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Abstract

We present an integrated QM/classical approach to treat solvation at diffuse solvent

surfaces and interfaces within the framework of continuum solvation models. Solvation

energy is divided into electrostatics, dispersion, repulsion and cavitation contributions

which are all modeled within a QM formulation with the exception of cavitation. The

model is tested by studying solvation energy profiles of small molecules and comparing

them with atomistic simulations available in the literature. The good agreement found

in the two investigated sets of systems indicate both the feasibility and the semiquan-

titative accuracy of the approach.
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1 Introduction

The foundation of continuum solvation models is the subdivision of the total system into a

molecular solute (generally a single molecule unless specific interactions such as hydrogen

bonding or π-stacking demand a supermolecular approach) and a continuum solvent which

is assumed to be infinite and structureless. Within this framework, transfer of the solute

from the gas phase to a liquid is traditionally broken into two steps, first the formation of

a cavity in the bulk of the liquid and then the insertion of the solute in the cavity. The

balance between the reversible work of these two steps gives, according to this model, the

excess free energy of the process or, in other words, the solvation free energy Gsol. Adopting

such a strategy, Gsol can be obtained by resorting to a partition into four separate, but in

principle coupled, terms, namely:

Gsol = Gel +Grep +Gdis +Gcav (1)
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where Gel, Grep, Gdis represent the contribution of electrostatic, repulsion and dispersion

interactions, respectively and Gcav refers to the the energy involved in the first step, namely

the cavitation energy.

During the years, many different formulations have been proposed to compute Gcav.

Nowadays, two alternative families of approaches are in use: those based on statistical me-

chanics and those based on the area of the solute exposed to the solvent.1,2 As regards the

second step of the process, short-range interactions such as dispersion and Pauli-like repulsion

and long-range electrostatic interactions come into play. Electrostatic interactions do not

introduce real theoretical difficulties, as they represent the classical interactions between the

charges of the solute and those of the solvent. The challenging contributions are dispersion

and repulsion since they are deeply rooted in the quantum-mechanical (QM) nature of the

overall system and their accurate treatment is difficult to achieve even with QM approaches

commonly used to describe molecular properties and processes. Several strategies have been

followed, depending on the problem investigated. For intra- and intermolecular interactions

in a fully QM system, Grimme has developed a correction to the energy in connection with

some commonly used density functionals.3 For condensed systems, Gordon and coworkers4

have included dispersion and repulsion effects in their Effective Fragment Potential (EFP)

approach. The additional difficulty for continuum models is the lack of an atomistic descrip-

tion of the solvent which is the basis for all the approaches followed in the aforementioned

methods. A possible way around can be found by comparing dispersion and repulsion to

electrostatics, for which both continuum and atomistic descriptions are available. The ex-

pression for dispersion and repulsion can hence be heuristically derived. Adopting such a

strategy, continuum solvation models have been widely and successfully used for estimating

solvation free energies.

Nowadays continuum solvation models are largely used in combination with a quantum-

mechanical (QM) description of the solute.1,2,5 However, in most of the different QM/continuum

strategies developed so far, a semiclassical approach is generally used for the non-electrostatic
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terms, namely they enter in the definition of the solvation free energy but not in the QM

formulation of the model. More in detail, dispersion and repulsion components have been

determined using classical expressions, which mainly rely on the use of (i) pair potentials

expressed as truncated expansions in powers of 1/r that relate suitable chemical fragments

of solute and solvent molecules,6 or alternatively (ii) empirical expressions related to the

solvent-exposed surface of atoms.7–9 Very recently a new kind of treatment of the solute-

solvent dispersion contribution to the solvation free energy has been proposed: this model

utilizes two descriptors, namely, the spherically averaged dipole polarizability of the solute

molecule (either in its ground or excited electronic state) and the refractive index of the sol-

vent.10 QM-based strategies to compute repulsion and dispersion effects have been proposed

within the Polarizable Continuum Model (PCM) family.2 According to this formulation, the

repulsion and dispersion effects can be explicitly included in the effective Hamiltonian to-

gether with the electrostatic one, and as a result the solute wavefunction (i.e. the electronic

density) will be explicitly affected by both electrostatic and non-electrostatic effects. This

formulation, originally due to Amovilli and Mennucci,11 can be considered a generalization

of the theory of intermolecular forces to the specific case of a solute embedded in a cavity

surrounded by a continuum solvent. The original formulation was optimized for the Hartree-

Fock formulation but more recently, the same method has been reformulated for a Density

Functional Theory (DFT) description of the solute and extended to treat electronic transi-

tions.12 A similar approach has recently been proposed by Pomogaeva and Chipman,13 who

formulated the dispersion interaction in terms of the electron density of the solute, mutuat-

ing a recent development in Density Functional Theory (DFT) to include dispersion effects

which are generally missing in most functionals.3,14

In this paper we make a further step towards a more general applicability of continuum

solvation models to molecular problems of increasing complexity and we focus on a full QM

formulation of the PCM approach for non-homogeneous environments such as gas-liquid and

liquid-liquid interfaces. In previous papers we have shown that the electrostatic component
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of the PCM approach when formulated within the integral equation formalism (IEF)15,16 can

be applied to very different media ranging from standard isotropic solvents characterized by

a scalar permittivity to anisotropic dielectrics such as liquid crystals and polymers, passing

through liquid-liquid, liquid-gas, or liquid-solid interfaces or planar membranes.17 However,

as far as it concerns non-electrostatic terms, there is not a complete and coherent treatment

going beyond the isotropic media. A few years ago, two of the present authors extended the

Amovilli and Mennucci approach for repulsion interactions to interfaces;18 now this extension

is completed by adding the dispersion and cavitation terms. Within this new formulation

electrostatics, repulsion and dispersion are all coupled together with the QM description of

the solute charge density and their effects are properly included not only in the determination

of the solvation free energy but also in the calculation of molecular response properties. The

contribution of cavitation is instead kept separated from the QM determination of the solute

wavefunction and evaluated at classical level using only the geometrical characteristics of the

solute system.

The paper is organized as follows: first we report the methodological approach developed

to generalize dispersion and cavitation to non-homogeneous dielectrics and successively we

present some applications of the same method to several series of calculations for the free

energy of phase transfer for liquid-liquid and liquid-vacuum interfaces.

2 Methods

In the Introduction we have reported the commonly accepted picture which divides the solute-

solvent interactions into electrostatics, dispersion, repulsion, and cavitation terms as shown in

Eq. 1. A further step is however necessary in order to generalize such an approach to surfaces

and interfaces since two different solvents have now to be accounted for. As electrostatics

and repulsion interactions have been already presented and discussed in previous papers;17–19

in this section we will mostly focus on cavitation and dispersion terms. For both of them,
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first we shall briefly summarize how they are computed for a homogeneous, isotropic solvent,

and then we shall present a more detailed extension to surfaces and interfaces.

2.1 Electrostatics and repulsion

Electrostatics is the most commonly employed term in the context of solute-solvent interac-

tions. The inclusion of such effect into quantum chemistry programs started in the 1970s,20,21

whereas the first PCM formulation was presented in 1981.22 An important generalization of

the PCM was achieved with its IEF reformulation, originally developed in 1997,15,16 which

allowed for a general solution of the electrostatic problem for different environments, in-

cluding sharp planar19 and diffuse interfaces17 between two media with different dielectric

permittivities.

In short the PCM description of the electrostatic solute-solvent interaction including

polarization effects is through an apparent surface charge (ASC) density σ(r) supported on

the cavity surface Γ. Within the IEF version of the model, the ASC is obtained as the

solution of the following integral equation:

[(
1

2
−De

)
Si + Se

(
1

2
−D∗i

)]
σ =

[(
1

2
−De

)
− SeSi

(
1

2
−Di

)]
Vi (2)

where Vi is the electrostatic potential generated by the molecular charge density. Si and

Se are the so-called single-layer operators: their kernel is the electrostatic Green’s function

in the interior (i-subscript) and in the exterior (e-subscript) of the cavity Γ. Di and De

(D∗i is the adjoint of Di) are the double-layer operators: their kernel is the derivative of the

single-layer kernel. For details about how to obtain Eq. (2) see Ref.23. We limit ourselves

here to two considerations: the Green’s functions of the interior is Gi(r, r
′) = 1/|r − r′|

as vacuum is assumed, whereas the Green’s function of the exterior depends on the given

medium; the dielectric properties of the two media (interior and exterior) together with

the cavity boundary Γ fully defines the operators appearing in Eq. (2) and their successive
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discretization for practical applications.

For a diffuse interface, defined as a medium with a position-dependent permittivity, the

Green’s function can be viewed as a sum of a Coulomb-like term and an image potential

term:

G(r, r′) =
1

c(r, r′)|r − r′|
+Gimg(r

′r′). (3)

Both the effective permittivity c(r, r′) and the image contribution depend on the shape of

the permittivity across the interface which can be expressed as ε(z) being z the distance with

respect to the interface. For further details we refer to the original paper.17

Moving to repulsion interactions, the Amovilli and Mennucci’s approach11 is here adopted.

In short, within such a framework the repulsion contribution is derived from the exchange

and penetration terms of the decomposition of the intermolecular interaction energy. A sim-

plified expression for a uniform solvent, which takes into account its continuum nature is

then obtained:

Grep = α

∫
r 6∈C

drP (r) dr (4)

This expression shows that the repulsion interaction is proportional to the so called “escaped

charge”: the electronic density which extends beyond the boundaries of the molecular cavity.

For an interface, the lack of uniformity of the medium (solvent properties are now position-

dependent) implies that the proportionality coefficient α is position-dependent and should

be kept inside the integration. An approach to deal with such a problem has first been

proposed by Frediani et al.18 for spherical cavities and later refined by Bondesson et al.24

for the general case. The final expression can be written as follows:

Grep = α′
∫

Γ

ρ(s)f(s, γ)n(s) ds (5)

where ρ(s) is the electron density of the solute at the cavity surface, f(s, γ) is a weight factor

and the parameter α′ collects all constant factors of the expression for a single solvent except

the density of valence electrons n(s) which is no longer a constant for the interfacial case.
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The functional form of f(s, γ) is described in Ref. [ 24], and the parameter γ is obtained

through the following relation:

nout =

∫
Γ

ρ(s)f(s, γ) ds (6)

where nout is the total outlying charge.

2.2 Dispersion

Following Amovilli,25 the expression for the dispersion energy in an homogeneous solvent

is achieved by similarity with electrostatics. We report here the final expression for the

dispersion free energy:

Gdisp =
1

π

∫
dω
∑
p

ωp

ωp
2 + ω2

∫
dr1

∫
Γ

dr2

|r1 − r2|
ρp(r1)σS[ε(iω), ρp](r2) (7)

where the index p runs over the excited states of the solute, ωp and ρp are the corresponding

excitation energy and transition density respectively. σS[ε(iω), ρp] is the ASC density induced

on the cavity surface Γ by the transition charge density ρp depending on a dielectric constant

calculated at imaginary frequencies, ε(iω). Eq. 7 has been further elaborated by Amovilli

and Mennucci11 by assuming the transition polarization charge density σS[ε(iω), ρp] to be

proportional to the corresponding electrostatic field generated by ρp, namely:

Gdisp = − 1

8π

η2
S − 1

η2
S

∑
p

ΩS

ΩS + ωp

∫
Γ

dsVp(s)Ep(s) (8)

where Vp and Ep are the electrostatic potential and the electrostatic field associated with

the transition charge density ρp, respectively. ηS is the solvent refractive index measured in

the visible spectrum far from electron transitions whereas ΩS = ηSI, with I being the first

ionization potential of the solvent.

In order to achieve a practical expression (one which leads to a computationally feasi-
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ble expression for the Fock operator, see Ref.[ 11] for details), a further simplification is

introduced, by making use of an averaged excitation energy ωave, thereby eliminating the

dependence of the prefactor on the excited states in Eq. 8. In addition, the 1/8π factor is

exchanged for an empirical correction cf factor.

Gdisp = −cf
η2
S − 1

η2
S

ΩS

ΩS + ωave

∫
Γ

ds
∑
p

Vp(s)Ep(s) = −β(ωave)

∫
Γ

ds
∑
p

Vp(s)Ep(s) (9)

The original parameterization of cf
11 was performed using Hartree-Fock calculations and

the averaged excitation energy ωave was obtained by considering a predefined set of occupied

and virtual orbitals defined by a window of energies and averaging for such a set. This

choice is, however, strictly connected to the QM method employed; for example, it is well

known that DFT and HF descriptions yield very different orbital energies when occupied

and virtual orbitals are compared. As a result, the final value for ωave becomes strongly

dependent on the chosen QM method.26 In order to avoid that, a new parameterization has

been more recently proposed12 where ωave is obtained by imposing the equivalence of the

dispersion energies obtained with the approximated Eq. 9 and the ”exact” Eq. 7, and the

fitting parameter cf is chosen to be solvent-dependent.

The extension to surfaces and interfaces is again achieved by introducing a position

dependence to β(ωave) which collects all solvent-dependent parameters. As a result, the

position-dependent β has now to be kept inside the integral over the cavity surface. The

only additional complication is that the identification of the average excitation energy as

in Ref.[ 12] must now be performed iteratively, albeit the procedure is not computationally

expensive. The interface-adapted dispersion energy expression reads as follows:

Gdisp = −
∫

Γ

β(ωave; s)Vp(s)Ep(s) ds (10)

To describe the position dependence of β we have adopted the same heuristic approach

of other macroscopic quantities such as the permittivity ε(z).17 They all follow the same
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sigmoidal profile which is borrowed from the variation of the solvent density. Within this

framework, β(s) can be rewritten as β(z) being z the distance of the surface point s with

respect to the interface. Given the two bulk values β1 and β2 for the two solvents, we can

write:

β(z) =
β1 + β2

2
+
β1 − β2

2
tanh

(
z − z0

D

)
(11)

where z0 is the interface position, and D is connected to the width W of the interfacial region

(W ' 6D).

As for the electrostatic and repulsion interactions, also for dispersion all the integrals on

the cavity surface Γ are numerically solved by introducing a surface mesh made finite surface

elements, historically called tesserae.

2.3 Cavitation

By definition, cavitation energy depends directly on the solvent, but only indirectly on the

molecule through the cavity shape. As a consequence the model employed to compute cav-

itation does not contribute to the solute Hamiltonian. As said in the Introduction, several

approaches have been proposed to compute cavitation contributions: these have been for-

mulated in terms of macroscopic quantities such as surface tension and compressibility of

the solvent, or they have been derived from molecular simulations, or they have exploited

statistical methods (see Ref. [ 2] for an exhaustive list of references). The first class of

approaches, gives rise to the simplest methods albeit the least accurate ones. Employing

simulations would on the other hand be accurate but it is computationally very demanding,

defeating the main purpose of a continuum method of being fast. The approaches based on

statistical methods have instead proven to be a very good compromise between accuracy and

feasibility.

The statistical method employed here is called Scaled Particle Theory (SPT) and is based

on the method originally proposed by Pierotti27 for spherical cavities. In order to adapt the
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method to a molecular-shaped cavity the contribution from each sphere is multiplied by

a weight which reflects the portion of the surface which is exposed to the solvent. The

cavitation expression for a uniform solvent yields:

Gcav =
∑
i

ωiGcav(Ri) (12)

where the sum runs over the spheres of the cavity, ωi are the weight factors, and Gcav(Ri) is

the contribution from the i-th sphere.

In order to adapt the model to the case of a diffuse surface the contribution from each

sphere must be further weighted with respect to the position-dependent solvent density. In

practice Eq. 12 can be rearranged such that the sum will go over the tesserae instead of the

spheres:

Gcav =
∑
t

ρ(st)

ρ0

at
4πR2

t

Gcav(Rt) (13)

where st, at and Rt refer respectively to the collocation point, the tessera area and Rt is

the radius of the corresponding sphere. In this way the contribution from each tessera is

doubly weighted, both for the surface ratio with respect to the full sphere and for its position

with respect to the surface. For a molecule immersed in bulk Eq. 12 is obviously recovered.

For an interface between two solvents, two such contributions need to be computed, one for

each solvent. Additionally, we have included in the model a surface tension component: a

molecule at the surface should reduce the solvent surface by a value corresponding to its

section at the surface:

Gsurf = γSA(z = 0) (14)

where γS is the solvent surface tension and A(z = 0) is the area of the cavity section at the

interface position. In order to compute A(z = 0) the following integral can be employed:

A =

∫
Γ

(H(z)− 1/2)ẑ(s) · n̂(s) ds (15)
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where H(z) is the Heaviside step function (H(z) = 0 for z < 0, H(z) = 1 for z ≥ 0). This

expression can be generalized to a diffuse surface by substituting the density ratio ρ(z)/ρ0

to the step function:

A =

∫
Γ

(ρ(z)/ρ0 − 1/2)ẑ(s) · n̂(s) ds (16)

Again we notice that the expression has the correct limit since at large distances from the

interface it goes to zero.

3 Computational Details

As reported in Section 2.2, the application of the dispersion expression reported in Eq. 9

requires a parameterization of the cf factor for each homogeneous solution. This is obtained

here using as reference dispersion energies obtained with the semiclassical model6 and adopt-

ing the same strategy proposed by Weijo et al.12 All the details of the parameterization and

the results obtained are reported in the SI.

Due to the presence of the interface, the solvation free energy becomes dependent on the

position and orientation of the molecule with respect to the interface: ∆G = ∆G(z, θ, φ),

where z, θ and φ represent the distance of the molecule with respect to the interface, the

angle of the main axis with respect to the normal to the interface and the rotation of the

molecule around the main axis (reference position and orientation are molecule-specific).

Solvation free energy profiles are obtained by keeping the orientation fixed (θ, φ), whereas

the position z is varied across the interface. The mid-point of the interface is conventionally

located at z = 0 (see Fig. 1).

Two sets of solutes have been analyzed:

1. Set 1: CHxF4−x (x = 0, 1, .., 4).

2. Set 2: ammonia, benzene, DMSO, ethanediol, ethanol, hydrogen peroxide, methanol,

nitrogen, oxygen, ozone, phenol.
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Figure 1: Graphical representation of the notation used to define the orientation of the
molecular probes with respect to the surface.

For the set 1, two orientations have been explored: (i) θ = 0 which refers to the orientation

with the representative functional group of the given molecule pointing towards bulk water

when moving from hexane to water; (ii) θ = 180◦ which refers to the opposite orientation.

For set 2, the same orientational analysis (where applicable) was performed, with orientation

θ = 0 this time referring to representative functional pointing towards the liquid interface

when moving from vapor to water. A more extensive orientational analysis for phenol and

ethanol was also performed.

For all calculations, including geometry optimizations, we have employed the B3LYP

functional28,29 as implemented in the Gaussian0330 program and the aug-cc-pVDZ31 basis

set. All geometries were optimized in the gas-phase and kept frozen in solution. In all

calculations the free energy has been obtained without including thermal corrections (namely

vibrational and rotational terms).

PCM molecular cavities have been constructed with atom-centered interlocking spheres

using the following set of radii throughout: 1.6Å for nitrogen, 1.2Å for hydrogens capable of

hydrogen bonding (-OH, -NH2) 1.52Å for oxygen, 1.85Å for sulfur and 1.8Å for carbon. For

-CH, -CH2 and -CH3 groups, a common sphere centered on carbon has been employed with

radii of 1.9Å, 2.0Å and 2.1Å respectively. All radii are multiplied by the common scaling
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factor of 1.2.

4 Results

We have performed two series of calculations for the free energy of phase transfer for liquid-

liquid and liquid-vacuum interfaces. The first set (Set 1) has been chosen in order to compare

our results to a previous study by Pohorille and Wilson32 who simulated the phase-transfer

through a water-hexane interface whereas the second set (Set 2) has been chosen to compare

with the results compiled by Garrett et al. 33 on the free energy of water-vapor transfer. For

the latter set the simulation results have been obtained by different authors: for methanol

see Refs. 34 and 35, for ethanol see Ref.35, 36 and 37, for ethanediol see 37, for benzene see

Ref.38, for ammonia see 39, for hydrogen peroxide, nitrogen and oxygen see 40, for ozone

see 41 and 40. For the sake of simplicity, we will in the following refer to the review from

Garrett et al. 33 when discussing data of Set 2.

For most molecules, two orientations were analyzed: θ = 0 and θ = 180◦, taken by aligning

a bond (e.g. the C−O bond for alcohols) along the z direction. For apolar molecules (CH4,

CF4) only one orientation was considered. Additional orientations were included if specified.

4.1 Solvation energy profiles of Set 1

In Fig. 2 we report the solvation free energy profiles of the CHxF(4-x) molecules belonging to

Set 1 at the water-hexane interface.

The zero of energy is set to the energy of each molecular system in gas-phase. In

Fig. 2 positive z values correspond to the molecule in hexane whereas negative values to

the molecule in water.

The solvation profiles show that the more polar molecules (CHF3, CH3F and CH2F2)

have a clear surfactant behavior with energy minima between 1 and 2 kcal/mol when the

solvation free energy in bulk water is taken as a reference. On the contrary, CF4 and methane

14
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Figure 2: Solvation free energy profiles (in kcal/mol) for the CHxF(4-x) set of molecules at
the water-hexane interface. The full and the dotted lines refer to θ = 0 and θ = 180◦

orientations, respectively. For CH2F2 a third profile is shown referring to the orientation of
the solute with its dipole perpendicular to the interface. Drawings of θ = 0 orientations are
shown for CHF3 and CH3F together with the additional one for CH2F2.

display only a very small minimum at the interface. The more polar systems show also a

strong angular dependence of the solvation free energy, θ = 0 being the preferred orientation

15



for CHF3 and CH3F whereas θ = 180◦ is preferred in case of CH2F2. For the two apolar

molecules, a change in orientation does not affect the profile significantly as expected.

In Fig. 3 we have compared the θ = 0 results with the MD simulations carried out by

Pohorille and Wilson,32 for the same interface. Pohorille and Wilson simulated the excess

chemical potentials rather than solvation energies but the two quantities are in practice

equivalent.42 In order to facilitate the comparison, we have translated our profiles to match

the solvation energy values obtained by the MD simulations in bulk hexane: absolute values

are in this context of no importance as the profile across the interface is not affected.
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Figure 3: Comparison between the profiles of solvation free energy and excess chemical
potentials for the CHxF(4-x) set of molecules at the water-hexane. The insert reports the
corresponding chemical potentials from ref.[ 32]. All values are in kcal/mol. For the sake of
the comparison our results have been translated in the energy scale to match the solvation
energy values in hexane reported by Garrett. The corrections (in kcal/mol) are as follows:
-0.9765 for CH4, -0.2734 for CH3F, +0.6842 for CH2F2, +1.2724 for CHF3, +0.9910 for CF4

As can be seen from Fig. 3, the agreement between the two sets of calculations is generally

good. For methane and CF4 both methods predict that hexane is the preferred medium as
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intuition would also dictate. In both calculations no significant minimum is seen at the

interface for methane whereas a small minimum is present in both cases for CF4. For the

polar molecules both our calculations and MD simulations predict a surfactant behavior: the

minima we have obtained are however less pronounced than those obtained by Pohorille and

Wilson.

4.2 Solvation energy profiles of Set 2

The analysis of the second set of molecules at the vapor-water surface is first presented in

terms of three separated groups of solutes (alcohols, gases, others) and finally compared with

the simulations from Garrett et al.33

In Fig. 4 we report the calculated solvation free energy profiles at the water-vapor interface

for the four investigated alcohols with two different orientations with respect to the interface.

In order to elucidate the interplay of the different contributions to the solvation free energy,

for ethanol we also report them separately.

For all alcohols, a surfactant behavior is found with free energy minima of the order of

1.5-3.5 kcal/mol with respect to the solvation free energy in bulk water. The orientation

with the OH group pointing towards the water phase (θ = 0) is clearly preferred for all

alcohols (we note that for ethanediol due to its symmetry the two orientations are equiva-

lent). Looking at the more detailed analysis reported for ethanol, we see that electrostatics

shows no minimum at the interface: as expected most of the electrostatic energy is gained

when the OH group crosses the interface. The aliphatic chain yields a modest but still

negative contribution. Dispersion is also negative; however it unfolds gradually on a wider

range. Repulsion, which is positive as expected, matches dispersion in extension but it is

smaller in magnitude. Cavitation is obviously positive and its variation across the interface

is sharper. The overall effect of the non-electrostatic contributions is therefore characterized

by a minimum and a maximum. When electrostatics is also added, the minimum is accen-

tuated whereas the maximum almost disappears. We conclude that the surfactant behavior
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Figure 4: Solvation free energy profiles (in kcal/mol) for the four investigated alcohols at the
water-vapor interface. The full and the dotted lines refer to θ = 0 and θ = 180◦ orientation
of the OH group, respectively. For ethanol we also report all the electrostatic and non-
electrostatic contributions. Drawings of θ = 0 orientations are also shown.

of ethanol and the other alcohols which show similar overall solvation profiles, is due to

how the different contributions arise across the interface. In a previous work, Frediani et

18



al.19 obtained similar results, albeit by making use of a semiclassical parameterization of

non-electrostatic contribution and the original formulation of the PCM electrostatics.22

To better understand the effects of the orientation of the solute with respect to the inter-

face we have selected ethanol and phenol and repeated the free energy profiles for different

orientations. The results are reported in Fig. 5.
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Figure 5: Free energy profiles (in kcal/mol) for the water-vapor transfer of phenol (a) and
ethanol (b) at various θ angles. For phenol only half of the range of possible angles is shown,
due to the symmetry of the system.

For phenol one can see that, when moving from air into bulk water, the most stable
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orientation is initially θ = 0◦ (i.e. with OH group pointing towards the solution, see Fig. 2)

while when the molecule is across the interface, the most stable orientation becomes θ = 90◦

– i.e. with the benzene ring lying flat on the surface. The most stable orientation changes

again when phenol is deeper in the water phase (θ = 60◦). Further in bulk water, the θ = 0◦

orientation becomes preferred once again. Asymptotically, all orientations are obviously

equivalent. This finding shows that throughout the transfer process the orientation changes

gradually in order to maximize the solute solvent interaction: initially the electrostatic part,

which is largest for the polar OH tail, dominates driving the phenol perpendicular to the

interface (θ = 0◦). Close to the interface dispersion effects are maximized by allowing a

larger portion of the molecule to be close to the solvent (θ = 90◦). Finally the molecule

rotates again towards θ = 0◦ in order to delay the insurgence of the cavitation energy.

For ethanol, one can see that, when moving from air into the bulk water, the most stable

orientation is θ = 330◦ (with OH group nearly pointing towards bulk). This orientation

becomes energetically equivalent with θ = 0◦ shortly before the interface, where the OH

group comes in contact with interfacial area. After passing the interface, the most stable

orientation is θ = 270◦ (OH group pointing towards bulk). At extremes all orientations are,

again, equivalent. In contrast to phenol, ethanol-interface orientation are preponderantly

dominated by the electrostatic interaction between the polar hydroxilic group, therefore the

variations in the orientation across the interface are in this case less pronounced.

Moving to the remaining compounds of Set 2, in Fig. 6 we report the profiles for the

polar systems (DMSO, NH3 and H2O2), whereas in Fig. 7 those for the apolar ones (O2, N2,

O3 and benzene).

For DMSO and ammonia (see Fig. 6) a similar behavior is found with respect to that

observed for the alcohols. By contrast, hydrogen peroxide shows no surfactant behavior,

and is strongly solvated in water, with relative ∆G of 12 kcal/mol. N2, and benzene (see

Fig. 7), do not show any preference for solvation, whereas O2 and O3 yield a solvation energy

of -1 kcal/mol and -2.7 kcal/mol respectively. Among these molecule, only benzene shows
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Figure 6: Solvation free energy profiles (in kcal/mol) for NH3, DMSO and H2O2 at the
water-vapor interface. The full and the dotted lines refer to θ = 0 and θ = 180◦ orientations,
respectively. Drawings of θ = 0 orientations are also shown.

a significant surfactant behavior with an energy minimum at the surface of around -2.5

kcal/mol.

For the solutes of Set 2, a reference study was performed by Garrett et al.,33 by means

of Molecular Dynamics (MD). In their approach a 4-point profile for each molecule was

generated, using free energy values in bulk water, at the barrier, at the interface and in

vapor. As the reference MD data in this case is less detailed (only a few points for each

solute), we have compared the small maximum we observed before going through interface,

with the second MD point from the left (defined as the “barrier” by Garrett et al. 33).

Similarly we have compared the third point in the MD simulations with the minimum of our

profile for each solute. The comparison between our profiles and those calculated by Garrett
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Figure 7: Solvation free energy profiles (in kcal/mol) for O2, N2, O3 and benzene at the water-
vapor interface. All curves refer to orientation with the molecular long axis perpendicular to
the interface. Full lines refer to total solvation free energies whereas the dashed lines refer
to the non-electrostatic contribution only.

et al. is shown in Fig. 8 for θ = 0: for a more direct comparison we have rescaled the data

reported in Fig. 4-Fig. 7 so to have free energies obtained in bulk of water as zero.

Our result show a good a semi-quantitative agreement with the MD simulations: the

ordering of the various compounds in terms of solvation energy values is almost entirely

reproduced, whereas the value of the minima do not entirely match the MD values. We

stress that the comparison in the latter case is made more complicated by the lack of the

full profile in the reference data. From a quantitative point of view, our free energy values

are generally larger in absolute value with respect to those reported by Garrett et al.33 A

possible reason for the observed discrepancies is the lack of a proper description of hydrogen
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Figure 8: Free energy profiles (in kcal/mol) for water-vapor transfer of the molecules belong-
ing to set 2. Graph (a): present work; graph (b): data extracted from Ref.[ 33]
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bonding: each solute will be affected differently, depending on its ability to form hydrogen

bonds with water.

5 Conclusions

We have presented an integrated QM/PCM approach to treat solvation at diffuse solvent

surfaces and interfaces. All the main contributions to the solvation free energy (electrostatics,

dispersion, repulsion) are included in a self consistent way into the QM description of the

solute and made position-dependent as requested by the interfacial environment. For the

remaining model-specific term, namely the energy required to create the molecular cavity

hosting the solute, a completely classical correction to the energy is instead introduced. Also

in this case, however, a position-dependent formulation is used. The approach has been tested

by comparing solvation free energy profiles for the transfer of small molecules between two

solvents and between vapor and water to those obtained with previous atomistic simulations

available in the literature. The good agreement found in the two investigated sets of systems

indicate both the feasibility and the semiquantitative accuracy of the approach, which can

now be employed to investigate other systems. In this respect one relevant problem we

intend to address is the interaction of molecules with the surface of water droplets, which is

an essential component in the investigation of atmospheric chemistry processes.43,44

In addition, the inclusion of both the electrostatic and non-electrostatic interactions di-

rectly in the solute Hamiltonian makes the model a potential useful tool to study molecular

properties and electronic processes at the interfaces, which is beyond the capabilities of

simulation methods.
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