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Abstract

We present a general approach for the analytic calculation of pure vibrational con-

tributions to the molecular (hyper)polarizabilities at the density-functional level of

theory. The analytic approach allows us to study large molecules, and we apply the

new code to the study of the first dipole hyperpolarizabilities of retinal and related

molecules. We investigate the importance of electron correlation as described by the

B3LYP exchange–correlation functional on the pure vibrational and electronic hyper-

polarizabilities, and compare the computed hyperpolarizabilities with available exper-

imental data. The effects of electron correlation on the pure vibrational corrections

vary signficantly even between these structurally very similar molecules, making it dif-

ficult to estimate these effects without explicit calculations at the density-functional

theory level. As expected, the frequency-dependent first hyperpolarizability, which de-

termines the experimentally observed second-harmonic generation, is dominated by the

electronic term, whereas for the static hyperpolarizability the vibrational contribution

is equally important. As a consequence, frequency extrapolation of the measured opti-

cal hyperpolarizabilities can only provide an estimate for the electronic contribution to

the static hyperpolarizability, not its total value. The relative values of the hyperpo-

larizabilities for different molecules, obtained from the calculations, are in reasonable

agreement with experimental data.

Keywords: retinol, retinoic acid, vitamin A acetate, retinal Schiff base, protonated retinal

Schiff base, second-harmonic generation

Introduction

A number of theoretical studies have demonstrated the importance of so-called pure vi-

brational contributions to (hyper)polarizabilities.1 These contributions can in many cases

be significant and in the static case even dominate over the electronic contribution to the

hyperpolarizabilities.2,3 However, for optical frequencies these vibrational contributions are
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damped, and for processes only involving optical frequencies, such as second-harmonic gen-

eration, pure vibrational contributions are in most cases found to be negligible. This implies

that the extrapolation procedure often used in experiment to extract static hyperpolari-

zabilities will never be able to recover the static hyperpolarizability, only the electronic

contribution to the first hyperpolarizability. Theoretical studies of pure vibrational and

electronic hyperpolarizabilities are thus required in order to shed light on the true static

limit of nonlinear hyperpolarizabilities.

The pure vibrational contributions arise from excitations within the vibrational manifold

of the electronic ground state instead of excitations within the manifold of electronic excited

states, as is the case for the electronic contributions to the hyperpolarizabilites.1

The perturbation theory approach by Bishop and Kirtman was a major step forward

in order to allow pure vibrational contributions to the (hyper)polarizabilities to be studied

in polyatomic molecules.4,5 By considering the geometry dependence of the electric dipole

operator and performing a Taylor expansion of the potential energy surface around the

equilibrium geometry, they provided expressions for both harmonic and anharmonic contri-

butions to the pure vibrational contributions at different orders. Their analysis in particular

demonstrated that the double-harmonic pure vibrational corrections to the hyperpolarizabi-

lities are determined by geometrical gradients of lower-order (hyper)polarizabilities and the

dipole moment gradients.

Analytic implementations of dipole moment gradients and polarizability gradients were

developed at the Hartree–Fock (HF) level of theory as early as 1992 by Handy and coworkers.6

However, for the study of pure vibrational hyperpolarizabilities, Quinet and Champagne were

the first to present an implementation of frequency-dependent (hyper)polarizability gradients

applied to the study of the pure vibrational contributions to the (hyper)polarizabilities.7,8

Dipole and polarizability gradients have also been implemented for correlated wave func-

tions such as the coupled-cluster wave function.9 At the density-functional level of theory,

van Caillie and Amos presented an analytic implementation of polarizability gradients for
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the study of Raman intensities,10 later implemented by Rappaport and Furche using a La-

grangian approach.11 Coriani et al. also presented a linear-scaling formulation of the analytic

calculation of polarizability gradients at the density-functional level of theory.12 A general

approach for calculating (hyper)polarizability gradients at the density-functional level of

theory formulated in the atomic-orbital basis, and thus amenable for use in linear-scaling

formulations of density-functional response theory,13 has been presented by Thorvaldsen et

al.,14 but so far only implemented at the Hartree–Fock level of theory.15

The analytic calculations of pure vibrational contributions to the molecular hyperpolari-

zabilities at the density-functional level of theory are still scant in literature. A recent work

by Bulik et al.16 may be the first that calculated the pure vibrational contributions to the

first hyperpolarizability analytically. In this paper, we also report the analytic calculations

of pure vibrational contributions to the first hyperpolarizability at the density-functional

theory (DFT) level. Unlike the study of Bulik et al., our approach follows the formalism

of Thorvaldsen et al.14 for evaluating quasi-energy derivatives, using a recursive scheme to

generate the response functions to different orders,17 and using automatic differentiation to

generate the exchange-correlation kernels to higher order.18 Therefore, our developed code

(named as OpenRSP) is more general and allows us to calculate the pure vibrational con-

tributions to the molecular (hyper)polarizabilities analytically to arbitrary order. We apply

the formalism to calculate the first hyperpolarizabilities (electronic and pure vibrational) for

retinal, retinol, retinoic acid, vitamin A acetate, retinal Schiff base (RSB) and protonated

retinal Schiff base (PRSB) (see Figure 1 for the molecular structures). We discuss the static

dipole hyperpolarizability and the second-harmonic generation (SHG) hyperpolarizability

which determines the effects observed in hyper-Rayleigh scattering (HRS) experiments. We

present the results for the wavelengths 1064, 1543 and 1907 nm, for which experimental

values are available.

Retinal proteins, being biological chromophores, are responsible for light-driven processes

in rhodopsin and bacteriorhodopsin. Numerous molecular properties of retinal and related

4



O OH

O

OH

O

O

OMe

N N

H

+

Figure 1: Molecular structures. Top: retinal and retinol; center: retinoic acid and vitamin
A acetate; bottom: retinal Schiff base and protonated retinal Schiff base

molecules have been examined in the literature, including second-order optical properties

such as the electric dipole hyperpolarizability.19–21 The frequency-dependent hyperpolariz-

ability of these molecules has been measured applying the hyper-Rayleigh scattering (HRS)

technique.21,22 However, there are significant differences between various experimental data.

In particular, the experimental results have been determined with respect to a chosen ref-

erence compound, and they depend strongly on the details of the experimental technique

used—the values obtained in the internal reference method (IRM) being 4-5 times larger

than those obtained in the external reference method (ERM). Moreover, in a specific exper-

iment the results also depend on the chosen solvent—thus, care should be exercised in any

comparison with hyperpolarizabilities computed for an isolated molecule. Last but not least,

there are no experimental data related to the static hyperpolarizability, the corresponding

values determined from experiment represent only the result of an extrapolation. Thus, in

addition to presenting a novel implementation of polarizability gradients at the DFT level,

our study may help shed light on the accuracy and reliability of the different experimental

approaches for determining the first hyperpolarizability.
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Theory

The vibrational polarizability and first-order hyperpolarizability are calculated using the

perturbation theory approach developed by Bishop and Kirtman.4,5,23 For completeness,

we will here briefly summarize the essential formulas used in our work, highlighting the

quantities that we are interested in. We start from the sum-over-states expressions for the

(hyper)polarizabilities, for which the polarizability and first-order hyperpolarizability can be

written as4

ααβ(−ωσ;ω1) = ~−1
∑
P−σ,1

∑′

k,K

(ωkK − ωσ)−1

× 〈0, 0|µ̂α|K, k〉〈k,K|µ̂β|0, 0〉, (1)

βαβγ(−ωσ;ω1, ω2) = ~−2
∑
P−σ,1,2

∑′

k,K

∑′

l,L

(ωkK − ωσ)−1(ωlL − ω2)
−1

× 〈0, 0|µ̂α|K, k〉〈k,K|µ̂β|L, l〉〈l, L|µ̂γ|0, 0〉, (2)

where P−σ,1(,2) denotes the possible permutations of the electric dipole moment components

(µ̂α, µ̂β, and µ̂γ) and their associated frequencies (−ωσ, ω1, and ω2). The capital letters K

and L represent the electronic states, whereas k and l refer to the vibrational states. The

primes on the summations indicate that we exclude the ground vibronic state |0, 0〉. The

energy ~ωkK corresponds to the excitation energy from the ground state to the vibronic state

|K, k〉, and µ̂β = µ̂β − 〈0, 0|µ̂β|0, 0〉.

The pure vibrational contributions to the polarizability will be obtained by setting K =

0,4 that is, we only consider excitations within the vibrational manifold

αv
αβ(−ωσ;ω1) = ~−1

∑
P−σ,1

∑′

k

(µα)0k(µβ)k0(ωk − ωσ)−1 ≡ [µ2], (3)
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where ωk0 has been simplified as ωk and where the notation (µα)0k ≡ 〈0|µ00
α |k〉 is used for

the vibrational transition matrix element of the electronic dipole moment µ00
α ≡ 〈0|µ̂α|0〉

between the lowest and the k’th vibrational states for the ground electronic state.

The pure vibrational contribution to the hyperpolarizability contains three terms: (K =

0, L 6= 0), (K 6= 0, L = 0), and (K = 0, L = 0)24

βv
αβγ(−ωσ;ω1, ω2) ≈ ~−2

∑
P−σ,1,2

[∑′

k

∑′

L

(µα)0k
ωk − ωσ

〈k|µ0L
β µ

L0
γ |0〉

ωL − ω2

+
∑′

l

∑′

K

(µα)l0
ωl − ω2

〈0|µ0K
β µK0

γ |l〉
ωK − ωσ

+
∑′

k

∑′

l

(µα)0k
ωk − ωσ

(µβ)kl(µγ)l0

ωl − ω2

]
, (4)

where we have used the approximation

ωkK ≈ ω0K ≡ ωK(K 6= 0), ωlL ≈ ω0L ≡ ωL(L 6= 0), (5)

and the notation µKLα ≡ 〈K|µ̂α|L〉 accounts for the electronic transition moment between

the electronic states K and L.

The third term in βv
αβγ(−ωσ;ω1, ω2) is often denoted [µ3], and the sum of the first and

second terms is the so-called [µα] contribution,23 which becomes

[µα] ≈ 1

2
~−1

∑
P−σ,1,2

∑′

k

(µ00
α )0k(α

00
βγ)k0(ωk ± ωσ)−1, (6)

when the applied frequencies and their combinations are far away from electronic resonances

and we can apply the approximation (ωi = ωσ, ω1, ω2)
4

ωK , ωL � ωi ⇒


ωK ± ωi ≈ ωK

ωL ± ωi ≈ ωL

(K,L 6= 0). (7)
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In Eq. (6), we have also introduced4

(ωk ± ωσ)−1 = (ωk + ωσ)−1 + (ωk − ωσ)−1, (8)

(αβγ)k0 = 〈k|α00
βγ|0〉, (9)

with

α00
βγ = 2~−1

∑′

L

µ0L
β µ

L0
γ

ωL
(10)

being the static electronic polarizability.

The vibrational transition matrix elements, such as (µα)0k and (αβγ)k0 defined in the

aforementioned equations, can be calculated by expanding the electronic dipole moment,

polarizability, and vibrational potential in displacements along the normal coordinates (qv)

around the equilibrium geometry.4,23 In the double-harmonic approximation, only [µ2] and

[µα] contribute to the polarizability and the first-order hyperpolarizability, respectively,4,23

with

αv
αβ(−ωσ;ω1) ≈

[
µ2
](0,0)

=
1

2

∑
P−σ,1

∑
v

∂µα
∂qv

∂µβ
∂qv

λ±σv , (11)

βv
αβγ(−ωσ;ω1, ω2) ≈ [µα](0,0) =

1

2

∑
P−σ,1,2

∑
v

∂µα
∂qv

∂αβγ
∂qv

λ±σv , (12)

where the frequency terms are defined as

λ±σv =
(
ω2
v − ω2

σ

)−1
. (13)

The evaluation of [µ2]
(0,0)

and [µα](0,0) using our recently developed atomic-orbital based

quasienergy formalism14 has been discussed in Ref. 15 in the case of Hartree–Fock wave

functions, in which a static field (that is, with a zero frequency) has been employed. In the

case of dynamic fields, as shown in Eqs. (11) and (12), the frequency of the external field

only enters the terms λ±σv . The evaluation of the geometric derivatives of polarizabilities and

8



hyperpolarizabilities hence follow the same procedure as in the static case—being obtained

as the derivatives of the quasienergy Q.14 Here we extend our implementation of the dipole

and polarizability gradients to the density-functional level of theory.

At the DFT level, with an externally applied electric field ~F , the derivative of Q with

respect to a displacement qv (the gradient) is given by

dQ

dqv
=

∂

∂qv

(
hnuc − ~F ·~µnuc + Tr

[
h− ~F ·~µ + 1

2
Gγ(D) + Fxc

]
D
)
− Tr

∂S

∂qv
W

= hvnuc − ~F ·~µvnuc + Tr
[
hv − ~F ·~µv + 1

2
Gγ,v(D) + Fv

xc

]
D− TrSvW, (14)

where hnuc is the nuclear repulsion energy, −~F ·~µnuc is the interaction energy obtained

from the interaction of the external field with the nuclei, h is the one-electron Hamilto-

nian (kinetic energy and nuclear attraction) integral matrix, −~F ·~µ are the electron–electric

field (dipole) interaction integrals, G is the two-electron (Coulomb and [γ fractional] ex-

change) integral tensor Gγ
κλ(D) =

∑
µν Dνµ(gκλµν − γgκνµλ) with the two-electron integral

gκλµν =
∫∫

χ∗κ(r1)χλ(r1)
1
r12
χ∗µ(r2)χν(r2)dr1dr2 over basis functions χ’s, D is the atomic or-

bital (AO) density matrix (dependent variable), and S is the AO overlap matrix, and where

we have also introduced a superscript notation for the differentiated quantities.

W in Eq. (14) is the so-called “energy-weighted density matrix”,14 given by the formula

W = D
[
h− ~F ·~µ + Gγ(D) + Fxc

]
D +

i

2

∂D

∂t
SD− i

2
DS

∂D

∂t
. (15)

We note that although the two last terms vanish for the (time-independent) unperturbed

state, perturbation by a time-dependent ~F will induce a time-dependent perturbed D, and

thus nonzero contributions to the perturbed W.

Fxc in Eq. (14) is the exchange–correlation (XC) potential matrix, defined within the
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adiabatic approximation as14

(Fxc)κλ =

∫
dr Ωκλ(r)vxc(r), (16)

where Ωκλ(r) is the overlap distribution of the basis functions χκ and χλ

Ωκλ(r) = χ∗κ(r)χλ(r), (17)

and vxc(r) is the XC potential defined as the functional derivative of the XC energy Exc with

respect to the density n(r)

vxc(r) =
δExc

δn(r)
. (18)

In this work we employ an XC energy Exc defined as the integral over a local function εxc(r)

that depends on the density n(r) and its Cartesian gradient ∇n(r)

Exc(r) =

∫
dr εxc(n(r),∇n(r)). (19)

The XC energy and the XC potential matrix are integrated on a numerical grid defined by

a set of suitably chosen grid points ri and grid weights wi, according to

Exc ≈
∑
i

wiεxc(ri). (20)

(Fxc)κλ ≈
∑
i

wiΩκλ(ri)vxc(ri). (21)

In this work we use a standard grid and when differentiating the XC energy and the XC

potential matrix we ignore the contribution from the grid-weight derivatives. This approxi-

mation has been validated by comparison with finite difference results.

Formulas for the electric dipole and polarizability gradients are obtained by differentiating

the gradient in Eq. (14) once and twice, respectively, with respect to ~F , while taking the
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dependence of D on ~F into account, and evaluating the resulting equations at ~F = 015

−∂µα
∂qv

=
d2Q

dqvdFα
= −µvnuc,α − Trµv

αD (22)

+Tr
[
hv + Gγ,v(D)

]
Dα + Evα

xc − TrSvWα,

−∂ααβ
∂qv

=
d3Q

dqvdFαdFβ
= −Trµv

αD
β − Trµv

βD
α (23)

+Tr
[
hv + Gγ,v(D)

]
Dαβ + TrGγ,v(Dβ)Dα + Evαβ

xc − TrSvWαβ.

We note that these gradients are evaluated in Cartesian nuclear coordinates, and then trans-

formed to normal coordinates for the vibrational analysis.

Let us briefly comment on the evaluation of the XC contributions Evα
xc and Evαβ

xc . Ignoring

grid-weight derivatives, we can focus on the computation of the XC energy density derivatives

εvαxc (r) and εvαβxc (r) (see Eq. (20)). To evaluate these XC energy density derivatives, we first

compute the unperturbed densities n(r) and density gradients ∇n(r) and their derivatives

with respect to the applied perturbations nv(r), n(α)(r), nv(α)(r), n(β)(r), nv(β)(r), n(αβ)(r), nv(αβ)(r)

and their Cartesian gradients according to

n(p)(r) =
∑
κλ

Ωκλ(r)D
p
λκ (24)

∇n(p)(r) =
∑
κλ

∇Ωκλ(r)D
p
λκ (25)

nv(p)(r) =
∑
κλ

Ωv
κλ(r)D

p
λκ (26)

∇nv(p)(r) =
∑
κλ

∇Ωv
κλ(r)D

p
λκ (27)

In this work we do not form εvαxc (r) and εvαβxc (r) by explicitly applying the chain rule using

XC functional derivatives and the above perturbed densities. Instead, we evaluate εvαxc (r)

and εvαβxc (r) directly by calling the XCFun library18,25 with appropriate density (gradient)

perturbation expansions [n, nv, n(α), nv(α)] and [n, nv, n(α), nv(α), n(β), nv(β), n(αβ), nv(αβ)], re-
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spectively. This scheme is easily extensible to higher orders and to XC functionals that

depend on additional density variables.

The electronic polarizability ααβ(−ωσ;ω1) and first-order hyperpolarizability βαβγ(−ωσ;ω1, ω2)

are also derivatives of the quasienergy and given by

−ααβ =
d2Q

dFαdFβ
= −TrµβD

α, (28)

−βαβγ =
d3Q

dFαdFβdFγ
= −TrµγD

αβ. (29)

Although of the same order as the gradients in Eqs. (22)–(23), these formulas are much

simpler because the AOs do not depend on ~F , whereas they do depend on qv.

The first- and second-order perturbed density matrices in Eqs. (22)–(29), Dα and Dαβ,

respectively, can be obtained from a set of linear equations of the same form,14 allowing

us to use the same solver for both equations. In this work, we will use the conventional

molecular orbital-based response solver of the Dalton program,26 thus the right-hand sides

that enter into the linear response equations are transformed from AO to the molecular

orbital (MO) basis, and the resulting response vectors backtransformed from the MO to AO

basis, in a manner similar to that previously used in four-component relativistic calculations

of nonlinear optical properties.27

Results

The results will be reported for the isotropic averages, defined by the equations

α =
1

3

∑
η

αηη, (30)

βZ =
1

5

∑
η

(βZηη + βηZη + βηηZ) (31)
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where η = x, y, z and the Z axis is determined by the direction of the dipole moment (we

note that this definition of the hyperpolarizability includes its sign, not determined in exper-

iment22). We shall discuss only the static hyperpolarizability and the second-harmonic gen-

eration process βSHG = β(−2ω;ω, ω). Our discussion of correlation effects will focus on these

effects on the pure vibrational contributions as described by DFT using the Becke’s three-

parameter exchange functional28 and the Lee–Yang–Parr (LYP) correlation functional29 in

the form of the B3LYP functional,30 as correlation effects as described by DFT on the elec-

tronic hyperpolarizabilities have already been discussed in a number of different studies.31–35

We have optimised molecular geometries for the all-trans structures, using the B3LYP

functional and the Turbomole-TZV2P basis set,36 and at this computational level we have

also determined the molecular Hessian, used in the analysis of the vibrational (hyper)polarizabilities.

The calculation of electronic and pure vibrational contributions to the (hyper)polarizabilities

have been calculated using the Sadlej-pVTZ37 basis set at the Hartree–Fock and density

functional level of theory using the B3LYP functional.

Polarizability

Electronic and vibrational contributions to the dipole polarizability are shown in Table 1. We

observe smooth frequency dependence of the electronic polarizability, encompassing the static

values, for all the molecules, with the dispersion effects noticeably larger for the protonated

retinal Schiff base than for the other molecules. The B3LYP results are in the static case

about 12–14% larger than the Hartree–Fock results, independently of the molecule. For the

frequency-dependent electronic polarizabilities, the effect of electron correlation increases

somewhat and in particular gives larger differences between the different molecules, in general

being about 16− 22% of the Hartree–Fock values at a wavelength of 771 nm. An exception

to this rule is the protonated retinal Schiff base, which has a correlation effect of almost

33% at 771 nm. These differences are due to the differences in the pole structure, DFT

correcting (possibly overcorrecting) the well-known overestimation of the HOMO–LUMO
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(the highest occupied and lowest unoccupied molecular orbitals) gap by Hartree–Fock. We

note that in the case of the protonated retinal Schiff base, the lowest excitation wavelength

is only slightly longer than 532 nm, explaining the change in sign and large magnitude of

the electronic polarizability of this molecule at 532 nm.

The vibrational contributions are practically negligible in the range of frequencies stud-

ied. On the other hand, for the static polarizabilities they are of the same order of magnitude

as the electronic terms (in the case of vitamin A acetate, the vibrational contribution ac-

tually dominates). The larger vibrational contributions for the static polarizabilities can be

understood from Eq. (11) observing that the frequency of the external field only enters the

terms λ±σv , and we have for each mode v the ratio of λ±σv between the dynamic and static

polarizabilities as λ±σv (ω)

λ±σv (0)
= − ω2

v

ω2−ω2
v
≈ −ω2

v

ω2 .38 Here we have used the fact that the frequency

ω in our studies is usually larger than that of the vibrational mode v. Therefore, the vi-

brational contributions for the dynamic polarizabilities are generally one to three order of

magnitude smaller than those for the static polarizabilities in our studies, and also have a

change of sign as clearly shown in Table 1. Another important observation is that in most

cases B3LYP gives only a slightly smaller pure vibrational polarizability than Hartree–Fock

for retinal, retinoic acid and retinal Schiff base. In contrast, for retinol, vitamin A acetate

and protonated retinal Schiff base, B3LYP reduces the magnitude of the pure vibrational

corrections to the static polarizability by a factor of 2–3, despite the very minor differences

in the structure compared to the three other molecules.

First hyperpolarizability

We will discuss the electronic and vibrational contributions to the first hyperpolarizability

collected in Table 2 and compare them to available experimental data. As for the polariz-

abilities, the vibrational contributions at the frequencies of interest are practically negligible

for the SHG process, and we thus begin the discussion and comparison with experiment

focusing on the electronic contributions.
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Table 1: Electric dipole polarizabilities (in 10−25 esu)

wavelength retinal retinol retinoic vitamin A retinal protonated
nm acid acetate Schiff base RSB

electronic, HF
532 558.90 507.79 547.52 541.81 686.64 1420.28
771 497.37 466.93 492.35 498.87 612.81 865.69
953 483.15 456.85 479.36 488.27 595.71 794.54

1064 478.27 453.33 474.89 484.58 589.84 772.79
1543 468.53 446.22 465.93 477.10 578.12 732.68
1907 465.65 444.10 463.28 474.87 574.66 721.63
∞ 460.40 440.19 458.42 470.77 568.33 702.31

vibrational, HF
532 −0.17 −0.08 −0.20 −0.23 −0.12 −1.76
771 −0.36 −0.18 −0.43 −0.48 −0.25 −3.73
953 −0.56 −0.28 −0.67 −0.74 −0.39 −5.73

1064 −0.71 −0.35 −0.84 −0.93 −0.49 −7.18
1543 −1.57 −0.80 −1.88 −2.05 −1.13 −15.55
1907 −2.57 −1.35 −3.09 −3.32 −1.92 −24.55
∞ 156.57 355.29 132.06 789.30 80.83 492.34

electronic, DFT
532 809.45 634.85 763.57 696.23 964.09 −8552.58
771 603.95 540.48 593.33 589.25 741.08 1151.73
953 571.16 521.23 564.29 567.64 703.24 975.43

1064 560.72 514.81 554.93 560.45 691.08 929.39
1543 540.92 502.23 537.04 546.39 667.86 852.06
1907 535.33 498.58 531.96 542.32 661.27 832.25
∞ 525.41 492.00 522.90 534.98 649.54 798.99

vibrational, DFT
532 −0.15 −0.074 −0.17 −0.20 −0.10 −0.69
771 −0.31 −0.154 −0.36 −0.42 −0.21 −1.45
953 −0.48 −0.244 −0.56 −0.66 −0.32 −2.24

1064 −0.61 −0.304 −0.70 −0.82 −0.41 −2.80
1543 −1.35 −0.684 −1.55 −1.81 −0.93 −6.09
1907 −2.20 −1.154 −2.54 −2.92 −1.58 −9.66
∞ 132.73 117.714 111.13 326.08 67.75 256.99
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Table 2: SHG hyperpolarizabilities (in 10−30 esu)

wavelength retinal retinol retinoic vitamin A retinal protonated
nm acid acetate Schiff base RSB

electronic, HF
1064 40.99 −2.20 32.76 −1.07 14.17 −601.59
1543 27.07 −1.46 21.99 −1.32 8.67 −223.57
1907 24.10 −1.30 19.65 −1.37 7.53 −179.04
∞ 19.58 −1.05 16.07 −1.41 5.81 −124.46

vibrational, HF
1064 −1.05 −0.00 −0.86 0.09 −0.47 9.72
1543 −2.25 −0.01 −1.83 0.19 −1.01 20.89
1907 −3.51 −0.01 −2.83 0.31 −1.59 32.65
∞ 168.37 88.45 136.01 149.03 61.16 −805.60

electronic, DFT
1064 250.17 −18.97 190.99 20.32 116.65 6542.78
1543 101.32 −9.34 83.44 8.05 45.52 −305.43
1907 81.71 −7.74 68.17 6.13 35.94 −204.25
∞ 57.15 −5.60 48.58 3.64 24.03 −113.36

vibrational, DFT
1064 −1.07 0.03 −0.91 0.09 −0.59 2.30
1543 −2.30 0.06 −1.95 0.20 −1.27 4.93
1907 −3.59 0.09 −3.01 0.32 −1.99 7.68
∞ 187.76 −26.34 142.64 105.85 87.30 −213.31

experimental, IRM, in methanol22

1064 730 – 310 140 470 3600
experimental, ERM, in methanol21

1064 133 18 60 37 116 1095
experimental, IRM, in chloroform22

1064 270 – 110 – – –
experimental, ERM, in chloroform21

1064 111 12 44 31 – –
1543 49 10 33 13 – –
1907 11 8 14 9 – –

from experimental data, IRM, in methanol22

∞ 300 – 160 80 220 900
from experimental data, ERM in methanol21

∞ 57 10 30 20 54 271
INDO/SOS22

∞ 41.5 – 38.0 2.4 17.9 214.6
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Electronic hyperpolarizabilities

As already mentioned, the experimental data are obtained with respect to a reference com-

pound, and the absolute values of the hyperpolarizabilities are not really known. Another

comparison of the computed and measured quantities is thus given in Table 3, where all

the static hyperpolarizabilities have been defined with respect to the corresponding retinal

value.

Table 3: Rescaled SHG electronic hyperpolarizabilitiesa

wavelength retinal retinol retinoic vitamin A retinal protonated
nm acid acetate Schiff base RSB

This work, HF
∞ 1.00 −0.05 0.82 −0.07 0.30 −6.36

This work, DFT
∞ 1.00 −0.10 0.85 0.06 0.42 −1.98

from experimental data, ERM in methanol21

∞ 1.00 0.18 0.53 0.35 0.95 4.75
from experimental data, extrapolated22

∞ 1.00 – 0.53 0.27 0.73 3.00
INDO/SOS22

∞ 1.00 – 0.92 0.06 0.43 5.17
Frequency dispersion

This work, HF
1064 2.093 2.089 2.039 0.757 2.437 4.834

This work, DFT
1064 4.377 3.389 3.931 5.585 4.855 −57.716

experimental, IRM, in methanol22

1064 2.433 – 1.938 1.750 2.136 4.000
experimental, ERM, in methanol21

1064 2.333 1.800 2.000 1.850 2.148 4.041
a All the static hyperpolarizabilities are defined with respect to the analogous static retinal
values, all the dynamic hyperpolarizabilities with respect to the corresponding static values

of the same molecule.

The ordering of the β(electronic) magnitudes in experiment21 is

PRSB > retinal > RSB > retinoic acid > vitamin A acetate > retinol

with the same ordering as in Ref. 22, as well as for the values extrapolated to zero frequency,

and
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PRSB > retinal > retinoic acid > RSB > retinol > vitamin A acetate

in our calculations at the B3LYP level of theory. This ordering is confirmed by the Hartree–

Fock calculations with the exception of the two molecules with the smallest hyperpolariz-

ability, retinol and vitamin A acetate, which switch order in the Hartree–Fock calculations

compared to B3LYP. Our results indicate, similarly to the INDO/SOS calculations, that the

hyperpolarizability of retinoic acid is larger than that of RSB, in contrast to the experimental

ordering. As noticed in Ref. 22, there is no obvious explanation for this disagreement with

experimental data. The somewhat stronger increase in the rescaled electronic hyperpolariza-

bilities obtained at 1064 nm compared to the static limit reflects the fact that HF in general

overestimates the excitation energies whereas DFT underestimates the excitation energies.

The fact that HF agrees better with experiment at 1064 nm than DFT may suggest that we

are seeing indications of the well-known DFT catastrophe for long, conjugated systems.39

Electron correlation effects as described by the B3LYP functional are in general much

larger for the first hyperpolarizability than for the polarizability, also for the static value,

the B3LYP hyperpolarizability being in general 2.5–5 times larger than at the Hartree–Fock

level of theory. Interestingly, the exception to this rule is the protonated retinal Schiff base,

where B3LYP actually gives a smaller value for the hyperpolarizability than Hartree–Fock.

Including frequencies, the differences between Hartree–Fock and B3LYP increase, at 1064 nm

the B3LYP results being in general 6–8 times larger than Hartree–Fock, with the exceptional

case being the vitamin A acetate where the B3LYP first hyperpolarizability not only is 20

times larger than at the Hartree–Fock level of theory, but also has the opposite sign. For this

molecule, there is a delicate interplay between the contributing channels to the calculated

electronic hyperpolarizability. The results for the protonated retinal Schiff base at 1064 nm

is once again a consequence of the near-resonance conditions at 2ω.
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Vibrational hyperpolarizabilities

The vibrational contributions to the first hyperpolarizability, shown in Table 2, are some-

what more important than the corresponding contributions to the polarizability. They vary

smoothly with the frequency and at 1907 nm reach ≈20% of the electronic contribution

(with, for most molecules, opposite sign). In principle, the experimental values represent the

total hyperpolarizability. However, considering all the difficulties in determing the absolute

value of the hyperpolarizability from experiment, the role of the solvent, and all the approx-

imations made in the theory for extracting the hyperpolarizabilities from the experimental

measurements, it is practically impossible to obtain from the comparison of computed and

measured values any information on the vibrational terms.

On the other hand, the vibrational contribution to the static hyperpolarizabilities is very

large. Whereas for the polarizability it was of a similar magnitude as the electronic term, for

the hyperpolarizability it is clearly dominant for each molecule. In this case, the electronic

terms are almost negligible, but—as discussed above—there are no experimental data for the

total static hyperpolarizabilities, the extrapolation from frequency-dependent values yields

only the electronic part.

We note that whereas the pure vibrational contribution to the polarizability by necessity

of its form (see Eq. (11)) has to have the same sign at any optical frequency (since these

are larger than the vibrational frequency), the pure vibrational contribution to the first

hyperpolarizability can be of either sign. This is also reflected in the calculated pure vibra-

tional contributions where no clear trends can be observed, which is surprising considering

the very close structural features of the molecules investigated. We note in particular that

for both the static and the frequency-dependent pure vibrational contribution to retinol, a

change of sign is observed when going from Hartree–Fock to B3LYP. The protonated Schiff

base also displays very large electron correlation effects on the pure vibrational contribution

to the static first hyperpolarizability, reducing the Hartree–Fock value by almost a factor

of four. These results illustrate that it in general can be difficult to predict the effects of
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electron correlation on the pure vibrational contributions, even for a class of structurally

related molecules. Explicit calculations including electron correlation effects, such as DFT,

is therefore advisable. The analytic scheme presented here allows such calculations to be

efficiently performed also for large molecules at the density-functional level of theory.

Conclusions

We have presented an analytic implementation of pure vibrational contributions to the polar-

izability and first hyperpolarizability at the density functional level of theory. The approach

is based on a recursive implementation of a density-matrix-based approach for calculating

higher-order molecular properties, using automatic differentiation to evaluate the exchange–

correlation kernels.

We have studied the electronic and vibrational contributions to the first dipole hyperpola-

rizabilities of retinal and related molecules. The frequency-dependent first hyperpolarizabil-

ity, which determines the second-harmonic generation, is dominated by the electronic terms.

The absolute values of the hyperpolarizabilities are difficult to determine from experimental

data, but their relative values obtained from the calculations are in reasonable agreement

with experiment. In particular, the value computed for the protonated retinal Schiff base is—

in agreement with experiment—significantly larger than for any other molecule considered

(the dispersion effects are also the largest for PRSB). We note, however, that the computed

hyperpolarizabilities are in better agreement with previously published semi-empirical re-

sults than with experimental data, and the previously observed differences with respect to

experiment are not removed in the approach we have used.

In the analysis of static hyperpolarizabilities it is essential to include the vibrational

contributions. These terms do not significantly affect the SHG values or the dispersion at

frequencies of experimental interest, but the extrapolation to zero frequency of the measured

optical hyperpolarizabilities provides only an estimate of the corresponding electronic con-
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tribution. For the static dipole hyperpolarizability, as is well known and also shown by the

calculations, the vibrational contribution may be equally important to or even larger than

the electronic term. We have demonstrated that the electron correlation effects vary signifi-

cantly for the pure vibrational corrections to the static first hyperpolarizability, illustrating

the need for analytic schemes for (hyper)polarizability derivatives at the DFT level of theory.
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Hartree-Fock Investigation of π-Conjugated Compounds Presenting Large βv/βe Ratio:

Merocyanines. Coll. Czech Chem. Comm. 1998, 63, 1295–1308.

(3) Kirtman, B.; Champagne, B.; Luis, J. M. Efficient Treatment of the Effect of Vibrations

on Electrical, Magnetic, and Spectroscopic Properties. J. Comput. Chem. 2000, 21,

1572–1588.

(4) Bishop, D. M.; Kirtman, B. A Perturbation Method for Calculating Vibrational Dy-

namic Dipole Polarizabilities and Hyperpolarizabilities. J. Chem. Phys. 1991, 95, 2646–

2658.

21



(5) Bishop, D. M.; Kirtman, B. Compact Formulas for Vibrational Dynamic Dipole Polar-

izabilities and Hyperpolarizabilities. J. Chem. Phys. 1992, 97, 5255–5256.

(6) Jayatilaka, D.; Maslen, P. E.; Amos, R. D.; Handy, N. C. Higher Analytic Derivatives.

III. Geometrical Derivatives of the Dipole and Dipole Polarizabilities. Mol. Phys. 1992,

75, 271–291.

(7) Quinet, O.; Champagne, B. Time-Dependent Hartree–Fock Schemes for Analytical

Evaluation of the Raman Intensities. J. Chem. Phys. 2001, 115, 6293–6299.

(8) Quinet, O.; Champagne, B. Analytical Time-Dependent Hartree–Fock Schemes for the

Evaluation of the Hyper-Raman Intensities. J. Chem. Phys. 2002, 117, 2481–2488.
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(38) Champagne, B.; Perpète, E. A.; André, J.-M. Vibrational Polarizability of Polyacetylene

Chains. J. Chem. Phys. 1994, 101, 10796–10807.
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