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Abstract

CFD-DEM (Computational Fluid Dynamics — Discrete Element Modelling) is a two-
phase flow numerical modelling technique, where the Eulerian method is used for the
fluid and the Lagrangian method for the particles. The two phases are coupled by a
fluid-particle interaction force (i.e. drag force) which is computed using a correlation.
In a two-phase flow, one critical parameter is the voidage (or void fraction), which is
defined as the ratio of the volume occupied by the fluid to the total volume. In a CFD-
DEM simulation the local voidage is computed by calculating the volume of particles
in a given fluid cell. For spherical particles, this computation is difficult when a particle
is on the boundary of fluid cells. In this case, it is usual to compute the volume of a
particle in a fluid cell approximately. One such approximation divides the volume of a
particle into each cell in the same ratio as an equivalent cube of width equal to the
particle diameter. Whilst this approach is computationally straight forward, the
approximation introduces an error in the voidage computation. Here we estimate the
error by comparing the approximate volume calculation with an exact (numerical)
computation of the volume of a particle in a fluid cell. The results show that the error
varies with the position of the particle relative to the cell boundary. A new approach is
suggested which limits the error to less than 2.5 %, without significantly increasing the
computational complexity.

1. INTRODUCTION

Two-phase granular flow is involved in many industrial applications: fluidised bed reactors,
pneumatic conveying, etc. With the advancements in computational resources, researchers have
developed various numerical models to simulate two-phase flow. The limitation and accuracy of
the available two- phase flow models is discussed by Hoef et al. (2008). Table 1 gives an overview
of the existing two-phase flow models, with accuracy increasing towards the bottom of the table,
at the expense of computational effort.

Table 1: Two phase flow models [Hoef et al. (2008)]

Model Fluid Granular Particles Fluid-particle interaction
Discrete Bubble Model (DBM) Lagrangian  Eulerian Drag closure on bubbles
Fluid-fluid Model (CFD) Eulerian Eulerian Gas-mixture drag closure

Fluid Dynamics —Discrete
Element Model (CFD-DEM) Eulerian Lagrangian Gas-particle drag closure
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In CFD-DEM the particles are modelled as discrete entities, and their equations of motion
solved (i.e. a Lagrangian approach), whilst the fluid flow is modelled using volume averaged fluid
equations. This can be contrasted to the fluid-fluid model, where the particle phase is also treated
as pseudo fluid. Volume averaged equations [Anderson and Jackson (1967), Crowe et al. (1998)]
are used since it is impractical to solve the Navier-Stokes and continuity equation around every
particle. One form of the volume averaged fluid equations are given below, i.e. the equations of
momentum and continuity (eq. (1)-(2)). Here the equations are closed by using the ideal gas
equation (Eqn.(3)) and a drag force correlation (Eqn.(6)),
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where p 1s the density of fluid, i is the VCIOCIty vector, € is the voidage, ¢ is time, R is the gas
constant, ¢ is the gravity constant and F drag is the fluid-particle interaction force. These equations
can be solved using standard techniques from computational fluid mechanics, with an extra term
added to account for the drag force term and the voidage being derived from the known positions
of the particles.

Most DEM simulations will assume (for the sake of simplicity) that the particles are perfect
spheres, though it should be noted that simulations with non-spherical particles are possible [Zhong
et al. (2009)]. Hard sphere models [Crowe et al. (1998)] track the particles between collisions, and
assume that impact is instantaneous without modelling the contact forces directly, whilst soft-
sphere models [e.g. Tsuji et al. (1992), Thronton and Kafui (2003)] use the overlap between
particles to calculate the contact forces. In the latter case, the volume occupied by the particles can
change, both in reality and in the simulation, as the particles overlap. However, the deformation at
the contact is usually small if the particles are sufficiently stiff. Thus, in practice, the deformation
is ignored when computing the voidage and there is no difference in the voidage computations
between the soft or hard sphere approaches.

In addition to the importance of evaluating the voidage accurately for the volume averaged fluid
equations, the voidage also plays a role in the drag force. One possible way to simulate the fluid-
solid interaction in a two phase solid gas medium is to solve the equations for fluid dynamics
around each particle by specifying no slip condition at a particle fluid interface; the interaction
force then found by integration of pressure and shear forces over the particle surface. This method
is good, but, as noted previously, too expensive for a large number of particles (e.g. above 100). A
more feasible method is to use an empirical correlation to compute the drag on each particle. One
example of such a drag correlation is given by Beetstra et al. (2007) and used by Miiller et al.
(2008), Khawaja et al. (2011), Khawaja and Scott (2011) as shown in Eqn. (4),

-
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Here, f is the drag force ona single particle, Vp is the volume of a particle, « is the fluid (volume
averaged) velocity vector, 1) is the particle velocity, € is the voidage, and f3,,,,.,, is computed
using Eqn.(5).
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The force on the fluid in the cell is then the sum of drag forces on each particle in the cell as shown
in Eqn.(6),

n=Np
- 1 -
Fdrag =7 2 fp ()
Vcell nei

where V_, is the cell volume and N is the number of particles in the cell. It should be noted that
other correlations can also be used. Miiller et al. (2008), for example, compared the effect of using
other drag correlations [Ergun et al. (1952), Di Felice (1994)] on the granular temperature. One
thing all these correlations have in common is that drag force depends on local value of voidage.
Another point to note is that the summation in Eqn. (6) is analogous to the summation required for
the voidage calculation. Thus, any improved method of distributing the volume of particles
between cells, is also of relevance to the fluid-particle interaction force calculation.
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Figure 1: CFD-DEM fluid cells and spherical particles. To calculate the void fraction in

the highlighted cell, the volume of all the particles and sections of particles in the cell

must be computed: here, the cell contains one complete particle and a wedge shaped
section of a second particle.

Finally, it should be noted, that volume averaging requires that there be a significant number of
particles in a fluid cell, so that edge effects, where the particle straddles the boundary of a fluid cell,
should not be important. In practice, the drag force calculation can be quite sensitive to local
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voidage, and edge effects thus have a noticeable effect. Regardless of how accurately the voidage
in a fluid cell is calculated, it is desirable to ensure that the voidage in adjacent cells varies
smoothly as a particle crosses from one cell to the adjacent cell. For example, if the entire volume
of a particle is assigned to the cell where the particle centre is located, there is a sudden jump in
voidage when the particle crosses from one cell to another. This leads to unrealistic, high frequency
noise in the fluid variables.

2. VOIDAGE COMPUTATION
In a DEM simulation, the voidage can be taken as the ratio of the volume occupied by the fluid in
each cell, to the total volume of the fluid cell, i.e.

_ (volume of cell — volume of particles in the cell)

(7

volume of cell

where, for the case of rectangular cuboid cells, the volume of the fluid cell is given by

volume of cell = length X width X height (8)

The volume of the particles in the cell can then be computed by

n=~Np

4
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where 7 is the radius of a particle and ¢, is the volume ratio whose value varies from 0 to 1
depending upon the position of the particle. A value of ¢, = 0 means that the particle is completely
outside the fluid cell; whilst ¢, = 1 means that the particle is completely inside. An intermediate
value indicates that the particle is at a boundary where its volume is divided between more than one
cell, with ¢ equal to the volume of the particle in the cell divided by the total volume of the
particle. In practice, the summation in Eqn. (9) can be restricted to only those particles which could
have a contribution to the cell in question, rather than all particles in the system. However, exact
calculation of ¢, is computationally expensive and an approximation is often used. Part of the
difficulty arises from the fact that the fluid domain is divided in Cartesian coordinates, where as the
particles are spheres. Particles can be in more than one fluid cell, as shown in Figure 2, where
Figure 2(a) shows the particle cut in two by a plane normal to the y-direction, in (b) the particle is
divided into four volumes by planes normal to the z and y directions, and in (c) the particle is
divided into eight volumes since it is at the corner of a fluid cell.
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Figure 2: Particle at boundaries; (a) particle divided by a plane (b) particle divided by an
edge (c) particle divided at a corner; exploded 3D views of particle for each case

For particles which are on fluid cell boundaries, eight difference cases are possible:
1. Particle divided by a plane (two volumes); given in Figure 2(a)
Particle divided by two planes (three volumes)
Particle divided by three planes (four volumes); given in Figure 4 (below)
Particle divided by an edge (four volumes); given in Figure 2(b)
Particle divided by an edge and a plane (five volumes)
Particle divided by two edges (six volumes)
Particle divided by three edges but not touching the corner (seven volumes)
8. Particle divided by the corner (eight volumes); given in Figure 2(c)
Cases 1 to 5 can be treated analytically, e.g. where an edge or planes slice the particle to produce
a spherical cap or a wedge shaped volume as shown in Figure 2 (a) and (b). The other cases, however,
require numerical integration. In general, it is possible to write the integral for the volume of the
section of sphere contained within a cube as that of a suitable area with respect to a distance, i.e.

ﬂ dV:fA(s) ds (10)

V in Cube

Nk wD
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For example, to calculate the volume of the wedge section of the sphere in the cubic cell shown in
Figure 3, the volume integral can be written as

Zi
V=f A(R)dhR (11)
0

where, taking the corner of the cube as the origin, A(%) is the area of the sector of a circle, of radius
R (h), formed by the intersection of the sphere agd a plane at z = h with normal in the z direction,
minus the area formed by the triangles from OPS and OPQ; i.e,
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Figure 3: Calculation of the volume of the section of a sphere contained within a cubic
volume ; (a) shows the part of volume in a cubic fluid cell, (b) and (c) show the
projections looking down and from the side, respectively.

The angle 0(h), radius 12 (k) and the intercept of the circle formed by the intersection of the sphere
and a plane at z = i with the x and y axis, X (h) and Y (h), are only functions of the distance. Thus,
Eqgn.( 12 ) can be numerically integrated: here Simpson’s method was used [Siili and Mayers
(2003)].

One method which has been used previously to approximate the fraction of the volume of a
particle falling in a fluid cell (i.e. ¢ ) is to set it equal to that for a cube which circumscribes the
particle, denoted here by ¢, (e.g. Figure 3(a)). When a particle is on the boundary of fluid cells (e.g.
as in Figure 4 (b), where the particle is cut by three planes), the volume of a particle falling in to a
cell is taken to be the fraction of the circumscribing cube’s volume (which falls in the cell, ¢,
multiplied with the volume of the spherical particle). Computing the approximate volume ratio, ¢,
using the circumscribing cube is straightforward and computationally efficient. However, this can
lead to significant errors, for example, for the case shown in Figures 4 (b) and (c) the particle is cut
into four pieces, whilst the cube is cut into eight pieces.
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Figure 4: Particle and cube divided at same location; (a) the particle and the
circumscribing cube, (b) the particle at a boundary of fluid cells (in this case cut by three
planes) (c) the circumscribing cube cut by the same planes as the particle and divided
into eight volumes.

The exact volume ratios for the spherical particle, ¢, and those estimated using the circumscribing
cube, (bc, for the case shown in Figure 4 are compared in Table 2. In this case, the largest error is
in the first octant where using the cubic volume ratio would lead to a 20% deficit of volume.

Table 2: Difference between volume ratios of a cube and a sphere cut as shown in Figure
3(c); the corrected (Eqn. (14)) and normalised values are discussed in the error analysis

Cube Sphere Error Corrected Normalised Error

. b, ¢.— 9, 9, o, OISR
1%t octant  0.67 0.87 -0.2 0.615 0.854 -0.016
2nd octant  0.096 0.043 0.053 0.032 0.045 0.002
3doctant  0.0137 0 0.0137 0.003 0.004 0.004
4t octant  0.096 0.043 0.053 0.032 0.045 0.002
5t octant  0.096 0.043 0.053 0.032 0.045 0.002
6™ octant  0.0137 0 0.0137 0.003 0.004 0.004
7% octant  0.00195 0 0.00195 0.000 0.001 0.001
8 octant  0.0137 0 0.0137 0.003 0.004 0.004

3. ERROR ANALYSIS

A computational study was conducted to calculate the possible range of error in using the cubic
volume ratio, ¢, to determine the actual volume ratio of a sphere divided amongst box-shaped
cells, ¢,,. In this study, a spherical particle was displaced in all three Cartesian directions around
the centre of eight cubic cells. These cubic cells had side length equal to the diameter of the particle.
The particle was displaced in small steps to the extremities of the 8 cell complex to ensure that all
possible divisions of the particle were accounted for (and noting that symmetry can be used to
reduce the number of computations). At each step, the cubic volume ratio and the spherical volume
ratio were recorded in all eight cells. The resulting data cloud (of more than 4,000,000 points) is
shown in Figure 5. Any volume ratio other than unity or zero implies the particle is on a boundary.
The mapping between cubic volume ratio, ¢, and the spherical volume ratio, ¢, is not unique (as
can be seen in Table 3), since several different positions of the particle can give rise to the same ¢ ,
but result in different shaped sections of the sphere falling into the fluid cell (depending which of
the above eight cases applies).
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Table 3: Cubic and spherical volume ratios

Cubic volume ratio ¢, Spherical volume ratio, ¢, Middle of Range
Max. Min.

0.0 0.0 0.0 0.0
0.1 0.0880 0.0280 0.058
0.2 0.2406 0.1040 0.172
0.3 0.3941 0.2160 0.305
0.4 0.5427 0.3520 0.447
0.5 0.6814 0.5000 0.591
0.6 0.8002 0.6480 0.724
0.7 0.8946 0.7840 0.840
0.8 0.9569 0.8960 0.926
0.9 0.9901 0.9720 0.981
1.0 1.0 1.0 1.0

Given the ease with which the cubic approximation to the volume ratio ¢, can be computed, one
approach would be to apply a correction factor, bringing the value closer to ¢_. A simple, third
order, polynomial was fitted using least squares fitting [Bjorck et al. (1996)] to the mid-point of the
range of ¢ in Table 3: the form of the polynomial chosen so that it passed through the origin, and
the minimisation of the least squares error was constrained to force ¢ =1 at ¢_ =1 as shown in
Equation (13),

$s = ag’ + PP’ + (1 —a— B, (13)

where « and (3 are the coefficients of the polynomial. Applying such a correction does not ensure
that the volume of the particle is conserved, however this can be overcome by renormalising the
values of ¢ for a particle and dividing by their sum to give updated estimates of ¢ “. The initial
fit to the values in Table 3 does not represent the optimal fit, once this renormalisation is applied,
but does provide an good initial guess for the optimum values of « and (3. The coefficients of the
polynomial were optimised to reduce the maximum error between the corrected values of ¢, “and
true values of ¢ for all the points in the data cloud (using the ‘fminsearch’ algorithm in Matlab®),
giving

bs = —0.8457¢.% + 1.6625¢.” + 0.1832¢,. (14)

The effect of applying this correction is shown in Table 2; as can be seen, the correction procedure
reduces the error significantly. The corrected results are given in Figure 5, where it can be observed
that the cubic volume ratio (blue) has significant deviation from spherical volume ratio (green).
With the application of the Eqn. (14) and normalization, the deviation is significantly reduced (red).
As shown in the Figure 5, the maximum error in the cubic volume ratios is about 20 % whereas
after applying the correction the maximum error reduces to about 2.5 %.
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Figure 5: Actual (¢,) and computed volume ratios vs. Cubic (¢,), corrected (¢ ) and
spherical (¢,) volume ratios; the distance from spherical volume ratio represents the
error

It should be noted that the correction procedure does not distinguish between the different cases,
and hence different shapes of sphere section. Thus, some of the remaining variance between the
estimate ¢ and true value ¢, is due to the fact that the single correlation, which does not
distinguish between the cases listed above, will not be able to fit all values perfectly. Although not
shown in Figure 5, the cases do cluster together, and for the first case (when spherical particle cuts
into two) there is a one to one mapping between ¢, and ¢ . Whilst it could be argued that separate
correlations for each case should be developed, the possibility of sudden changes in voidage when
particles cross cell boundaries and transition between cases would be difficult to exclude. The
approach used here of using a single correlation across all cases, whilst not perfect, does
significantly reduce the error, and ensures that the voidage varies smoothly.

CONCLUSION

Voidage is an important variable in CFD-DEM simulations. Here, an approximate method for
computing the voidage using a circumscribing cube was compared with the exact method. This
cubic approximation requires significantly less computational effort than exact computation, but
introduces an error when the particle is on the boundary of a fluid cell. By sampling the space of
possible particle position, it was found that the maximum error associated with this approximation
was ~ 20%. An updated procedure was suggested that corrects the cubic estimate of voidage using
a fitted polynomial; with the application of this correction, the error was reduced to less than 2.5%.
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