standby; its
input is shunted in normal operation. In this case, the output
current flows through the diode Dj in the converter-4. The input
of the failed converter will be shunted and converter-4 will be
activated if one of the other converters breaks. This redundancy
increases the reliability of the current-to-current converter.

III. COMPARISON BETWEEN EXPERIMENTS AND
COMPUTER SIMULATION

A. Simulation Model

To deepen our understanding of the converter, we conducted
computer simulations and compared those results with experi-
mental results. The simulation was done using PSpice. Fig. 5
shows the basic circuit used in the simulation.

A linear core model was used for the transformer 73 because
the magnetic flux density in the experiment was much lower
than that of the saturation level. In the linear model, a trans-
former was represented by two inductances, a coupling coeffi-
cient, and resistances of windings. Resistances R, and R, in the
primary of the transformer represent the loss in the ferrite core
and switching loss of field-effect transistors (FETs).

B. Waveform

Fig. 6 shows a comparison between observed waveforms and
simulation results. The upper two waveforms in the figure show

Authorized licensed use limited to: Kyoto University. Downloaded on June 29, 2009 at 01:07 from IEEE Xplore. Restrictions apply.
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Fig. 5. Basic circuit diagram for the simulation.
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Fig. 6. Comparison of observed waveforms and simulation results.

the source-drain voltage of the FET}; ; the lower two waveforms
show the current flowing into the transformer.

The coupling coefficient of the transformer was selected as
0.992 so that the calculated current waveform coincided with
measured waveforms. This coupling coefficient shows good
agreement with the measured value of 0.994.

The simulated waveform coincides well with the measured
waveforms, which proves the validity of the simulation.

C. Output Characteristics

‘We have produced three converters and compared their output
characteristics. Fig. 7 shows that the output currents are almost
constant regardless of the output voltage; they can be consid-
ered as CC sources. The equivalent slope resistance is about

2.3

Output Current (A)
N
N

N
N

Output Voltage (V)

Fig. 7. Output characteristics of the first prototype.

5.6 k€. This slope resistance corresponds to the output resis-
tance. The output current should be the same when plural con-
verters are connected in series. Because the converter has finite
slope resistance, the output current range has some allowance.
This allowance makes it possible to connect plural converters in
series. The moderate slope resistance is suitable for the series
connection, which renders a very high slope resistance unde-
sirable. The output characteristics of these converters are quite
similar, which also facilitates the series connection.

Authorized licensed use limited to: Kyoto University. Downloaded on June 29, 2009 at 01:07 from IEEE Xplore. Restrictions apply.
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Fig. 8. Influence of deviation of R, and R against the output characteristics.

Increase of output current is apparent at regions of lower
than 20 V output. It is caused by the intrinsic body diode of
MOSFETs. When one MOSFET is switched off, the body diode
within the other MOSFET is activated because of the trans-
former’s inductance; the current continues flowing through the
circuit of the body diode, transformer, and capacitor C;. When
the output load is heavier and the output voltage is higher, the
energy of this current will be absorbed rapidly by the output
load and the current will decay. However, if the output voltage
is lower and the output load is lighter, the current decay is rather
slow. This residual current flowing through the body diode in-
creases the output current in the lower output voltage region.

Fig. 8 shows the simulated and measured output characteris-
tics, where R; and R, are changed as parameters. The output
characteristics with R; and R of 12 k2 coincide well with the
measured characteristics; also, the deviation of resistance affects
the output characteristics. The output resistance of the converter
is approximated as (R; + R2)/2 = 6 k2, which is almost equal
to the measured slope resistance of 5.6 kS2.

Fig. 9 shows the output characteristics when the on-resis-
tance of FETSs (R, ) is changed. Because the converter is driven
with CC, the deviation of on-resistance of FET does not affect
the output characteristic. The deviation of winding resistance of
the transformer does not affect the output characteristics for the
same reason. However, these resistances degrade the converter
efficiency.

Fig. 10 shows output characteristics of the converter when
the coupling coefficient of the transformer was changed as a pa-
rameter. This figure shows that the deviation of coupling coef-
ficient influences the output characteristic in the lower output
voltage region when it is lower than 0.99. Because the mea-
sured coupling coefficient of 0.994 is greater than 0.99, prac-
tically speaking, its deviation has little influence on the output
characteristic.
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Fig. 10. Influence of the coupling coefficient of the transformer against the
output characteristics.

D. Efficiency

The converter efficiency is shown in Fig. 11. Neither the
power consumed by the drive circuit nor the control circuit is
included in this calculation. The simulation and the measure-
ment show good agreement in the higher voltage region, where
efficiency of about 95% is obtained. Little difference exists in
the lower voltage region.

The calculated breakdown of the loss in the higher voltage
region is shown in Table I. Because the loss of the core can
be estimated as about 3 W, the switching loss of FET, which
is estimated to be about 17.8 W, is dominant.

E. Temperature Characteristics

Fig. 12 shows the measured temperature dependence of the
output characteristics. The output current and slope resistance
are temperature dependent, which is considered to be mainly the
result of the transformer’s temperature dependence. However,
because differences between output characteristics of the three

Authorized licensed use limited to: Kyoto University. Downloaded on June 29, 2009 at 01:07 from IEEE Xplore. Restrictions apply.
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Fig. 11. Efficiency of the first prototype.
TABLE I

DETAILS OF THE LOSS (OUTPUT VOLTAGE: 330 V) R; AND R, RESPECTIVELY,
REPRESENT THE LOSS IN THE CORE AND THE SWITCHING LOSS OF FETS

Item Loss
On-resistance of FET 63 W
Power loss of R and R, 20.7W
Diodes Dy, D,, Dy and D, 32W
Resistance of winding wire 1.3W
Other losses 3.6 W
Total 351 W

converters are small for all temperatures, they can be connected
in series at these temperatures.

IV. COMPACT PROTOTYPE

‘We have produced a compact second prototype [8] which can
be mounted in a branching unit (BU, depicted in Fig. 13) of un-
derwater telecommunication cable systems. We then evaluated
its performance. The BU can be deployed to and recovered from
6000-m depth.

A. Basic Specifications

Table II shows the basic specifications of the second proto-
type. The specifications for voltage and size are applicable to
the entire system. Four converters are connected in series to
increase the power output. Fig. 14 shows a photograph of the
whole system.

The basic circuit of those converters is the same as that of the
first prototype.

B. Electrical Characteristics

Fig. 15 shows output characteristics of the whole system in
which four converters are connected in series. It can be recon-
firmed that the output can be regarded as a CC source. The slope

2.15

2.10

Output Current (A)

2.05

0 100 200

Output Voltage (V)

Fig. 12. Temperature dependency of the output characteristics.

1500 mm

Fig. 13. Typical appearance of BU for optical telecommunication cable
systems.

$ 470 mm

TABLE II
BASIC SPECIFICATIONS OF THE SECOND PROTOTYPE

Items Specifications

Max. Input Current 14A

Max. Output Voltage | 600 V

Max. Output Current | 1.4 A

Number of 4

Converters

Switching Frequency | 25 kHz

Efficiency Higher than 90%

Size 375 mm (L) x 200 mm (H) x
200 mm (W)

resistance is about 11.5 k€2 in the output voltage range higher
than 100 V. The output resistance of a converter is about 2.9 k€2,
which is one-quarter of the slope resistance of the whole system.
It is because four converters are connected in series. We think
the difference between the slope resistance of the first proto-
type and that of the second prototype is mainly attributable to

Authorized licensed use limited to: Kyoto University. Downloaded on June 29, 2009 at 01:07 from IEEE Xplore. Restrictions apply.
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Fig. 15. Output characteristics of the second prototype.

the difference between the transformers. We used smaller trans-
formers for the second prototype to reduce the size, which in-
creased losses in the core and decreased the slope resistance.

The converter efficiency is described in Fig. 16. Although the
power consumed by the controller is not included in the calcula-
tion of the efficiency, high efficiency of about 95% in the higher
output range is realized.

All the results described previously concur with those ob-
tained with the first prototype.

C. Heat Dissipation

Heat dissipation is an important issue because the converters
are mounted in a watertight housing, the heat dissipation char-
acteristics of which are poor, especially in the air. It also affects
the long-term reliability.

Fig. 17 shows results of the experiment of temperature rise
with the maximum load. The converters were housed in a rect-
angular housing, which had almost equivalent heat dissipation
characteristics to those of BUs. Fans are not used, thereby in-
creasing the long-term reliability. Seven temperature sensors
were attached to each part of the current-to-current converter.

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 32, NO. 3, JULY 2007
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Fig. 16. Efficiency of the second prototype.

Fig. 17 shows that the temperature became stable after about
7 h. Because the temperature rise is less than 23 °C, its effect on
long-term reliability is inferred to be negligible. The locations
at which the temperature rise was highest were the transformer
surface and the top of the circuit board. Because the FETs and
diodes are installed directly on the base plate, which has good
thermal conductance, the temperature rises of these devices are
less than that of the transformer.

V. CONCLUSION

The CC power-feeding system presents many advantages for
scientific underwater cable networks. The authors have pro-
posed a new current-to-current converter, which is a key device
to realize mesh-like cable networks with a CC power-feeding
system. Because the basic circuit is simple and no feedback
loop exists, it is easy to obtain higher reliability.

Authorized licensed use limited to: Kyoto University. Downloaded on June 29, 2009 at 01:07 from IEEE Xplore. Restrictions apply.
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Fig. 17. Results of the experiment of temperature rise with the maximum load.

Two prototypes of the current-to-current converter were de-
veloped and evaluated.

Experiments using the first prototype confirmed the
following:

1) the proposed current-to-current converter has good

characteristics;

2) because the output resistance is sufficiently high, it can be
regarded as a current source;

3) the conversion efficiency is higher than 95% in the higher
voltage region;

4) the output characteristics of the three converters are suffi-
ciently compatible that they can be connected in series to
increase the output power.

The results of the simulation agree well with the experimental
results, which proves the validity of the simulation. The simu-
lation showed the following:

1) the loss in the ferrite core and the switching loss of FETs

have dominant influence on output characteristics;

2) on the other hand, on-resistance of FET and the coupling
coefficient exert little influence on output characteristics.

A temperature rise test was conducted using the second proto-
type. In that test, the current-to-current converter was placed in a
rectangular housing that had thermal properties that were almost
equivalent to those of BUs. Results confirmed that the tempera-
ture rise was sufficiently low that its effects on long-term relia-
bility were negligible.

These results show that the proposed current-to-current
converter has promising features. It will provide great benefits
for the design and construction of scientific underwater cable
networks.
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