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1 Introduction

Let 2 be a connected open set in R", and let P = P(z, D) be a differential
operator of order m in © with principal symbol p. Let ¢ : @ — R be a C* function,
with Vé(z) # 0, z € Q and which is strongly pseudo convex (this is a convexity
property relatively to p.) We say that the Carleman type estimate holds for P if
there exists a constant K > 0 such that

T rAmele)-1 / |Du|?e?™¢de < K / |P(z, D)u|?e*¢dz (1)
Q Q

lo<m

Yu € C5°(QY), 7 >0 - large enough.

Estimates of this form were first used by Carleman in work on unique continu-
ation property for second order elliptic operators in R?. Here P is said to have the
unique continuation property if the following holds: Suppose u solves P(z, D)u =0
on  and u = 0 on a empty open set in ). Then, u vanishes identically in 2.

This property is equivalent to uniqueness in the Cauchy problem for any smooth
hypersurface.

The Carleman type estimates are established under various assumptions on
P(z, D) and have a large field of applications:

1. Unique continuation property and uniqueness of Cauchy problem. (see (3], [4],

[6], (9], [10])
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Spectral properties of Schrédinger operator.(see [12])
Generic properties of nonlinear elliptic equations. (see [13]).

Stability of (non-well-posed) Cauchy problem (see [1]).

oo e W

Identifiability of spatially-varying coefficients in partial differential equations.
(see [1], [2])

The aim of this paper is to present new results concerning the last two subjects.
" In section 2 we establish an abstract analogue of Carleman estimates, which is an
extension of Bukhgeim’s result ([1]). In section 3 we apply it to the uniqueness
question and identifiability of coefficients for the initial-boundary value problems
for some (nonlinear) partial differential equations.

2 Stability est imates:

Let H be a complex (or real) Hilbert space, the scalar product and the norm
in H being denoted by (-,-) and || - ||, respectively. Let M(t) and A(t) be linear
operators whose domains are dense subspaces in H and are possibly changeable in ¢
for t € [0,T). :

The subscript ¢ denotes differentiation with respect to t.

In Theorem 1 stated below, we assume the following.

(A1) For every t € [0,T] M(t) is a selfadjoint operator.

(A2) M(t) and A(t) are strongly continuous and weakly differentiable with respect
to t.

(A3) Let
D(P) = {u:[0,T] - H | u(t),uit) € D(M(2)),
u(t) € D(A(2)) for each t € [0,T),
M(Yu(-) € C*(0,T}; H) and A()u(") € C([0,T]; H)}-
and
Z ={u:[0,T) = H | u(t) € D(A(t) + A"(2)), for each t € [0,T]
{A() + A*()}u() € C((0,T); H)}
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There exists a linear subspace D dense in D(P) N Z such that, setting D(t) =
DN ({t} x H) c ([0,T] x H),

(a) There exists a positive constant C; such that
[M(t)v]| < Ci||M(2)oll, Vv € D(?).

(b) M(t) and A(t)+ A*(t) commute each other on D(t), that is, for v € D(t)
(A(t) + A*(t))v € D(M(t)) and M(t)v € D(A(t) + A*(t)), we have

M) (A(t) + A* (1)) = (A(t) + A*(£)) M (t)v.
(c) There exist positive constants C; (j = 2,3,4) such that
I(A() = A*())ol| < Go[M(E)o]l Vo € D(2),
ATl = [A@)0lI? < Cal|M(t)o]l* Yo € D(2),

and

| (Au(t) + A;(1)v || < Cul|Mo|| Vv € D(2).
We define the operator '

P(t)u(t) = M(t)us — A®)u(t)  for Yu € D(P).

For bfevity we write

lullr = lulleore  lullar = lle*ullr

where ¢ = ¢(t) is a real-valued continuous function defined on [0,7] and s is an
arbitrary nonnegative number. . ' ‘

The following theorem is an extension of abstract versions of Carleman’s esti-
mates for the Cauchy problems. (see Nirenberg [11], Bukhgeim [1]).

Theorem 1 Suppose that the assumptions (Al)-(A3) hold. Suppose that ¢ €
C?*([0,T]) satisfies ,

$(t) <0 Vte[0,T],
and

du(t)+ (C1+Cr)de(t) 26 >0 Vit e[0,T).
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Then, there exist positive constants so and Cs such that for all s > sy and
ue D(P)NZ

oo (G Al + 1Mwls)

< Cs(|IPull?z + [se(t)e™ | M (t)u(t)]?
+eRO((A(t) + A"(D)u(t), M(D)u(2))][)) (2)

s||Mull3r +

Using Theorem 1, we can establish stability estimates as follows.

Theorem 2 Suppose that all the assumptions stated in Theorem 1 are satisfied.

Let f € C([0,T); H). Suppose that there exists a subset U C (D(P) N Z) such that
YuelU

I1P@)u@l t
< Ce/O (N(A() + A (7wl + (1M (7)ue ()| + 1M ()u(7)]]) d
+CIM (@u(®)]] + Csll f D (3)

where C; (j = 6,7,8) are positive constants independent of t. Then, there ezists

positive constants so, Cy and Cyq, independent of u, f and t, such that for Vu € U
and Vs > s

[Mullr < Co[—=II(A(T) + A*(T))u(T))|

1
7
+exp(sCuo) (M (0)u(0)]] + [|(A(0) + A" (@)u(O)| +If )] (4)
Furtf.zermore,. if (M(T)u(T),(A(T)+ A(T)w(T)) < Cl|M(T)u(T)|]?, then

IMullr < O-—&f’—l (IM©)u(O)] + () + A @)@ + IflD).  (5)

Proof of Theorem 1. Let u € D, v = e*®u and

Ps(tiv = e P(t)(e™*¢Wy)
= —s¢i(t)M(t)v + M(t)v, — A(t)v.

Then we have

P3(t)v = —sdy(t) M (t)v — M,(t)v — M(t)v; — A*v.



Define P} and Py by

and

respectively.
We see that

P

%(P¢+P;)v

11
= —spMv— M — ~(A+ A (6)

= %(Pd,—P;)v

1 1
= EM{U + M'Ut - §(A - A*)'U, (7)

1Pullr = [ {IPY)I? + [PG(r)o()

+ 2Re(P4(r)u(r), P4(r)u(r)) } dr. (8)

Making use of the assumptions (A1)-(A3), we have
2Re(Pyv, P3v) |

We also have

IPgoll*

\v4

—s¢y {Re(Mv, Myv) + 2Re(Mv, Mu,)}
+s¢:Re(Mv, (A — A™)v)

- {%IIMth? + Re{ Mo, Mu) |
+5Re(Moo, (4 = A)0) — = {Re((A + A%)o, Mio)
+ 2Re((A + A")v, Mu,) + (| Av|* - || A°[1*)}

= {s0MolP + S((A + Ao, o)

Tdt
+5¢ull M| +56(Cy + Cz)||Mv||?

1 1
- —5{3012 + 0102 4+ 203 + C4}“MU”2 - Z”M’Ut“2

v

5 (1Ml = 1Mol ~ 104 - A)ol?)

1 1
SIMu? = 5(CE+ G| Mo

31
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Hence, if we take s so large that
sz%(4cf+0102+03+203+c4),
we obtain
DMl + P30l + 51| Mo
< 1Pullz+ { el Mol + A+ Ao, Mo)} [ = 1. ©)

We have

P30l 2 SbRe((A+ Ao, M) + £ll(4 % A°)oll* = ZCIMu,
from which it follows that

S+ a7l

< P50l + 2180 [ 1Mol (A + Ayoldt + ZCHIMol

‘Making use of (9), we have | .

1 .
S+ A7)l

s \1!

/2 T 7z
<1+ () w1 [+ apira) -+ oo
N - 2 1 .
< (1+310OF + 5C2) T+ A+ Al

from which we deduce

T
LA+ Aot < €+ slg(0)) T (10)
where and in the sequel by C' we denote various positive constants which do not
~ depend on ¢ and u and are changeable from line to line. From (9) and (10), we have

1

sé 9
2 MYl + o

1
(A + A%)v|% + -2-||Mmu% <ClI.
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Noting that Mv; = s¢;e** Mu + e** Mu,, we get
IMulir < IMoill7 + 256 (0) || Mollr || M|,
< T+2V25 216012 Mug)lo
1
< T+ 4sl8O)P T+ I Mulig

from which it follows that

IMu 3z < 2(1+ 45l ().
Hence, we finally obtain

1
1+ 5|¢:(0)[?

Since D is dense in D(P) N Z, the estimate (11 holds for any u € D(P) N Z. This
completes the proof of Theorem 1.

sé .
5 I Mull}r + (A + A%)ull2 7 + [|Mudl?r) < Csl. (11)

In order to establish Theorem 2, we need

Lemma 1 Suppose that ¢(t) is a real-valued C'-function defined -on [0, T] satisfying
é: <0Vt e[0,T]. Then we have for any f € C([0,T); H)

/ " f(rydr !

s < —
o ~ mingepo7) |f:(2)

| 1A lls;z (12)

Proof. Note that

¢(t) — ¢(7) = ¢(£)(t —7) < L(t — 1)

t ,
where L = maxejo,r] $:(t). Set g = e**f and F = e’d’/ f(r)dr. Then
0

IF@I < [ O g(r))dr

t
< [ eHg(rdr.
0

Hence, we have

NFE®Ir < el omllgllr < —-}jllgllr



which implies (12). | | '

Proof of Theorem 2. From the assumptions and Lemma 1, we see that

20

“PuHE,T < 2I¢ T)|2

{lla+ a%)ull2z + 1Ml gz + IMulllz}
+2C37 | Mull? 7 + 2G5 || F1I3 1
We take sq so large that for any s > sp

205 CG

|9(T)|* > —52(1 + s|¢(0) )

and

2(]50

s?

+ 2C5.

len

Then, Theorem 1 yields that

s\ Mull?7 < 2Cs{se(t)e®4O|| M (t)u(t)||*

34

eSO ((A(t) + A*())u(t), M (t)U(t))}|’0T+2Cs.C§IIf 5.z (13)

from which it follows that
s 4D Mull} — 2C5a6,(T)e DM (T)u(T)
< ~2Css,(0)eO [ MOW(O)IP + 5e**D(A(T) + A (D)D)
SO + SeO(A0) + A O]
5O MOu(O)|? +205C I -

Hence, taking so so large that

1
S0 > ————,
= T 4Cse(T)
we conclude that (4) holds.

If (M(t)u, (A(t) + A*(t))u) < C||M(t)u|? for all t € [0,T), from (13) we see that
(5) follows. This completes the proof of Theorem 2.



3 Applications

In this section we discuss the uniqueness of Cauchy problems for semilinear
evolution equations and identifiability of coefficients of evolution equations.

3.1 Uniqueness

Let M(t) and A(t) be the same as in section 2. We consider the Cauchy problem
for semilinear evolution equation of the form

M@y = A@u+ [ flts,u()ds +altw) o), tel0,T], (14
-~ u(0) = uo (15)
For brevity we introduce
lu@lle = 1I(A®) + A*(@)u(@)l] + M@ + || M E)ul?)]].

Theorem 3 Suppose that M(t) and A(t) satisfy (Al)-(A3). Moreover we assume
~that M(t) or A(t)+ A*(t) is injective for each t € [0,T]. Suppose that -

| /0’ (f(r,2,u(r)) — f(7,2,0(7))) d7||
< C/ot Ki(Ju(™l- + o™l (lu(r) = v(r)).dr (16)

and

l92(2, u(t)) — g2, u (@)
< K([M@)ull + ([ M@)o]]) 1M ()(u - )l (17)

where K, and K, are non decreasing continuous functions defined on [0,00). Then,
for every uo € D(M(0)) N D(A(0) + A*(0)) and g, € C([0,T); H), the problem
(14)-(15) has at most one solution.

Proof. We take the set U in Theorem 2 as

U={ueDP)n2)| sup (lul.+|MHu@)]) < R}

sup
0<t<T

35
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for some R > 0. Let u(t) and v(t) be two solutions of (14)-(15). Put w = u — v.

Then

MO = AL+ [ () - ft o) dr

: + (gl(tau) - gl(t’ v)) ’ te [OaT]’
u(0) = 0. ‘ ‘

The assumptions yield that

| [ Frzur) - £z, o) drll < © [ K@R)u(r)bedr
and

lgs (8, u(t)) — ga(t, v()]| < K(2R)|| M (t)w]).
Hence, from Theorem 2 we see that

f;%”(,aczj + A" (D))u(T)l|

By letting s — oo, we conclude that

[Muwllr <

[Mwl|lr =0
which implies
Mtw(t)=0 Vtel0,T].
If M(t) is injective for each t, then

w(t)=0 Vte[0,T].

(18)
(19)

(20)

(21)

- (22)

(23)

Assume that A(t)+ A* is injective. In much the same way as in the proof of Theorem

2, using (22), we see that
(A + A)wl|lsr <0

. provided that s is taken large enough. Hence we easily see that (23) holds for this

case. This completes the proof.



Remark 1 Since our assumptions does not require positivity or accretiveness of the
operators M(t), A(t), Theorem 3 covers very wide class of uniqueness question for
the Cauchy problem. For instance we can show the backward uniqueness for the heat
equation and for pseudo-parabolic equations (see below ).

- Examples
Let © be a domain in RY. Let

M(t,z,Dyu= Y. (=1)*D*(mag(t,z)D u),
0<lallB8I<P

and
A(t,z,D)u= 5 (=1)*D*(ans(t,z)D"u)
o<al,|8I<e

be linear differential operators of order 2p and 2¢, respectively with complex-valued
smooth coefficients defined on [0,T] x Q. Let H = L*(2) and define

D(M(t)) = {u:Q— C |ue H?(Q) N H(Q)}
and for any u € D(M(t))
(M(t)u)(z) = M(t, z, D)u(t, z), (¢,,z) € [0,T) x Q.
We assume that M (t,z, D) is formally symmetric, that is,
Map = Mgy, Va,pf.

Then, under some suitable assumptions on the coefficients m,g, we can see that for
each t M(t) is selfadjoint in H and D(t) = C§°(2) is the core of M(t).
Let
D(A()) ={u: Q- C |lue H¥(Q)N H(Q)}
and define for any u € D(A(t))
(A(t)u)(z) = A(t,z, D)u(t,z),  (t,2) €[0,T] x Q.

In this case the Cauchy problem (14)-(15) is as follows:

M(t,z,D)u; = A(t,z,D)u+/Ot f(t,s,z,u(s))ds
+g1(t, z,u) + g2(t, z) (t,z) €[0,T] x Q, (24)

37
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with
u(0,z) = wuo(z), z €Q, (25)
D®u(t,z) = 0, (t,z) € [0,T] x 09, la| < g, (26)
D%uy(t,z) = 0, (t,z) € [0,T] x 09, la] < p. (27)

If the coefficients mqg(t, ) and aqp(t, ) are many-times boundedly differentiable in
(t,z) on (0,T) x £, we easily see that the assumption holds valid.

We can impose additional conditions on M(t), A(t) so as to satisfy (A3). We
list up below some of them:

(Ex.1) M(t,z,D) and A(t,z, D) are of constant coefficients and A(t, z, D) is formally
symmetric.

(Ex.2) M(t,z,D) or —M(t,z,D) is a uniformly elliptic operator for each ¢, and
mas(t, z) and aqsp(t, z) are independent of z, and p > q.

(Ex.3) M(t,z,D)=m(t) # 0fort € [0,T] and A(t,z, D) is independent of t and for-
mally symmetric or anti-symmetric with many-times boundedly differentiable
coefficients.

Remark 2 The form of Eq. (24) contains pseudo-parabolic equations. C’oﬁceming |

the well-posedness of the initial-boundary value problem for them we refer to the book
of Carroll and Showalter [5).

3.2 Identifiability

Consider the initial-periodic boundary value problem

Uy = Ugy + a(t) f(z,u), 0<z<l, t>0 (28)
u(0,t) = u(1,t) t>0 (29)
uz(0,1) = ug(1,1) t>0 (30)
u(z,0) = uo(z), 0<z<l, (31)

where f(z,u) is a known function of u and u, is a given function.
Our problem is to recover the coeflicient a(t) when we know some observation of
the state. Here we are interested in the case when our observation is given by

u(zo,t) = uep(t) 0<t<T (32)



for some point zo € [0,1]. We establish identifiability of the coefficients for the

problem, that is, to show that the coefficient «(t) is uniquely determined by the

data and the observation (32).

Theorem 4 Suppose that a(t),u, € C(0,T) and uo € C([0,1]). Assume that for
given a(t) and uo there exists a unique solution u € C%([0,1] x [0,T]) of (28)-(31),
which satisfies

Uzz(0,1) = uge(1,1)
and

f(z,u(z,t)) >0  Vtel0,1] x[0,T). (33)

Then, (u,a) is uniquely determined by the initial condition (31) and the observation
(32).

Remark 3 The assumption (33) is satisfied by, for example,

f(zau) = Q(m)eu

where ¢(z) is a known positive function. or, if we consider positive solutions, it is
satisfied by

f(a,u) = q()lufu.

Proof. Let (uj,a1) and (ug,a2) be two solutions. Then, putting w = u; — u
and a = a; — a,, we have

Wi = Wyy + al(t) Al f,(9U1 + (1 - 9)u2)d9w

+a(t) f(uz), 0<z<l, t>0 (34)

w(zg,t) =0, t>0, (35)
oF oF
: Eﬁw(O,t) = ww(l,t) ‘ (k =0, 1,2) t>0, (36)
w(z,0) =0, 0<z<l1. ‘ (37)
Define
Q = 0 — (log f(u2))=
and

P(t) = 8 — 0pp — a1 (t)G(z, 1),

39



where )
Gz, t) = /0 F1(Buy + (1 — 8)us)do.
We easily see that

Q(a(®)f(uz)) =0  V(a,%) €[0,1] x [0, T].
Applying Q to (34), we have

~

QPw=0 Yzt e01]x[0,T].

Hence, we have

PQuw = [P,Qw

H(z,t)w + 2(log(f(u2))zsws

where

H(SE, t) = —(log f(u2))z:t + (log f(u2))xa:z: + al(t)Gz-

Put v = Qw. Since w(zo,t) = 0, we get

/zof e,t)) R

Hence, we can rewrite (38) as
Pv=[P,QIQ"
with
v(0,1) = v(1,1), vz(0,t) = v,(1,1), vVt >0
and
v(z,0) = 0.
In view of (38)-(40) we easily see that

I[P, Q1Q™ vl 2o < Cllullza(oay)-

(38)

(39)

(40)

40



Let H = L*([0,1]) and A: H — H defined by
Au=u,  u € D(A)
with
D(A) = {u:[0,1] > R |ue HX([0,1])
u satisfies (29), (30)}

Then, we can apply Theorem 2 to obtain

[vllr < \/—llA(T)u(T)II

for any s > so where C and sy are positive constants independent of v. Letting s
tend to infinity, we get

l[ollr =0
from which it follows that v = 0 on [0,T*]. Then, we conclude that

w(t)=0 te[0,T
from which we deduce
0=P(t)w=af(u) te[0,T%
Noting (33), we see that
a=a;—a;=0.

" This completes the proof.

Remark 4 In much the same manner we can obtain analogous results for the initial
periodic-boundary value problems in many space dimensions (or equivalently, initial
value problems on multi-dimensional torus ) not only for (nonlinear) heat equations
like (28) but also for the Schrodinger-type or Korteweg-de Vries type equations. (see
[15]) In [1] Bukhgeim considered initial-Dirichelet or Neumann boundary value prob-
lems with point observations at the boundary.

Remark 5 Another approach showing identifiability of coefficients relies on the in-
verse Sturm-Liouville problems (see [7], [14] ).
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