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DISCOUNTED MARKOV DECISION PROCESSES WITH
GENERAL UTILITY FUNCTIONS
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T ¥ K #F E¥ E3 ( Masami Kurano )
F ¥ K B ZH IEE ( Masami - Yasuda )

ABSTRACT

We consider a maximization of the expected utilify of the total discounted rewards
in countable state Markov decision processes. Specifying the class of distribution
functions for the present value and using its weak compactness, we established the
optimality equation under a general utility. Also a g-optimal policy is constructed.
As an application of g-optimality, we discuss the moment optimality introduced by
Jaquette(7].

1. Introduction

A utility optimization of Markov decision processes(MDP’s) with countable state
and compact action spaces is considered. As for utility functions, an exponential one
has many attractive properties. For example, it has a constant local risk aversion and
an invariant risk premium with respect to the wealth(Fishburn[5], Pratt[11]). Several
authors analyzed MDP’s with exponential utility functions. Howard and Matheson|6]
studied the case of finite states and actions in N horizon times. Letting N tend to
infinity, they gave the policy improvement to find the policy that maximizes the time-
average equivalent returns of MDP’s. Chung and Sobel[2] considered the maximization
of the expected utility of the total discount return random variable (called the present
value) for finite MDP’s and derived the optimality equations, by which an optimal policy
was constructed. Porteus[10] and Denardo and Rothblum|[3] dealt with the problem from
_the other points of view. '

In this paper, we consider the same problems as those treated in Chung and Sobel[2]
when the utility function is a general, in particular, continuous function, by which the
practical applications will be enlarged. The method of analysis employed here is closely
related to the one in Sobel[13], White[14], where the distribution function of the present
value is characterized by iterative formula and the fixed point theory. Specifying the
class of distribution functions of the present value as a weak-compact space, we derive

the optimality equation under a continuous utility function ¢, from which a g-optimal
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policy is constructed. In the case of the exponential utility, the optimal equation derived
here is the same as that in Chung and Sobel[2]. As an application of our results, we
treat the moment optimality introduced by Jaquette[7] and show that there exists a
stationary policy which is moment optimal for countable state MDP’s.

In Section 2, we shall prepare the several notations and define the problem to be
examined. Also, the weak-compactness of distribution functions of the present value is
described referring to Borkar’s excellent book[1].

2. Preliminaries

We consider standard Markov decision processes specified by (S, {A(i)}ies, q,7),
where S = {1,2,---} denotes the set of the states of the processes, A(7) is the set
of actions available at each state i € S, ¢ = (¢;;(@)) is the matrix of transition prob-
abilities satisfying that 3°;cq ¢ij(a) = 1 for all i € S and @ € A({), and r(4,a,j) is an
immediate reward function defined on {(i,a,j)|t € S,a € A(i),j € S}. '

Throughout this paper, the following assumptions will be remained operative:
(i) For each i € S. A(¢) is a closed set of a compact metric space.
(ii) For each 7,5 € S, both ,(Jij(.") andjr(i, -, J) is continuous on A(¢).

(iii) The function 1 is uniformly bounded, i.e., 0 < r(é,a,j) < M for all 4,5 € S and
a € A(i).

The sample space is the product space 2 = (S x A)* such t‘hatv the projection X, A,
on the t-th factors S, A describe the state and the action of ¢-time of the process(t >
0). A policy # = (mg,7y,---) is a sequence of conditional probabilities 7, such that
7 (A(i¢)]dg, ag, -+ -, 1) = 1 for all histories (ig,ag,--+,i;) € (S x A)! x S. The set of all
policies is denoted by II. A policy # = (m, 71, --) is called stationary if there exists
a function f with f(i) € A(i) for all ¢ € S such that m({f(i)}ioya0, - it = 1) =1
for all t > 0 and (iy, ag, -+ 7;) € (S x A)' x S. Such a policy is denoted by f°. Let
H, = (Xo,Ag,- -, A1, Xy) for £ >.0. We assume that for each 7 = (7, m,---) € 11,

P X = jIHt—'h A, Xi =0, =a)= (]ij(a)

forallt > 0,i,7 € S.a € A(2). For any Borel measurable set X, P(X) denotes the set
of all probability measures on X. Then, any initial probability measure v € P(S) and

policy 7 € II determine the probability measure P? € P(2) by a usual way.
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Lemma 2.1.(e.g. see Borkar[l]) For each v € P, = {P¥ € P(Q)|r € 11} is
compact in the weak topology.

The discounted present value of the state-action process {X,, A;t =0,1,2,---} is
defined by

B:= ZfdtT(}&—;,Ai,AX—f_F]), (21)

: =0
where (0 < 7 < 1) is a discount factor. Let u := M /(1 — 3). Then, for each v € P(S)
and 7 € II, B is a random variable from the probability space (£2, PY) into the interval
[0,u]. We denote by C[0,u] the set of all bounded continuous functions on [0,u]. Let
g € C[0,u] be arbitrary. Then, interpreting this g as a utility function, our problem
is to maximize the expected utility E%(g(B)) over all policies 7 € II, where EY is the
expectation with respect to P/.

In order to analyze the above problem, it is convenient to rewrite EY(g(B)) by using
the distribution function of B corresponding to PY. Let, for each v € P(S) and 7 € II,

Fy(2) = PX(B < ), [ 2
®(v) = {Fr(-)|m € IT}. (2.3)
Noting that we can identify ®(v) with B(v), the next results follows from Lemma 2.1.
Corollary 2.1. For any v € P(S), ®(v) is weak-compact.

For any g € C[0,u] and v € P(S), we say that 7* € IIis (v, g)-optimal if EZ.(g(B)) >
E¥(g(B)) for all 7 € II. When 7* is (v, g)-optimal for all v € P(S), 7* is simply called
g-optimal.

3. g¢-optimality

In this section we derive the optimality equation under arbitrary continuous function
g, which construct a g-optimal policy. By weak-compactness of ®(v) given in Corollary
2.1. the following existence theorem holds.

Theorem 3.1. For any v € P(S) and ¢ € C[0, u], there exists a (v, g)-optimal policy.
Proof. By Corollary 2.1 it follows that -

sup E2(g( = sup / g(z / g(2)F*(dz)

m€ll Fed(v)
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for some F* € ®(v). Corresponding to F*, let 7* be its associated policy. Then, clearly
7 is (v, g)-optimal. _ my

In order to describe the optimal equation in Theorem 3.2 below, the following lemma,
is useful. The proof of it is easily done from the uniform continuity of ¢ on [0, u] and
Corollary 2.1. '

Lemma 3.1. For any g € C[0, 4], / g(s+ pz)F(dz) is continuous as a function of (s, F)
on [0, M] x ®(v).

For simplicity of the notation, let

Ud{g}(s,i,a,j) := max /g(s + (i, a, j) + BT F(dz) - (3.1)

Fed(j)

for t > 0,9 € C[0,u}.s € [0,M],i,j € S and a € A(i), where'if v € P(S) is degenerate
at {j}, v is simply denoted by j and ®(v) by ®(j). Note that by Lemma 3.1 the
maximum in Eq.(3.1) is attained. Now, we can state one of our main results, which -
gives a necessary condition for (v, g)-optimality.

‘Theorem 3.2. For any v € P(S) and g € C[0,u], let 7 € IT be (v, g)-optimal. Then
for each t > 0, lthe following optimal equation holds. '

E;*(Q(B)) = E;*{ max Z Qij(a)[Jt{g}(Bt—lv‘Xha'v.j)}* (32)

v a€A(Xy) 155

where B_, := 0 and B, := ¥L_y B7( Xy, Ap, Xip1) for ¢ > 0. .

Proof. For simplicity, we denote EY. by E. For any w = (i, ag, i1, a1, ) € £, let
0(w) = (i, 4, 4441, - - -) be a shift operator for t > 1. ;From the Markov property of the
transition probabilities, ’

E(9(B)) = E{E{g(Bi-1+ B'r(Xs, A, Xeg1) + B B(0141(w)) | Higa } }
<E{E {Ut{g}(Bt—lg X, A X)) Hi b}

< B {maxueax,) Tjes x.(@) {U g} Bior, Xi 0, 5)} } -
Since 7 is (v, g)-optimal, the above inequalities can be all replaced by equalities. O
In order to give a sufficient condition for g-optimality, we define the sequence { A7},
by

A(s,i) 1= argmax,eay 3 4@ {U{g} (5,1, 0.)} (3.3)
jes 1 -
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W hew for any function i(xr) on X,
arg max, . y(arg min . v ) h(z)
= { 2" € X | 2’ maximizes (minimizes) h(x) in all v € X}.
Theorem 3.3. For any v € P(S ) and g € C[0,u], the following (i) and (ii) hold.
(i) Let n* = (ng, 7y, -+) be any (v, g)-optimal, then ' '
PY.(Ay € A7(Bi—1,Xy)) =1 forall t>0.
(ii) Let #* = (g}, 77, - ) be any policy satisfying

7y (A} (By-1, X1)|Hy) =1 for all H; and t > 0.

Then, 7™ is g-optimal. :

" Proof By observing the proof of Theorem 3.2, we see that (i) holds. To prove
(ii), let 7! := (@, @5, -+ W5, Thyq, Thyoy - - +), for 7 given in the statement of Theorem
3.3(ii), where (7}, T4, --) is a policy corresponding to F’ € ®(X41) which satisfies
~ the relation such that ‘ o

'/Q(Bt—l + f}tT(;\”twAt;-"(t-}hl)‘f{' B F(dz) = U{g}(Bio1, Xoy Db, Xepr)

for t > 0. The policy (7}, Tiys, ) only depends oﬁ H,. Now we shall show inductively
that 7! is g-optimal for all + > 0. Let 7 = (7(0_; T, -) be any policy. Then, we have
Eg(B)) = BiEHg(r(Xo, 8o, X1) + FBO)H)]
<E [maxF@(xl) / o(r(Xo, Ao, X1) + 32)F(d=)]
< Eiy(g(B)) forall ieS.

Therefore, 70 is (i, g)-optimal for all i € S, that is, g-optimal. Moreover, E',[g(B)] <

L [EX1(g(B))], by applying the case of t = 0'to g(r(Xo, Ag, X1) + ), where 7’ =
(w3 (H,y), ), 5, - --). Since 70 is g-optimal, 7' is also so. Repeating the above argument,
we can prove that 7' is g-optimal for all ¢ > 1. Since g is uniformly continuous in [0, u)
for any € > 0, there exists T' > 1 satisfying

l9(z + 3" 21) - gl +;3T~2 )| <e
for any z, 21, 2 such that x + 57 z; € [0,u] for j =1,2. For thls T, (lealIy it holds that

|Eix(g(B) ~ Ein(9(B)] < Einlsuplg(Br + 571) = g(Br + 3 )| < e

21,32
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where the sup is taken over the range : By + 37z; € [0,u] for j = 1,2. For any T > 1,
7T is optimal, so that by T — oo and € — 0 in the above, we observe 7 is g-optimal. O

Remark 1. Consider the case when a decision maker has a linear utility function, i.e.,
g(r) = x. Then, Eq.(3.1) becomes ‘

Fe®(j)

Ude}s, t,a,7) = s+ g4r(i,a.j) + 8 max [ zF(dz)},
and so A7(s,¢) in Eq.(3.3) reduces

Aj(s,1) = argmax e 45 Z ¢ij(a){r(i,a,j)+ 7 max /:F((l:)}, (3.4)
ies Fed(j)
which is independent of s. This gives the set of optimal actions for usual MDP’s under

the expected total discounted reward criterion(e.g. see Ross[12]).

Remark 2. Consider the exponential utility case, i.e., g(x) = —exp(—Az). Then,
Eq.(3.1) becomes '

U{—e Vs, i,a,j) = —e e ) min [ exp{—=\F"t'2}F(d2).
J
) Fed(j)

Thus, by Eq.(3.3), we have

Aj(s.i) = argminge ;) T jes ¢ij(a) exp{=A3"r(i.a,j)}

X minpegj) /exp{~A/3’“i}F(d:). (3:5)

Observing Eq.(3.5), we note that the policy 7* constructed by Theorem 3.3 is the same
as that obtained in Theorem 4 of Chung and Sobel[2], which is called A-optimal.

4. Moment optimality

Jaquette[7] introduced the moment optimality and proved the existence of moment
optimal stationary policy for finite MDP’s by analyzing the negative of the Laplace
transformation of B, which is corresponding to the case of the exponential utility g(x) =
—exp(—Ar). Here, we shall prove the existence theorem by applying the results in the
proceeding section to the restricted MDP’s iterativeiy, whose ideas were appearing in
Kurano[8], Mandel[9].

First let us give several notations necessary in our discussion. For any ¢ € 5 and
7 € I, let

N,(i,7) = (=1)"TEL(B") for n>1.
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Let w = (ug, 2, ---) and v = (v, v9,-++)! be two vectors, where u' denotes the transpose
of u. Then we writc u > vifu; > v; foralli =1,2,---. Let N(i,m) := (N,(i,7);n =
1.2,---) be a row vector and N(7) := (N(i,7);i = 1,2,---)! be an infinite matrix. For
any integer I > 1 and w, 7" € II, we write N(i,7) =; N(i,x’), if there is an integer
k(1 <k <) such that N, (i,7) = N,(i,7") for 1 < n < k and Ni(i,7) > Np(i,7'). we
also write N(7) =, N(=') if N{i,n) = N(i,n') for any i = 1,2,---,1. We say that 7* is
l-moment optimal if N(7*) = N(«') for all ' € II and that 7* is moment optimal if it
is I-moment optimal for all [ = 1,2,--- (see Jaquette[7] for details).
Let N7(i) := max,en Ni(i, 7). Then, applying Eq.(3.2) for t = 0, we obtain

Ni(i) = max Y g;(a) (r(i, a,j) + BNT(j)) (4.1)
aEA(z)jes

for all + € S. Also, noting Remark 1 in section 3, let -

Ay(i) == argmax e 4i) Z gij(a) (r(i,a,j) + BNT(j)). - (4.2)
j€s
It is easﬂy verified that A;(¢) is compact for each ¢ € S. So we denote by MDP
(S, A1(i),q,7) the MDP’s specified by S, {A:(¢);i € S},q and r. And define ®,(7) for
MDP (S, A1(i), ¢, 7) similar as ®(i) for MDP (S, A(i),q, 7).
By Theorem 3.3(ii), it holds that

Nf(z'):/zF(dz) for all F € ®,(4). | (43)

Next we define Nj(i) := minpee,(; f 22F(dz). The following theorem concerning
with the second moment will be established.

Theorem 4.1. (i) Nj(i) satisfies

N3(i) = min 3" gi(a) (6a(i,a,§) + B2N3(5)) (4.4)
. aEAl(z)jGS .
where 05(i,a,5) :=r(i,a,j)? + 28r(i,a, 7 ) N7 (j).
- (ii) Let

Ao(i) = argminge s, ) 3 gi5(a) (B2i, a, ) + B2N3(5)) (4.5)
, j€S ' ' _

and f> be any stationary policy with f(i) € As(i) for all : € S. Then, f* is 2-moment
optimal. . v

Proof. Letting g(x) = —a%, we apply Eq.(3.2) for ¢ = 0 to MDP (S, A;(d),q,7).
The assertion (i) could be proved immediately. To prove (ii), we apply the results of
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Theorem 3.3, in which A7(s,¢) in Eq.(3.3) is given as follows: Let F € ®(j), a € A1(4)
and h(r) = 22, We have

/hr(s + S3'rliva, ) + 3T F(dz)
= 2 4253 (/'(i,a,j) +/3/:F((ls)> + 2 /(r(i,a,j) + 32 F(d2)
= 2 4259 (r(i,a, j) + BNT(G)) + 7 (92@, i)+ | :2F<d:)) |

So, by Eq.(4.1) and Eq.(4.2) we get

Milgea, ) 2, ¢ (@) U{a?}(s, 1, a,7) |
= $24 2sB'N;(i) + f? mingea, i) ¥, qijla) (62(i,a, j) + F2N3(5)) .

Thus, we see by Eq.(3.3) that AJ(s,7) = As(i) for all t > 0. ;From Theorem 3.3, the
stationary policy f> given in (ii) is shown to be 2-moment optimal. O

Applying the idea of Theorem 4.1, we can get the further results.

Theorem 4.2. There exists a moment optimal stationary policy.
Proof. Using ®;, Ny, N3, Ay given in Eq.(4.1) - Eq.(4.6), define 6,,, ®,,_1, N and
A,, inductively for m > 3 as follows:

(i) Define ®,,_;(¢) for MDP (5, A;,—1(2), ¢, 7) as similar as ®(¢) for MDP (S, A(i),q, 7).
(i) N (i) := (=1)"" maxpes,, (i) /(‘UmHTmF(dil?)-

(i) O (i, . j) = T ( ': ) B*r(i, a, j)m Nz (5), where Ni(j) = 1 for all j € .
(iV) "4711(i) ‘= arg Ina’XaEAm—l(i)(_1)m+l [ZJ qij(a') (Om(j's (L,j) + ﬂl”l\T;(J))]

Let f* be any stationary policy such that f(i7) € No_y An(¢) for all ¢ € S. Then,
it is shown analogous to the proof of Theorem 4.1 that f* is [-moment optimal for all

[ >3. O
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