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Abstract

Particle density fluctuations in the scrape-off layer of magnetically confined plasmas, as measured

by gas-puff imaging or Langmuir probes, are modeled as the realization of a stochastic process in

which a superposition of pulses with a fixed shape, an exponential distribution of waiting times and

amplitudes represents the radial motion of blob-like structures. With an analytic formulation of

the process at hand, we derive expressions for the mean squared error on estimators of sample mean

and sample variance as a function of sample length, sampling frequency, and the parameters of the

stochastic process. Employing that the probability distribution function of a particularly relevant

stochastic process is given by the gamma distribution, we derive estimators for sample skewness and

kurtosis, and expressions for the mean squared error on these estimators. Numerically generated

synthetic time series are used to verify the proposed estimators, the sample length dependency of

their mean squared errors, and their performance. We find that estimators for sample skewness

and kurtosis based on the gamma distribution are more precise and more accurate than common

estimators based on the method of moments.
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I. INTRODUCTION

Turbulent transport in the edge of magnetically confined plasmas is a key issue to be

understood on the way to improved plasma confinement, and ultimately commercially viable

fusion power. Within the last-closed magnetic flux surface, time series of the particle density

present small relative fluctuation amplitudes and Gaussian amplitude statistics. The picture

in the scrape-off layer (SOL) is quite different. Time series of the particle density, as obtained

by single point measurements, present a relative fluctuation level of order unity. Sample

coefficients of skewness and excess kurtosis1 of these time series are non vanishing and

sample histograms feature elevated tails. This implies that the deviation from normality is

caused by the frequent occurrence of large amplitude events [2–6].

These features of fluctuations in the scrape-off layer are attributed to the radially out-

wards motion of large amplitude plasma filaments, or blobs. Time series of the plasma

particle density obtained experimentally [6–11] and by numerical simulations [12–15] show

that estimated coefficients of skewness and excess kurtosis [16] increase radially outwards

with distance to the last closed flux surface. At the same time one observes a parabolic re-

lationship between these two coefficients and that the coefficient of skewness vanishes close

to the last closed flux surface [8, 13, 17–20].

Recently, it was proposed to model the observed particle density time series by a shot

noise process [21], that is, a random superposition of pulses corresponding to blob structures

propagating through the scrape-off layer [22]. Describing individual pulses by an exponen-

tially decaying waveform with exponentially distributed pulse amplitudes and waiting time

between consecutive pulses leads to a Gamma distribution for the particle density ampli-

tudes [22 and 23]. In this model, the shape and scale parameter of the resulting Gamma

distribution can be expressed by the pulse duration time and average pulse waiting time.

In order to compare predictions from this stochastic model to experimental measurements,

long time series are needed, as to calculate statistical averages with high accuracy. Due to

a finite correlation time of the fluctuations, an increased sampling frequency may increase

the number of statistically independent samples only up to a certain fraction. Then, only an

increase in the length of the time series may increase the number of independent samples.

This poses a problem for Langmuir probes, which are subject to large heat fluxes and may

therefore only be dwelled in the scrape-off layer for a limited amount of time. Optical
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diagnostics on the other hand, may observe for an extended time interval but have other

drawbacks, as for example the need to inject a neutral gas into the plasma to increase

the signal to noise ratio, and that the signal intensity depends sensitively on the plasma

parameters [24–26].

This work builds on the stochastic model presented in Ref. [22] by proposing estimators

for the mean, variance, skewness and excess kurtosis of a shot noise process and deriving

expressions of their mean squared error as a function of sample length, sampling frequency,

pulse amplitude, and duration, and waiting time. Subsequently, we generate synthetic time

series of the shot noise process at hand. The mean squared error of the proposed estimators

is computed of these time series and their dependence on the sampling parameters and the

process parameters is discussed.

This paper is organized as follows. Section II introduces the stochastic process that mod-

els particle density fluctuations and the correlation function of this process. In Section III

we propose statistical estimators to be used for the shot-noise process and derive expressions

for the mean squared error on these estimators. A comparison of the introduced estimators

and expressions for their mean squared error to results from analysis of synthetic time series

of a shot noise process is given in Section IV. A summary and conclusions are given in

Section V.

II. STOCHASTIC MODEL

A stochastic process formed by superposing the realization of independent random events

is commonly called a shot noise process [21 and 27]. Denoting the pulse form as ψ(t), the

amplitude as Ak, and the arrival time as tk, a realization of a shot noise process with K

pulses is written as

ΦK(t) =
K∑

k=1

Akψ(t− tk). (1)

To model particle density time series in the scrape-off layer by a stochastic process, the

salient features of experimental measurements have to be reproduced by it.

Analysis of experimental measurement data from tokamak plasmas, [3–5, 7, 8, 12, and

23] as well as numerical simulations [23, 32–34], have revealed large amplitude bursts with

an asymmetric wave form, featuring a fast rise time and a slow exponential decay. The burst
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duration is found to be independent of the burst amplitude and the plasma parameters in

the scrape-off layer [17 and 28]. The waveform to be used in Eq. (1) is thus modeled as

ψk(t) = exp

(
− t

τd

)
Θ(t), (2)

where τd is the pulse duration time and Θ denotes the Heaviside step function. Analy-

sis of long data time series further reveals that the pulse amplitudes A are exponentially

distributed [17],

PA(A) =
1

〈A〉 exp
(
− A

〈A〉

)
. (3)

Here 〈A〉 is the scale parameter of the exponential distribution, and 〈·〉 denotes an ensem-

ble average. The waiting times between consecutive bursts are found to be exponentially

distributed [2, 3, 17, and 29]. Postulating uniformly distributed pulse arrival times t on an

interval length T , Pt(t) = 1/T , it follows that the total number of pulses in a fixed time

interval, K, is Poisson distributed and that the waiting time between consecutive pulses, τw,

is therefore also exponentially distributed [27].

Under these assumptions it was shown that the stationary amplitude distribution of the

stochastic process given by Eq. (1) is a Gamma distribution [22],

PΦ(Φ) =
1

Γ(γ)

(
γ

〈Φ〉

)γ

Φγ−1 exp

(
− γΦ

〈Φ〉

)
, (4)

with the shape parameter given by the ratio of pulse duration time to the average pulse

waiting time

γ =
τd
τw
. (5)

This ratio describes the intermittency of the shot noise process. In the limit γ ≪ 1, individual

pulses appear isolated whereas γ ≫ 1 describes the case of strong pulse overlap. In Ref. [22]

it was further shown that the mean, 〈Φ〉, the variance, var (Φ) = 〈(Φ− 〈Φ〉)2〉, the coefficient

of skewness, S (Φ), and the coefficient of flatness, or excess kurtosis, F (Φ), are in this case

given by

〈Φ〉 = 〈A〉 τd
τw
, var (Φ) = 〈A〉2 τd

τw
, (6a)

S (Φ) = 2

(
τw
τd

)1/2

, F (Φ) = 6
τw
τd
. (6b)
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Thus, the parameters of the shot noise process, τd/τw, and 〈A〉, may be estimated from the

two lowest order moments of a time series. Before we proceed in the next section to define

estimators for these quantities, we continue by deriving an expression for the correlation

function of the signal given by Eq. (1). Formally, we follow the method outlined in Ref. [27].

Given the definition of a correlation function, we average over the pulse arrival time

and amplitude distribution and use that for an exponentially distributed pulse amplitude,

〈An〉 = n!〈A〉 holds. This gives

〈ΦK(t)ΦK(t+ τ)〉 =
T∫

0

dt1Pt(t1)

∞∫

0

dA1PA(A1) · · ·
T∫

0

dtKPt(tK)

∞∫

0

dAKPA(AK)×

K∑

p=1

K∑

q=1

Apψ(t− tp)Aqψ(t+ τ − tq)

= 〈A2〉
K∑

p=1

T∫

0

dtp
T
ψ(t− tp)ψ(t+ τ − tp)

+ 〈A〉2
∑

p 6=q

T∫

0

dtp
T

T∫

0

dtq
T
ψ(t− tp)ψ(t+ τ − tq). (7)

Here, we have divided the sum in two parts. The first part consists of K terms where p = q

and the second part consists of K(K − 1) terms where p 6= q. The integral over a single

pulse is given by

T∫

0

dtp Pt(tp)ψ(t− tp) =
τd
T

[
1− exp

(
− t

τd

)]
, (8)

where the boundary term exp(−t/τd) arises due to the finite integration domain. For ob-

servation times t≫ τd this term vanishes and in the following we neglect it by ignoring the

initial transient part of the time series where only few pulses contribute to the amplitude of

the signal.

Within the same approximation, the integral of the product of two independent pulses is

given by

T∫

0

dtp P (tp)ψ(t− tp)ψ(t+ τ − tp) =
τd
2T

exp

(
−|τ |
τd

)
.

Substituting these two results into Eq. (7), we average over the number of pulses occurring

in [0 : T ]. Using that the total number of pulses is Poisson distributed and that the average
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waiting time between consecutive pulses is given by τw = T/〈K〉, we evaluate the two-point
correlation function of Eq. (1) as

〈Φ(t)Φ(t+ τ)〉 = 〈A〉2 τd
τw

[
exp

(
−|τ |
τd

)
+
τd
τw

]
. (9)

Comparing this expression to the ensemble average of the model at hand, Eq. (6a), we find

〈Φ(t)Φ(t + τ)〉 = 〈Φ(t)〉 [〈A〉 exp (−|τ |/τd) + 〈Φ(t)〉] . For τ → ∞, the correlation function

decays exponentially to the square of the ensemble average.

III. STATISTICAL ESTIMATORS FOR THE GAMMA DISTRIBUTION

The Gamma distribution is a continuous probability distribution with a shape param-

eter γ and a scale parameter θ. The probability distribution function (PDF) of a gamma

distributed random variable X > 0 is given by

PX(X; γ, θ) =
Xγ−1

θγΓ(γ)
exp

(
−X
θ

)
, (10)

where Γ(x) =
∞∫
0

duux−1e−u denotes the gamma function. Statistics of a random variable are

often described in terms of the moments of its distribution function, which are defined as

mk =

∞∫

0

dX PX(X; γ, θ)xk,

and centered moments of its distribution function, defined as

µk =

∞∫

0

dX [PX(X; γ, θ)−m1]
k .

Common statistics used to describe a random variable are the mean µ = m1, the variance

σ2 = µ2, skewness S = µ3/µ
3/2
2 and excess kurtosis, or flatness, F = µ4/µ

2
2 − 3. Skewness

and excess kurtosis are well established measures to characterize asymmetry and elevated

tails of a probability distribution function. For a Gamma distribution, the moments relate

to the shape and scale parameter as

m1 = γθ, µ2 = γθ2, µ3 = 2γθ3, µ4 = 6γθ4,

and coefficients of skewness and excess kurtosis are given in terms of the shape parameter

by

S =
µ3

µ
3/2
2

=
2√
γ
, F =

µ4

µ2
2

− 3 =
6

γ
.
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For the process described by Eq. (1), γ is given by the ratio of pulse duration time to pulse

waiting time, so that skewness and excess kurtosis assume large values in the case of strong

intermittency, that is, weak pulse overlap.

In practice, a realization of a shot noise process, given by Eq. (1), is typically sampled for

a finite time T at a constant sampling rate 1/△t as to obtain a total of N = T/△t samples.

When a sample of the process is taken after the initial transient, where only few pulses

contribute to the amplitude, the probability distribution function of the sampled amplitudes

is given by the stationary distribution function of the process described by Eq. (4).

We wish to estimate the moments of the distribution function underlying a set of N

data points, {xi}Ni=1, which are now taken to be samples of a continuous shot noise process,

obtained at discrete sampling times ti = i · △t, xi = Φ(ti). Using the method of moments,

estimators of mean, variance, skewness, and excess kurtosis are defined as

µ̂ =
1

N

N∑

i=1

xi, σ̂2 =
1

N − 1

N∑

i=1

(xi − µ̂)2 , (11a)

Ŝ =

N∑
i=1

(xi − µ̂)3

(
N∑
i=1

(xi − µ̂)2
)3/2

, F̂ =

N∑
i=1

(xi − µ̂)4

(
N∑
i=1

(xi − µ̂)2
)2 − 3. (11b)

Here, and in the following, hatted quantities denote an estimator. Building on these, we fur-

ther define an estimator for the intermittency parameter of the shot noise process according

to Eq. (6a)

γ̂ =
µ̂2

σ̂2
. (12)

We use this estimator to define alternative estimators for skewness and excess kurtosis as

ŜΓ =
2√
γ̂
, F̂Γ =

6

γ̂
. (13)

in accordance with Eq. (6b).

In general, any estimator Û is a function of N random variables and therefore a random

variable itself. A desired property of any estimator is that with increasing argument sample

size its value converges to the true value that one wishes to estimate. The notion of distance

to the true value is commonly measured by the mean squared error on the estimator Û ,

given by

MSE(Û) = var(Û) + bias(Û , U)2, (14)
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where var(Û) = 〈(Û−〈Û〉)2〉, bias(Û , U) = 〈〈Û〉−U〉, and 〈·〉 denotes the ensemble average.

When Eq. (11a) is applied to a sample of N normally distributed and uncorrelated random

variables, it can be shown that bias(µ̂, µ) = 0, bias(σ̂2, σ2) = 0, and that the mean squared

error of both estimators is inversely proportional to the sample size, MSE(µ̂) ∼ N−1, and

MSE(σ̂2) ∼ N−1. For a sample of gamma distributed and independent random variables,

〈µ̂〉 = µ = γθ and 〈σ̂2〉 = µ2 = γθ2 holds. Thus the estimators defined in Eq. (11a) have

vanishing bias and their mean-square error is given by their respective variance, var(µ̂) and

var(σ̂2).

With γ = µ2/σ2, the mean squared error on the estimators for sample mean and variance,

given in Eq. (11a), can be propagated on to a mean-square error on Eq. (13) using Gaussian

propagation of uncertainty:

MSE(ŜΓ) = 4
σ̂2

µ̂4
MSE(µ̂) +

1

σ̂2µ̂2
MSE(σ̂2)− 4

1

µ̂3
COV(µ̂, σ̂2), (15)

MSE(F̂Γ) = 144
σ̂2

2

µ̂6
MSE(µ̂) + 36

1

µ̂4
MSE(σ̂2)− 144

σ̂2

µ̂5
COV(µ̂, σ̂2). (16)

Here COV(Â, B̂) = 〈(Â − 〈A〉)(B̂ − 〈B〉)〉. Thus, the mean squared errors on estimators

for coefficients of skewness and excess kurtosis can be expressed through the mean squared

errors on the mean and variance, and through the covariance between µ̂ and σ̂2.

We now proceed to derive analytic expressions for MSE(µ̂) and MSE(σ̂2). With the

definition of µ̂ in Eq. (11a), and using 〈µ̂〉 = µ = 〈Φ(t)〉, we find

MSE(µ̂) = 〈(µ̂− µ)2〉 = −〈Φ(t)〉2 + 1

N2

N∑

i=1

N∑

j=1

〈Φ(ti)Φ(tj)〉. (17)

In order to evaluate the sum over the discrete correlation function, we evaluate the

continuous two-point correlation function given by Eq. (9) at the discrete sampling times,

with a discrete time lag given by τ = τij = ti − tj. This gives

MSE(µ̂) =
1

N
〈A〉2 τd

τw


1 +

1

N

N∑

i,j=1
i 6=j

exp

(
−|τij|
τd

)

 .

Defining α = △t/τd, we evaluate the sum as a geometric series,

1

2

N∑

i,j=1
i 6=j

exp

(
−|τij|
τd

)
=
N + e−αN − 1−Ne−α

2 sinh2 (α/2)
, (18)
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to find the mean squared error

MSE(µ̂) =
1

N
〈A〉2 τd

τw

[
1 +

1

N

N + e−αN − 1−Ne−α

2 sinh2 (α/2)

]
. (19)

Fig. 1 shows the normalized mean squared error as a function of the of sample size, N . The

parameter α relates the sampling time to the pulse duration time. For α ≫ 1, the obtained

samples are uncorrelated, while the limit α ≪ 1 describes the case of high sampling frequency

where the time series is well resolved on the time scale of the individual pulses. We find for

the corresponding limits

MSE(µ̂) =
1

N
〈Φ(t)〉2 τw

τd
×




1 α ≫ 1,

1 + 2
N

e−αN−(1−αN)
α2 α ≪ 1.

(20)

For both limits, MSE(µ̂) is proportional to µ2 and inversely proportional to the intermittency

parameter γ = τd/τw.

In the case of low sampling frequency, α ≫ 1, the mean squared error on the estimator

of the mean becomes independent of the sampling frequency and is only determined by the

parameters of the underlying shot noise process. In this case, the relative error MSE(µ̂)/〈Φ〉2

is inversely proportional to γ and the number of data points N . Thus, a highly intermittent

process, γ ≪ 1, features a larger relative error on the mean than a process with significant

pulse overlap, γ ≫ 1. In the case of high sampling frequency, α ≪ 1, finite correlation

effects contribute to the mean squared error on µ̂, given by the non-canceling terms of the

series expansion of exp(−αN) in Eq. (20). Continuing with the high sampling frequency

limit, we now further take the limit αN ≫ 1. This describes the case of a total sample time

long compared to the pulse duration time, T = N△t ≫ τd. In this case the mean square

error on the mean is given by

MSE(µ̂) =
2

αN
〈Φ(t)〉2 τw

τd
. (21)

As in the low sampling frequency limit, the mean square error on µ converges as N−1, but

is larger by a factor of 2/α, where α was assumed to be small.

In Fig. 1 we present MSE(µ̂) for α = 10−2, 1, and 102. The first value corresponds to the

fast sampling limit, the second value corresponds to sampling on a time scale comparable

to the decay time of an individual pulse and the third value corresponds to sampling on a

slower time scale. The relative error for the case α ≪ 1 is clearly largest. For N <∼ 104, the
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N dependency of MSE(µ̂) is weaker than N−1. Increasing N to N >∼ 104 gives αN ≫ 1,

such that MSE(µ̂) ∼ 1/N holds. For α = 1, and α = 10, αN ≫ 1 holds, and we find

that the relative mean squared error on the mean is inversely proportional to the number of

samples N , in accordance with Eq. (20).

We note here, that instead of evaluating the geometrical sum that leads to Eq. (18)

explicitly, it is more convenient to rewrite the sum over the correlation function in Eq. (17)

as a Riemann sum and approximate it as an integral:

∑

i 6=j

e−α|i−j| ≃
N∫

0

di

N∫

0

dj
[
Θ(i− j)eα(j−i) +Θ(j − i)eα(i−j)

]
= 2

αN + e−αN − 1

α2
. (22)

For the approximation to be valid, it is required that di/N, dj/N ≪ 1, and that the variation

of the integrand over △i×△j must be small, α ≪ 1. Approximating the sum as in Eq. (22)

therefore yields the same result for MSE(µ̂) as the limit α ≫ 1 given in Eq. (20).

Expressions for the mean squared error on the estimator σ̂2 and the covariance COV(µ̂, σ̂2)

are derived using the same approach as used to derive Eq. (19). With MSE(σ̂2) = 〈(σ̂2 −
σ2)2〉, and COV(µ̂, σ̂2) = 〈(µ̂ − µ)(σ̂2 − σ2)〉, it follows from Eq. (11a) that expressions

for summations over third and fourth order correlation functions of the signal given by

Eq. (1) have to be evaluated to obtain closed expressions. Postponing the details of these

calculations to the appendix, we present here only the resulting expressions. The mean

squared error on the variance is given by

MSE(σ̂2) = 〈A〉4
[(

τd
τw

)2(
2

αN
+

−5− 8e−αN + e−2αN

α2N2

)

+
τd
τw

(
6

αN
+

−27 + 3e−2αN

α2N2

)]
+O

(
N−3

)
, (23)

while the covariance between the estimators of the mean and variance is given by

COV(µ̂, σ̂2) = 〈A〉3
[(

τd
τw

)2

4
1− e−αN

α2N2
+
τd
τw

(
3

αN
+

−17 + 4e−αN − 4e−2αN

2α2N2

+
9− 12e−αN + 3e−2αN

α3N3

)]
. (24)

The results, given in Eqs. (19), (23), and (24), are finally used to evaluate Eqs. (15), and

(16), yielding the mean squared error on ŜΓ and F̂Γ. The higher order terms in Eq. (23) are

readily calculated by the method described in appendix A and are not written out here due

to space restrictions.
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In the limit αN ≫ 1, leading order terms in Eqs. (23) and (24) are inversely proportional

to αN :

COV(µ̂, σ̂2) =
3

αN
〈Φ(t)〉var (Φ(t)) τw

τd
(25)

MSE(σ̂2) =
2

αN
var (Φ(t))2

(
1 + 3

τw
τd

)
. (26)

While Eqs. (21) and (25) are proportional to γ, MSE(σ̂2) depends also quadratically on γ.

IV. COMPARISON TO SYNTHETIC TIME SERIES

In this section we compare the derived expressions for the mean squared error on the

estimators for the sample mean, variance, skewness, and kurtosis, against sample variances

from the respective estimators computed of synthetic time series of the stochastic process

given by Eq. (1).

To generate synthetic time series, the number of pulses K, the pulse duration time τd,

the intermittency parameter γ, the pulse amplitude scale 〈A〉, and sampling time △t are

specified. The total number of samples in the time series is given by N = K/γ△t. The

pulse arrival times tk and pulse amplitudes Ak, k = 1 . . . K, are drawn from a uniform

distribution on [0 : K/γ] and from PA(A) = exp (−A/〈A〉) /〈A〉 respectively. The tuples

(tk, Ak) are subsequently sorted by arrival time and the time series is generated according

to Eq. (1) using the exponential pulse shape given by Eq. (2). The computation of the

time series elements is implemented by a parallel algorithm utilizing graphical processing

units. For our analysis we generate time series for γ = 0.1 and 10, △t = 0.01, and time and

amplitude normalized such that τd = 1 and 〈A〉 = 1. Thus, α = △t/τd = 0.01 for both time

series. Both time series have N = 108 samples, which requires K = 105 for the time series

with γ = 0.1 and K = 107 for the time series with γ = 10. The histogram for both time

series is shown in Fig. 2.

Each time series generated this way is a realization of the stochastic process described

by Eq. (1). We wish to estimate the lowest order statistical moments, as well as their mean

squared errors, of these time series as a function of the sample size. For this, we partition

the time series for a given value of γ into M equally long sub-time series with NM = N/M
elements each. The partitioned sample size NM is varied from 2× 103 to 106 elements as to

partition the total time series into M ∈ {100, 200, 500, . . . , 50000} sub-time series.
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For each sub-time series, we evaluate the estimators Eq. (11a) and Eq. (13), which yields

the sets {µ̂m}, {σ̂2
m}, {ŜΓ,m}, and {F̂Γ,m}, with m ∈ (1, . . .M). The variance of these

sets of estimators is then compared to the analytic expressions for their variance, given by

Eqs. (19), (23), (15), and (16). Additionally, we wish to compare the precision and accuracy

of the proposed estimators given by Eq. (13) to the estimators defined by the method of

moments in Eq. (11b). For this, we also evaluate Eq. (11b) on each sub time-series and

compute the sample average and variance of the resulting set of estimators.

Figs. 3 - 6 show the results of this comparison for the synthetic time series with γ = 0.1.

The upper panel in Fig. 3 shows the sample average of {µ̂m} with error bars given by the root-

mean square of the set for a given sample size NM. Because µ̂ is linear in all its arguments

xi the sample average of {µ̂m} for any given NM equals µ̂ computed for the entire time

series. The lower panel compares the sample variance of {µ̂m} for a given NM to that given

by Eq. (19). For the presented data, the long sample limit applies since αNM ≥ 20 ≫ 1.

A least squares fit on var({µ̂m}) shows a dependence of ∼ N−0.90
M which agrees with the

analytical result of MSE(µ̂) ∼ N−1
M , given by Eq. (21).

In Fig. 4 we present the sample average of the estimators {σ̂2
m} with error bars given by

the root-mean square of the set of estimators for a given sample size NM. We find that the

sample variance of the estimators compare well with the analytic result given by Eq. (23). A

least squares fit reveals that var({σ̂2
m}) ∼ N−0.91

M while Eq. (23) behaves asN−1
M . The sample

averages of the skewness estimators {ŜΓ,m}, Eq. (13), and {Ŝm}, Eq. (11b), as a function

of sample size are shown in the upper panel of Fig. 5. Both estimators yield the same

coefficient of skewness when applied to the entire time series and converge to this coefficient

with increasing NM. For a small number of samples, NM
<∼ 104, the estimator based on the

method of moments estimates a sample skewness that is on average more than one standard

deviation from the true value of skewness. Again, the error bars are given by the root mean

square value of the set of estimators for any NM. For larger samples var({ŜΓ,m}) is smaller

than var({Ŝm}) by about one order of magnitude and both are inversely proportional to the

number of samples. Eq. (15) yields MSE(ŜΓ) ∼ N−0.99
M which compares favorably to the

dependency of the sample variance of the estimator based on the method of moments on

the number of samples, var({ŜΓ,m}) ∼ N−1.00
M . The discussion of the skewness estimators

applies similarly to the kurtosis estimators. Intermittent bursts in the time series with

γ = 0.1 cause large deviations from the time series mean which results in a large coefficient
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of excess kurtosis. Dividing the total time series in sub time series results in large variation of

the sample excess kurtosis. For samples with NM
<∼ 104 the estimator based on the method

of moments performs better than the estimator defined in Eq. (13). The opposite is true for

samples with NM
>∼ 104, where F̂Γ performs significantly better than F̂ . In the latter case,

var({F̂Γ,m}) is lower than var({F̂m}) by one order of magnitude. Both estimators, F̂ and

F̂Γ, converge to their full sample estimate which is identical. A least squares fit reveals that

var({F̂Γ,m}) ∼ N−1.00
M while a least-squares fit on Eq. (16) finds a dependency of the form

∼ N−0.97
M .

In Figs. 7 to 10 we present the same data analysis as in the previous figures, for the

time series with a large intermittency parameters, γ = 10. This time series features a large

pulse overlap. Again, with NM ≥ 2× 103, the limit αNM ≫ 1 applies. The lower panel in

Fig. 7 shows a good agreement between Eq. (23) and the empirical scaling of {µ̂m} which

is found by a least squares fit to be var({µ̂m}) ∼ N−0.98
M , in good agreement with Eq. (21).

We further find that var({σ̂2
m}) is also inversely proportional to the number of samples, see

Fig. 8. For Figs. 9 and 10 we note that the coefficients of skewness and excess kurtosis are

one order of magnitude lower for γ = 10 than for γ = 0.1, in accordance with Eq. (6). Due

to significant pulse overlap, sample variances of skewness and excess kurtosis show a smaller

variance than in the case of γ = 0.1. Again, the magnitude of var({Ŝm}), and var({F̂m})
is one order of magnitude larger than var({ŜΓ,m}), and var({F̂Γ,m}), respectively, and the

variance of all estimators is approximately inversely proportional to NM. For sample sizes

up to NM ≃ 104, F̂ yields negative values for the sample excess kurtosis, while the of excess

kurtosis as calculated from the entire sample is positive. This is due to the large sample

variance of this estimator and a coefficient of excess kurtosis of the underlying time series.

V. DISCUSSIONS AND CONCLUSION

We have utilized a stochastic model for intermittent particle density fluctuations in

scrape-off layer plasmas, given in Ref. [22], to calculate expressions for the mean squared

error on estimators of sample mean, variance, coefficients of skewness, and excess kurtosis as

a function of sample length, sampling frequency, and parameters of the stochastic process.

We find that the mean squared error on the estimator of the sample mean is proportional

to the square of the ensemble average of the underlying stochastic process, inversely pro-

13



portional to the intermittency parameter γ, and inversely proportional to the number of

samples, N . In the limit of high sampling frequency and large number of samples, the mean

squared error also depends on the ratio of the pulse decay time to sampling frequency, as

given by Eq. (21).

The derived expressions for the mean squared error on the estimator for the sample vari-

ance and covariance between µ̂ and σ̂2 are polynomials in both γ and N . These expressions

further allow to compute the mean squared error on the sample skewness and excess kurtosis

by inserting them into Eqs. (15) and (16). In the limit of high sampling frequency and large

number of samples, we find that the expressions for MSE(µ̂) and COV(µ̂, σ̂2) to be inversely

proportional to both, N , and α, and to depend on the intermittency parameter γ.

We have generated synthetic time series to compare the sample variance of the estimators

for sample mean, variance, skewness and excess kurtosis to the expressions for their mean

squared error. For a large enough number samples, αN ≫ 1, all estimators are inversely

proportional to N . We further find that estimators for skewness and excess kurtosis, as

defined by Eq. (13), allow a more precise and a more accurate estimation of the sample

skewness and kurtosis than estimators based on the method of moments given by Eq. (11b).

The expressions given by Eqs. (19), (23), (15), and (16) may be directly applied to

assess the relative error on sample coefficients of mean, variance, skewness, and kurtosis

for time series of particle density fluctuations in tokamak scrape-off layer plasmas. We

exemplify their usage for a particle density time series that is sampled with 1/△t = 5MHz

for T = 2.5ms as to obtain N = 12500 samples. Common fluctuation levels in the scrape-

off layer are given by Φrms/〈Φ〉 ≈ 0.5. Using Eq. (6a) and γ = τd/τw, this gives γ ≈ 4.

Conditional averaging of the the bursts occurring in particle density time series reveals an

exponentially decaying burst shape with a typical e-folding time of approximately 20µs, so

that α ≈ 0.01. Thus, the individual bursts are well resolved on the time scale on which

the particle density is sampled and the assumption αN ≫ 1 is justified. From Eq. (21), we

then compute the relative mean squared error on the sample average to be MSE(µ̂)/〈Φ〉2 ≃
3.2×10−3 and likewise the relative mean squared error on the sample variance from Eq. (26)

to be MSE(σ̂2)/var (Φ)2 ≃ 2.6× 10−2. This translates into relative errors of approximately

6% on the sample mean and approximately 16% on the sample variance. The relative

mean squared error on skewness and excess kurtosis evaluates to MSE(ŜΓ)/Ŝ
2
Γ ≃ 8.6× 10−3

and MSE(F̂Γ)/F̂
2
Γ ≃ 3.8 × 10−2, which translates into an relative error of approximately
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9% on the sample skewness and approximately 19% on the sample excess kurtosis. The

magnitude of these values is consistent with reported radial profiles os sample skewness and

kurtosis, where the kurtosis profiles show significantly larger variance than the skewness

profiles [12, 18, 23, 30, and 31].

The expressions for the mean squared error on sample mean, variance, skewness and

kurtosis presented here may be appropriate for errorbars on experimental measurements of

particle density fluctuations, as well as for turbulence simulations of the boundary region of

magnetically confined plasmas.

Appendix A: Derivation of MSE(σ̂2) and COV(µ̂, σ̂2)

We start by reminding of the definitions COV(Â, B̂) = 〈(Â−〈A〉)(B̂−〈B〉)〉 and var(B̂) =

〈(B̂ − 〈B〉)2〉. For Â = µ̂ and B̂ = σ̂2, we evaluate these expressions to be

COV(µ̂, σ̂2) =
1

N − 1

(
N∑

i,j=1

〈Φ(ti)2Φ(tj)〉 −
1

N2

N∑

i,j,k=1

〈Φ(ti)Φ(tj)Φ(tk)〉
)

− 〈A〉 τd
τw

1

N − 1

(
N∑

i=1

〈Φ(ti)〉 −
1

N

N∑

i,j=1

〈Φ(ti)Φ(tj)〉
)
, (A1)

and

var(σ̂2) = −〈A〉4
(
τd
τw

)2

+ 4〈A〉4
(
τd
τw

)2(
1

N2

e−αN − (1− αN)

α2

)

+
1

N2

(
N∑

i,j=1

〈Φ(ti)2Φ(tj)2〉 − 2

N

N∑

i,j,k=1

〈Φ(ti)2Φ(tj)Φ(tk)〉

+
1

N2

N∑

i,j,k,l=1

〈Φ(ti)Φ(tj)Φ(tk)Φ(tl)〉
)

(A2)

We made use of Eq. (22) in deriving the last expression. Therefore it is only valid in the

limit α ≪ 1. To derive closed expressions for Eqs. (15) and (16) we proceed by deriving

expressions for the third- and fourth-order correlation functions of the shot noise process

Eq. (1).
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We start by inserting Eq. (1) into the definition of a three-point correlation function

〈ΦK(t)ΦK(t+ τ)ΦK(t+ τ ′)〉

=

T∫

0

dt1Pt(t1)

∞∫

0

dA1PA(A1) · · ·
T∫

0

dt1PKt(tK)

∞∫

0

dAKPA(AK)×

K∑

p=1

K∑

q=1

K∑

r=1

Apψ(t− tp)Aqψ(t+ τ − tq)Arψ(t+ τ ′ − tr)

= 〈A3〉
K∑

p=q=r=1

T∫

0

dtp
T
ψ(t− tp)ψ(t+ τ − tp)ψ(t+ τ ′ − tp)

+ 〈A2〉〈A〉
K∑

p=q=1

K∑

r=1
r 6=p

T∫

0

dtp
T

T∫

0

dtr
T
ψ(t− tp)ψ(t+ τ − tp)ψ(t+ τ ′ − tr)

+ 〈A2〉〈A〉
K∑

p=r=1

K∑

q=1
q 6=p

T∫

0

dtp
T

T∫

0

dtq
T
ψ(t− tp)ψ(t+ τ − tq)ψ(t+ τ ′ − tp)

+ 〈A2〉〈A〉
K∑

q=r=1

K∑

p=1
p 6=r

T∫

0

dtq
T

T∫

0

dtp
T
ψ(t− tp)ψ(t+ τ − tq)ψ(t+ τ ′ − tq)

+ 〈A〉3
K∑

p=1

K∑

q=1

K∑

r=1

T∫

0

dtp
T

T∫

0

dtq
T

T∫

0

dtr
T
ψ(t− tp)ψ(t+ τ − tq)ψ(t+ τ ′ − tr). (A3)

The sum over the product of the individual pulses is grouped into six sums. The first sum

contains factors with equal pulse arrival times and consists of K terms. The next three

groups contain terms where two pulses occur at the same arrival time, each group counting

K(K − 1) terms. The last sum contains the remaining K(K − 1)(K − 2) terms of the terms

where all three pulses occur at different pulse arrival times.

The sum occurring in the four point correlation function may be grouped by equal pulse

arrival time as well. In the latter case, the sum may be split up into group of terms where

four, three and two pulse arrival times are equal, and in a sum over the remaining terms.

The sums in each group have K, K(K−1), K(K−1)(K−2), and K(K−1)(K−2)(K−3)

terms respectively.

Similar to Eq. (8), we evaluate the integral of the product of three pulse shapes while
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neglecting boundary terms to be

T∫

0

dtpPt(tp)ψ(t− tp)ψ(t+ τ − tp)ψ(t+ τ ′ − tp)

≃ τd
3
exp

(
τ + τ ′

τd

)
exp

(
−3

max (0, τ, τ ′)

τd

)
(A4)

while the integral of the product of four pulse shapes is given by

T∫

0

dtpPt(tp)ψ(t− tp)ψ(t+ τ − tp)ψ(t+ τ ′ − tp)ψ(t+ τ ′′ − tp)

≃ τd
4
exp

(
τ + τ ′ + τ ′′

τd

)
exp

(
−4

max (0, τ, τ ′, τ ′′)

τd

)
. (A5)

To obtain an expression for the third- and fourth-order correlation functions, these integrals

are inserted into the correlation function and the resulting expression is averaged over the

total number of pulses. We point out that the K pulses occurring in the time interval [0 : T ]

is Poisson distributed and that for a Poisson distributed random variable K,

〈
z∏

n=0

K − n

〉
= Kz

holds. Using this with Z = 2, the three-point correlation function evaluates to

〈Φ(t)Φ(t+ τ)Φ(t+ τ ′)〉 = 〈A〉2
[
2
τd
τw

exp

(
τ + τ ′

τd
− 3

max(0, τ, τ ′)

τd

)

+

((
τd
τw

)2

+ 1

)
exp

(
τ

τd
− 2

max(0, τ)

τd

)
+

(
τd
τw

)3
]
. (A6)

The four-point correlation function is evaluated the same way.

To evaluate summations over higher-order correlation function, we note that Eq. (A6)

evaluated at discrete times can be written as

〈Φ(ti)Φ(tj)Φ(tk)〉 = 〈A〉2
[
2

(
τd
τw

)
exp
(
α(2i− j − k)− 3αmax(0, i− j, j − k)

)

+

((
τd
τw

)2

+ 1

)
exp
(
α(i− j)−max(0, i− j)

)
+

(
τd
τw

)3
]
, (A7)

where τ = τij = △t (i− j) and τ ′ = τjk = △t (j − k). The summations over higher-order

correlation functions in Eq. (A1) and Eq. (A2) may then be evaluated by approximating

the sums by an integral, assuming N ≫ 1, and dividing the integration domain into sectors
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where i < j < k, i < k < j, . . .. In each of these sectors, the max-functions in Eq. (A7) are

secular valued so that the integral is well defined. Denoting all permutations of the tuple

(i, j, k) as P3, and the respective elements of a permutated tuple as π1, π2, π3, we thus have

N∑

i,j,k=1

〈Φ(ti)Φ(tj)Φ(tk)〉 ≃
N∫

0

di dj dk 〈Φ(ti)Φ(tj)Φ(tk)〉 ×
(∑

π∈P3

Θ(π1 − π2)Θ(π2 − π3)

)

N∑

i,j,k,l=1

〈Φ(ti)Φ(tj)Φ(tk)Φ(tl)〉 ≃
N∫

0

di dj dk dl 〈Φ(ti)Φ(tj)Φ(tk)Φ(tl)〉×

(∑

π∈P4

Θ(π1 − π2)Θ(π2 − π3)Θ(π3 − π4)

)
.

These integral are readily evaluated. Inserting them into Eq. (A1), and Eq. (A2), yields the

expression Eq. (24) and Eq. (23).
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FIG. 1: Relative mean squared error on µ̂, given by Eq. (19), as a function of the

number of data points N for three values of the normalized sampling rate α = △t/τd.
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FIG. 2: Histogram of synthetic time series with γ = 0.1, 1.0, and 10. Overlaid (black

dashed lines) is the Gamma distribution given by Eq. (4) with a scale parameter θ = 1.
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FIG. 3: Sample mean (upper panel) and variance (lower panel) of the estimators {µ̂m}
as a function of the partitioned sample size NM, computed from the synthetic time

series with γ = 0.1. The dashed line in the upper panel is µ̂ computed with N data

points, the black line in the lower panel is given by Eq. (19).
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FIG. 4: Sample mean (upper panel) and variance (lower panel) of the estimators

{σ̂2
m} computed from the synthetic time series with γ = 0.1. The dashed line in the

upper panel is σ̂2 computed with N data points, the black line in the lower panel is

given by Eq. (23).
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FIG. 5: Sample mean (upper panel) and variance (lower panel) of the estimators

{ŜΓ,m} (red square) and {Ŝm} (green circle) computed from the synthetic time series

with γ = 0.1. The dashed (dotted) line in the upper panel is ŜΓ (Ŝ) computed with N

data points, the black line in the lower panel is given by Eq. (15).
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FIG. 6: Sample mean (upper panel) and variance (lower panel) of the estimators

{F̂Γ,m} (red square) and {F̂m} (green circle) computed from the synthetic time series

with γ = 0.1. The dashed (dotted) line in the upper panel is F̂Γ (F̂ ) computed with N

data points, the black line in the lower panel is given by Eq. (16).
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FIG. 7: Sample mean (upper panel) and variance (lower panel) of the estimators {µ̂m}
computed from the synthetic time series with γ = 10. The dashed line in the upper

panel is µ̂ computed with N data points, the black line in the lower panel is given by

Eq. (19).
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FIG. 8: Sample mean (upper panel) and variance (lower panel) of the estimators
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m} computed from the synthetic time series with γ = 10. The dashed line in the

upper panel is σ̂2 computed with N data points, the black line in the lower panel is

given by Eq. (23).
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FIG. 9: Sample mean (upper panel) and variance (lower panel) of the estimators

{ŜΓ,m} (red square) and {Ŝm} (green circle) computed from the synthetic time series

with γ = 10. The dashed (dotted) line in the upper panel is ŜΓ (Ŝ) computed with N

data points, the black line in the lower panel is given by Eq. (15).
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FIG. 10: Sample mean (upper panel) and variance (lower panel) of the estimators

{F̂Γ,m} (red square) and {F̂m} (green circle) computed from the synthetic time series

with γ = 10. The dashed (dotted) line in the upper panel is F̂Γ (F̂ ) computed with N

data points, the black line in the lower panel is given by Eq. (16).
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