
A Synergy of Artificial Bee Colony and Genetic
Algorithms to Determine the Parameters of the Σ-gram

Distance

Muhammad Marwan Muhammad Fuad

Forskningsparken 3, Institutt for kjemi, NorStruct
The University of Tromsø, The Arctic University of Norway

NO-9037 Tromsø, Norway
marwan.fuad@uit.no

Abstract: In a previous work we presented the Σ-gram distance that computes
the similarity between two sequences. This distance includes parameters that we
calculated by means of an optimization process using artificial bee colony. In
another work we showed how population-based bio-inspired algorithms can be
sped up by applying a method that utilizes a pre-initialization stage to yield an
optimal initial population. In this paper we use this pre-initialization method on
the artificial bee colony algorithm to calculate the parameters of the Σ-gram
distance. We show through experiments how this pre-initialization method can
substantially speed up the optimization process.

Keywords: Artificial Bee Colony, Bio-inspired Optimization, Genetic
Algorithms, Pre-initialization, Σ-gram.

1 Introduction

Optimization is a rich domain of research and application in computer science and
applied mathematics. An optimization problem can be defined as follows: Given a
function RR →⊆ nbpU:f (nbp is the number of parameters), find the solution

[]*
nbp

*
2

*
1

* x,...,x,xX = which satisfies: () UX,XfXf * ∈∀≤




 . The function f is

called the fitness function, or the objective function. Informally, the purpose of an
optimization process is to find the best-suited solution of a problem subject to given
constraints.

Bio-inspired, also called nature-inspired, optimization algorithms have gained
popularity in many applications because they handle a variety of optimization
problems. These algorithms are inspired by natural processes, natural phenomena, or
by the collective intelligence of natural agents.

One of the main bio-inspired optimization families is Evolutionary Algorithms
(EA). EA are population-based metaheuristics that use the mechanisms of Darwinian
evolution. The Genetic Algorithm (GA) is the main member of EA. GA is an
optimization and search technique based on the principles of genetics and natural

selection [1]. GA has the following elements: a population of individuals, selection
according to fitness, crossover to produce new offspring, and random mutation of new
offspring [5].

Data mining is a field of computer science which handles several tasks such as
classification, clustering, anomaly detection, and others. Processing these tasks
usually requires extensive computing. As with other fields of computer science,
different papers have proposed applying bio-inspired optimization to data mining
tasks [8] [9] [10].

In [6] we presented a new distance metric, the Sigma Gram distance (SG) that is
applied to sequences. SG uses parameters which we computed using an optimization
algorithm called Artificial Bee Colony (ABC); one of the bio-inspired optimization
algorithms.

Applying ABC, and other bio-inspired algorithms, to the data mining problems
requires recruiting extensive computing resources and long computational time. This
is a part of what is called expensive optimization. In [7] we presented a new technique
to handle such optimization problems. In this work we re-visit the work presented in
[6] and apply the technique we introduced in [7] to speed up the optimization process.
The rest of this paper is organized as follows: Section 2 is a background section, in
Section 3 we explain the pre-initialization method and we show how it can be used to
speed up the optimization process, we test this pre-initialization method to compute
the parameters of the Σ-gram in Section 4. Section 5 is a concluding section.

2 Background

Let Σ be a finite alphabet of a set of characters. A string is an ordered set of this
alphabet. Strings appear in a variety of domains in computer science and
bioinformatics. The Edit Distance is the main distance used to compare two strings. In
a previous work [6] we presented an extension of the edit distance, which is based on
the sum of n-grams. The proposed distance Σ-gram (which we refer to in this paper as
SG) is defined as follows:

Let *Σ be the set of strings on Σ . Given a positive integer n, let)S(
an

f be the

frequency of the n-gram na in S , and)T(
an

f be the frequency of the n-gram na in T ,

where S , T are two strings in *Σ . Let Nbe the set of integers, and +N the set of
positive integers.

Let NN →Σ×+ *:g

 () nS,ng = if Sn ≤≤1

 () 1+= SS,ng if nS <

Then SG is defined as:

() () () () ()()
()
∑ ∑
= ∑∈














⋅−+−−+=

T,Smax

1n

T
a

S
a

a
n nn

n
n

f,fmin22T,ngS,ngTS.T,SSG λ (1)

where S , T are the lengths of the two strings S , T respectively, and where

{ }0∪∈ +Rnλ .
Determining the values of the parameters nλ is not a trivial task. In [6] these values

were obtained as the outcome of an optimization problem. The optimization algorithm
we used was artificial bee colony (ABC).

3.1 Artificial Bee Colony (ABC)

Artificial Bee Colony (ABC) [2] is an optimization algorithm inspired by the
foraging behavior of bees. In ABC each food source represents a potential solution to
the optimization problem and the quality of the food represents the value of the
objective function to be optimized. Artificial bees explore and exploit the search
space. These bees communicate and share information about the location and quality
of food sources. Bees exchange of information by performing a waggle dance which
takes place in the dancing area in the hive. In ABC there are three kinds of bees;
employed bees: these are the bees that search in the neighborhood of a food source.
They perform a dance with a probability that is proportional to the quality of the food
source, onlooker bees: these bees are found on the dance floor, and scouts: these bees
explore the search space randomly.

The first step of ABC is generating a randomly distributed population of size
(pop_size) of food sources which correspond to potential solutions. Each solution

{ }size_pop,..,i,xi 1∈
 is a vector whose dimension is (nr_par) which is equal to the

number of parameters of the function f to be optimized. The population is subject to
change for a number of cycles (nr_cycles). In each cycle every employed bee perturbs
the current solution using a local search procedure. The perturbation produces a new
solution:

 ()() ki,xx,randxx kii
*
i ≠−−+=


11 (2)

The above relation is not applied to all parameters but only to a certain number of
them. The parameters to be altered are chosen randomly. The algorithm uses a greedy
selection to decide if the new solution should be kept or discarded, i.e.:

 () ()




 <

=
otherwisex

xfxfifxx
i

i
*
i

*
i

i 




 (3)

After all employed bees have modified their positions the onlooker bees choose one

of the current solutions depending on a probability that corresponds to the fitness
value of that solution according to the following rule:

 ()

()∑
=

= size_pop

k
k

i
i

xf

xfp

1





 (4)

After that the onlooker bees try to improve the solution using the same mechanism

that was described in (4). The number of trials the algorithm attempts to improves the
same solution is limited by a maximum number (max_nr) after which the solution is
abandoned and the bees employed by that food source become scouts. The abandoned
solution is replaced by a new solution found by the scouts.

3 A Pre-initialized Artificial Bee Colony Algorithm

The optimization problem we presented in Section 2 requires extensive computing.
This type of optimization problems is called expensive optimization. In [7] we
introduced a new method that can be applied to any population-based optimization
algorithm to speed up the optimization process. The principle of this method is to use
an “optimal” initial population by adding to the main problem, which we call
MainOptim, an artificial optimization problem to optimize the initial population. We
call this latter problem SecOptim. As a fitness function of SecOptim we choose one
that gives as much information as possible about the search space of MainOptim since
this initial population will eventually be used to optimize MainOptim. The fitness
function for SecOptim will be the one that maximizes the average distance of the
chromosomes of the population, i.e.:

 () ()∑ ∑
−

= +=−
=

1secPopSize

1i

secPopSize

1ij
jisecOptim ch,chd

1secPopSizesecPopSize
2f (5)

where secPopSize is the population size of SecOptim , ch is the chromosome. d is a
distance, which we choose to be the Euclidean distance. Notice that
() ()ijji ch,chdch,chd = so we only need to take half of the summation in (5).
The other component of SecOptim is the search space. As indicated earlier,

SecOptim is a separate optimization problem from MainOptim with its own search
space. The search space of SecOptim is a discrete one whose points are feasible
solutions of MainOptim. In other words, the search space of SecOptim is a pool of
solutions of MainOptim . The cardinality of this pool is denoted by poolSize.

Now all the elements of SecOptim are defined. poolSize is a new element that is
particular to our method. In the experimental section we discuss this element further.

As we can see, MainOptim and SecOptim are two independent problems, so we can
use two different optimization algorithms. One of the optimization algorithms that we
can use for SecOptim is the Genetic Algorithms for its exploiting ability.

Fig. 1. Pre-initialized ABC algorithm

The Genetic Algorithm (GA): GA is a widely-known bio-inspired optimization
algorithm. GA starts by randomly generating a number of chromosomes. This step is
called initialization. The fitness function of each chromosome is evaluated. The next
step is selection. The purpose of this procedure is to determine which chromosomes
are fit enough to survive. Crossover is the next step in which offspring of two parents
are produced to enrich the population with fitter chromosomes. The last element is
Mutation of a certain percentage of chromosomes.

The basis of our work we present here is that instead of applying ABC directly,
which was the case in [6], to obtain the optimal values of nλ , we use an optimal
initial population by applying the method we presented in [7], and which we
described in this section. Fig. 1 illustrates this enhanced optimization algorithm.

Pool initialization

ABC Initialization
Main problem

GA initialization
Secondary problem

Fitness function
evaluation

Selection

Crossover

Mutation

Fitness Function
Evaluation

 No

Stopping
Criteria?

 No

 Yes

Food source evaluation

Optimal Solution of Main Problem

Stopping
Criteria?

Determine a new
food source

Food source evaluation

All onlookers
are assigned

food sources?
Select a food source

for the onlooker

Determine a food source
for the onlooker

 No

 Yes

Determine abandoned
food source

Find a new
food source

 Yes

4 Empirical Evaluation

As in [6], we test the modified algorithm, which we refer to hereinafter as ABC_SG,
with the new method presented in Section 3, which we refer to as
PreInitial_ABC_SG, on a time series classification task. Time series are high-
dimensional numeric data, but there are some techniques that reduce their
dimensionality and transform them into series of characters. The Symbolic Aggregate
approXimation method (SAX) [4] is the most important symbolic representation
method of time series. SAX uses the following similarity measure:

 () ()()∑
=

≡
N

1i

2
ii r̂,ŝdist

N
nR̂,ŜMINDIST (6)

Where n is the length of the original time series, N is the length of the strings (the
number of segments), Ŝ and R̂ are the symbolic representations of the two time series
S and R , respectively, and where the function)(dist is implemented by using the
appropriate lookup table.

As in [6] the objective function of our optimization problem is the classification
error based on the first nearest-neighbor (1-NN) rule using leaving-one-out cross
validation. The parameters of the optimization problem are nλ in relation (1), in other
words, we compute nλ that minimize the classification error using ABC_SG as an
optimizer, and compare that with the optimal values of nλ when those nλ values are
obtained by using PreInitial_ABC_SG as an optimizer in (1)

In our experiments we used the same datasets on which ABC_SG was tested in [6].
These datasets are available at UCR [3]. The time series were represented
symbolically using SAX, and then instead of applying (6) we apply ABC_SG (or
PreInitial_ABC_SG).

We used 3 different values of the alphabet size in SAX : 3,10, 20. As for n in (1) we
used { }3,2,1n∈ . When testing a method, we first apply it to the training sets to obtain
the optimal nλ then these values are used on the testing sets.

The aim of the experiments is to show that by using PreInitial_ABC_SG , we can
get classification errors close to those obtained by ABC_SG in a shorter time. This is
achieved practically by running PreInitial_ABC_SG for a smaller number of
generations; NrGen=20 (MainOptim), and running ABC_SG for NrGen=100. We then
compare the results in term of classification error and

In Table 1 we show the classification error of PreInitial_ABC_SG and ABC_SG
(because of space limitation we only show a part of the tested datasets).

Table 1. Comparison between the classification error of PreInitial_ABC_SG and that of
ABC_SG for different values of the alphabet size and for different n-grams.

 Dataset Method n-gram
n=1 n=2 n=3

ECG

PreInitial_ABC_SG

α= 3 0.210 0.210 0.220
α=10 0.200 0.210 0.220
α=20 0.220 0.240 0.250

ABS_SG

α= 3 0.190 0.210 0.240
α=10 0.200 0.220 0.220
α=20 0.230 0.230 0.260

Gun_Point

PreInitial_ABC_SG

α= 3 0.180 0.193 0.180
α=10 0.133 0.133 0.127
α=20 0.073 0.073 0.067

ABS_SG

α= 3 0.193 0.193 0.180
α=10 0.146 0.127 0.133
α=20 0.087 0.073 0.073

FaceFour

PreInitial_ABC_SG

α= 3 0.057 0.057 0.045
α=10 0.045 0.045 0.102
α=20 0.090 0.114 0.102

ABS_SG

α= 3 0.057 0.057 0.057
α=10 0.045 0.057 0.114
α=20 0.114 0.114 0.102

OSULeaf

PreInitial_ABC_SG

α= 3 0.331 0.343 0.322
α=10 0.298 0.298 0.298
α=20 0.306 0.343 0.322

ABS_SG

α= 3 0.351 0.343 0.331
α=10 0.298 0.306 0.298
α=20 0.322 0.331 0.331

In Table 2 we present the wall clock time comparison between PreInitial_ABC_SG
and ABC_SG for the datasets presented in Table 1. The experiments were conducted
on Intel Core 2 Duo CPU with 3G memory.

Table 2. Run time comparison between PreInitial_ABC_SG and ABC_SG

 Dataset Method n-gram

n=1 n=2 n=3

ECG

PreInitial_ABC_SG

α= 3 01h 38m 43s 02h 00m 51s 03h 46m 25s
α=10 01h 42m 08s 02h 08m 03s 03h 59m 35s
α=20 01h 47m 26s 02h 53m 52s 34h 37m 22s

ABS_SG

α= 3 08h 16m 49s 10h 06m 15s 18h 54m 17s
α=10 08h 30m 24s 10h 30m 42s 19h 53m 23s
α=20 08h 49m 34s 14h 23m 12s 154h 07m 20s

Gun_Point

PreInitial_ABC_SG

α= 3 01h 54m 06s 02h 22m 51s 04h 15m 34s
α=10 02h 12m 17s 02h 38m 54s 04h 48m 22s
α=20 02h 56m 48s 03h 34m 16s 42h 52m 32s

ABS_SG

α= 3 09h 58m 34s 13h 16m 35s 21h 37m 18s
α=10 11h 12m 41s 14h 52m 42s 24h 27m 52s
α=20 14h 21m 26s 16h 46m 47s 138h 36m 62s

FaceFour

PreInitial_ABC_SG

α= 3 01h 22m 31s 01h 55m 24s 03h 25m 46s
α=10 01h 38m 08s 02h 01m 45s 03h 14m 51
α=20 01h 42m 52s 02h 43m 18s 29h 26m 26s

ABS_SG

α= 3 07h 26m 52s 09h 57m 32s 17h 17m 52s
α=10 08h 04m 28s 10h 03m 52s 19h 54m 26s
α=20 08h 36m 26s 13h 52m 52s 148h 17m 53s

OSULeaf

PreInitial_ABC_SG

α= 3 12h 14m 52s 15h 45m 31s 25h 24m 35s
α=10 13h 46m 26s 16h 52m 03s 23h 35m 43s
α=20 15h 25m 26s 22h 12m 04s 184h 26m 54s

ABS_SG

α= 3 62h 51m 02s 72h 26m 01s 81h 19m 31s
α=10 64h 56m 41s 74h 55m 10s 88h 01m 47s
α=20 67h 42m 45s 81h 57m 29s 543h 47m 29s

As we can see from Tables 1 and 2, PreInitial_ABC_SG is on average almost 5

times faster than ABC_SG although they both give quite comparable classification
errors.

5 Conclusion

In this paper we applied a method from a previous work that speeds up population-
based bio-inspired algorithms by initializing the optimization process using an
optimal population. We applied this method to compute the parameters nλ of the Σ-
gram distance and we showed experimentally how by using an optimal initial
population the optimization process can be sped up substantially.

References

1. Haupt, R.L., Haupt, S. E.: Practical Genetic Algorithms with CD-ROM. Wiley-Interscience
(2004)

2. Karaboga, D.,: An idea based on honey bee swarm for numerical optimization. Technical
Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department
(2005)

3. Keogh, E., Zhu, Q., Hu, B., Hao. Y., Xi, X., Wei, L. & Ratanamahatana, The UCR Time
Series Classification/Clustering Homepage: www.cs.ucr.edu/~eamonn/time_series_data/
C. A. (2011)

4. Lin, J., Keogh, E., Lonardi, S., Chiu, B. Y.: A Symbolic Representation of Time Series,
with Implications for Streaming Algorithms. DMKD 2003: 2-11(2003)

5. Mitchell, M.: An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA (1996)
6. Muhammad Fuad, M.M.: ABC-SG: A New Artificial Bee Colony Algorithm-Based

Distance of Sequential Data Using Sigma Grams. The Tenth Australasian Data Mining
Conference - AusDM 2012, Sydney, Australia, 5-7 December, (2012)

7. Muhammad Fuad, M.M.: A Pre-initialization Stage of Population-based Bio-inspired
Metaheuristics for Handling Expensive Optimization Problems. The 9th International
Conference on Advanced Data Mining and Applications -ADMA2013, December 14-16,
2013, Zhejiang, China. Published in LNCS/LNAI (2012)

8. Muhammad Fuad, M.M.: Differential Evolution versus Genetic Algorithms: Towards
Symbolic Aggregate Approximation of Non-normalized Time Series. Sixteenth
International Database Engineering & Applications Symposium– IDEAS’12 , Prague,
Czech Republic,8-10 August, 2012 . Published by BytePress/ACM (2012)

9. Muhammad Fuad, M.M.: Towards Normalizing the Edit Distance Using a Genetic
Algorithms–Based Scheme. The 8th International Conference on Advanced Data Mining
and Applications -ADMA2012, 15-18 December 2012, Nanjing, China. Published in
LNCS/LNAI (2012)

10. Muhammad Fuad, M.M.: Using Differential Evolution to Set Weights to Segments with
Different Information Content in the Piecewise Aggregate Approximation. 16th
International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems – KES 2012– San Sebastian, Spain, September 10 - 12,2012. Published by IOS
Press in “Frontiers of Artificial Intelligence and Applications (FAIA)” series (2012)

http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lonardi:Stefano.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chiu:Bill_Yuan=chi.html
http://www.informatik.uni-trier.de/~ley/db/conf/dmkd/dmkd2003.html#LinKLC03

