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Abstract: In a previous work we presented the Σ-gram distance that computes 
the similarity between two sequences. This distance includes parameters that we 
calculated by means of an optimization process using artificial bee colony. In 
another work we showed how population-based bio-inspired algorithms can be 
sped up by applying a method that utilizes a pre-initialization stage to yield an 
optimal initial population. In this paper we use this pre-initialization method on 
the artificial bee colony algorithm to calculate the parameters of the Σ-gram 
distance. We show through experiments how this pre-initialization method can 
substantially speed up the optimization process.    
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1   Introduction 

Optimization is a rich domain of research and application in computer science and 
applied mathematics. An optimization problem can be defined as follows: Given a 
function RR →⊆ nbpU:f  (nbp is the number of parameters), find the solution 
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called the fitness function, or the objective function. Informally, the purpose of an 
optimization process is to find the best-suited solution of a problem subject to given 
constraints.  

Bio-inspired, also called nature-inspired, optimization algorithms have gained 
popularity in many applications because they handle a variety of optimization 
problems. These algorithms are inspired by natural processes, natural phenomena, or 
by the collective intelligence of natural agents. 

One of the main bio-inspired optimization families is Evolutionary Algorithms 
(EA). EA are population-based metaheuristics that use the mechanisms of Darwinian 
evolution. The Genetic Algorithm (GA) is the main member of EA. GA is an 
optimization and search technique based on the principles of genetics and natural 



selection [1]. GA has the following elements: a population of individuals, selection 
according to fitness, crossover to produce new offspring, and random mutation of new 
offspring [5].    

Data mining is a field of computer science which handles several tasks such as 
classification, clustering, anomaly detection, and others. Processing these tasks 
usually requires extensive computing. As with other fields of computer science, 
different papers have proposed applying bio-inspired optimization to data mining 
tasks [8] [9] [10].  

In [6] we presented a new distance metric, the Sigma Gram distance (SG) that is 
applied to sequences. SG uses parameters which we computed using an optimization 
algorithm called Artificial Bee Colony (ABC); one of the bio-inspired optimization 
algorithms. 

Applying ABC, and other bio-inspired algorithms, to the data mining problems 
requires recruiting extensive computing resources and long computational time. This 
is a part of what is called expensive optimization. In [7] we presented a new technique 
to handle such optimization problems. In this work we re-visit the work presented in 
[6] and apply the technique we introduced in [7] to speed up the optimization process.  
The rest of this paper is organized as follows: Section 2 is a background section, in 
Section 3 we explain the pre-initialization method and we show how it can be used to 
speed up the optimization process, we test this pre-initialization method to compute 
the parameters of the Σ-gram in Section 4. Section 5 is a concluding section.  

2   Background  

Let Σ be a finite alphabet of a set of characters. A string is an ordered set of this 
alphabet. Strings appear in a variety of domains in computer science and 
bioinformatics. The Edit Distance is the main distance used to compare two strings. In 
a previous work [6] we presented an extension of the edit distance, which is based on 
the sum of n-grams. The proposed distance Σ-gram (which we refer to in this paper as 
SG) is defined as follows:  

Let *Σ be the set of strings on Σ . Given a positive integer n, let )S(
an

f be the 

frequency of the n-gram na in S , and )T(
an

f be the frequency of the n-gram na in T , 

where S , T  are two strings in  *Σ .  Let Nbe the set of integers, and +N   the set of 
positive integers.  

Let NN →Σ×+ *:g  

              ( ) nS,ng =                 if    Sn ≤≤1  

              ( ) 1+= SS,ng             if         nS <  

Then SG is defined as: 
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where S , T are the lengths of the two strings S , T  respectively, and where 

{ }0∪∈ +Rnλ . 
Determining the values of the parameters nλ  is not a trivial task. In [6] these values 

were obtained as the outcome of an optimization problem. The optimization algorithm 
we used was artificial bee colony (ABC).   

3.1 Artificial Bee Colony (ABC) 

Artificial Bee Colony (ABC) [2] is an optimization algorithm inspired by the 
foraging behavior of bees. In ABC each food source represents a potential solution to 
the optimization problem and the quality of the food represents the value of the 
objective function to be optimized. Artificial bees explore and exploit the search 
space. These bees communicate and share information about the location and quality 
of food sources. Bees exchange of information by performing a waggle dance which 
takes place in the dancing area in the hive. In ABC there are three kinds of bees; 
employed bees: these are the bees that search in the neighborhood of a food source. 
They perform a dance with a probability that is proportional to the quality of the food 
source, onlooker bees:  these bees are found on the dance floor, and scouts: these bees 
explore the search space randomly.   

The first step of ABC is generating a randomly distributed population of size 
(pop_size) of food sources which correspond to potential solutions. Each solution 

{ }size_pop,..,i,xi 1∈
 is a vector whose dimension is (nr_par) which is equal to the 

number of parameters of the function f to be optimized.  The population is subject to 
change for a number of cycles (nr_cycles). In each cycle every employed bee perturbs 
the current solution using a local search procedure. The perturbation produces a new 
solution:   
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The above relation is not applied to all parameters but only to a certain number of 
them. The parameters to be altered are chosen randomly. The algorithm uses a greedy 
selection to decide if the new solution should be kept or discarded, i.e.:  
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After all employed bees have modified their positions the onlooker bees choose one 

of the current solutions depending on a probability that corresponds to the fitness 
value of that solution according to the following rule: 
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After that the onlooker bees try to improve the solution using the same mechanism 

that was described in (4). The number of trials the algorithm attempts to improves the 
same solution is limited by a maximum number (max_nr) after which the solution is 
abandoned and the bees employed by that food source become scouts. The abandoned 
solution is replaced by a new solution found by the scouts.   

3   A Pre-initialized Artificial Bee Colony Algorithm  

The optimization problem we presented in Section 2 requires extensive computing.  
This type of optimization problems is called expensive optimization. In [7] we 
introduced a new method that can be applied to any population-based optimization 
algorithm to speed up the optimization process. The principle of this method is to use 
an “optimal” initial population by adding to the main problem, which we call 
MainOptim, an artificial optimization problem to optimize the initial population. We 
call this latter problem SecOptim. As a fitness function of SecOptim we choose one 
that gives as much information as possible about the search space of MainOptim since 
this initial population will eventually be used to optimize MainOptim. The fitness 
function for SecOptim will be the one that maximizes the average distance of the 
chromosomes of the population, i.e.: 
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where secPopSize is the population size of SecOptim , ch is the chromosome. d is a 
distance, which we choose to be the Euclidean distance. Notice that 
( ) ( )ijji ch,chdch,chd =  so we only need to take half of the summation in (5).  
The other component of SecOptim is the search space. As indicated earlier, 

SecOptim is a separate optimization problem from MainOptim with its own search 
space. The search space of SecOptim is a discrete one whose points are feasible 
solutions of MainOptim. In other words, the search space of SecOptim is a pool of 
solutions of MainOptim . The cardinality of this pool is denoted by poolSize.   

Now all the elements of SecOptim are defined. poolSize is a new element that is 
particular to our method. In the experimental section we discuss this element further.   

As we can see, MainOptim and SecOptim are two independent problems, so we can 
use two different optimization algorithms. One of the optimization algorithms that we 
can use for SecOptim is the Genetic Algorithms for its exploiting ability. 

 



 
 

Fig. 1. Pre-initialized ABC algorithm  
 

The Genetic Algorithm (GA): GA is a widely-known bio-inspired optimization 
algorithm. GA starts by randomly generating a number of chromosomes. This step is 
called initialization. The fitness function of each chromosome is evaluated. The next 
step is selection. The purpose of this procedure is to determine which chromosomes 
are fit enough to survive. Crossover is the next step in which offspring of two parents 
are produced to enrich the population with fitter chromosomes. The last element is 
Mutation of a certain percentage of chromosomes.  

The basis of our work we present here is that instead of applying ABC directly, 
which was the case in [6], to obtain the optimal values of  nλ   , we use an optimal 
initial population by applying the method we presented in [7], and which we 
described in this section. Fig. 1 illustrates this enhanced optimization algorithm. 
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4   Empirical Evaluation 

As in [6], we test the modified algorithm, which we refer to hereinafter as ABC_SG, 
with the new method presented in Section 3, which we refer to as 
PreInitial_ABC_SG, on a time series classification task. Time series are high-
dimensional numeric data, but there are some techniques that reduce their 
dimensionality and transform them into series of characters. The Symbolic Aggregate 
approXimation method (SAX) [4] is the most important symbolic representation 
method of time series. SAX uses the following similarity measure:  
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Where n is the length of the original time series, N is the length of the strings (the 
number of segments), Ŝ and R̂ are the symbolic representations of the two time series 
S and R , respectively, and where the function )(dist  is implemented by using the 
appropriate lookup table.  

As in [6] the objective function of our optimization problem is the classification 
error based on the first nearest-neighbor (1-NN) rule using leaving-one-out cross 
validation. The parameters of the optimization problem are nλ in relation (1), in other 
words, we compute nλ that minimize the classification error using ABC_SG as an 
optimizer, and compare that with the optimal values of nλ  when those nλ values are 
obtained by using PreInitial_ABC_SG as an optimizer in (1)  

In our experiments we used the same datasets on which ABC_SG was tested in [6]. 
These datasets are available at UCR [3]. The time series were represented 
symbolically using SAX, and then instead of applying (6) we apply ABC_SG (or 
PreInitial_ABC_SG).  

We used 3 different values of the alphabet size in SAX : 3,10, 20. As for n in (1) we 
used { }3,2,1n∈ . When testing a method, we first apply it to the training sets to obtain 
the optimal nλ then these values are used on the testing sets.  

The aim of the experiments is to show that by using PreInitial_ABC_SG , we can 
get classification errors close to those obtained by ABC_SG in a shorter time. This is 
achieved practically by running PreInitial_ABC_SG for a smaller number of 
generations; NrGen=20 (MainOptim), and running ABC_SG for NrGen=100. We then 
compare the results in term of classification error and   

In Table 1 we show the classification error of PreInitial_ABC_SG and ABC_SG 
(because of space limitation we only show a part of the tested datasets).   

 
 
 
 
 
 



Table 1. Comparison between the classification error of PreInitial_ABC_SG and that of 
ABC_SG for different values of the alphabet size and for different n-grams. 
 

  Dataset     Method  n-gram  
n=1 n=2 n=3 

 

ECG 

 
PreInitial_ABC_SG 

α= 3 0.210 0.210 0.220 
α=10 0.200 0.210 0.220 
α=20 0.220 0.240 0.250 

 
ABS_SG 

α= 3 0.190 0.210 0.240 
α=10 0.200 0.220 0.220 
α=20 0.230 0.230 0.260 

 

Gun_Point 

 
PreInitial_ABC_SG 

α= 3 0.180 0.193 0.180 
α=10 0.133 0.133 0.127 
α=20 0.073 0.073 0.067 

 
ABS_SG 

α= 3 0.193 0.193 0.180 
α=10 0.146 0.127 0.133 
α=20 0.087 0.073 0.073 

 

FaceFour 

 
PreInitial_ABC_SG 

α= 3 0.057 0.057 0.045 
α=10 0.045 0.045 0.102 
α=20 0.090 0.114 0.102 

 
ABS_SG 

α= 3 0.057 0.057 0.057 
α=10 0.045 0.057 0.114 
α=20 0.114 0.114 0.102 

 

OSULeaf 

 
PreInitial_ABC_SG 

α= 3 0.331 0.343 0.322 
α=10 0.298 0.298 0.298 
α=20 0.306 0.343 0.322 

 
ABS_SG 

α= 3 0.351 0.343 0.331 
α=10 0.298 0.306 0.298 
α=20 0.322 0.331 0.331 

 
 

In Table 2 we present the wall clock time comparison between PreInitial_ABC_SG 
and ABC_SG for the datasets presented in Table 1. The experiments were conducted 
on Intel Core 2 Duo CPU with 3G memory. 

 
Table 2. Run time comparison between PreInitial_ABC_SG and ABC_SG 

 
  Dataset     Method  n-gram  

n=1 n=2 n=3 

 

ECG 

 
PreInitial_ABC_SG 

α= 3 01h 38m 43s 02h 00m 51s 03h 46m 25s 
α=10 01h 42m 08s 02h 08m 03s 03h 59m 35s 
α=20 01h 47m 26s 02h 53m 52s     34h 37m 22s 

 
ABS_SG 

α= 3 08h 16m 49s 10h 06m 15s 18h 54m 17s 
α=10 08h 30m 24s 10h 30m 42s 19h 53m 23s 
α=20 08h 49m 34s 14h 23m 12s   154h 07m 20s 

 

Gun_Point 

 
PreInitial_ABC_SG 

α= 3 01h 54m 06s 02h 22m 51s 04h 15m 34s 
α=10 02h 12m 17s 02h 38m 54s 04h 48m 22s 
α=20 02h 56m 48s 03h 34m 16s     42h 52m 32s 

 
ABS_SG 

α= 3 09h 58m 34s 13h 16m 35s 21h 37m 18s 
α=10 11h 12m 41s 14h 52m 42s 24h 27m 52s 
α=20 14h 21m 26s 16h 46m 47s   138h 36m 62s 

 

FaceFour 

 
PreInitial_ABC_SG 

α= 3 01h 22m 31s 01h 55m 24s 03h 25m 46s 
α=10 01h 38m 08s 02h 01m 45s 03h 14m 51 
α=20 01h 42m 52s 02h 43m 18s     29h 26m 26s 

 
ABS_SG 

α= 3 07h 26m 52s 09h 57m 32s 17h 17m 52s 
α=10 08h 04m 28s 10h 03m 52s 19h 54m 26s 
α=20 08h 36m 26s 13h 52m 52s 148h 17m 53s 

 

OSULeaf 

 
PreInitial_ABC_SG 

α= 3 12h 14m 52s 15h 45m 31s 25h 24m 35s 
α=10 13h 46m 26s 16h 52m 03s 23h 35m 43s 
α=20 15h 25m 26s 22h 12m 04s   184h 26m 54s 

 
ABS_SG 

α= 3 62h 51m 02s 72h 26m 01s 81h 19m 31s 
α=10 64h 56m 41s 74h 55m 10s 88h 01m 47s 
α=20 67h 42m 45s 81h 57m 29s 543h 47m 29s 



 
As we can see from Tables 1 and 2, PreInitial_ABC_SG is on average almost 5 

times faster than ABC_SG although they both give quite comparable classification 
errors.  

5   Conclusion  

In this paper we applied a method from a previous work that speeds up population-
based bio-inspired algorithms by initializing the optimization process using an 
optimal population. We applied this method to compute the parameters nλ of the   Σ-
gram distance and we showed experimentally how by using an optimal initial 
population the optimization process can be sped up substantially. 
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