Kyoto University Research Information Repository	
Title	Sharp characters and their generalizations
Author(s)	KIYOTA, Masao
Citation	数理解析研究所講究録 (1995), 896: 8-12
Issue Date	1995-01
URL	http://hdl.handle.net/2433/84462
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Sharp characters and their generalizations

Masao KIYOTA

Department of General Education Tokyo Medical and Dental University 2-8-30 Kohnodai, Ichikawa, Chiba, 272, Japan

1. Blichfeldt's Theorem

Let G be a finite group and χ a virtual character of G. Let L be the set of values of χ . For $l \in L$, we define the number B(l) as follows:

 $B(l) = \frac{a(l)}{|G|} \prod_{l' \in L^{-}\{l\}} (l-l'),$

where a(l) denotes the number of elements x in G with $\chi(x) = l$.

Ninety years ago, Blichfeldt [B] proved that B(l) is an algebraic integer for any $l \in L$. Our first aim is to extend this result. We will show that the numbers B(l) $(l \in L)$ are in fact the values of a virtual character $\widetilde{\chi}$ of G, constructed from χ in a definite manner. More precisely, we have the following

<u>Theorem 1.</u> Let χ be a class function on G defined by $\chi(x) = B(\chi(x))$ for $x \in G$. Then χ is a virtual character of G.

Since the value of a group character is a sum of roots of unity, it is clear that Theorem 1 implies Blichfeldt's Theorem mentioned above.

<u>Proof of Theorem 1.</u> (Outline) For $x \in G$, we let f_x denote the monic polynomial of least degree whose set of roots is $L - \{\chi(x)\}$. Let f be the avarage of f_x over G:

$$f = \frac{1}{|G|} \sum_{x \in G} f_x.$$

Then we have the following

Claim. f is a monic polynomial with integral coefficients of degree |L| - 1.

In fact, the coefficients of f are expressed by integral linear combinations of (χ^{i}, l_{G}) i = 0, 1, ... and symmetric functions of the elements in L. For example, if $L = \{n, l, k\}$ then we have $f(X) = X^{2} - ((n+l+k) - (\chi, l_{G}))X + ((nl+lk+kn) - (n+l+k)(\chi, l_{G}) + (\chi^{2}, l_{G})).$

Now Theorem 1 follows easily from Claim since $\widetilde{\chi} = f(\chi)$.

<u>Remark.</u> The above f is the polynomial of least degree with f(l) = B(l) for every $l \in L$, that is, the Lagrange interpolation polynomial through the points $\{(l,B(l)) \mid l \in L\}$.

One of the typical properties of $\widetilde{\chi}$ is that it does not take the value 0. So we can define the class function $1/\widetilde{\chi}$. By direct calculation, we obtain

Proposition 2. $(\chi^i, 1/\chi) = 0$ for i = 0, 1, ..., |L| - 2.

Using Proposition 2 (i=0), we have the following divisibility conditions.

<u>Proposition 3.</u> For any $l \in L$, B(l) divides $a(l)\prod_{l' \in L-\{l\}} B(l')$ in the ring of algebraic integers. In particular, if χ is a character of degree *n*, then B(n) divides $\prod_{l \in L-\{n\}} B(l)$.

2. Sharp characters of finite groups

Under the same notation as in Section 1, we will define sharp triples for group characters.

<u>Definitions.</u> The triple (G, χ, l) is called a sharp triple if B(l) is a unit in the ring of algebraic integers. The pair (G, χ) is called a sharp pair if $(G, \chi, \chi(1))$ is a sharp triple.

The concept of sharp pairs was first introduced by Cameron and Kiyota [CK], and their definition of sharp pairs is slightly different from ours. But at least in case χ is a faithful character of G, these two definitions are the same. So the concept of sharp triples is a natural generalization of that of sharp pairs

We will give some examples of sharp triples.

Example 1. Let G be cyclic and χ be a faithful linear character of G. Then (G, χ, l) is sharp for every $l \in \text{Im } \chi$.

Example 2. Let G be a sharply t-transitive permutation group and π be the associated permutation character. Then $(G, \pi, t-2)$ is a sharp triple, and (G, π) is a sharp pair.

The following Lemmas are easy to prove. (Use Proposition 3 for Lemma 5.)

Lemma 4. If (G, χ, l) is sharp, then a(l) divides |G|.

Lemma 5. Let χ be a character of degree *n*. If (G, χ, l) is sharp for all $l \in L - \{n\}$, then (G, χ) is a sharp pair.

<u>Question 6.</u> If (G, χ, l) is sharp with χ a faithful character, then is it true that the set $\{x \in G \mid \chi(x) = l\}$ is a single conjugacy class of G?

<u>Problem 7.</u> Determine all finite groups G such that (G, χ, l) is sharp for every non-trivial irreducible character χ and for every $l \in Im \chi$. Note that abelian groups and dihedral groups of twice odd prime order are such examples.

3. Classification of sharp triples for given L

From now on we assume χ is a faithful character of G of degree n. Set

 $L = \operatorname{Im} \chi$ and $L^* = L - \{n\}$. Cameron and Kiyota [CK] posed the problem of determining all the sharp pairs (G, χ) for a given set L^* . There are many papers on this subject; see the references of [AKN]. In particular Alvis and Nozawa [AN] have given a complete classification of sharp pairs when L^* contains an irrational number.

Now we will consider the analogous problem for sharp triples (G, χ, l) . The results known to me are very few. The first one is the simplest case and easy to prove.

<u>Result 1.</u> Let $L^* = \{\alpha_1, ..., \alpha_t\}$ with all α_i are algebraically conjugate. If (G, χ, α_1) is sharp, then G is cyclic of prime order.

<u>Proof.</u> Since all α_i are conjugate, (G, χ, α_i) are all sharp, and so (G, χ) is sharp by Lemma 5. If $t \ge 2$, then the result follows from Theorem 4.1 in [CK]. Now assume t = 1. Then by Lemma 4, $\alpha(\alpha_1)$ divides $|G| = 1 + \alpha(\alpha_1)$. Thus $\alpha(\alpha_1) = 1$, and so G is cyclic of order two. This completes the proof.

We will state the other known results without proofs.

<u>Result 2.</u> Let $L^* = \{0, \alpha_1, ..., \alpha_t\}$ with all α_i are algebraically conjugate and $t \ge 2$. If $(\chi, I_G) = 0$ and $(G, \chi, 0)$ is sharp, then G is cyclic of order 4, dihedral of twice odd prime order, or $E_{2^v} \rtimes Z_p$, where $p = 2^v - 1$ is a Mersenne prime.

<u>Result 3.</u> (Matsuhisa and Yamaki [MY]) Let $L^* = \{0, \varepsilon_1, ..., \varepsilon_t\}$ with all ε_i are roots of unity. If $(G, \chi, 0)$ is sharp, then G is a sharply 3-transitive group or a 2-transitive Frobenius group.

<u>Result 4.</u> Let $L^* = \{l,k\}$ with integers l,k. If $(\chi, 1_G) = 0$ and (G, χ, l) is sharp, then one of the following holds:

(i) k=0 and (G, χ) is sharp of type $\{0, l\}$.

(ii) k=-1, l=0 and G is the symmetric group of degree 3.

(iii) k=-1, l=1 and G is quaternion or dihedral of order 8.

Problem 8. Determine all sharp triples (G, χ, l) when L^* contains an irrational number.

References

[AKN] D.Alvis, M.Kiyota and S.Nozawa, On sharp characters of finite groups, Algebraic Combinatorics Fukuoka 1993.

[AN] D.Alvis and S.Nozawa, Sharp characters with irrational values, (submitted).

- [B] H.F.Blichfeldt, A theorem concerning the invariants of linear homogeneous groups, with some applications to substitution groups, Trans. Amer. Math. Soc. 5 (1904), 461-466.
- [CK] P.J.Cameron and M.Kiyota, Sharp characters of finite groups, J. Algebra 115 (1988), 125-143.
- [MY] T.Matsuhisa and H.Yamaki, A class of finite groups admitting certain sharp characters II, Proc. Amer. Math. Soc. 110, (1990), 1-5.