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LOCAL EXISTENCE THEOREMS FOR NONLINEAR DIFFERENTIAL
EQUATIONS AND COMPACTNESS
OF INTEGRAL SOLUTIONS IN L?(0,T; X)

FINKFETFE 8 E
( Naoki Shioji )

1. Introduction. Let X be a real Banach space, let A C X x X be an m-accretive set,
let ug € D(A) and let Fr be a mapping from a subset of LY(0,T; X) into L*(0,T; X). In
this paper, we study the initial value problem

du(t)
Tdt
u(0) = up.

Crandall and Nohel [6], Diaz and Vrabie [7], Gutman [8,9], Hirano [10], Kenmochi and
Koyama [11], Liu [12], Mitidieri and Vrabie [13,14], Pazy [15], Vrabie [16-18] and others
have studied this kind of problems under several different conditions. Many of these authors
used ‘Schauder’s fixed point theorem in C(0,T; X) to prove the existence of local solutions

of (1.1). So it is essential to study conditions that {uf : f € B} is relatively compact in
C(0,T; X) for B C L'(0,T; X), where u/ is the unique integral solution of

+A()9FTu(t), 0<t<T, (1.1)

d';gt) Au(t) > f(t), 0<t<T,
u(0) = uo

for f € L}(0,T; X). But, in general, we need weaker conditions to prove that {uf : f €
B} is relatively compact in L?(0,7; X). In this paper, we use Schauder’s fixed point
in LP(0,T; X) to prove the existence of local solutions of (1.1). Schauder’s fixed point
theorem in LP(0,T; X) requires the continuity of Fr from LP(0,T;X) into L'(0,T; X)
instead of that of Fr from C(0,T;X) into L'(0,T;X). But in many applications, it
is not a restriction. Concerning relative compactness of {u/ : f € B} in L?(0,T; X),
Baras [1] showed that for every bounded subset B of L*(0,T; X) and for every 1 < p < oo,
{uf : f € B} is relatively compact in LP(0,T; X) under the condition that the nonlinear
semigroup {S(t) : D(A) — D(A),t > 0} generated by —A is compact. We use this result
to prove the existence of local solutions of (1.1) in the case that {S(¢)} is compact. When
the resolvent (I + AA)~! is compact for every A > 0, we show a sufficient condition that
for every 1 < p < oo, {uf : f € B} is relatively compact in L?(0,T;X) under some
hypotheses. We also use this result to prove the existence of local solutions of (1.1).
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The next section is devoted to some prehmma,nes In section 3, we state our main results
and we prove those in section 4. In the final section, we study some examples.

2. Preliminaries. Let X be a real Banach space with norm || - ||. f D is a , subset of X,
D denotes the closure of D. For each (z,y) € X x X, define

o Mzt tyll —llell
t10 t
Let AC X x X. For z € X, we denote by Az the set {y € X : (z,y) € A}. We define
D(A)={z € X : Az # 0} and R(A) = U{Az:z € D(A)}. A subset A C X x X is called

accretive if

(z,y)4 =

(1 — 22,91 —y2)+ =0

for every (z1,1),(z2,¥2) € A. An accretive set A is called m-accretive if R(I + AA) =
for every A > 0. Let T > 0. C(0,T’; X) denotes the space of all continuous functions from
[0,T] into X. For 1 < p < oo, L? (0 T; X) denotes the space of all strongly measurable,
p-integrable, X-valued functions deﬁned almost everywhere on [0,T], and L*®(0,T; X) de-
notes the space of all strongly measurable, essentially bounded, X-valued functions defined
almost everywhere on [0,T]. Let U be an open subset of X. C(0,T;U) and L*(0,T;U)
denote the sets {f € C(0,T;X) : f(t) € U on [0,T]} and {f € L°°(O T;X) : (t) €
U a.e. on [0,T]} respectively.
Let A C X x X be an m-accretive set, f € Ll(() T;X) and uo € D(A). A function
u:[0,T] — X is called a strong solution of the initial value problem:

du(t) |
WO 4 Au(t) (1), 0<t<T, (2.1)
U(O) = Uo, |

ifuis differentiable almost everywhere on [0 T], u is absolutely contmuous u(0) = up and

u'(t) + Au(t) > f(t) almost everywhere on [0,7]. A function u : [0,7] — X is called an

integral solution of the initial value problem (2.1), if u is continuous on [0, 7], u(0) = uy,
u(t) € D(A) for every 0 <t < T and

Jui(t) - 2l < Nuls) = 2l + [ (u(r) = 2, £() = ) dr

for every (z,y) € Aand 0 < s <t < T. If u is a strong solution of (2.1), then u is
an integral solution of (2.1). It is known [2,3] that the initial value problem (2.1) has a
unique integral solution. If u and v are the integral solutions of (2.1) corresponding to
(f,u0),(g,v0) € L*(0,T; X) x D(A) respectively, then

lu(t) = (Ol < llu(s) = v + [ () = (), £(7) = () d

for 0 < s <t < T. Concerning integral solutions, we also know the following. For its
proof, see [19, p.74].
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Proposition 1. Let T' > 0, f € L'(0,T; X) and uo € D(A). Let u be the unique integral
solution of (2.1). Then "

s T—s
lut + ) = w® < [ IO dr +1S(s)uo = woll+ [ 177+ ) = f(r)] dr
fort,s >0 witht+s<T.

If AC X x X is m-accretive, then

S(t)e = lim (1 + %A) z
exists for each z € D(A) and uniformly for ¢ on every bounded interval in the set of
nonnegative real numbers [2,5]). {S(¢) : D(A) — D(A),t > 0} is called the nonlinear
semigroup generated by —A. We remark that ¢ — S(¢)uo is the unique integral solution of -
(2.1) corresponding to (0,uo) € L'(0,T; X) x D(A). We say {S(¢) : D(A) — D(A),t > 0}
is compact if S(t) : D(A) — D(A) is compact for every t > 0. It is well known [4] that
{S(t) : D(A) — D(A),t > 0} is compact if and only if Jy = (I+AA)~! is compact for every
A > 0 and for each bounded subset B of X, {S(t)z : [0,00) — X,z € B} is equicontinuous
at each ¢ > 0. We also know the following.

Proposition 2 (Brézis [4]). For each A > 0 and = € D(A),
< d
e = Drall < 5 [ I1S(s)e — ol ds.

3. Main results. We begin this section with hypotheses (cf. [18]) and notations which
we shall use in the sequel.

(H1) X is a real Banach space and A C X x X is an m-accretive set. J) is the resolvent
(I + AA)™! for each A > 0 and {S(¢) : D(A) — D(A),t > 0} is the nonlinear
semigroup generated by —A.

(H2) 1 < p< 00, To> 0 and for each 0 < T < Tp, M(0,T; X) is a subset of L?(0,T; X).
F ={Fr: M(0,T;X) - L(0,T;X),0 < T < Tp} is a family of mappings such
that foreach 0 < T < S < Ty, u € M(0,T; X) and v € M(0,S; X) with u(t) = v(t)
a.e. on [0,T), it follows that Fru(t) = Fsv(t) a.e. on [0, T].

(H3) Foreach 0 < T < Ty, M(0,T;X) = L?(0,T; X) and Fr: L?(0,T; X) — L*(0,T; X)
is continuous.

(H4) U is an open subset of X. For each 0 < T < Ty, M(0,T; X) = L*°(0,T;U) and for
every d > 0, Fr : Zgr — LY(0,T; X) is continuous, where Zr is the topological
space {u € L*(0,T;U) : ess sup |lu(7)|| £ d} which is endowed with the LP(0,T'; X)

0<7<L

topology.
- (H5) For every d > 0,

li hF d‘
im [ |[Fru(r)l| dr = 0

uniformly for u € Z,; 7.
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(H6) There exist 1 < 7 < oo and k : (0,00) — [0,00) such that for each d > 0, there
exists a function oy : (0,7,] — [0,00) which satisfies
(i) limagy(h) =0, and
h10

(ii) for every u € Z; 1,,

/ T | Fru(r+ h)— Fru(r)|] dr < au(h)+k(d) (f () — ()" ar)’

for every 0 < T < Tj and for every 0 < h < T.

Now we state local existence results for nonlinear differential equations.
Theorem 1. Assume that (H1), (H2) and (H3) are satisfied and that {S(t) : D(A) —
D(A),t > 0} is compact. Then for each ug € D(A), there exists 0 < T < Ty such that
(1.1) has at least one integral solution u belonging to C(0,T; X).

Theorem 2. Assume that (H1), (H2), (H4) and (H5) are satisfied and that {S(t) :
- D(A) — D(A),t > 0} is compact. Then for each uo € D(A) N U, there exists 0 < T < Ty
~such that (1.1) has at least one integral solution u belonging to C(0,T;U).

Theorem 3. Assume that (H1), (H2), (H4), (H5) and (H6) are satisfied and that J, is
compact for every A > 0. Then for each ug € D(A)NU, there exists 0 < T' < Ty such that
(1.1) has at least one integral solution u belonging to C(0,T;U).

Next we show a sufficient condition in order that a set of integral solutions is relatively
compact in L9(0,T; X) for every 1 < ¢ < oo. It will be used in the proof of Theorem 3.
For f € L'(0,T; X) and up € D(A), we denote by u/ the unique integral solution of (2.1)
corresponding to f and wuo.

Theorem 4. Assume that (H1) is satisfied and that Jy : X — X is compact for every
A>0. Let T > 0 and let B be a bounded subset of L*(0,T; X) such that

_ [T-h

tim [ 5+ h) - F(E)] dt =0

hlo JO

uniformly for f € B and
1 * dt =
1 t t=20
fg{ll./o 7ol ,

uniformly for f € B. Let uo € D(A). Then {uf : f € B} is relatively compact in
L3(0,T; X) for every 1 < ¢ < oo and it is bounded in L*>(0,T'; X).



90

4. Proof of Theorems. First we prove local existence results for nonlinear differential
equations under the condition that {S(t)} is compact. In the next proof, we use the method
employed in [16].

PROOF OF THEOREM 1. Let ug € D(A). Choose 0 < T < Tp, M > 0 and r > 0 such
that T? M <r and

T
/0 | Fru(t)|| dt < M

T 1 .
for every u € L?(0,T; X) with ( I @) = s@yuoll dt)” <r. Put
0
| ] .
K = {ue L?(0,T; X) : ( I ) = s@ywol dt) <r}.
0

By‘the method employed in [16], we define an operator Q@ : K — L?(0,T; X) as follows:
for each u € K, let Qu be the unique integral solution v € C(0,T; X) of

dtl(t) + Av(t) 3 Fru(t), 0<t<T,
(0) = Ugp. ‘
We shall show that @ is a continuous operator from K into K. Let u € K. Since
‘ T
1Qu(t) = St)uoll < [ I1Fru(s)]| ds

for 0 <t < T, we have

ACICE (t)uoupdt) < ([ ([ wrruion as) )’

T3 / |Prus)]| ds

=

I/\ I/\

“This inequality implies Q(K) C K. Let u,v € K. Since

T .
|Qu(t) — Qut)|| < /O |1 Fru(s) — Fro(s)|| ds
for 0 <t < T, we have
T H L (T ‘
([ 1Que) ~ @uet)le at)” <75 [ I1Fru(s) — Fros)) ds. (1)
This inequality and the continuity of Fr : LP(0,T;X) — L'(0,T;X) imply that Q is

continuous. From Théoréme 1 in [1], it follows that @ is compact. Hence, by Schauder’s
fixed point theorem, (1.1) has at least one integral solution. O
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PROOF OF THEOREM 2. Let ug € D(A) N U. Choose r > 0 and 0 < T < Tj such that

the closed ball with center uy and radius r + max ||.S(7)uo — uo|| is contained in U. Put
: 0<r<Ty

d =r+ max ||S(7)uo]| and choose 0 < T' < T such that

0_1‘_ 0

4T
[ Erul dr < v
for every u € Zy,. Set

K = {u € L>(0,T; U) ess sup Hu( ) = Suol|| < r}
0<t<T

which is endowed with L?(0,T; X) topology and define @ : K — L?(0,T; X) by the same
way in the proof of Theorem 1. It is easy to see that K is closed in L?(0,T; X). We shall
show that @ is a continuous operator from K into K. Let u € K. Since

T
1Qu(t) - S(tJuoll < [ 11Pru(s)l ds

<r
for 0 <t < T and

N1Qu(t) — uoll < |Qu(t) — S(E)uoll + IS0 — uoll

<r+ max ||S(7)uo — uol|
0<r<T

for 0 <t < T, we have Q(K) C K. Q is continuous by (4 1). From Théoréme 1 in [1],
it follows that Q is compact. Hence, by Schauder’s fixed pomt theorem, (1.1) has at least
one integral solutlon a

Next we prove a sufficient condition in order that a set of integral solutions is relatively

compact in L?(0,T; X).

\ T
PROOF OF THEOREM 4. Let 1 < ¢ < oo and put ¢ = sup/ If(7)|| dr. First we

remark that {u/(¢) : f € B,0 <t < T} is a bounded subset of X. Let f € B and let
A > 0. Since, by Proposmon 1,

( /0 T I (4 5) — Jyu! (2)]° dt)%

1

< ([ W+ v )’

<24 1N ar+ 15ha = ol + [ 15 +5) = 7o) ),
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we have

1

T—~s 7
lim (/0 | Jxuf (t + s) = Jyuf (2))° dt) =0  uniformly for f € B.

sl0

Hence {Jyu? : f € B} is relatively compact in L?(0,T; X) by the same lines as those in
the proof of Theorem A.1 in [8]. Using Proposition 1 and Proposition 2, we have

s (1) = @l < 5 [ 18It ()~ D) ds
<5 LIS @) w4 o)l ds+ 5 [ It 4 9) O ds
< %\./o’\ /t“"" £ ()|l dr ds + 4022\ /(2 +) =]

<o [T dr+a sup { [ U5 dr + S0 —uoll+ [ 5+ 5) = S dr )

for 0 <t <T. So we get

1

([ 1) - wroe )’

<a( (" wren dr)"dt)%

+47% sup { [0 dr + 10— wall + [ 17+ 5) = ()]

<a( [T [T 1ol drar)’

+47% sup { [0 dr + IS0 = wall + [ 17+ 5) = Sl

s T-s
<aertart sup { ["I)l ar+15(ehua = ol + [ (e +9) = £ ),

Hence we have
T-A H
lim([) | () - uf(t)||th> =0  uniformly for f € B,
Alo
which implies that {uf : f € B} is relatively compact in L?(0,7; X). O
Finally we prove a local existence result for nonlinear differential equations under the

condition that J) is compact for every A > 0. In the next proof, we use the method
employed in [10,16].
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PROOF OF THEOREM 3. Let uq € D(A)NU. Choose r, T}, d and T by the similar

way in the proof of Theorem 2 such that 1 — T %k(d) > 0 is also satisfied. Define K and
Q : K — K by the same way in the proof of Theorem 2. Put

T-h i
Ki={ueck: (/0 u(t + b) — ()| dt) " < B(h) for every 0 < h < T},

where

5 (sup [ IFPrato)l dr + 50 o—uon+ad(h))
Blk) = 1 THk(d)

It is easy to see that K; is closed in L?(0,T; X). We shall prove that Q(K;) C K1 Let
u € K;. Since, by Proposition 1,

IQu(t+ ) - Quer)]
h T-h
< [} WEru(m)ll dr + 1S(hyuo = voll + [ 1 Fru( +B) = Fru(r)]| dr

for t,h > 0 with t + h < T, we have

, 0<h<T.

([ lQutt+m - Queoyy &)’

<4 [ WEr 50—l + [t 4 ) = o )
<Th (sup / 1 Fro(7)|| dr + ||S(B)o — uol + aa(k) + K(d) ( / e+ ) — u()|" dt) %)

< T7 (32}3 /0 | Fro(r)|| dr + ||S(h)uo — uo|| + ag(h) + k(d)ﬂ(h))
< B(R)

for every 0 < h < T. So we have Q(K;) C K;. By Theorem 4, Q : K; — K; is compact.
Hence, by Schauder’s fixed point theorem, (1.1) has at least one integral solution. [

5. Examples. Throughout this section, ) is a bounded open subset of R* (n > 2) with
‘sufficiently smooth boundary T'.

Example 1. We consider the following nonlinear differential equation:

Ou
ot

with a boundary condition

- Ap(w) = f(t,2,u(t,2)) o [0,T] x 9, (5.1)

p(u)=0 on[0,T]xT (5.2)
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and an initial ‘condition
u(0, ) = uo(z) on €. A (5.3)
Theorem 5. Let p € C(R) N C*(R\ {0}) such that p(0) = 0 and there exist C > 0 and
a > 22 with
p'(r) > Clr|*' for eachr € R\ {0}.

Let To > 0 and let f : [0,T] x & x R — R such that f(t,z,-) is continuous for a.e.
(t,z) € [0,To] x Q and f(-,-,u) is measurable for every u € R. Assume that there exist
b e L'(0,Tp;R) and ¢ € L*(0, Tp; L*(R)) such that

If(t, 2, u)| < b(t)lul + c(t, z)

for a.e. (t,:v) € [0,To) x Q and for every u € R. Then for each uo € L'(Q), there exists
0 < T < Tp such that (5.1), (5.2) and (5.3) have an integral solution on [0, T].

PROOF. Let A C L'(2) x L*() be an operator defined by
Au = —Ap(u) for D(A) = {u € LY(Q) : p(u) € W' (), Ap(u) € LH()}-

Itis known [19, Lemma 2.6.2] that A is m-accretive and _A generates a compact semigroup
on D(A) = L'(Q). For 0 < T < Ty and d > 0, set Z; 1 be the space {u € L®(0,T; L*(Q)) :
ess supl||u(7)|| < d} which is endowed with the L*(0,T; L'(?)) topology. The operator

<T )
déﬁned by

Fru(t)(e) = f(t,z,u(t,z)), ueL*(0,T;L())

is continuous from Z; r into L'(0,T; L'(2)). So (H4) is satisfied. For u € L*=(0,T; L*()),
we write f(s,u(s))(z) instead of f(s,z,u(s,z)). Since

LW ul ds < d [ ow)] ds + [ lle(h)] ds

for v € Z;1,, (H5) is satisfied. Then applying Theorem 2, we can see that for each
up € L'(9), there exists 0 < T < Ty such that (5.1), (5.2) and (5.3) have an integral
solution on [0,7]. O '

'Example 2. Consider the following differential operator of the form

Au= )" (=) D*A,(z,u, Du,--- , D™u),

lol<m

where A, : @ xRY — R. A, is measurable in z and continuous in the rest of the variables,
and there exists w > 0 such that

> (A,,(:L', u) — Ao,(:c,v)) (Ua=va) 2w Y |ta - v, |?

|al<m lal<m
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for a.e. z € O and for every (u,v) € RY x RY. Now we consider the following nonlinear
integrodifferential equation:

Ou

S+ (1) DAy (2, u, - -, D™u) | (5.4)

laj<m
+ [ alt = )f(s,z,u(s,2)) ds =0 on [0,T] x O
with Dirichlet boundary condifions o
| D*u=0 on[0,T]xT forja|<m—1 O 55)
and an initial condition
u(0,z) = uo(z) on Q. : (5.6)
We improve Theorem 5.1 in [10].

Theorem 6. Let A : H*(Q) — H™™(Q) be the nonlinear operator defined above. Let
To > 0, let a € L'(0,T), and let f: [0,Ty] x @ x R — R such that f(t,z,-) is continuous
for a.e. (t,z) € [0,To] X @ and f(-,-,u) is measurable for every u € R. Assume that there
exist b € L'(0,To; R) and ¢ € L'(0, Ty; L*()) such that

|f(t, =, u)| < b(t)|u| + c(t, z)

for a.e. (t,z) € [0,To] x Q and for every u € R. Then for each uy € L2(f), there exists
0 <T < To such that (5.4), (5.5) and (5.6) have an integral solution on [0, T).

PROOF. Let Ay be an operator defined by
. Apu=Au  forue D(Ax) = {u € HF(9) : Au € Q).

Then Ay is a maximal monotone operator on L*(Q2) and (I + AAg)™" : L3(Q) — L2(9) is
compact for every A > 0. For 0 < T < Ty, define

Fru(t)(z) =~ | “alt— 5)f(s, 7, u(s,2)) ds for u € L0, T; I2(Q).

0

Let 0 < T < To, let d > 0 and let Zy 7 be the space {u € L°(0,T; L*()) : ess sup|[u(r)|| <
0<7<T
d} which is endowed with the L(0,T; L*(2)) topology. Since
LN e - ds — [ aft d
L ot = )G u(s)) ds = [ at = 9)f(s,0(s)) ds
T ft

< [ [ tatt= o)1 |7(s,u(5) = f(s,v(s))

< [ late) de [ 7(s,u(s)) = £(s,005)

dt

dsdt

ds
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for u,v € Zy, Fr is continuous from Z, 7 into L!(0, T; L2(£)). So (H4) is satisfied. Since
h h

at < [ la(t)l de | ’ (s, u(s))| ds
0 0

< [tatwtae(a [ 11 ds+ [ 1e(ol )

for u € Zy1,, (H5) is satisfied. ‘We shall show (H6) is satisfied. Let v € Zy,. Since
| Fru(t + k) — Fru()||
= H/t+ha(t+h— s)f(s,u(s)) ds-}-/ta(t— s)f(s,u(s)) ds
< [ latt+h— )~ a(t = ) Uf(s,uleDl ds+ [ lat+h =) I5(s, u(s))] ds

we have

Ot a(t — s)f(s,u(s)) ds

/O " Fru(t + b) — Pru(t)|| dt
< J) ) tta =) = ate = N et i
/ o / a(t +h — s)| || f(s, u(s))|| dsdt
< ([ ot +m- a0 @+ [aoiar) [ uo d

< ( [ a4 m) = al e+ [ ate) dt) (d [Mteas+ [Tl ds)

So (H6) is satisfied. Then applying Theorem 3, we can see that for each uy € L%(), there
exists 0 < T < Ty such that (5.4), (5.5) and (5.6) have an integral solution on [0,7]. O

Example 3. Let A be the differential operator defined in Example 2. Consider the fol-
lowing nonlinear differential equation:

6t Z (— 1)'°‘|D°‘A (:c u, D™u) = f(t,z,u(t,z)) on[0,7]x N (5.7)

jal<m
with Dirichlet boundary conditions (5.5) and an initial condition (5.6).

Theorem 7. Let A: HJ*'(2) - H™™(f) be the nonlinear operator defined in Example 2.
Let Ty > 0 and let f : [0,Tp) x @ x R — R such that f(t,z,-) is continuous for a.e.
(t,z) € [0,T,] x @ and f(-,,u) is measurable for every u € R. Assume that there exist -
be LI(O7T0;R)’ S Ll(O,TO; L2(Q))7 IB € Ln(oaTO) with 1 < n<oo,7: [0’2T0] - [07 OO)
and § € L*(Q) which satisfy

@) |F @z, u)| < b(d)|u| +>c(t,a:) for a.e. (t,z) € [0,Tp] x Q2 and for every u € R,
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@) |f(t, z,u) — f(t,z,v)] < B(t)|lu — v| for a.e. (t,z) € [0,Tp] x Q and for every
(u,v) e R xR,

(ii) im~(h) =0, and
hl0

(iv) [t 2, u) — f(s,z,u)| < 7(|t - ) ([u| + 6(z)) for a.e. (t,5,2) € [0,To] x [0, To] x 0
and for every u € R.

Then for each up € L*(Y), there exists T > 0 such that (5.7), (5.5) and (5.6) have an
integral solution on [0, T.

PRrOOF. Define Ay by the same way in the proof of Theorem 6. For 0 < T' < Tj and
d > 0, set Zyr be the space {u € L*(0,T; L*(Q)) : esssup ||u(7)|| < d} which is endowed
: <T

. o<
with the L*(0,T; L*>(Q)) topology. Define
Fru(t)(z) = f(t,z,u(t,z)) for u € L=(0,T; L*(Q)).

Let 0 < T < Tp and let d > 0. Fr is continuous from Z;r into L*(0,T; L*(Q?)). For
u € L*(0,T; L*(R)), we write f(¢,u(s))(z) instead of f(t,z,u(s,z)). Let u € Zyr,. We
get

[t uel de < d [ de+ [ o)l de.
So (H5) is satisfied. Since ‘

< /OT—h | f(t+ h,u(t + k) = f(t+ A, u(?)] dt + /OM IF(t+ By u(t)) — F(t,u(t))]| dt

1

< ([ o ) ([ wtes )~ @) 0 -+ 1,

(H6) is satisfied. Then applying’ Theorem 3, we can see that for each up € L2(Q); there
exists 0 < T < Tp such that (5.7), (5.5) and (5.6) have an integral solution on [0,7]. O
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