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Abstract

The machine learning method, Gaussian Process Regression (GPR), has lately been introduced
for chlorophyll content mapping from remotely sensed data. It has been shown that GPR has
outperformed other machine learning and empirical methods in accuracy, speed and stability.
Moreover, GPR not only estimates the chlorophyll content, it also provides the certainty level
of the prediction, allowing the assessment of additional certainty maps. However, since GPR
is a non-linear kernel based regression method, the relevance of the features are not accessible
directly from the weights. The main contribution of this thesis is to develop a procedure for
feature sensitivity analysis in order to assign relative importance to the features. The sensitivity
analysis was introduced for the predictive mean function and for the predictive variance function
of the Gaussian process. Then the empirical estimates for the derived sensitivity functions were
applied to a land chlorophyll dataset and to two ocean chlorophyll datasets. The sensitivity
analysis revealed the most important spectral bands for land chlorophyll and for ocean chloro-
phyll prediction. Applying the proposed methodology to the land chlorophyll dataset discovered
that bands outside the chlorophyll absorption spectrum also contribute to the prediction of
chlorophyll. The results of the sensitivity analysis of the ocean chlorophyll datasets open the
possibility of discriminating between Case-1 water and Case-2 water condition. The method
also provides additional information through the sensitivity of the predictive variance. Thus,
not only the most relevant spectral bands can be revealed, but also the stability of the variance
for the feature in interest can be accessed.
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Introduction

Remote sensing of chlorophyll from space provides the possibility to detect changes in chlorophyll
content. Changes in chlorophyll concentration indicate changes in the photosynthetic activity.
Both terrestrial and marine primary producers use photosynthesis to live and grow. However,
following the photosynthetic activity of primary producers by chlorophyll content mapping has
di�erent applications, depending on whether the the environment is terrestrial or marine.

Monitoring the photosynthetic activity of terrestrial plants provides information about the
vegetation productivity, vegetation stress and the land cover. It has been shown, that in a crop
the concentration of chlorophyll is directly related to yield, allowing the possibility of estimating
vegetation productivity from remotely sensed data [Cracknell et al., 2009]. Vegetation stress
can be revealed by following the re�ectance spectrum over time. Shifts in the position of the
red-edge might indicate stressed vegetation due to water de�ciency, pollutant stress, disease or
stress due to heavy metals. Gaining knowledge about the vegetation productivity and health
status of vegetation provides useful information for agriculture applications [Joiner et al., 2013].
Land cover mapping is mostly used for forest applications. In addition, remote sensing of
chlorophyll content o�ers the possibility to the assessment of the terrestrial carbon budget
[Joiner et al., 2013].

Remote sensing of ocean chlorophyll content allows to access information about the marine
primary producers, the phytoplankton. Phytoplankton are the beginning of the marine food
chain, thus their presence indicate the occurrence of �sh. Ocean color images are widely used in
the �shing industry for locating areas rich in �sh 1. In addition to the ecological importance of
phytoplankton, they also act like biological pumps due to their capability of removing carbon
dioxide (CO2) from the atmosphere. Since phytoplankton are photosynthetic organisms, they
take up carbon dioxide [Reynolds, 2006]. Dying phytoplankton sink to the bottom of the oceans,
where they accumulate in the sediments. Thus, they remove CO2 from the atmosphere. There-
fore, monitoring ocean chlorophyll content provides a tool to achieve deeper understanding of
the contribution of CO2 to the climate 2.

All these applications require an accurate and fast chlorophyll content mapping. There have
been developed several parametric and machine learning methods for chlorophyll content esti-
mation from multi- and hyperspectral data [Verrelst et al., 2012b]. Parametric methods, such
as vegetation indices and spectral band ratios, have been widely used for chlorophyll content
estimation purposes due to their fast performance. Some of the disadvantages of these models
are that they might be a�ected by confounders and they cannot adapt to changes in the varia-
tion of biophysical parameters and illumination, which might lead to inaccurate predictions. In
addition, they make use of only a few spectral bands for chlorophyll estimation, thus resulting un-
certainty whether the right combination of spectral bands are being used [Verrelst et al., 2012b].
In order to overcome the drawbacks of methods based on vegetation indices and spectral band
ratios, machine learning methods have been introduced. One of the advantages of the ma-

1http://oceancolor.gsfc.nasa.gov/
2earthobservatory.nasa.gov/Features/Phytoplankton/page2.php
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Figure 1: Sensitivity analysis of GPR.

chine learning methods is that they are not based on the relationship between the variables
[Verrelst et al., 2012a]. Machine learning models have shown an improved performance, spe-
cially the recently introduced Gaussian Process Regression (GPR) [Verrelst et al., 2012a]. GPR
di�ers from other machine learning methods not only in its predictive power, but also in its
principles. The methodology of the GPR is based on Bayes' theorem, which can be followed
back to basic axioms of probability. The other advantageous property of GPR is that it provides
an additional information about the prediction, the predictive variance. Thus the output of the
regression is not only the estimated chlorophyll content, but also the estimated variance, which
reveals the strength of the prediction.

Although GPR has shown an excellent predictive performance, the information about the
relative relevance of the features being used for regression is lost, since GPR is a non-linear
kernel method. It hasn't been proved yet what controls the regression. Therefore, the main
contribution of this thesis was to focus on the derivation of a new methodology for feature
selection, the sensitivity analysis of features, in order to discover the driving mechanisms of
the GPR. Figure 1 illustrates how the sensitivity analysis of features can be used to reveal
feature relevance in the GPR. The sensitivity analysis aimed to reveal the importance of the
spectral bands being used for chlorophyll content mapping, thus retrieving information about
characteristics of the study areas. Another advantage of applying sensitivity analysis for GPR
is the possibility of accessing information about the variance of the most relevant bands. This is
in contrast with other methods, since only the GPR provides the predictive variance in addition
to the predictive mean. The sensitivity analysis of features discovered that not only bands
around the red-edge are the most important for land chlorophyll estimation, but also bands that
fall outside the chlorophyll absorption region. In the case of the sensitivity analysis of ocean
chlorophyll, the method revealed that the most relevant bands for ocean chlorophyll content
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estimation di�er whether Case-1 water or Case-2 water conditions are presence.
Although this thesis focused on the prediction of chlorophyll, the methodology of the sensi-

tivity analysis translates to other �elds as well3.

Structure of the thesis

This thesis contains three parts.

Part I

The �rst part describes the background theory. It gives an overview of the importance of the
chlorophyll molecule. Since this thesis focused on chlorophyll content estimation, it is important
to gain deeper understanding of the output, the estimated chlorophyll. Then it describes the
remote sensing sensors and the methods being used for land chlorophyll and ocean chlorophyll
content mapping, because the input data originates from passive imaging systems. Finally,
examples for machine learning methods for chlorophyll content prediction are discussed. The
examples of the machine learning methods are described for the bene�t of the reader, thus
allowing the reader to understand the advantages of the GPR in comparison of other machine
learning methods, which have been used for chlorophyll content mapping from remotely sensed
data.

Part II

The second part of the thesis gives a detailed description of the Gaussian Process Regression
(GPR). In order to understand why GPR di�ers from other machine learning methods, in addi-
tion to introducing the principles of the method, the derivation from the Multivariate Gaussian
distribution is presented. Thus it can be realized, that GPR is a Bayesian statistical model,
in contrast to the other machine learning models. Then GPR is applied to a land chlorophyll
dataset and to two ocean chlorophyll datasets. The results of the regressions are presented and
discussed, and the predictive performance of the GPR is evaluated by using widely used model
criteria.

Part III

The third part is the main focus of the thesis, namely the sensitivity analysis of features. First
the principles of the sensitivity analysis are described. Then the sensitivity analysis is derived for
the GPR and the performance of it is tested on two controlled datasets. Finally, the sensitivity
analysis is applied to the land chlorophyll dataset and to the ocean chlorophyll datasets. Then
the resulting most relevant features are interpreted by using the gained knowledge from Part I
and from Part II.

3The illustration of the translational nature of the methodology can be seen in Appendix A

3



4



Part I

Background theory
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Chapter 1

The importance of chlorophyll in

photosynthesis

Plants, phytoplankton, algae and certain bacteria are capable of harvesting light energy in order
to build up their own molecules [Cotterill, 2002]. The process, which uses light energy to fuel
metabolism, is called photosynthesis. The process, photosynthesis, in phytoplankton does not
di�er from land plants [Reynolds, 2006], thus the description of the photosynthesis is valid both
for marine phytoplankton and for land plants. During photosynthesis, carbon-dioxide and water
is converted to glucose and oxygen in the presence of light energy [Cotterill, 2002]. This can be
expressed by the following formula

6CO2 + 6H2O light energy
−−−−−−−−−−→

C6H12O6 + 6O2, (1.1)

where the term CO2 is the carbon-dioxide, H2O is water, C6H12O6 is glucose and O2 is oxygen.
Photosynthesis in leafs and phytoplankton takes place in specialized organelles called chloro-
plasts. Chloroplasts contain an inner membrane called thylakoid membrane which forms long
folds in the stroma of the chloroplast. A green pigment called chlorophyll is located in the
folded thylakoid membrane1. Figure 1.1 shows the structure of a chloroplast and the thylakoid
membrane.

1http://www.nature.com/scitable/topicpage/photosynthetic-cells-14025371
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Figure 1.1: Chloroplast (from www.uic.edu).

1.1 Chlorophyll, the green pigment

The reason that certain organisms can perform photosynthesis by capturing photons is that they
contain chlorophyll which can absorb incident light. The electromagnetic spectrum spreads from
short wavelengths (10−14 m) to long wavelengths (102 m). However, chlorophyll molecules can
absorb only certain wavelengths of light from the visible part of the electromagnetic spectrum.
Figure 1.2 shows the electromagnetic spectrum. The visible light region of the spectrum is a
short interval of the entire spectrum.

Figure 1.2: The electromagnetic spectrum (from www.pro-lite.co.uk).

There are several types of chlorophyll, namely chlorophyll a, b, c and d. Green leafs (higher
plants) contain both chlorophyll a and b in order to increase the e�ciency of the photosyn-
thesis [Cotterill, 2002]. Chlorophyll a and b absorb red and blue light, and re�ect green light.
Thus chlorophyll can absorb photons only with certain wavelengths. Chlorophyll a and b have
characteristic light absorption maxima, shown in Fig. 1.3.
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Figure 1.3: Absorption spectrum of chlorophyll a and b. (Adopted from [Kemp et al., 2012].)

1.1.1 Trapping of light

When light illuminates plants and phytoplankton, photons get absorbed by both chlorophyll a
and b molecules (and other accessory pigments). This can be described by

Chlorophyll + hν = Chlorophyllexcited, (1.2)

where h is the Planck constant, ν is the frequency of the incoming photon before absorp-
tion and Chlorophyll represents any chlorophyll pigment before the absorption of the photon.
Chlorophyllexcited is the chlorophyll, after the absorption of the photon. The subscript excited
indicates the new energy level of the Chlorophyll molecule. This is due to the fact that the
absorption of the photon gave access energy to the Chlorophyll molecule, thus allowing it to
reach a higher energy level. The frequency can be expressed as the fraction of the speed of light
c and the wavelength λ, ν = c

λ . Thus only certain photons with certain wavelengths can be
absorbed by the chlorophyll molecules due to the quantization of energy levels [Govindjee, 1975].
This explains why only certain photons with certain wavelengths can be absorbed. Absorption
of photons leads to excitations in these molecules [Rohá£ek and Barták, 1999]. The access en-
ergy causes changes in the distribution of the electron structures of the chlorophyll molecules.
Chlorophyll molecules are closely spaced thus allowing a rapid transfer of the excitation energy
to each other in order to return to their ground state. However, due to the molecular di�erence
between chlorophyll a and b, the e�ciency of transferring excitation energy also di�ers slightly
[Govindjee, 1975]. The energy transfer e�ciency from chlorophyll b to a is believed to be 100
%. Excitation energy migrates from one pigment to another until it reaches an electron trap
called reaction center where the energy gets trapped in order to drive photochemical reactions
[Govindjee, 1975]. Figure 1.4 shows the pathway of energy migration.

This excitation energy drives photochemical reactions which makes photosynthetic processes
possible. However, only a part of the excitation energy contributes to photochemical reactions.
A part of this energy is converted to heat, which is a non-radiative de-excitation pathway,
and a part of it is re-emitted in a form of chlorophyll �uorescence, which is a radiative de-
excitation pathway [Rohá£ek and Barták, 1999]. These three processes, photochemistry, heat
loss and chlorophyll �uorescence compete for excitation energy [Baker, 2008]. Figure 1.5 shows
the schematic presentation of the three competitive pathways.

Figure 1.5 shows that light energy is absorbed by chlorophylls which is associated with
photosystem 2. There are two photosystems in plants and phytoplankton, photosystem 1 and
2. These photosystems are the collections of several hundreds of chlorophyll molecules (and
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Figure 1.4: Energy transfer between the pigments (from www.studyblue.com).

Figure 1.5: Schematic presentation of the three pathways [Baker, 2008].
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other components) [Govindjee, 1975]. This energy can lead to photochemical reactions. During
photochemical reactions an electron is transferred from the reaction center of the chlorophyll
molecule (P680) to the primary acceptor (QA) [Baker, 2008]. Figure 1.5 also shows that the
excitation energy can be lost in a form of heat or chlorophyll �uorescence. This can be described
by

Clorophyllexcited → Chlorophyll + hν
′
, (1.3)

where Clorophyllexcited is the Chlorophyll molecule with the access energy arising form the
absorbed photon. Chlorophyll is the Chlorophyll molecule after emitting the access energy
in a form of chlorophyll �uorescence hν

′
, and returning into its ground state. The term ν

′

corresponds to the frequency of the re-emitted photon. It is worth to mention that although
both chlorophyll a and b are present in intact leaves of higher plants and in some phytoplankton,
only chlorophyll a distributes to chlorophyll �uorescence due to the high e�ciency of transferring
excitation energy from chlorophyll b to chlorophyll a [Rohá£ek and Barták, 1999]. Chlorophyll
�uorescence is believed to be a predominant emission at room temperature, it represents only
3-5 % of the total absorbed energy [Rohá£ek and Barták, 1999]. However measuring the time
varying chlorophyll �uorescence emission allows to detect changes in the distribution of the
absorbed energy. This is due to the fact that chlorophyll �uorescence pathway is in competition
with the heat loss pathway and the photochemical pathway for the absorbed energy. Thus
changes in the chlorophyll �uorescence emission indicates changes in the photochemical reactions
and/or in heat conversion (due to the law of conservation of energy) [Baker, 2008].

Figure 1.6 summarizes the relationship between the absorption and the �uorescence of the
chlorophyll molecules. Figure 1.6 shows the distinct energy levels of a chlorophyll molecule and
the corresponding absorbance spectrum. Figure 1.6 also shows that �uorescence takes place from
the lowest excited state to the ground state. The other states (higher states) do not contribute
to �uorescence due to rapid relaxation which doesn't result radiation. The �uorescence intensity
shows the �uorescence spectrum. It can be observed that the �uorescence maximum is slightly
shifted to longer wavelengths (red line) comparing to the absorption maximum (black line). This
is due to thermal relaxations [Govindjee, 1975].

Figure 1.6: Absorption and �uorescence (after [Govindjee, 1975]).
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1.2 Chlorophyll content prediction

Measuring chlorophyll �uorescence allows to gain knowledge about the health status of the
vegetation [Verrelst et al., 2011]. Chlorophyll �uorescence provides information about the rate
of photosynthesis and the amount of chlorophyll [Abbott and Letelier]. Fluorescence emission
increases under stress conditions. Fluorescence emission shows an inverse correlation with pho-
tosynthetic activity [Chaerle et al., 2007]. This is due to the fact that the electron transport
is partially blocked in the photosynthetic process [Edner et al., 1995]. Chlorophyll �uorescence
signal can be retrieved from satellite measurements which allows to estimate the chlorophyll
content [Verrelst et al., 2012a].
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Chapter 2

Passive remote sensing of vegetation

This chapter is mainly based on the books by [van Zyl, 2006]
and [Jones & Vaughan, 2010]. Passive remote sensing detects re�ected sun radiation without
using arti�cially generated radiation. Passive remote sensing sensors capture radiation most
commonly in the visible and near-infrared part of the electromagnetic spectrum. These visible
and infrared imaging sensors monitor the Earth's surface. Thus passive imaging systems can give
informations about the vegetation properties by collecting the re�ected radiation and studying
the spectral characteristic of it. Therefore, understanding the principles of the way these systems
operate, is necessary.

2.1 Principles of passive imaging systems

In order to understand how satellites can collect information about vegetation, the basic prin-
ciples of passive imaging systems are presented. Figure 2.1 shows how information about the
Earth's surface can be collected. Figure 2.1 is discussed in detail in this section.

Figure 2.1: Principles of remote sensing
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The source of illumination is the sun. The sun radiates energy with a given temperature
Ts and wavelength λ. Denote this energy S(λ, Ts). This energy is radiated spherically from
the sun's surface. Denote the radius of the sun Rs. S(λ, Ts) decreases with increasing distance
from the sun's surface. Denote the distance between the sun's surface and the Earth's surface
d. When radiation propagates through the Earth's atmosphere a part of it is absorbed by the
particles of the atmospheric components. Denote this absorption factor a(λ). The spectrum of
the incoming radiant �ux at the surface of the Earth can be written by

Si(λ) = S(λ, Ts)

(
Rs
d

)2

a(λ), (2.1)

where the index i indicates that the radiant �ux is incoming. A part of Si(λ) is re�ected by the
Earth's surface. This ability of the Earth's surface is called re�ectance or surface albedo. The
surface albedo depends on the characteristics of the surface and it is denoted ρ(λ). The re�ected
radiation propagates through the atmosphere a(λ) once again until it reaches the aperture of the
sensor. The energy, carried by the re�ected radiation decreases with increasing distance from
the Earth's surface. Denote the distance between the aperture of the sensor and the Earth's
surface r. For Lambertian surfaces1 this attenuation can be expressed by 1

2πr2
. Thus the radiant

�ux at the aperture of the sensor Sr(λ) can be written by

Sr(λ) = Si(λ)ρ(λ)dSa(λ)
1

2πr2
= S(λ, Ts)

(
Rs
d

)2

a2(λ)ρ(λ)dS
1

2πr2
, (2.2)

where dS is the surface element, which re�ects the incoming radiant �ux. The index r in Sr(λ)
refers to re�ected. The power P (λ) collected by the sensor with an aperture size dA is

P (λ) = Sr(λ)dA = S(λ, Ts)

(
Rs
d

)2

a2(λ)ρ(λ)dS
1

2πr2
dA. (2.3)

Usually the sensor collects P (λ) over a given bandwidth (from λa to λb) for a short time, called
dwell time τ , with a given e�ciency. The e�ciency of the sensor can be described by the sensor
transfer function hst(λ). Thus the energy collected by the sensor (E) can be expressed by

E =

∫ λb

λa

S(λ, Ts)

(
Rs
d

)2

a2(λ)ρ(λ)dS
1

2πr2
dAhst(λ)τdλ. (2.4)

This integral can be approximated for relatively short bandwidths by

E ≈ S(λ0, Ts)

(
Rs
d

)2

a2(λ0)ρ(λ0)dS
1

2πr2
dAhst(λ0)τ∆λ, (2.5)

where λ0 denotes the wavelength at the center of the measurement bandwidth and ∆λ is the
bandwidth.

2.2 Passive imaging systems for monitoring vegetation

Figure 2.2 shows that incident solar radiation on green leaves is partially absorbed, in order to
drive photosynthetic processes, and partially re�ected due to the characteristics of the plant.
A small fraction of the absorbed radiation is re-emitted as �uorescence. Thus the radiation
measured by the sensor is the composition of the re�ected radiation and the �uorescence. Figure
2.2 also shows the chloroplast where re�ectance, absorption and �uorescence takes place. This
section gives an overview about passive imaging sensors which can measure the composition of
the re�ected radiation and �uorescence.

1Lambertian surface: re�ected light is scattered uniformly over the hemisphere.
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Figure 2.2: Monitoring vegetation.

2.2.1 Resolution

Spatial resolution

A surface element can be represented by a pixel. Spatial resolution refers to the size of the
pixel. Spatial resolution depends on the optical system of the sensor and the height above the
ground. Passive imaging systems can be grouped into low-resolution systems, medium-resolution
systems and high-resolution systems [Jones & Vaughan, 2010]. Low-resolution systems have a
spatial resolution of approximately 1 km, medium-resolution systems from 100 m to 1 km and
high-resolution systems can have a spatial resolution from 5 m to 100 m [Wojtaszek, 2010]. Low-
resolution systems can image a large area with coarse details, while high-resolution systems can
image a smaller area with �ne details2.

Spectral resolution

Sensors can detect over broad spectral bands or over narrow spectral bands. The spectral
resolution of sensors operating on many narrow spectral bands is high. These imaging system
are referred to as multi-, super-, and hyperspectral imagery depending on the number of spectral
resolution channels they operate on. Multispectral imagers use a few wavebands, superspectral
imagers record between 10 and 50 spectral bands and hyperspectral imagers can record between
50 and 200 wavebands. Hyperspectral imagers are often referred to as imaging spectrometers
[Jones & Vaughan, 2010]. Images taken by imaging spectrometers are called multiple images,
where each image corresponds to one waveband. Such multiple images can be stacked in order
to form a three-dimensional cube, where x and y corresponds to the spatial coordinates and the
third direction λ corresponds to the spectral dimension. Figure 2.3 shows a hyperspectral image
cube. The advantage of hyperspectral imagers over multi-, and superspectral imagers is that
they contain more information. Thus �ner details can be retrieved [Jones & Vaughan, 2010].
Figure 2.4 shows the di�erence between an multispectral and an hyperspectral image cube.

2from: http://www.nrcan.gc.ca/earth-sciences/geography-boundary/remote-sensing/fundamentals/985
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Figure 2.3: Hyperspectral image cube (after www.ece.gatech.edu).

Figure 2.4: Multispectral and hyperspectral image cube (from www.chemimage.com).
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2.2.2 The structure of the imaging systems

Figure 2.5 shows the main components of the imaging systems.

Figure 2.5: Structure of the imaging systems (from [van Zyl, 2006]).

The size of the collecting aperture determines the available energy for the sensor. The
collector (lens or curved mirror) collects the radiation. Then the focusing optics focuses the
radiation on the detecting medium through the scanning element (if the imaging systems has
only a few detecting elements) and the dispersive element, which splits the incident radiation into
several spectral components. Finally the detecting medium transforms the collected energy into
a recordable information. In the visible and near-infrared part of the spectrum CCD (charge-
coupled device) detectors are used due to their sensitivity to wavelength between 400 and 1100
nm.

2.2.3 The types of the imaging systems

There are three main types of imaging systems, referred to as framing cameras, scanning systems
and pushbroom imagers [van Zyl, 2006]. Figure 2.6 shows the three type of imaging systems.
The swath width refers to the length of the scan line of the detector. (Swath is the strip of the
surface under the platform where data is collected from.) Along-track direction refers to the
parallel direction of the line of �ight, while cross-track direction is the direction perpendicular to
the line of �ight [Jones & Vaughan, 2010]. The framing camera takes a snapshot of the surface
area. Scanning systems and pushbroom imagers build up an image line by line as the platform
moves. Scanning systems project the image of one pixel on a single detector. It uses across-track
scanning, thus lines are scanned as the platform propagates. Pushbroom imagers use along track
scanning. It uses a line array of detectors in order to cover all pixels in cross-track direction
allowing a longer dwell time on each pixel.

Passive imaging systems can operate both spaceborne and airborne. In the following section
an example of a spaceborne operating imaging spectrometer and an example of an airborne
imaging spectrometer are described.

2.2.4 The spaceborne imaging spectrometer: CHRIS

CHRIS (Compact High Resolution Imaging Spectrometer) is a high-resolution imaging spec-
trometer [Jones & Vaughan, 2010]. CHRIS acquires images over the Earth surface in the spec-
tral range between 415 nm and 1050 nm [Cutter et al., 2000]. It can operate in various modes
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Figure 2.6: Imaging systems (from [van Zyl, 2006]).

[Verrelst et al., 2012a]. For instance, CHRIS can operate with 19 spectral bands with a spec-
tral sampling interval between 1.25 nm and 11 nm at 25 m spatial resolution at nadir3. It
can is also operate in a mode when 62 spectral bands are available at a 50 m spatial res-
olution [Jones & Vaughan, 2010]. CHRIS was mounted on a small satellite, called PROBA
(Project for On-Board Autonomy). PROBA has operated at 830 km altitude in pushbroom
mode [Cutter et al., 2000]. Operating in pushbroom mode has the advantage that the dwell
time is longer, hence the spatial resolution and the width of the bandwidth is improved
[van Zyl, 2006]. PROBA can acquire 5 images of one target at 5 di�erent view of zenith angles4

in one satellite overpass [Jones & Vaughan, 2010].

2.2.5 The airborne imaging spectrometer: CASI

CASI (Compact Airborne Spectrographic Imager) is also an imaging spectrometer operating in
small aircraft. The spectral range of CASI is between 423 and 946 nm. It has 288 spectral bands
[Borstad et al., 1989], and 1.9 nm sampling intervals [Jones & Vaughan, 2010]. CASI provides
512 spatial pixels per scan line [Jones & Vaughan, 2010].

2.3 Remote sensing of terrestrial chlorophyll

Chapter 2 described the principles of passive remote sensing and the importance of passive
imaging systems in monitoring vegetation. One of the purposes of monitoring vegetation by
passive imaging systems is to map the chlorophyll content of plants. Figure 2.2 shows the con-
nection between the measured signal and plant activity (absorption, re�ectance and chlorophyll
�uorescence). Chapter 1 gave on overview about the importance of chlorophyll �uorescence. It
should be emphasized that the measured signal gives information about the re�ected radiation
and the re-emitted radiation (chlorophyll �uorescence). Chlorophyll �uorescence is related to
chlorophyll content. It was also mentioned that the chlorophyll �uorescence signal is tiny, only
1 % or 2% of the absorbed light [Verrelst et al., 2012a]. In order to use passive imaging systems
to monitor chlorophyll content based on the measured chlorophyll �uorescence signal, various
approaches have been developed. The following sections give an overview of the most commonly
used chlorophyll retrieval methods.

3Nadir: looking vertically downwards [Jones & Vaughan, 2010].
4Zenith: vertically upwards [Jones & Vaughan, 2010].
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2.3.1 Vegetation indices

Vegetation indices are dimensionless quantities. They indicate the presence of green vegeta-
tion. Vegetation indices are based on the characteristics of chlorophyll absorption. The presence
of chlorophyll indicates a strong absorption at wavelengths shorter than 700 nm, strong re-
�ectance between 700 and 1300 nm. The spectral re�ectance between 1300 and 2500 nm is
almost the same as for pure water [van Zyl, 2006]. The absorption decreases rapidly around
700 nm. In the observed spectrum this is manifested as a sharp increase in re�ectance (around
700 nm). The sudden change at the red-edge (700 nm) indicates the presence of green vege-
tation. There haven't been found evidence that other natural surfaces could show this rapid
change [Jones & Vaughan, 2010]. Measuring the variation in spectral signature of vegetation
allows the estimation of the health status of vegetation. Thus changes in spectral signature
indicates changes in chlorophyll concentration. Figure 2.7 shows the characteristic change at
the red-edge for green vegetation. It also shows how the re�ectance changes for unhealthy veg-
etation. There are several types of vegetation indices. In the following a few commonly used

Figure 2.7: Spectral re�ectance of various natural surfaces (from http://bluemarble.ch/).

vegetation indices are presented. The presented vegetation indices are based on the book from
[Jones & Vaughan, 2010].

Di�erence vegetation index

The di�erence vegetation index (DV I) can be expressed by

DV I = ρNIR − ρR, (2.6)

where ρNIR is the re�ectance in the near-infrared and ρR is the re�ectance in the red region of
the spectrum. For green vegetation the DV I results in a greater value than for bare soil surface.
This is due to the fact that healthy vegetation has the sharp change between the near-infrared
and red region (Fig. 2.7), while bare soil doesn't have this characteristic.
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Ratio vegetation index

The ratio vegetation index (RV I) is the ratio of ρNIR and ρR,

RV I =
ρNIR
ρR

. (2.7)

Normalized di�erence vegetation index

The normalized di�erence vegetation index (NDV I) is the fraction of DV I and the sum of the
ρNIR and ρR,

NDV I =
ρNIR − ρR
ρNIR + ρR

. (2.8)

This model has the advantage that it ranges between 0 and 1 in the absence of clouds, snow and
water surfaces.

Chlorophyll vegetation index

CI590 =
ρ880 − ρ590

ρ590
, (2.9)

where CI590 is chlorophyll index. The index 590 and 880 refers to the wavelength (nm). Using
the observed re�ectance at 590 nm (ρ590) and 880 nm (ρ880) in order to calculate CI590 gives
the best sensitivity to crop chlorophyll content.
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Chapter 3

Ocean colour remote sensing

Chapter 2 introduced the principles of passive imaging systems and the applications of passive
imaging systems for monitoring vegetation. Passive imaging systems are also used for monitoring
ocean chlorophyll content. However, the composition of the collected radiance by the sensor is
di�erent for oceans since the optical properties of oceans di�er from the terrestrial ones. This
chapter gives an overview of the collected water leaving radiance by the sensor and describes
two examples for ocean colour remote sensing. The total collected radiance Lt by the sensor
can be written by

Lt = Lp + Ls + Lv + Lb, (3.1)

where Lp is the path radiance, also referred to atmospheric noise, Ls is the radiance, which is
re�ected by the water surface, Lv is the radiance that penetrates the air-water interface and
interacts with the constituents of the water and Lb is the radiance that reaches the bottom
of the ocean and gets re�ected by the surface of the ocean bottom [Jensen, 2007]. Figure 3.1
illustrates the paths of the radiances which reach the sensor. In order to retrieve information
about the ocean chlorophyll content, Lv has to be isolated from the other three radiances which
contribute to the total measured radiance. Lv can be expressed from Eq. (3.1) by

Lv = Lt − (Lp + Ls + Lb). (3.2)

In practise the isolation of Lv is carried out by radiometric correction of the collected data,
thus Lp, Ls and Lb can be removed [Jensen, 2007]. Furthermore, the component Lv does not
necessary provide exclusive information about the ocean chlorophyll content. This is due to the

Figure 3.1: The received water leaving radiance by the sensor.

21



Figure 3.2: The composition of Lv.

fact, that ocean water might consist of the following constituents in addition to pure water: inor-
ganic suspended material, dissolved organic matter (DOM) and phytoplankton [Li et al., 2009].
These constituents have di�erent optical properties, thus they result the characteristic colour of
the sea. Thus Lv can be expressed as a function of the pure seawater w, inorganic suspended
material ISM , dissolved organic matter DOM and the chlorophyll content Chl. This can be
written by

Lv = f (wλ, ISMλ, DOMλ, Chlλ) , (3.3)

where λ indicates the wavelength [Jensen, 2007]. Figure 3.2 illustrates the composition of Lv. In
order to understand how the chlorophyll content of the oceans can be recovered from remotely
sensed data, the constituents which contribute to the spectral characteristics of the ocean water
are described.

Pure seawater

Pure seawater can absorb and scatter the incoming solar radiation. Absorption by seawater
increases with increasing wavelength, thus most red light from the visible spectrum is absorbed
before it could be scattered towards the sea surface and then to the sensor. Whereas scattering
takes place mostly in the blue part of the spectrum and it decreases with increasing wavelength.
This results in the blue appearance of the pure seawater [Robinson, 2004].

Inorganic suspended material

Inorganic suspended materials refer to suspended sediments which might originate from bot-
tom sediments, river-borne particles, eroded coastal and beach deposits and long- and short-
range of atmospheric particulates [Li et al., 2009]. The composition and size distribution of the
suspended sediments have a great variety [Robinson, 2004]. These various properties of the
inorganic suspended materials contribute to the colour of the sea. Due to the great diversity
of suspended sediments, a universal model for the absorption and scattering spectrum has not
yet been achieved. However, since these inorganic suspended material appears usually in coastal
waters, empirical models for speci�c locations have been developed [Robinson, 2004]. It has been
observed that increasing suspended sediment content results an increase across the re�ectance
spectrum [Robinson, 2004].
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Dissolved organic matter

Dissolved organic matter originates from decaying vegetation [Jensen, 2007]. Decaying vegeta-
tion might come from marine organism and/or input from terrestrial matter [Li et al., 2009].
Dissolved organic matter consists of humic acids and �uvic acids [Robinson, 2004]. Dissolved
organic matter also referred to yellow substances or gelbstoff due to their optical properties.
They have a strong absorption in the blue part of the visible spectrum. The absorption de-
creases with increasing wavelength, resulting a least absorption in the yellow, middle part of the
spectrum [Robinson, 2004].

Phytoplankton

The description of the contribution to the water-leaving radiance from phytoplankton is based
on the book by [Robinson, 2004]. Phytoplankton are small plant like organisms. Just like ter-
restrial plants they use photosynthesis in order to build up their own molecules. Their main
photosynthetic pigment is chlorophyll-a. Some species also contain accessory pigments as well,
such as chlorophyll-b, chlorophyll-c and carotenoids. These various pigments have their own
characteristic absorption spectra, each with a peak at di�erent wavelengths. There are two cer-
tain characteristics absorption peaks, one at about 443 nm, and another one at about 675 nm.
However, due to "packing" e�ect of the pigments in the cells and additional pigments arriving
from decaying phytoplankton and primary production wastes, the peaks of the absorption spec-
trum are broadened. Scattering by cells also appears, although it is small and it is not uniform.
Thus the re�ectance spectrum due to absorption and scattering from the phytoplankton popula-
tion tends to decrease at wavelength below around 540 nm, and increases at longer wavelength.
This e�ect is enhanced when chlorophyll concentration increases, with a minimum at around
440 nm due to chlorophyll absorption. The other minimum occurs at around 660 nm. This
minimum might be masked by chlorophyll �uorescence, which has its re�ectance peak at around
685 nm. The range between 550 nm and 600 nm shows a quite constant re�ectance spectrum
independent of the amount of the chlorophyll content.

It can be concluded that all these constituents contribute to the colour of the sea dependently
of their amount in the oceans. Therefore, the estimation of ocean chlorophyll content considers
the presence and the amount of these constituents. A general approach, which considers the
contribution of the constituents to the measured re�ectance spectra, is the grouping of oceans.

3.1 Case-1 and Case-2 waters

Global waters can be divided into Case-1 and Case-2 waters based on their optical properties
[Robinson, 2004]. Case-1 water refers to waters whose inherent optical properties are dominated
by phytoplankton and phytoplankton degradation products. Most open ocean waters are Case-
1 waters. Case-2 waters apply to all other waters, such as coastal and inland waters. Case-2
waters can contain coloured dissolved organic matter and/or inorganic particles instead of (or
in addition to) phytoplankton [Matsushita et al., 2012]. Due to the di�erent content of Case-
1 and Case-2 waters the optical properties are also di�erent depending on the type of water.
Therefore, care should be taken when chlorophyll content estimation from satellite data is carried
out. Chlorophyll content estimation is more straight forward for Case-1 waters, due to the
characteristic re�ectance spectra of ocean chlorophyll. However, estimating chlorophyll content
from Case-2 waters is more challenging due the additional re�ectance spectra of other materials
besides (or instead of) chlorophyll [Robinson, 2004].
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3.2 SeaWiFS

SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) is an advanced scanning system, developed
speci�cally for ocean monitoring. It was carried by the satellite called SeaStar on an orbit 705
km above the Earth [Jensen, 2007]. It had the capability for tilting the sensor scan axis by 20◦

forwards and backwards thus sun glint could be reduced or avoided [Robinson, 2004]. SeaWiFS
operated with eight spectral channels. The channels ranged from 402 nm to 885 nm, where the
bandwidths were 20 nm or 40 nm. The spatial resolution was 1.13 km × 1.13 km at nadir, and
the swath width was 2801 km [Hooker et al., 1992].

3.3 MERIS

The description of the MERIS instrument is based on the article by [Rast et al., 1999]. MERIS
(Medium-resolution imaging spectrometer) was launched on the European environmental satel-
lite, Envisat-1. MERIS is an imaging spectrometer, and it operates in push-broom mode. The
pixel size at nadir is 260 m across-track and 300 m along-track. MERIS can operate with 15
programmable spectral bands between 390 nm and 1040 nm. The spectral bands can range
from 1.25 nm to 30 nm. The swath width is 1150 km. The acquired data can have two spatial
resolutions, 300 m and 1200 m. The main purpose of MERIS is to provide information about
the biophysical parameters of the oceans, with particular focus on the ocean chlorophyll content.

3.4 Remote sensing of marine chlorophyll

3.4.1 Spectral band ratios

Retrieval of ocean chlorophyll from water-leaving radiance spectrum analytically has not yet
been derived. The most common approach of estimating ocean chlorophyll from satellite ocean
color data is based on empirical algorithms. These algorithms attempt to �t regression models to
real and simulated data [Robinson, 2004]. In the following the most commonly used estimation
methods from spectral band ratios are presented. The description of the methods are based on
the book by [Robinson, 2004].

CZCS algorithms

The CZCS (Coastal Zone Color Scanner) algorithms were derived after water-leaving radiance
Lw become available by launching the CZCS on the Nimbus-7 satellite in 1978. The water-
leaving radiance, Lw, refers here to the radiance that has penetrated the ocean and a part of
it was re�ected by the sea bottom, and a part of it was absorbed and/or scattered by the sea
water and the constituents of the sea water before it left the sea surface. Thus Lw corresponds
to the composition of Lb and Lv. The CZCS algorithms are also referred to simple blue-green
band ratios. The blue-green band ratio algorithms are based on the characteristic spectra of
phytoplankton populations. Phytoplankton populations tend to decrease the re�ectance around
540 nm due to absorption and backscattering. This e�ect is enhanced by increasing chlorophyll
content, resulting a minimum at 440 nm. Therefore, the most important spectral bands for
ocean chlorophyll estimation are centred at 443 nm, 520 nm and 550 nm, where the bandwidths
are 20 nm. Thus the estimated chlorophyll content C in

[µg
l

]
can be expressed by

C = 1.130

(
L443
w

L550
w

)−1.71
for C < 1.5 (3.4)

24



and

C = 3.326

(
L520
w

L550
w

)−2.44
for C < 1.5, (3.5)

where Lw is the water-leaving radiance and the superscripts indicate the wavelength in nm.
Equation (3.4) is the most sensitive, due to the absorption maximum of the chlorophyll, which
appears around 443 nm. However, when chlorophyll content increases, the absorption of blue
light increases as well, which results a small value for the water-leaving radiance L443

w , therefore
Eq. (3.5) provides a better estimate for chlorophyll content. Even-though ocean chlorophyll
content estimates for satellite data were derived, it was desired to improve their accuracies. In
1997 the SeaWiFS (Sea-viewing Wide Field of view Sensor) sensor was launched in order to
provide further satellite data. In addition, an ocean colour mission, called SeaBam (SeaWiFS
Bio-optical Algorithm Mini-workshop), was held. SeaBam gathered a large dataset of matched
radiance-chlorophyll data from 919 stations, thus allowing the improvement of the CZCS algo-
rithms.

SeaBam algorithm

The SeaBam dataset allowed the derivation of new empirical algorithms. The �rst such algorithm
was the OC2 algorithm, which was initially developed for processing SeaWiFS data. The OC2
algorithm is based on the ratio R of the remote sensing re�ectance Rrs on 490 nm and 555 nm,
R = R490

rs /R
555
rs . The OC2 algorithm can be written by

C = 10A0+A1R+A2R2+A3R3
+A4, (3.6)

where C is the chlorophyll content, R is the re�ectance ratio and Ai, i = 1, 2, 3, 4 are the model
coe�cients. The OC2 algorithm provided a better �t than the CZCS algorithms. However, the
OC2 algorithm was replaced by an improved model, called the OC4 algorithm. The OC4 model
is an updated version of the OC2 model, the only di�erence is that the band ratio R is now the
one with the largest value selected from R = R443

rs /R
555
rs , R = R490

rs /R
555
rs and R = R510

rs /R
555
rs .

The model coe�cients for the OC2 and OC4 algorithm are presented in Tabel 3.1. The two

Table 3.1: The model coe�cients for the OC2 and OC4 algorithm
Model A0 A1 A2 A3 A4

OC2 0.3410 -0.30010 2.8110 -2.0410 -0.0400

OC4 0.4708 -0.38469 4.5338 -2.4434 -0.0414

models can be compared by computing model statistics, such as the root mean squared error,
RMSE. The resulting RMSE for the OC2 model was RMSE(OC2) = 0.172, while the RMSE for
the OC4 model was slightly lower, RMSE(OC4) = 0.156. Thus the OC4 algorithm provided a
better �t. Therefore, the OC4 algorithm has been used in order to estimate ocean chlorophyll
content from SeaWiFS data. In order to achieve further improvement of the algorithm, more
data is being collected, and added to the database. However, since the further development
of an empirical model is limited to the adjustments of the model coe�cients, machine learning
methods have been investigated in order to provide ocean chlorophyll estimates from satellite
data.
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Chapter 4

Examples of machine learning methods

This chapter gives an overview how machine learning methods can compete with vegetation
indices and spectral band ratios in the prediction of chlorophyll from remotely sensed data.
Since this thesis has focused on studying the relatively new machine learning method, the GPR,
it is important to understand the contribution of this new method compared to the already
existing machine learning models.

Machine learning methods learn the relationship between the input variable (re�ectance
and chlorophyll �uorescence) and the training data (actual measured chlorophyll content). The
established relationship can be used in order to predict chlorophyll content. Figure 4.1 illustrates
the learning mechanism of machine learning system. The input is the training data, which is
fed to the learning system. The produced output of the system is then compared to the target
output (desired output). Based on some criterion an error function/ error term is de�ned. After
minimising the error, the system is updated. The process continues until there are no changes
in the error term. In [Verrelst et al., 2011] several machine learning algorithms were tested

Figure 4.1: Machine learning �owchart.

in order to �nd the best method to predict chlorophyll content. The tested algorithms were
the following: neural network, support vector regression, kernel ridge regression and Gaussian
process regression [Verrelst et al., 2011]. In the following these machine learning methods are
brie�y discussed.

4.1 Neural Network

Neural networks have been used for predicting ocean-chlorophyll content and land-chlorophyll
content from remote sensing data. Neural networks are nonlinear models with the ability of learn-
ing the relationship between the input (satellite-received radiance) and the output (chlorophyll
content) [Canziani et al., 2008]. The description of the neural networks is based on the book
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by [Haykin, 1999]. A neural network consist of neurons. Neurons are information-processing
units, which are connected to each other and organized in layers. These information-processing
units are the basis of the neural networks. Neurons consists of a set of connecting links, each
characterized by a weight, a linear combiner and an activation function. Figure 4.2 shows the
structure of a neuron. Neuron k can be expressed by

Figure 4.2: Model of a neuron.

uk =

m∑
j=1

wkjxj , (4.1)

where xj |j = 1, ..,m are the inputs, wkj |j = 1, ..,m are the synaptic weights for neuron k and
uk is the output of the linear combiner. The output yk of the neuron k is given by

yk = f(uk + bk), (4.2)

where f(·) is the activation function and bk is a bias term. The activation function limits the
amplitude of the output of a neuron. The activation function is often referred to as squashing
functions, because it squashes the amplitude range of the output to some �nite value. There
exists a great variety of activation functions. One of the most commonly used activation function
is the sigmoid function due to its advantageous properties. The sigmoid function only produces
outputs between 0 and 1 and it is easily di�erentiable, allowing computational simplicity. In
order to learn the connection between the inputs and outputs by using neural network, the output
yk of neuron k is compared to the target output tk. This comparison is done by de�ning an
error term, εk = tk − yk. Thus the learning process of the neural network consists of minimizing
the error terms, then updating the weights iteratively, until convergence occurs. Minimizing the
error terms is done by de�ning a cost function ε = 1

2ε
2
k, and di�erentiating the cost function

with respect to the weights. The learning process is illustrated on Fig. 4.3. Figure 4.3 shows
that the output yk of the neuron is compared to the target tk through the error term. After
minimizing the di�erence between the output and the target, the weights are updated. This
process continues until convergence occurs. Usually neural networks consist of several neurons,
which are connected to each other. This type of neural network are referred to multilayer neural
networks. Neural networks have been applied for chlorophyll prediction both for marine data
and terrestrial data.
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Figure 4.3: Learning process of a neuron.

Neural networks for ocean chlorophyll prediction

Neural networks showed a good performance in the prediction of ocean-chlorophyll content
[Canziani et al., 2008]. However, neural networks have limitations in modelling processes, since
only generalized process statements can be made [Whitehead et al., 1997]. In order to apply
neural networks for high dimensional input data, a great number of parameters need to be
obtained, such as the number of hidden layers, the number of hidden nodes, activation functions,
epochs, weights initialization methods and parameters of the training algorithm. This might lead
to computational di�culties [Zhan et al., 2003].

Neural networks for land chlorophyll prediction

The performance of neural networks have also been tested for land-chlorophyll prediction. De-
spite the fact that neural networks can learn the relationship between the measured radiance and
the canopy parameter, it showed instability when it was applied to validation data. In addition,
neural networks have been computational expensive comparing to other machine learning meth-
ods, such as support vector regression, kernel ridge regression and Gaussian process regression
[Verrelst et al., 2011].

4.2 Support Vector Regression

An alternative for neural networks is Support Vector Regression (SVR) [Verrelst et al., 2011].
SVR is a useful function estimation method for high-dimensional input space. SVR has the
advantage that the number of free parameters depend only on the the number of support vectors,
but they are independent of the dimensionality of the input space [Vapnik et al., 1997]. The
following paragraph is based on the book by [Murphy, 2012]. In order to make the solution
vector w independent of the training inputs, the epsilon insensitive loss function was proposed.
The epsilon insensitive loss function is de�ned by

Lε =

{
0 if |y − ŷ| < ε
|y − ŷ| − ε otherwise.

(4.3)

Where y is the output, ŷ is the predicted output and ε is the penalty term. Equation (4.3)
suggests that only points outside an ε-tube are penalized. Furthermore, an objective function
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has to be de�ned in order to perform regression. The objective function can be written by

J = B

N∑
i=1

Lε(yi, ŷi) +
1

2
||w||2, (4.4)

where the predicted output ŷi = f(xi) = wTxi + b and the constant B = 1
β is a regularization

constant. The term xi is the input, w is the weight and b is the bias. This objective function is
not di�erentiable. An approach to overcome this problem is to introduce slack variables ζ+i , ζ

−
i .

The slack variables are informative about the degree to which each point lies outside the ε-tube.
The slack variables can be expressed by

yi ≤ f(xi) + ε+ ζ+i (4.5)

yi ≥ f(xi) + ε+ ζ−i . (4.6)

Thus Eq. (4.4) can be written by

J = B
N∑
i=1

(ζ+i + ζ−i ) +
1

2
||w||2. (4.7)

Minimizing Eq. (4.7) with respect to the linear constraints in Eq. (4.5) and Eq. (4.6), and also
with respect to the positive constraints ζ+i ≥ 0 and ζ−i ≥ 0 yields that the estimated weights ŵ
has a solution

ŵ =
∑
i

αixi, (4.8)

where αi ≥ 0 is the Lagrange multiplier. Thus the predicted output can be computed by using
Eq. (4.8)

ŷ(x) = f(xi) = ŵTxi + b̂ = ŵTx + b̂ =

(∑
i

αix
T
i x

)
+ b̂. (4.9)

In order to get a kernelized solution introduce a kernel function κ for the term xTi x. Finally the
predicted output expressed by the kernel function is

ŷ(x) =

(∑
i

αiκ(xi,x)

)
+ b̂. (4.10)

SVR for predicting ocean chlorophyll

In the work by [Zhan et al., 2003] SVR was applied in order to retrieve ocean chlorophyll. They
showed that SVR has several advantageous properties, such as accuracy, fewer parameters as by
neural networks, unique, global minimum solution and high generalization ability. Furthermore,
the generalization performance of SVR doesn't depend on the dimensionality of the input space.
[Kwiatkowska and Fargion, 2003] also showed that SVR is capable of learning the complex rela-
tionship between radiance and actual ocean chlorophyll data, and it can adopt to the variations
of the sensor, such as seasonal trends, scan angles and spatial variations.

SVR for predicting land chlorophyll

The application of SVR to land chlorophyll data showed a fast training performance. In addi-
tion, SVR was quite accurate in order to predict land chlorophyll content [Verrelst et al., 2011].
However, SVR gives rise to a quadratic programming problem, due to the cost function and the
linear constrains [Verrelst et al., 2011].One way to overcome the quadratic programming prob-
lem is to introduce Kernel Ridge Regression for chlorophyll prediction. In the following the KRR
model is described.
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4.3 Kernel Ridge Regression

The description of Kernel Ridge Regression is based on the book by [Schölkopf et al., 2013].
Kernel Ridge Regression is a simpli�ed special case of Support Vector Regression. In section
4.2 it was showed that the predicted output can be computed by estimating the weights. The
estimation of the weights was carried out by minimizing Eq. (4.7) with respect to ζ+i ≥ 0 and
ζ−i ≥ 0 and the linear constraints in Eq. (4.5) and Eq. (4.6). KRR simpli�es the problem by
ignoring the bias terms and setting ε = 0. In addition, KRR seeks to minimize the squared of
the simpli�ed loss function. Thus, the modi�ed regularized loss function can be written by

JKRR =
B

2

N∑
i=1

ζ2 +
1

2
||w||2 =

B

2

N∑
i=1

(
yi −wTxi

)2
+

1

2
||w||2. (4.11)

Minimizing and solving Eq. (4.11) yields the solution of the predictive output. It can be shown
that the predictive output can be expressed by [Verrelst et al., 2011]

ŷi = K(X?,X)

(
K(X,X) +

1

B

)−1
y = K(X?,X)α, (4.12)

where K(·, ·) is the covariance matrix, X is the training data, X? is the test data and α is a
vector containing the Lagrange multipliers αi.

KRR for predicting land chlorophyll

Applying KRR instead of SVR in order to predict land chlorophyll has an advantage that
the solution can be expressed in a closed form, thus quadratic programming can be avoided
[Verrelst et al., 2011]. However, KRR is not sparse, thus all the training samples in the �nal
solution includes the weight αi [Verrelst et al., 2011].
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Part II

Gaussian Processes
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Chapter 5

Gaussian Process Regression

5.1 Background on Gaussian Processes

Gaussian Processes dates back to the 1940s, when the Wiener-Kolmogorov prediction theory
was introduced in order to predict trajectories of military objects [MacKay, 2003]. In the 1950s,
a South African mining engineer, D. G. Krige developed empirical methods in order to predict
true ore-grade distributions. The method was based on data from already existing gold-mines
[Minnitt and Assibey-Bonsu, 2003]. In 1963, a geostatistical, optimal spatial linear prediction
method was introduced by a French mathematician Georges Matheron. The method is called
kriging, after Krige's work. Kriging is a minimum-mean-squared-error method, used for spa-
tial prediction [Cressie, 1993]. Kriging is similar to Gaussian Process regression, although the
derivation and the interpretation di�ers from it. Since kriging was developed for geostatistical
applications, it is mainly used for low-dimensional problems [Boyle, 2007]. Furthermore, kriging
also tends to ignore any probabilistic interpretation of the model [MacKay, 2003].

In 1978 A. O'Hagan introduced a Bayesian approach for general regression, where a prior
over functions was de�ned by using Gaussian processes [Sacks et al., 1989]. The use of Gaussian
processes for machine learning appeared �rst in the 1990s. In 1994 Radford M. Neal showed that
Bayesian neural networks converge to Gaussian processes under certain conditions. He investi-
gated the properties of priors for network weights and biases. These priors were independent
Gaussian distributions. He showed that as the number of hidden units goes to in�nity, the prior
over functions converges to a Gaussian process [Neal, 1995]. This led to the idea of investigating
the replacement of supervised neural networks by Gaussian processes. In 1996 Christopher K. I.
Williams and Carl Edward Rasmussen carried out experiments in order to approximate neural
networks by Gaussian process. Furthermore they introduced a new machine learning method
for regression with Gaussian processes and tested the performance of it on actual datasets.
Gaussian Process regression was found to show a good performance on real-world problems
[Williams and Rasmussen, 1996]. The introduction of Gaussian processes for regression resulted
in interest for further investigations of the method and the application of the model. In addition
to regression, Gaussian processes have also been developed for classi�cation problems. However,
using Gaussian processes for classi�cation problems is more demanding. This is due to the fact,
that Gaussian process regression assumes a Gaussian likelihood, and the Gaussian likelihood
combined with a Gaussian process prior results in a Gaussian process posterior over functions.
On the other hand, classi�cation problems deal with discrete targets, thus Gaussian likelihood
assumption is not an appropriate choice [Rasmussen and Williams, 2006]. However, it has been
shown that it is possible to use Gaussian processes for classi�cation tasks as well, with promising
results [Rasmussen and Williams, 2006].

This thesis is mainly concerned with Gaussian processes for regression, therefore the classi�-
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cation approach with Gaussian processes is not presented here. More details about the classi�-
cation approach can be read in the book from [Rasmussen and Williams, 2006]. In the following
the principles of Gaussian Process Regression is discussed and the derivation of the method is
presented.

5.2 Principles of Gaussian Process Regression

This chapter introduces the principles of Gaussian Process Regression. The following paragraph
is based on the book by [Murphy, 2012] and [Rasmussen and Williams, 2006]. Gaussian Process
Regression (GPR) assumes that the output (chlorophyll content) is the function of the input
(radiance). The regression part of the GPR is to learn the function, the connection between
the actual chlorophyll content and the measured radiance, while the prediction part uses the
regression to predict unseen function values for test inputs. Thus in order to be able to perform
prediction, �rst the function between the output and input variables has to be established. To
be able to establish the connection between the output and the input variables a training dataset
has to be available.

Assume that the training dataset consists of a set of observations. Denote the training
dataset to D = {(xi, yi)|i = 1, 2, ..., N}, where the output yi is the actual chlorophyll content
and the input xi is the measured radiance. Furthermore assume that under GPR yi is a function
of xi. This can be written by yi = f(xi) = fi.

The approach is to infer distributions over these functions given D, and use this to make
prediction for new inputs. The approach is based on Gaussian Processes (GP).

A GP de�nes a prior over functions which can be converted to a posterior over functions
given D. In order to represent a distribution over a function, it is enough to de�ne a distribution
over the function's values at a �nite, but arbitrary set of points, x1,x2, ...,xN . GP assumes that
p(f(x1), f(x2), ..., f(xN )) is jointly Gaussian with some mean µ and covariance K. It can be
observed that the GPR di�ers from other machine learning methods in that way, that under
GPR distributions over functions are inferred and a prior over functions is de�ned. Figure 5.1
illustrates the prior and the posterior of the GP for three random functions. Panel (A) shows
the three random functions drawn from a GP prior. Panel (B) indicates the posterior of the
three random functions, which is the prior conditioned on the observed data. The observed data
is presented by the + signs. Figure 5.1 also shows the con�dence region, which is the mean plus
and minus twice the standard deviation. The certainty level is presented by the grey shaded
area.

36



Figure 5.1: Fig.(A) shows three functions drawn from a GP prior. Fig.(B) represents the poste-
rior of the three random functions. (Figure is adopted from [Rasmussen and Williams, 2006].)

A GP is completely speci�ed in terms of a mean µ and covariance K. This can be expressed
by 

f1
f2
·
·
·

fN

 ∼ N
(
µ, K

)
. (5.1)

The mean is often assumed to be zero. This assumption is due to the �exibility of the GP
[Murphy, 2012]. Thus Eq. (5.1) modi�es to

f1
f2
·
·
·

fN

 ∼ N
(
0, K

)
, (5.2)

where K is given by

K =

k(x1,x1) · · · k(x1,xN )
...

. . .
...

k(xN ,x1) · · · k(xN ,xN )

 . (5.3)

The covariance K is composed by computing the covariance function k(·, ·) for each entry.
Equation (5.2) can be learned when training data D = {(xi, yi)|i = 1, 2, ..., N} is available, since
it is assumed that fi = yi = f(xi). For simplicity denote the joint distribution of the fi's to f ,
and express Eq. (5.2) by

f ∼ N
(
0, K

)
. (5.4)

The regression part of the GPR is learning Eq. (5.4). Then use this to preform prediction for a
new input. Assume a new input x?. By using Eq. (5.4) the output f? of x? can be predicted.
This is the prediction part of the GPR. The approach is to form the joint distribution of f with
f?, p(f?, f). Under GP this joint distribution is also jointly Gaussian distributed with zero mean
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and a new covariance matrix Knew. This can be expressed by[
f
f?

]
∼ N

(
0, Knew

)
= p(f?, f), (5.5)

where the new covariance matrix is

Knew =

[
K K?

K?
T K??

]
, (5.6)

where K? = K(X,X?) is the covariance matrix between the training data X = [x1,x2, ...,xi]
and the test data X?, K?

T = K(X?,X) is the transposed of the covariance matrix between
the training data and test data and K?? = K(X?,X?) is the covariance between the test data
with itself. Equation (5.5) can be factorized as the posterior distribution time the marginal by
applying Bayes' rule,

p(f?, f) = p(f?|f)p(f). (5.7)

Here the term p(f?|f) is the posterior distribution and p(f) is the marginal. It can be shown that

p(f?|f) ∼ N(µf?|f ,Varf?|f ) (5.8)

and
p(f) ∼ N(0,K). (5.9)

Thus the expected value of predicted output f? is the mean of the posterior distribution and it
is given by

µf?|f = K?
TK−1f , (5.10)

and the variance is
Varf?|f = K?? −K?

TK−1K?. (5.11)

The term f in Eq. (5.10) denotes the collection of the observed function values, the noiseless
outputs. One of the advantages of the GPR is, that in addition to prediction it also provides
the variance of the predicted value. Knowledge about the variance of the prediction reveals the
certainty of the prediction.
However, usually the output is corrupted by noise. In this case the outputs of the training
dataset modify to y = f + ε, where ε is additively, independently and identically distributed
Gaussian noise ε ∼ N(0, σ2nI). Then Eq. (5.5) modi�es to[

y
f?

]
∼ N

(
0, Knoisy

)
, (5.12)

where the noisy covariance Knoisy is given by

Knoisy =

[
Ky K?

K?
T K??

]
(5.13)

and the submatrix Ky includes the noise term

Ky = K + σ2nI. (5.14)

Furthermore the joint distribution of the noisy outputs and the predictive output is given by

p(f?,y) = p(f?|y)p(y), (5.15)
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where p(f?|y) ∼ N(µf?|y,Varf?|y) and p(y) ∼ N(µy,Vary). Thus the noisy predictive mean is

µf?|y = K?
TK−1y y, (5.16)

and the noisy variance is
Varf?|y = K?? −K?

TK−1y K?. (5.17)

The next section shows how these results can be derived by factorizing the multivariate joint
Gaussian distribution.

5.3 Factorization of the multivariate joint Gaussian distribution

In order to understand how the multivariate joint Gaussian distribution can be used for predic-
tion, the factorization of the multivariate joint Gaussian distribution is performed. This section
gives a general derivation of the factorization of the multivariate joint Gaussian distribution.
The results of this derivation is applied for Gaussian Process regression. The starting point of
the derivation is the multivariate Gaussian distribution.

Multivariate Gaussian

The multivariate Gaussian distribution of an l-dimensional random vector x is

p(x) =
1

(2π)l/2 |Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
, (5.18)

where µ is the expectation, Σ is the l × l covariance matrix and |Σ| is the determinant of the
covariance matrix [Theodoridis and Koutroumbas, 2009].

The notations in this section di�er from Section 5.2 in order to indicate a general multivariate
Gaussian distribution, which is a special case of the Gaussian Process. The notational changes
are the following: Before f or y indicated a set of random variables of a stochastic process, here x
denotes a vector, and X is the matrix collecting all the vectors x in its columns. In addition, the
covariance matrix of the prior was earlier denoted to K, here the covariance matrix is indicated
by Σ.

Conditional multivariate Gaussian distribution

Assume that x = (x1,x2) is jointly Gaussian with the mean µ and the covariance Σ, where

µ =

(
µ1

µ2

)
and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Figure 5.2 shows a jointly Gaussian distribution for an arbitrary x = (x1,x2), with the mean

µ =

(
0
0

)
and the covariance Σ =

(
0.25 0.2
0.2 1

)
. The left-hand panel in Fig. 5.2 is the probability

density p(x1,x2) and the right-hand panel is the underlying contour plot of the probability
density. The joint distribution can be factorized by [Murphy, 2012]

p(x1,x2) = p(x1|x2)p(x2), (5.19)
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Figure 5.2: Multivariate jointly Gaussian distribution.

where p(x1|x2) is the conditional distribution of x1 conditioned on x2 and p(x2) is the marginal
of x2. The conditional distribution can be applied for Gaussian Process regression. Therefore
the main focus is the derivation of the conditional distribution. In order to �nd the conditional
distribution of a multivariate Gaussian distributed variable, the joint distribution has to be
computed. The joint distribution of x is given by [de Freitas, 2011]

p(x1,x2) =
1

(2π)(l1+l2)/2 |Σ|1/2
exp

(
−1

2

(
x1 − µ1

x2 − µ2

)T (
Σ11 Σ12

Σ21 Σ22

)−1(
x1 − µ1

x2 − µ2

))
, (5.20)

where l1 is the dimension of x1 and l2 is the dimension of x2. Factorizing Eq. (5.20) allows
the derivation of the conditional distribution p(x1|x2) and the marginal distribution p(x2)
[de Freitas, 2011]. In order to simplify the computations, �rst the exponential term was ex-
panded.

The exponential term

Denote

P =

(
x1 − µ1

x2 − µ2

)T (
Σ
)−1(x1 − µ1

x2 − µ2

)
, (5.21)

where

Σ−1 =

(
Σ11 Σ12

Σ21 Σ22

)−1
. (5.22)

P =

(
x1 − µ1

x2 − µ2

)T (
Σ11 Σ12

Σ21 Σ22

)−1(
x1 − µ1

x2 − µ2

)
. (5.23)

In order to factorize Eq. (5.23), Σ can be expressed by the Schur complement of the matrix.
The Schur complement of the matrix Σ is [Petersen & Pedersen, 2008]

Σ11 −Σ12Σ
−1
22 Σ21. (5.24)

The inverse of the matrix Σ can be expressed by using the Schur complement
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Σ−1 =

(
I 0

−Σ−122 Σ21 I

)((
Σ11 −Σ12Σ

−1
22 Σ21

)−1
0

0 Σ−122

)(
I −Σ12Σ

−1
22

0 I

)
. (5.25)

In the following denote the Schur complement to [Murphy, 2012]

Σ11 −Σ12Σ
−1
22 Σ21 =

Σ

Σ22
. (5.26)

Thus Eq. (5.23) can be expressed by

P =

(
x1 − µ1

x2 − µ2

)T (
I 0

−Σ−122 Σ21 I

)((
Σ

Σ22

)−1
0

0 Σ−122

)(
I −Σ12Σ

−1
22

0 I

)(
x1 − µ1

x2 − µ2

)
. (5.27)

Equation (5.27) can be factorized by applying matrix algebra. The steps of the computations
are the following

P =
[
(x1 − µ1)

T (x2 − µ2)
T
]
×(

I 0

−Σ−122 Σ21 I

)((
Σ

Σ22

)−1
0

0 Σ−122

)(
I −Σ12Σ

−1
22

0 I

)(
x1 − µ1

x2 − µ2

) (5.28)

P =
[
(x1 − µ1)

T − (x2 − µ2)
T Σ−122 Σ21 (x2 − µ2)

T
]
×((

Σ
Σ22

)−1
0

0 Σ−122

)(
I −Σ12Σ

−1
22

0 I

)(
x1 − µ1

x2 − µ2

) (5.29)

P =
[
(x1 − µ1)

T − (x2 − µ2)
T Σ−122 Σ21

(
Σ

Σ22

)−1
(x2 − µ2)

T Σ−122

]
×(

I −Σ12Σ
−1
22

0 I

)(
x1 − µ1

x2 − µ2

)
.

(5.30)

Then using the associative property of matrix multiplications Eq. (5.30) becomes

P =
[
(x1 − µ1)

T − (x2 − µ2)
T Σ−122 Σ21

(
Σ

Σ22

)−1
(x2 − µ2)

T Σ−122

]
×[

(x1 − µ1)−Σ12Σ
−1
22 (x2 − µ2)

(x2 − µ2)

]
.

(5.31)

After completing the last step of matrix multiplications, the resulting equation is

P =

(
(x1 − µ1)

T − (x2 − µ2)
T Σ−122 Σ21

(
Σ

Σ22

)−1)(
(x1 − µ1)−Σ12Σ

−1
22 (x2 − µ2)

)
+ (x2 − µ2)

T Σ−122 (x2 − µ2) .

(5.32)

Finally transposing Eq. (5.32) by using that [Petersen & Pedersen, 2008]

(A+B)T = AT +BT ,
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(ABC...)T = ...CTBTAT

and (
A−1

)T
=
(
AT
)−1

,

the resulting equation is

P =
(
x1 − µ1 −Σ12Σ

−1
22 (x2 − µ2)

)T ( Σ

Σ22

)−1 (
x1 − µ1 −Σ12Σ

−1
22 (x2 − µ2)

)
+ (x2 − µ2)

T Σ−122 (x2 − µ2) .

(5.33)

Substituting Eq. (5.33) into the exponential

E = exp

(
−1

2
P

)
(5.34)

and using that

exp (A+B) = exp (A)× exp (B) ,

the exponential term (E) of the joint distribution is

E = exp

(
−1

2

(
x1 − µ1 −Σ12Σ

−1
22 (x2 − µ2)

)T ( Σ

Σ22

)−1 (
x1 − µ1 −Σ12Σ

−1
22 (x2 − µ2)

))

× exp

(
−1

2
(x2 − µ2)

T Σ−122 (x2 − µ2)

)
.

(5.35)

The normalization constants

In order to normalize the constants,

(2π)(l1+l2)/2 |Σ|
1
2 , (5.36)

the following relationship for matrix determinant was used. The determinant of Σ can be
expressed by using the Schur complement (Σ11 −Σ12Σ

−1
22 Σ21 = Σ

Σ22
) by

|Σ| =
∣∣∣∣(Σ11 Σ12

Σ21 Σ22

)∣∣∣∣ = |Σ22| ·
∣∣∣∣ Σ

Σ22

∣∣∣∣ . (5.37)

Thus Eq. (5.36) can be expressed by

(2π)(l1+l2)/2 |Σ|
1
2 = (2π)(l1+l2)/2

(∣∣∣∣ Σ

Σ22

∣∣∣∣ |Σ22|
) 1

2

, (5.38)

and Eq. (5.38) can be written in the following form [de Freitas, 2011]

(2π)l1/2
∣∣∣∣ Σ

Σ22

∣∣∣∣ 12 (2π)l2/2 |Σ22|
1
2 . (5.39)
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The factorized multivariate joint Gaussian distribution

Finally the resulting multivariate joint Gaussian distribution can be expressed by combining Eq.
(5.35) and Eq. (5.39)

p(x1,x2) =
1

(2π)l1/2
∣∣∣ Σ
Σ22

∣∣∣ 12 ×
exp

(
−1

2

(
x1 − µ1 −Σ12Σ

−1
22 (x2 − µ2)

)T ( Σ

Σ22

)−1 (
x1 − µ1 −Σ12Σ

−1
22 (x2 − µ2)

))
1

(2π)l2/2 |Σ22|
1
2

× exp

(
−1

2
(x2 − µ2)

T Σ−122 (x2 − µ2)

)
.

(5.40)

Equation (5.40) can be recognized as the product of the conditional distribution and the marginal
p(x1,x2) = p(x1|x2)p(x2), thus the factorization is successfully ful�lled. Both the conditional
distribution and the marginal distribution are Gaussian distributed [de Freitas, 2011]

p(x1|x2) ∼ N(µ1|2,Σ1|2) (5.41)

p(x2) ∼ N(µ2,Σ22), (5.42)

where
µ1|2 = µ1 + Σ12Σ

−1
22 (x2 − µ2) (5.43)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21 =

Σ

Σ22
. (5.44)

Figure 5.3 shows the factorized joint Gaussian distribution. The �gure on the top is the contour
plot of the same joint Gaussian distribution as in Fig. 5.2. The �gure in the middle is the
conditional distribution p(x1|x2) and the bottom �gure is the marginal distribution p(x2). Figure
5.3 shows how the variance decreases for the conditional distribution compared with the marginal
distribution. This decrease of the variance is due to the increasing certainty when information
about the data (here x2) is available. The conditional MVG (multivariate Gaussian) distribution
can be used for prediction under a Gaussian Process. It has been shown that for an x = (x1,x2),

with the mean µ =

(
µ1

µ2

)
and covariance Σ =

(
Σ11 Σ12

Σ21 Σ22,

)
, the conditional distribution of x1

given x2 is normally distributed with the mean µ1|2 and variance Σ1|2 is

p(x1|x2) ∼ N(µ1|2,Σ1|2), (5.45)

where
µ1|2 = µ1 + Σ12Σ

−1
22 (x2 − µ2) (5.46)

and
Σ1|2 = Σ11 −Σ12Σ

−1
22 Σ21. (5.47)

These results also yield for
p(x2|x1) ∼ N(µ2|1,Σ2|1), (5.48)

where [Petersen & Pedersen, 2008]

µ2|1 = µ2 + Σ21Σ
−1
11 (x1 − µ1) (5.49)
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Figure 5.3: The joint Gaussian distribution, the conditional distribution and the marginal dis-
tribution respectively.
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and
Σ2|1 = Σ22 −Σ21Σ

−1
11 Σ12. (5.50)

Equation (5.48) can be recognized as the conditional distribution of the noise-free Gaussian
Process in Eq. (5.8), Eq. (5.49) corresponds to the predictive mean in Eq. (5.10) and Eq. (5.50)
corresponds to the predictive variance in Eq. (5.11).

It can be observed that the predictive mean, Eq. (5.10), and the predictive variance, Eq.
(5.11), only depend on the observed data and the choice of the covariance function. Therefore
the choice of the covariance function is crucial.

5.4 The covariance function

This section is based on the book by [Rasmussen and Williams, 2006]. Input values situated
closely to each other tend to have similar output values. Therefore points that are near to a
test point can be informative in prediction. When Gaussian Process is assumed the covariance
function is the measure of this nearness. There are a great variety of covariance functions.
However, there is a certain covariance function which is most frequently used in Gaussian Process
regression due to its advantageous properties. This most commonly used covariance function is
the squared exponential covariance function.

The squared exponential covariance function

The squared exponential covariance function can be de�ned by

Knn′ = ν2 exp

−1

2

D∑
d=1

(
xdn − xdn′

λd

)2
 , (5.51)

where ν is the scaling factor, λ is the characteristic length-scale, which controls the smoothness
of the covariance function and d is the dimension of x. The squared exponential covariance
function is stationary, isotropic, symmetric and positive semide�nite. Stationarity means that
the function is invariant to translations in the input space. Thus a stationary covariance function
is a function of x− x′. An isotropic function is only a function of |x − x′|, therefore it is
invariant to all rigid motions. The squared exponential covariance function is symmetric, since
Knn′ = Kn′n. The covariance function can be used in order to build a covariance matrix, where
the entries of the covariance matrix are de�ned by the covariance function. If a real covariance
matrix is positive semide�nite, then it has to satisfy that for all vectors v, Q(v) = vTKv ≥ 0.
A symmetric matrix is positive semide�nite if and only if all of its eigenvalues are non-negative.
The squared exponential covariance function is in�nitely di�erentiable, thus it is very smooth.
Under Gaussian Process regression the most widely used covariance function is the squared
exponential covariance function, due to its advantageous properties. However, the squared
exponential covariance function contains free parameters (ν and λd). These free parameters are
also referred to hyperparameters. The hyperparameters of Knn′ have to be estimated in order
to get the best regression.

5.5 Estimation of the hyperparameters

It was stated in Eq. (5.12) that the joint distribution of the noisy observations y and the test
function values f? is [

y
f?

]
∼ N

(
0, Knoisy

)
. (5.52)
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It can be observed from Eq. (5.12) that y ∼ N(0, Ky) [Rasmussen and Williams, 2006], where
the covariance matrix is computed by the squared exponential covariance function, thus it in-
cludes the hyperparameters. Denote the collection of the hyperparameters to Θ = {ν, λ, σn},
where σn is the noise level. The hyperparameters can be estimated by applying the Maximum
Likelihood Estimation (MLE) method. MLE refers to the maximization of the likelihood func-
tions. This can be done by di�erentiating the likelihood with respect to the hyperparameters,
setting the derivatives to zero, and �nally solving the resulting equation with respect to the
hyperparameters [Walpole et al., 2007]. For a Gaussian process, the log marginal likelihood of
y conditioned on the collection of the observed input vectors X and the hyperparameters Θ,
can be written by

log p(y|X,Θ) = − l
2

log 2π − 1

2
yTKyy −

1

2
log |Ky|. (5.53)

Thus the hyperparameters can be computed by the MLEmethod to Eq. (5.53). The optimization
is performed by di�erentiating Eq. (5.53) with respect to Θ. This can be written by

δ

δΘi
log p(y|X,Θ) =

1

2
yTK−1

δK

δΘi
K−1y − 1

2
tr

(
K−1

δK

δΘi

)
. (5.54)

Thus the hyperparameters of the covariance function from Eq. (5.51) can be computed by solving
Eq. (5.54). The importance of the hyperparameters is presented on Fig. 5.4. The parameters in
Fig. 5.4 (a) are Θ = {ν, σn, λ} = {1, 0.1, 1}, on Fig. 5.4 (b) Θ = {ν, σn, λ} = {1.08, 0.00005, 0.3}
and on Fig. 5.4 (c) Θ = {ν, σn, λ} = {1.16, 0.89, 3}. The + signs indicate the observed data,
the blue line is the underlying function and the grey, shaded area corresponds to the con�dence
region. The hyperparameters on Fig. 5.4 (a) was obtained by applying Eq. (5.54). Fig. 5.4 (b)
and (c) were computed by setting λ = 0.3 and λ = 3 respectively, then optimizing the rest of
the hyperparameteres by using Eq. (5.54) [Rasmussen and Williams, 2006]. It can be observed
that the resulting, best prediction was obtained, when all the hyperparameters were computed
by optimizing the log marginal likelihood (Fig. 5.4) (a)).
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Figure 5.4: The importance of the hyperparameters (from [Rasmussen and Williams, 2006]).
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Chapter 6

Results of the GPR

GPR has been proven to be a powerful machine learning method for chlorophyll content predic-
tion [Verrelst et al., 2011], [Verrelst et al., 2012a], [Verrelst et al., 2012b], [Pasolli et al., 2010].
However, the driving mechanism of the GPR in the prediction of chlorophyll, hasn't been yet
understood. Part III is going to introduce a method, the sensitivity analysis of features, which
might uncover the most relevant features in the regression process. For the bene�t of the reader
this chapter shows the performance of the GPR when all the features are being used for chloro-
phyll content prediction. Thus the importance of the introduction of the sensitivity analysis
(in Part III) can be understood. Furthermore, carrying out GPR with all the available features
allows the visual illustration of the performance of the GPR. In order to show the �exibility
of the GPR, in addition to its predictive performance, chlorophyll content estimation was per-
formed both on a land chlorophyll dataset and on two ocean chlorophyll datasets. This chapter
presents the results of the regressions. The implementations of the GPRs were carried out in
Matlab. The chlorophyll datasets were already preprocessed, thus direct implementation could
be performed.

6.1 Land chlorophyll

The estimation of land chlorophyll content from remotely sensed data was performed by using
all the available bands for GPR. The performance of the GPR was tested on a test image. In the
following section the description of the data is presented, so that the resulting chlorophyll content
estimates can be better understood in the context of the underlying biophysical structures.

6.1.1 Description of the data

The training data were collected during the SPARC-2003 and SPARC-2004 campaigns, in
Barrax, La Mancha in Spain [Verrelst et al., 2012b]. The output training data is the actual
chlorophyll content. The chlorophyll content were measured for certain crops (garlic, alfalfa,
onion, sun�ower, corn, potato, sugar beet, vineyard and wheat) in Barrax. The test area has
a dimension of 5 km × 10 km, and it consists of dry land (65 %) and irrigated land (35%)
[Verrelst et al., 2012b]. There had been 18 Elementary Sampling Units (ESU) visited among
the 9 di�erent kind of crops. One ESU has the dimension of 20 m2. There had been taken
50 chlorophyll measurements at each ESU [SPARC Report, 2004]. Leaf chlorophyll content was
measured in order to gain knowledge about the distribution of the chlorophyll in certain plant
species. The instrument which was used is the Chlorophyll Content Meter CCM-200. The mea-
surements were performed independently [SPARC Report, 2004]. The instrument was properly
calibrated and GPS coordinates were taken thus the data set could be used for model train-
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ing. At the same time CHRIS images and CASI images were collected from the corresponding
area. CHRIS images provided the input data for training the GPR. CHRIS was mounted on
the spacecraft, called PROBA. PROBA has the advantage that it can acquire 5 images from
5 zenith angles. The CHRIS data was acquired in Mode 1. CHRIS Mode 1 corresponds to
62 bands, where the bandwidth is between 5.6 nm and 33 nm. The dimension of the band-
width depends on the wavelength. The spatial resolution in Mode 1 is 34 m at nadir. In order
to minimize angular and atmospheric e�ects only near-nadir images were used from the two
campaigns (12.07.2003 and 15.07.2004) [Verrelst et al., 2012b]. The CASI images were collected
due to another campaign, Sentinel-3 Experiment (SEN3EXP) campaign. However, during the
SEN3EXP campaign CHRIS images were also acquired. These CASI and CHRIS images from
the SEN3EXP campaign were used in the article by [Verrelst et al., 2011] to evaluate the porta-
bility of the already trained GPR model. This project focuses on the prediction performance of
the GPR, therefore the portability of the GPR model is not described here. (For the interested
readers the portability of the GPR model can be found in the article from [Verrelst et al., 2012a]
and [Verrelst et al., 2011].) Figure 6.1, 6.2 and 6.3 show the position of Barrax, a satellite image
of the test area and the area where chlorophyll measurements were taken, respectively.

Figure 6.1: The position of the test area (from [SPARC Report, 2004]).

It can be observed in Fig. 6.2 that vegetated areas appear as green circles. This is due to
the irrigation culture of the area [SPARC Report, 2004]. Figure 6.3 shows the locations where
the chlorophyll content measurements were taken and the type of crop they correspond to.

6.1.2 GPR

The dataset D = {X,y}, where X corresponds to the input of the Gaussian Process X and y
corresponds to the output of the Gaussian Process y. The input dataset, X, has a dimension
of 135x62, where 135 corresponds to the 135 locations, and 62 corresponds to the number of
bands. Each of the 135 locations were measured on 62 wavelengths. The resulting spectra were
collected in matrix the matrix X. The output dataset, y corresponds to the measured chlorophyll
contents of the 135 locations. y is a vector, with the dimension of 135x1. In order to test the
performance of the GPR, training data and test data were required. Both X and y were divided
to training and test data. Leave-one-out cross validation were used for prediction. X was divided
to k = 135 vectors with a dimension of 1x62, and y was divided to k = 135 points (1x1). In
order to perform LOO (Leave-one-out), one vector from X and the corresponding point form y
were held out from the dataset for testing purposes. The rest of X and y were used for training.
Thus the test data had a dimension of 1x62 from X, and 1x1 from y, while the training data
had a dimension of k-1 both for X and y. The training and the testing process was performed
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Figure 6.2: Landsat TM satellite image. The test area is indicated by the red square (from
[SPARC Report, 2004]).

Figure 6.3: Chlorophyll content measurements (from [SPARC Report, 2004]).
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for k-times [Rasmussen and Williams, 2006]. The optimization of the hyperparameters were
carried out by using the Gaussian Processes for Machine Learning (GPML) toolbox, which is
a freely available toolbox for Matlab users, provided by [Rasmussen and Williams, 2006]. In
order to estimate the hyperparameters by the Maximum Likelihood Estimation (MLE) method
with the GPML toolbox, the hyperparameters need to be initialized. The hyperparameter
ν and σn was determined empirically, whereas the characteristic length-scales were computed
by using Silverman's rule. Further details about the computations of the initial length-scales
by applying the Silverman's rule can be found in the article by [Jenssen et al., 2006]. The
hyperparameters were estimated only once in order to overcome the computational costs of the
initializations. (All regressions in Part II and Part III with the land chlorophyll dataset were
carried out with the same hyperparameters.) After the optimization of the hyperparameters was
performed, GPR was applied by implementing the LOO method. The covariance matrices were
computed by the squared exponential covariance function. The resulting predictive chlorophyll
content and the actual chlorophyll content was plotted, so that the performance of the GPR
with all the available bands is illustrated. Figure 6.4 shows the predicted chlorophyll contents
and the measured chlorophyll values. It can be observed in Fig. 6.4 the predictive mean
function values (predicted chlorophyll) of the GPR follow well the actual chlorophyll content
values. In order to illustrate the additional advantageous property of the GPR, the predictive

Figure 6.4: Predicted chlorophyll (62 bands).

variance, the computed predictive variances were also plotted. Figure 6.5 shows the resulting
predictive variances together with the predictive means and measured chlorophyll values. The
con�dence region on Fig. 6.5 was computed by adding and subtracting twice the square-root of
the predicted variance Varf?|y to the predicted mean µf?|y. Thus the con�dence regions can be
mathematically expressed by

µf?|y ± 2
√

Varf?|y, (6.1)

where µf?|y and Varf?|y are vectors, collecting the predicted means and the predicted variances,
respectively. To illustrate the meaning of the con�dence region, the red squared part of Fig.
6.5 was enlarged. It can be shown how the con�dence region increases when the test point
deviates from the training points. Thus the con�dence region allows the access of additional
informations about the prediction. The predictive variance also reveals the certainty level of
the estimated values. Fig. 6.5 suggests quite certain estimated chlorophyll contents, since the
con�dence region is relative narrow.
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Figure 6.5: Predicted chlorophyll and corresponding con�dence region (62 bands).

Evaluation of the performance of the GPR

The model performances were evaluated by computing the root-mean-squared error RMSE and
the coe�cient of determination R2. The RMSE is informative about the accuracy of the model,
and it can be written by

RMSE =

√√√√∑N
i=1

(
µif?|y − y

i
)2

N
, for i = 1, ..., N, (6.2)

where µif?|y is the estimated chlorophyll content, yi is the actual (measured) chlorophyll content

and N is the size of the test data set. The coe�cient of determination R2 is the measure of the
goodness-of-�t, and it can be computed by

R2 = 1− SSres
SStot

, (6.3)

where SSres =
∑N

i=1

(
µif?|y − y

i
)2

is the residual sum of squares and SStot =
∑N

i=1

(
yi − ȳ

)2
is the total sum of squares. The term ȳ indicates the mean value of the measured chlorophyll
contents of the test set, and it is given by ȳ = 1

N

∑N
i=1 y

i. The RMSE of the GPR with 62
bands was 3.8160 and the R2 was 0.9293, which indicates good model performance. Computing
the RMSE and R2 values allows the comparison of the GPR with all the available bands with
the results of the sensitivity analysis of features which is going to be introduced in Part III.

Testing the GPR on a test image

The GPR was applied to an image, so that the chlorophyll predictive power of the model could
be tested. However, ten bands had to be removed from the test image, because the provided
data had this �aw. The removed bands were the following: band-1, band-2, band-3, band-21,
band-22, band-23, band-24, band-25, band-26 and band-27. Therefore, the training of the GPR
was performed once more, but now only with 52 bands, so that a reasonable prediction on the
test image could be carried out. Removing these bands from the training set did not e�ected
signi�cantly the model performance, the model criteria haven't changed. Finally, the chlorophyll
content prediction on the test image was performed. Figure 6.6 shows the resulting chlorophyll
content image. Figure 6.6 shows that the model could discriminate between the areas with and
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without chlorophyll. The irrigated parcels are clearly identi�ed and indicated with an orange
colour. The blue areas most probably corresponds to dry vegetation or bare soil. To gain deeper

Figure 6.6: Predicted chlorophyll content map.

understanding about the strength of the prediction, the variance map of the test image was also
implemented. The resulting predictive variance map can be seen in Fig. 6.7. The variance map
in Fig. 6.7 shows the areas in dark blue, where the certainty level of the prediction is highest.
The red areas correspond to greater uncertainty about the estimated chlorophyll content. The
higher uncertainty of the predicted values might occur due to fewer or no chlorophyll content
measurements from those areas.

Figure 6.7: Predicted variance map.

It can be summarized that the GPR showed a good performance of estimating land chloro-
phyll content. The regression function in Fig. 6.4 follows the actual chlorophyll content function.
The con�dence region in Fig. 6.5 is quite narrow, indicating high certainty for the prediction.
The model statistics also con�rmed a good regression. Applying GPR for pixelwise chlorophyll
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content prediction for a test image resulted the identi�cation of the irrigated parcels, dry vege-
tation and bare soil (Fig. 6.6). The predicted variance map in Fig. 6.7 revealed the strength of
the prediction.

6.2 Ocean chlorophyll

In order to illustrate the �exibility of the GPR, the model was tested for ocean chlorophyll
estimation as well. The estimation of ocean chlorophyll content from remotely sensed data
can be challenging due to the complex composition of ocean waters. Various dissolved matter
might in�uence the re�ectance spectra, which can lead to di�culties in the identi�cation of the
chlorophyll signal. Since global ocean waters occur both as Case-1 and Case-2 waters (for details
see Part I Section 3.1), it is important that the method that estimates ocean chlorophyll content
from remotely sensed data can adopt to both of the two conditions. GPR was applied to two
ocean chlorophyll datasets: the SeaBam dataset and the MERIS dataset. The SeaBam dataset
is mostly representative for Case-1 waters, whereas the MERIS dataset contains Case-2 waters
as well [Camps-Valls et al., 2006].

Chlorophyll content prediction was performed by applying GPR on the datasets with all
the available channels. The model performances were evaluated by computing the root-mean-
squared error RMSE and the coe�cient of determination R2 by using Eq. (6.2) and Eq. (6.3),
respectively. The estimated chlorophyll values and the actual chlorophyll values were plotted for
both of the datasets in order to illustrate the performance of the regressions. In addition, the
estimated variances were also computed and plotted as con�dence regions, thus the certainty of
the predictions could be visualized. The con�dence regions were computed by using Eq. (6.1).
The following sections describe the datasets and the results of the predictions.

6.2.1 SeaBam

Description of the data

The SeaBam dataset gathers 919 ocean chlorophyll measurements around the United States
and Europe [Camps-Valls et al., 2006]. The dataset consists of coincident in situ remote sens-
ing re�ectance on �ve channels, which corresponds to some of the SeaWiFS channels and are
presented in Table 6.1, and chlorophyll-a concentration measurements. The chlorophyll-a con-
centrations range between 0.019-32.79 mgm−3. The dataset is mostly representative for Case-1
waters [O'Reilly et al., 2000]. The chlorophyll data, the in situ chlorophyll contents and the
re�ectances, were converted to the logarithmic domain, based on the assumption that these
bio-optical quantities follow a log-normal distribution [Pasolli et al., 2010]. The dataset was
previously sorted in an increasing order of the chlorophyll concentration [Zhan et al., 2003].
GPR for estimating ocean chlorophyll content was implemented by two methods. One of the

Table 6.1: The SeaBam channels (nm).
1 2 3 4 5

402-422 433-453 480-500 500-520 545-565

methods (Method A) was to split the SeaBam dataset into a training dataset and a test dataset
[Zhan et al., 2003]. The training dataset consist of 460 measurements, while the test dataset
contains 459 measurements. The division of the SeaBam dataset was done by �rst sorting the
entire dataset in an increasing order of the chlorophyll concentrations, then the odd ordered
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Figure 6.8: Predicted chlorophyll and measured chlorophyll.

samples were picked out to form the training set (Ntr = 460), while the rest of the samples was
chosen to form the test set (Ntest = 459) [Zhan et al., 2003]. The other method (Method B) was
the Leave-One-out method, when only one sample was hold out for testing (Ntest = 1), while
the rest of the dataset (N−1 = 918) was used for training in a loop which run for 919 times. It
should be noted that Method B leads to a better model performance due to a greater number
of training samples. In the following the results of Method A and Method B are presented.

GPR

Method A

GPR was performed on the training dataset (Ntr = 460) with all the available bands. In order to
do regression, the hyperparameters Θ = {ν,λ, σnoise} had to be estimated. The optimization of
the hyperparameters was carried out by maximizing the log-marginal likelihood with the GPML
toolbox. The initial hyperparameters were chosen to have the same value as in the article by
[Pasolli et al., 2010]. After computing Θ, the training of the GPR was implemented on the
training set. Finally, the trained GPR was tested on the test set. The results of the predictions
were plotted together with the measured chlorophyll content in Fig. 6.8, so that the function
learning ability of the GPR could be visualized. It can be observed in Fig. 6.8, that although
the prediction function is wobbly, it follows the trend of the actual chlorophyll content function.
The con�dence region of the prediction was also computed by using Eq. (6.1). The results were
plotted in Fig. 6.9 with the prediction function and the actual chlorophyll content function. The
red square indicates the enlarged functions. This zoomed in area shows the behaviour of the
con�dence region. The increased con�dence region indicates deviation from the training points.
However, the con�dence region in Fig. 6.9 is quite narrow, besides few predictions, indicating
a relative high certainty of the estimated chlorophyll content values. In order to evaluate the
prediction mathematically the RMSE and R2 values were computed by using Eq. (6.2) and Eq.
(6.3). The RMSE and R2 resulted a value of 0.1437 and 0.9408, respectively, which indicates
an excellent �t, supporting the visual results in Fig. 6.8 and in Fig. 6.9. (It should be noted,
that the increasing trend on Fig. 6.8 and Fig. 6.9 is due to the fact, that the data was sorted
during preprocessing.) Both Fig. 6.8 and Fig. 6.9 indicate that the GPR model follows the
measured chlorophyll content.
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Figure 6.9: Predicted chlorophyll and the corresponding con�dence region.

Figure 6.10: Predicted chlorophyll and measured chlorophyll.

Method B

Gaussian Process Regression was also performed by applying Leave-One-Out method in order
to further improve the regression. The results of the predicted chlorophyll contents and the
measured chlorophyll values are shown in Fig. 6.10. The pattern in Fig. 6.10 occurs due to the
preprocessing of the data. The GP regression function could follows the trend of the measured
chlorophyll content function. The con�dence region was also computed and plotted in Fig. 6.11.
It can be observed how the con�dence region blows up when the test point di�ers from the
training values. Applying Method B to the SeaBam dataset resulted some improvements in the
RMSE and R2, namely RMSE = 0.1414 and R2 = 0.9432, indicating that the regression has
a strong predictive performance.

6.2.2 MERIS

Description of the data

The MERIS dataset is a synthetic dataset, where 5000 coincident chlorophyll-a concentrations
and re�ectance were simulated [Camps-Valls et al., 2009]. The chlorophyll-a concentrations
range between 0.021 mgm−3 and 53.4429 mgm−3. The remote sensing re�ectance were sim-
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Figure 6.11: Predicted chlorophyll and the corresponding con�dence region.

ulated on eight channels. The channels are presented in Table 6.2. The MERIS dataset was also
converted to the logarithmic domain based on the same assumption as by the SeaBam dataset.
The MERIS dataset is representative for both Case-1 and Case-2 subsurface waters. In order to
perform chlorophyll content prediction, the MERIS dataset was randomly divided to a training
set (Ntr = 1000) and to a test set (Ntest = 4000) [Pasolli et al., 2010].

Table 6.2: The MERIS channels (nm).
1 2 3 4 5 6 7 8

407.5-417.5 437.5-447.5 485-495 505-515 555-565 615-625 660-670 677.5-685

GPR

Chlorophyll content estimation was �rst performed by using all the eight channels of the MERIS
dataset. The �rst 100 estimated chlorophyll contents and the corresponding actual chlorophyll
contents are presented on Fig. 6.12. The reason that only 100 values are plotted is that the
dataset is large, thus plotting all the 4000 estimates would not allow the visualization of the
performance of the regression. However, the shown estimated chlorophyll contents in Fig. 6.12
represents well the predictions. Figure 6.12 shows that the regression function follows almost
perfectly the actual chlorophyll content function, suggesting a strong predictive performance.
The con�dence region was computed for the MERIS dataset as well, by using Eq. (6.1). The
results for the �rst 100 observations were plotted in Fig. 6.13. It can be observed that the
con�dence region is very narrow with some few exceptions, indicating a quite high certainty
level. Figure 6.13 suggests that the prediction of the MERIS dataset is reliable. Both Fig. 6.12
and Fig. 6.13 shows that using all the available channels for chlorophyll content prediction with
GPR results accurate and reliable estimates. However, in order to con�rm these results, the
model statistics for the MERIS dataset were also computed. The RMSE value was 0.0060 and
the R2 was 0.9999, indicating an almost perfect prediction.
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Figure 6.12: Predicted chlorophyll and actual chlorophyll.

Figure 6.13: Predicted chlorophyll and the corresponding con�dence region.
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Conclusions

Performing GPR on the land chlorophyll dataset and on the ocean chlorophyll datasets with all
the available bands showed the predictive power of this relatively new machine learning method.
Figure 6.4, Fig. 6.8, Fig. 6.10 and Fig. 6.12 illustrated the predicted chlorophyll contents
and the actual chlorophyll contents as functions, allowing visual comparison of the results. The
additional con�dence region �gures, Fig. 6.5, Fig. 6.9, Fig. 6.11 and Fig. 6.13, showed how
the advantageous property of the GP, the predictive variance, can be interpreted. Care should
be taken in the areas, where the con�dence region blows up, since these predictions indicate
uncertainty. Note that although GPR performs excellently for chlorophyll content prediction, the
model doesn't provide information about the relevance of the bands due to its non-linearity. The
driving mechanism of the GPR hasn't been understood yet. Knowledge about the importance of
the bands being used during regression, could reveal the relevance of the underlying biophysical
parameters.
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Part III

Sensitivity analysis of features
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Gaussian Processes (GPs) have been a very in�uential machine learning method in the last
few years. The method has been shown to have an accurate and fast predictive capability.
In addition, through the predictive variance the certainty level of the prediction can also be
accessed. GPs have been performed very good for the important task for chlorophyll content
prediction [Verrelst et al., 2012b]. Part II showed the excellent performance of the method for
chlorophyll content prediction and the advantage of having information about the predictive
variance. However, it is unclear which features are the most important with respect to the
spectral bands.

This thesis will for the �rst time develop a method for sensitivity analysis of the features for
GPs. The methodology focuses on chlorophyll content prediction due to the great importance
of global chlorophyll content mapping. Revealing the most relevant spectral regions of the
chlorophyll absorption spectrum has been frequently studied in various scienti�c �eld, resulting
some preliminary knowledge about the expected spectral band importance. The results of the
sensitivity analysis of features for chlorophyll content prediction can uncover new informations
and/or it can immerse the already existing knowledge.

The GPs sensitivity analysis is developed for both the predictive mean µf?|y and for the
predictive variance Varf?|y. Although this thesis applies the model for chlorophyll content
prediction, the method translates to numerous �elds.
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Chapter 7

Sensitivity analysis

7.1 Motivation

There have been developed several parametric and machine learning models for chlorophyll
content prediction. One of the most widely used parametric methods for chlorophyll content
mapping from hyperspectral data is vegetation indices (VI) for land chlorophyll and spectral
band ratios for ocean chlorophyll, due to the simplicity of the models [Verrelst et al., 2012b]. The
description of vegetation indices and spectral band ratios can be found in Part I. Both vegetation
indices and spectral band ratios use only a few spectral bands for chlorophyll content estimation,
which allows them to provide a fast performance. However, there remains an uncertainty whether
the most relevant combination of these bands are being used [Verrelst et al., 2012b]. In addition
these models can be a�ected by confounding factors, thus resulting under- or overestimates
of the chlorophyll content. In order to overcome the drawbacks of the parametric models,
machine learning methods for chlorophyll content prediction have lately been introduced. Neural
networks, support vector machines and relevance vector machines have been successfully applied
for retrieving chlorophyll content from remotely sensed data. However, it has been demonstrated
in the article by [Verrelst et al., 2011] that the recently introduced machine learning method,
Gaussian Process Regression, has outperformed both these machine learning methods and the
parametric models. Therefore the sensitivity analysis of features, which was introduced by
this thesis, was developed for the GPR. Discovering the most important spectral bands being
used for chlorophyll content prediction by applying GPR, would provide a powerful tool for
understanding global chlorophyll content mapping.

7.2 Principles of the sensitivity analysis

Introduction

Although machine learning models have been shown to have better predictive performances than
vegetation indices [Verrelst et al., 2011] and spectral band ratios [Pasolli et al., 2010], they are
non-linear models, thus the importance of the features cannot directly be extracted. In contrast,
the linear regression models provide easily accessible feature importance. The linear regression
model can be expressed by

ŷ = wTx + b, (7.1)

where ŷ is the predicted output, w is the weight vector, x is the input vector and b is the bias
term. Equation (7.1) can be further expanded by

ŷ = w1x1 + w2x2 + ...+ wixi + b, for i = 1, ..., N. (7.2)
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Equation (7.2) suggests that the relevance of the features can be directly retrieved from the
weights. In order to illustrate how the linear regression model can assign feature relevance to
the inputs through the weights, consider a model with �ve features. Thus Eq.(7.2) can be written
by

ŷ = w1x1 + w2x2 + ...+ wixi + b, for i = 1, 2, 3, 4, 5. (7.3)

Furthermore assume, that the linear regression model resulted the following solution for Eq.
(7.3)

ŷ = 0.005x1 + 3.2x2 + 2.5x3 + 0.000001x4 + 6.23x5 + 1.3. (7.4)

The weights in Eq. (7.4) assign importance to the features. The example in Eq. (7.4) shows that
the relevance of the features are the following in a descending order: x5, x2, x3, x1 and x4. Thus,
the higher the value of the weight, the more the feature contributes to the prediction of the out-
put ŷ. However, when non-linear machine learning methods are used for regression, the weights
cannot be assigned to the features in the same fashion as by the linear regression models. In
order to access feature relevance, sensitivity maps have been introduced by [Zurada et al., 1994],
[Kjems et al., 2002] and [Rasmussen et al., 2011]. Feature selection for neural networks has been
discussed in the article by [Zurada et al., 1994], while the sensitivity analysis for Support Vec-
tor Machines (SVM) was �rst introduced by [Rasmussen et al., 2011]. However, to the best of
the author's knowledge, sensitivity analysis of features for GPR (and Kernel Ridge Regression
(KRR)1) has not yet been derived. Introducing sensitivity maps for SVM inspired the deriva-
tion of the sensitivity analysis of features for GPs. In the article by [Rasmussen et al., 2011]
sensitivity analysis for neuroimaging was applied in order to produce sensitivity maps of the
brain. They showed that SVM, can be used for analysing neuroimaging data. Their aim was
to identify those regions in the brain, which activate for visual stimuli. This was achieved by
the introduction of the sensitivity maps. These sensitivity maps re�ect the importance of the so
called voxels (volume units of the brain) for various visual stimuli.

The probabilistic approach

For neuroimage applications of the sensitivity map, a probabilistic approach was used for deter-
mining voxel importance [Kjems et al., 2002], [Rasmussen et al., 2011], [Strother et al., 2002].
For the �rst time this thesis introduces this probabilistic approach for the sensitivity analysis
of features in the context of GPR for chlorophyll content prediction. The sensitivity for the jth
feature/spectral band can be interpreted as the expected value of the squared derivative of the
function with respect to its arguments [Rasmussen et al., 2011]. This can be expressed by

sj =

∫ (
∂φ(x)

∂xj

)2

p(x)dx, (7.5)

where φ(x) is the function, p(x) is the probability density function over the inputs x and sj
is the sensitivity of the feature j. The objective of the sensitivity map de�ned by Eq. (7.5) is
to measure the changes of the derivative of the function φ(x) in the jth direction. (Here the
jth direction corresponds to the jth spectral band.) The derivatives can have both positive
and negative sign, which can result in both positive and negative sensitivities. This might lead
to the cancellation of the terms [Rasmussen et al., 2011]. In order to avoid the possibility of
cancellation of the terms, the derivatives are squared. Therefore, the resulting sensitivity map

1Note that both GPR and KRR have some common properties, namely, that both of the two methods can
be expressed in a linear combination. Thus, the new methodology for feature selection for GPR can easily be
derived for KRR. However, this thesis aimed to study the unexploited properties of the GPR in the analysis of
chlorophyll datasets, therefore the derivation of sensitivity maps for KRR hasn't been carried out here.
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will be positive sj ≥ 0 for all bands [Kjems et al., 2002]. Performing the integral in Eq. (7.5)
might lead to computational complexities. Thus an empirical estimate of the integral was derived
[Kjems et al., 2002]. The estimated sensitivity for the jth feature can be written by

ŝj =
1

N

N∑
n=1

(
φ(x(n))

∂xj

)2

, (7.6)

where N denotes the number of training samples. Equation (7.6) shows that the value of ŝj
depends on the derivative of the function in the given direction.

In order to illustrate the interpretation of Eq. (7.6), assume an arbitrary function with two
variables. Figure 7.1 represents this arbitrary function. Furthermore, assume that this function
changes in direction x1, while it is constant in direction x2 (Fig. 7.1). Thus, summing the
squared derivatives in the direction x1 would result a positive contribution to the sensitivity
map, whereas the direction x2 would appear as an unimportant feature in the sensitivity map.
The sensitivity analysis of the function presented on Fig. 7.1 would yield that direction x1 is the
most sensitive. The dimensionality of the function can be extended to multiple directions, and

Figure 7.1: Illustrating the interpretation of the sensitivity map.

the sensitivities for each directions can be computed. The most sensitive directions would reveal
the direction where the function �uctuates most. The intuitive interpretation of the sensitivity
map depends on the choice of the function. For neuroimage applications, the sensitivity map was
derived for the discriminant function of the SVM classi�er. Hereafter the function φ(x) denotes
either the predictive mean function of the GPR, φ(x) = µf?|y, or the predictive variance function
of the GPR, φ(x) = Varf?|y. When the function is the predictive mean function φ(x) = µf?|y,
the sensitivities can provide information about the relevance of the bands, which have been
used for chlorophyll content estimation. The following section describes the derivation of the
sensitivity map for the predictive mean function of the GPR.

7.3 Sensitivity of the predictive mean

Consider the case when the function is the the predictive mean φ(x) = µf?|y. The predictive
mean can be expressed by

µf?|y = K?
TK−1y y, (7.7)

where the terms are the same as in Part II, Section 5.2. Furthermore, the predictive mean can be
expressed as the linear combination of N kernel functions, where each kernel function is centred
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on a training point [de Freitas, 2013]. This can be written by

µf?|y = K?
TK−1y y =

N∑
p=1

αpK(xp,xq), (7.8)

where α = K−1y y and K(·, ·) is the squared exponential covariance function between the
training vectors xp and the test points xq or test vectors xq, and it's given by K(xp,xq) =

ν2 exp

(
−1

2

∑D
d=1

(
xdp−xdq
λd

)2)
, where d = 1, ..., D corresponds to the dimension (feature). Thus

the sensitivity of the predictive mean can be written by

sµj
=

∫ (
∂µf?|y

∂xj

)2

p(x)dx. (7.9)

The resulting empirical estimate of the predictive mean sensitivity is

ŝµj
=

1

N

N∑
q=1

(
∂
∑N

p=1 αpK(xp,xq)

∂xj

)2

. (7.10)

The partial derivative of αK(xp,xq) with respect to element xj can be written by

∂αK(xp,xq)

∂xj
=

∂
∑N

p=1 αpν
2 exp

(
−1

2

∑D
d=1

(
xdp−xdq
λd

)2)
∂xj

. (7.11)

Thus the derivative is given by

∂αK(xp,xq)

∂xj
=

N∑
p=1

αp
(xp,j − xq,j)

λ2j
ν2 exp

−1

2

D∑
d=1

(
xdp − xdq
λd

)2
 . (7.12)

The sensitivity of the predictive mean can be computed by combining Eq. (7.10) and Eq. (7.12)

ŝµj
=

1

N

N∑
q=1

 N∑
p=1

αp
(xp,j − xq,j)

λ2j
ν2 exp

−1

2

D∑
d=1

(
xdp − xdq
λd

)2
2

. (7.13)

In order to illustrate the performance of the sensitivity analysis for the predictive mean, a
controlled experiment was carried out. The illustration was motivated by the example of
[Rasmussen et al., 2011]. The �rst part of the illustration aims to perform GPR, and com-
pare the performance of it with linear regression. The second part computes the sensitivity
map for the predictive mean of the GPR and also for the linear regression, thus allowing the
comparison of the results.

7.3.1 Illustrating the concept of the sensitivity of the predictive mean

The generated dataset for the regression D = {X,y} holds the input matrix X and the the
corresponding output vector y. The input matrix X = [x1 x2 x3 x4] contains four vectors,
xi|i = 1, 2, 3, 4, where each vector consist of 200 observations. Each of the four dimensions were
independently generated from the standard normal distribution. The output y is the product of
x1 and x2. Furthermore, in order to produce a sensitivity map, the input X was embedded in a
high dimensional matrix I, with a size of 1600× 200, where now each xi corresponds to equally
sized submatrices in I. Figure 7.2 illustrates the setup of the matrix I and the four submatrices.
Region 1. and 4. corresponds to x1 and x2 respectively, while region 2. and 3. is for x3 and x4.
Thus, only region 1. and 4. are informative, since x1 and x2 forms the output y. The sensitivity
map is expected to assign special importance to region 1. and 4.

68



Figure 7.2: The four submatrices in matrix I.

Comparison of the GPR with the linear regression

In order to train and test the GPR and the linear regression, the dataset D was split into two
parts. 75 % of D, Xtrain = 150 × 4 and ytrain = 150 × 1, was used for training, while 25%,
Xtest = 50×4 and ytest = 50×1, was used for testing. The results of the testing of the GPR and
the linear regression are presented on Fig. 7.3. Figure 7.3 indicates an excellent performance of

Figure 7.3: Illustration of the performance of the GPR and the linear regression.

the GPR, while the linear regression resulted in worse prediction. In order to access numerical
information of the performances of the predictions, model statistics were computed. The chosen
criterion was the mean squared error, MSE, which can be written by

MSE =
1

N

N∑
i=1

(ŷi − yi)2 , (7.14)

where N is the number of observations, ŷi is the predicted value and yi is the target value
(output). The mean squared error of the GPR was MSE = 7.9864 · 10−11, while the MSE for
the linear regression was MSE = 0.7759, which is in good correspondence with Fig. 7.3.

Sensitivity maps

The sensitivity maps for the predictive mean of the GPR and the linear regression were computed
for matrix I. The resulting sensitivity maps are shown on Fig. 7.4. Figure 7.4 indicates that the
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Figure 7.4: Sensitivity maps for the GPR and the linear regression.

sensitivity map of the GPR found the four embedded regions, and assigned special importance to
region 1. and 4., while the sensitivity map for the linear regression could not distinguish between
these regions. These results gave inspiration to perform sensitivity analysis on chlorophyll data
in order to gain information about the most relevant bands for chlorophyll content prediction.

7.4 Sensitivity of the predictive variance

GPR, as opposed to other machine learning methods (NN, SVM, KRR), provides the predictive
variance function in addition to the predictive mean function. Therefore, for the �rst time,
the sensitivity analysis of the variance of the GPR is derived. The predictive variance of the
Gaussian process can be expressed by

Varf?|y = K?? −K?
TK−1y K? = K?? −

N∑
p=1

N∑
p′=1

App′K(xp,xq)K(xp′ ,xq′), (7.15)

where A = K−1y [Obádovics, 2010]. Furthermore, Eq. (7.15) can be expanded in terms of the
covariances by

Varf?|y = K?? −
N∑
p=1

N∑
p′=1

App′ν
2 exp

−1

2

D∑
d=1

(
xdp − xdq
λd

)2
 ν2 exp

−1

2

D∑
d=1

(
xdp′ − xdq′

λd

)2
 .

(7.16)
After performing the multiplication of the exponential term, the resulting equation for the
predictive variance can be expressed by

Varf?|y = K?? −
N∑
p=1

N∑
p′=1

App′ν
4 exp

−1

2


D∑
d=1

(
xdp − xdq
λd

)2

+
D∑
d=1

(
xdp′ − xdq′

λd

)2

 . (7.17)
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In order to �nd the sensitivity of the predictive variance, the partial derivative of Eq. (7.17)
with respect to element xj needs to be computed. This can be written by

∂Varf?|y

∂xj
= −

N∑
p=1

N∑
p′=1

App′ν
4

{
(xp,j − xq,j) +

(
xp′,j − xq′,j

)
λ2j

}
×

exp

−1

2


D∑
d=1

(
xdp − xdq
λd

)2

+

D∑
d=1

(
xdp′ − xdq′

λd

)2

 .

(7.18)

Thus the estimate for the sensitivity of the predictive variance can be expressed by applying Eq.
(7.18) and Eq. (7.6)

ŝVarj =
1

N

N∑
q,q′=1(

−
N∑
p=1

N∑
p′=1

App′ν
4

{
(xp,j − xq,j) +

(
xp′,j − xq′,j

)
λ2j

}

exp

(
−1

2


D∑
d=1

(
xdp − xdq
λd

)2

+
D∑
d=1

(
xdp′ − xdq′

λd

)2

))2

.

(7.19)

The performance of the sensitivity of the predictive variance was also tested on a controlled
dataset. However, testing the sensitivity of the predictive variance would have been challenging
to carry out on the same dataset as it was used in Section 7.3.1. This is due to the fact that
the function of the predictive variance is independent of the output. In addition, all the four
signals which were embedded in matrix I (in Section 7.3.1) were independently generated from
standard normal distribution, therefore the variance functions should not di�er signi�cantly.
Thus the sensitivity map of the predictive variance is not expected to be able to distinguish
between the regions. In order to produce a sensitivity map for the predictive variance, a more
illustrative dataset was chosen. The following section describes the illustration of the concept
of the sensitivity of the predictive variance.

7.4.1 Illustrating the concept of the sensitivity of the predictive variance

The choice of the dataset was inspired by the article from [Jenssen et al., 2012]. The chosen
dataset was extracted from the USPS Handwritten Digits dataset 2. Figure 7.5 shows the input
data, which consists of six matrices. Each matrix represents the handwritten digit 0. The
dimension of the matrices is 16 × 16, which was converted to a 256 × 1 vector. Then the six
vectors were stacked together in a matrix and transposed, in order to form to input data matrix
X. Thus X has the dimension of 6×256. The output data y holds the labels of the digits. Since
all the digits represent the same number, digit 0, the labels assigned to them were identical,
namely, 1. Thus y is a 6× 1 vector, with the elements 1.

Sensitivity maps

In order to gain more information about the sensitivity of the predictive variance, the comparison
of the sensitivity of the predictive mean with the sensitivity of the predictive variance was carried
out. The sensitivity of the predictive mean and the predictive variance were computed for each

2The data is freely available on the website: cs.nyu.edu/ roweis/data.html
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Figure 7.5: The input data.

pixels by applying Eq. (7.13) and Eq. (7.19), respectively. The resulting sensitivities were
converted back to a 16 × 16 matrix. The resulting sensitivity maps are presented on Fig. 7.6.
Figure 7.6 suggests that both the sensitivity of the predictive mean function and the sensitivity
of the predictive variance function can distinguish between pixels containing information and
pixels without information. The sensitivity map of the predictive variance indicates the pixels
where the predictive variance function takes the greatest shifts. For better visualization, the

Figure 7.6: The sensitivity map of the predictive mean and the predictive variance.

black squared parts of the sensitivity maps in Fig. 7.6 were enlarged. These enlarged areas are
presented in Fig. 7.7. It can be seen that the the most sensitive pixels for the predictive mean
corresponds to the red and orange areas (left panel). This means that these areas are the most
important in the prediction of the digit 0. The right panel shows the corresponding sensitivity
map of the predictive variance. The red, yellow and green pixels indicate the areas where
the variance �uctuates most, whereas the blue pixels corresponds to a more stable variance.
Generally, areas with more stable variance are preferable for prediction. Thus, computing the
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sensitivity map of the predictive variance, in addition to the sensitivity map of the predictive
mean, allows to choose the features which contributes most to the prediction and have the most
stable variance. In the case of the digit 0, Fig. 7.6 and Fig. 7.7 suggest to choose features where
the pixels of the predictive mean have red/orange and yellowish colours, furthermore, from the
chosen pixels, consider the ones, where the sensitivity of the predictive variance resulted blue
coloured pixels. In addition to the sensitivity maps, the histogram of the sensitivities were also

Figure 7.7: The enlarged area of the sensitivity map of the predictive mean and the predictive
variance.

computed. The histogram is shown in Fig. 7.8. The histograms presented in Fig. 7.8 might
help the selection of the pixels that contribute most to the prediction of the digit 0 and have
the most stable variances. For example, the sensitivities, marked with the red square, indicate
pixels, where the sensitivity of the predictive mean is relative high and the sensitivity of the
predictive variance is quite low.

Figure 7.8: The histogram of the sensitivity of the predictive mean and the predictive variance.

Computing the sensitivity map of the predictive variance function allows to access additional
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information about the features used for prediction. The controlled experiment with the digit
dataset resulted promising performance of the sensitivity analysis. Therefore, the sensitivity
analysis of features was carried out on the chlorophyll datasets. The following chapter presents
the result of the sensitivity analysis of the chlorophyll datasets.
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Chapter 8

Results of the sensitivity analysis

Sensitivity analysis of features was carried out for the land chlorophyll dataset and for the
ocean chlorophyll datasets. In order to �nd the most sensitive bands the sensitivity of the
predictive mean function was implemented. The sensitivity of the predictive mean function,
de�ned by Eq. (7.13), was programmed as a function called "SensitivityMean", in the function
environment in Matlab. (All implementations were performed in Matlab for the sensitivity
analysis as well.) "SensitivityMean" needs the dataset D = {X,y} and the hyperparameters of
the GPR Θ =

{
ν,λ, σ2noise

}
for input variables to compute the output variable, which contains

the sensitivities of the predictive mean ŝµj
. "SensitivityMean" was applied to the chlorophyll

datasets to determine the most sensitive spectral bands. After these bands were found, the
sensitivity analysis of the predictive variance function was implemented, so that bands with
the most stable variance from the most relevant bands could be chosen. The sensitivity of the
predictive variance was de�ned by Eq. (7.19). The implementation of Eq. (7.19) was also carried
out in the function environment. The function that calculates the sensitivities of the predictive
variance ŝVarj is called "SensitivityVariance", which also takes the dataset D = {X,y} and
the hyperparameters of the GPR Θ =

{
ν,λ, σ2noise

}
for input variables in order to produce the

output variable ŝVarj . The function "SensitivityVariance" was also applied to the chlorophyll
datasets. The resulting most sensitive bands with the most stable variances were chosen in order
to carry out GPR with the selected features. Then the results of the GPR was evaluated by
using model criteria so that comparison with the performance of the GPR with all the available
features could be preformed. In order to carry out a sanity check, GPR with the least sensitive
bands with unstable variances, was carried out. Finally, the results were compared and analysed.

8.1 Sensitivity analysis of the land chlorophyll dataset

Sensitivity analysis of the land chlorophyll dataset was carried out on the same dataset as
it was described in Part II in Chapter 6. The sensitivities of the predictive mean and the
predictive variance were computed by applying function "SensitivityMean" and "SensitivityVar",
respectively. The input variables to the functions were the land chlorophyll dataset and the
hyperparameters, which had been calculated previously in Part II in Chapter 6. In order to
apply the most sensitive bands to the available test image for chlorophyll content mapping
ten bands had to be removed, since these bands were ruined, and would have a�ected the
predictions (see Part II, Section 6.1.2). Therefore, the sensitivity analysis of the spectral bands
was performed twice. The �rst time with all the 62 bands, so that the most important features
with the most stable variance could be discovered. The second time the ten ruined bands were
removed, then sensitivity analysis was carried out for the 52 bands in order to be able to perform
chlorophyll content mapping on the CHRIS image with the most relevant spectral bands. The
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resulting sensitivities of the predictive mean and predictive variance for 62 bands and for 52
bands were plotted as histograms. Figure 8.1 shows the histograms. The black squares in Fig.

Figure 8.1: Sensitivities of the predictive mean.

8.1 show the most relevant bands with the corresponding variances. It can be observed that the
sensitivity analysis of the predictive mean resulted that bands between band-30 and band-35,
and bands above band-58 are the most important features for land chlorophyll content prediction
from the test site in both cases 1. When sensitivity analysis was performed with 62 bands, the
most important spectral bands had relative stable variances. Interestingly, when the ten bands
(corresponding to the ruined bands in the test image) were removed, the sensitivity analysis
of the predictive variance assigned greater values to the highest bands (band-61 and band-62).
This might be due to the fact, that removing the ten bands changed the ratio of the variances
relative to each other. Figure 8.1 also shows the features which resulted in low sensitivities both
for the predictive mean and for the predictive variance. These features are the bands below
band-30, with specially low values for the ones below band-10.

It can be summarized that the resulting 10 most sensitive spectral bands with relative stable
variances were found to be band-31, band-32, band-33, band-34, band-35, band-41, band-58,
band-60, band-61 and band-62. These bands partially corresponds to the expected most relevant
bands for chlorophyll content prediction. Bands between band-31 and band-35 correspond to
centred wavelengths between 712.17 nm and 737.76 nm. This part of the visible part of the
electromagnetic spectrum is called the red-edge. The presence of vegetation indicates a sharp
change around the red-edge in the measured re�ectance spectrum [Jones & Vaughan, 2010].
Thus �nding bands around the red-edge to be most important for land chlorophyll prediction
is in good correspondence with the expectations. In contrast, band-41 and the highest bands
(band-58, band-60, band-61 and band-62) fall outside the chlorophyll absorption spectrum.
However, the results of the sensitivity analysis suggest that these bands also contribute to the
prediction of land chlorophyll. (For further details see Appendix B.)

In order to thoroughly analyse the results of the sensitivity analysis of features, GPR was
performed with the 10 most important spectral bands. The GPR with the 10 most relevant
bands were carried out on the land chlorophyll dataset by using LOO method. The results are
presented in Fig. 8.2. The left panel in Fig. 8.2 shows the predicted chlorophyll content and

1Both for 62 bands and 52 for bands.
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the measured chlorophyll content, while the right panel presents the con�dence region of the
predicted values. The red squares indicates enlarged areas in order to provide better illustrations
of the GPR. It can be observed in the enlarged parts that the GPR could learn the relationship
between the chlorophyll content and measured re�ectance spectrum with the 10 most sensitive
bands quite well. The con�dence region is narrow, indicating a relative certain prediction. In

Figure 8.2: Predicted chlorophyll content and con�dence region with the 10 most sensitive bands.

order to retrieve deeper understanding about the performance of the GPR with the 10 most
sensitive bands, model statistics were computed. The RMSE and the R2 (Part II: Eq. (6.2)
and Eq. (6.3)) was 6.0931 and 0.8197, respectively. These values still indicate a relative good
regression. However, the computed model statistics for the GPR with the 10 most sensitive
bands show that the regression worsened in comparison with the GPR with all the available
bands. Therefore, sanity check was performed with the 10 least sensitive bands.

The resulting 10 least sensitive bands were the lowest bands, between band-1 and band-10.
However, band-1, band-2 and band-3 are corrupted in the test image. In order to be able to
perform a sanity check for the test image, instead of using the resulting 10 least important
bands of the sensitivity analysis for the 62 bands, the 10 least relevant bands of the sensitivity
analysis for 52 bands were chosen 2. Thus the 10 least important bands used for GPR are
the following: from band-4 to band-12 and band-16. GPR was carried out by using the LOO
method. In order to be able to compare the results visually with the results of the GPR with
the 10 most important bands (Fig. 8.2), the predicted chlorophyll contents together with the
actual chlorophyll contents, and the corresponding con�dence region were plotted in Fig. 8.3.
The left panel in Fig. 8.3 shows the predicted chlorophyll content of the GPR by using the 10
least important bands and the actual chlorophyll content, while the right panel indicates the
corresponding con�dence region as well. The red squares present the same enlarged areas as in
Fig. 8.2. It can be observed that the predicted chlorophyll content function deviates signi�cantly
from the actual chlorophyll content function. Comparing Fig. 8.3 with Fig. 8.2 suggests that
there is a signi�cant di�erence whether the 10 least or the 10 most sensitive bands are used
for chlorophyll content prediction. It should be mentioned that the con�dence region in Fig.
8.3 looks surprisingly still narrow, indicating high certainty level for the prediction. In order to
access numerical information about the prediction with the 10 least sensitive bands, the model

2The sensitivity analysis for both 62 bands and 52 bands resulted the same bands to be the most important
in the prediction of chlorophyll.
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Figure 8.3: Predicted chlorophyll content and con�dence region with the 10 least sensitive bands.

statistics were computed. The resulted RMSE value was 9.4558 and the R2 was 0.5657. Both
the RMSE and R2 value con�rmed that the regression has considerably worsened when the 10
least sensitive bands are used for chlorophyll content prediction.

The regression �gures (Fig. 8.2 and Fig. 8.3) and the model statistics (RMSE and R2)
show that the results of the sensitivity analysis of features for the land chlorophyll dataset are
reasonable. Therefore, chlorophyll content mapping by using the 10 most important spectral
bands was performed on the CHRIS image. The predicted chlorophyll content map with the 10
most sensitive bands is presented in Fig. 8.4. Figure 8.4 shows that using GPR with only the 10

Figure 8.4: Predicted chlorophyll content map with the 10 most sensitive bands.

most important bands for chlorophyll content mapping could still identify the circular parcels.
Areas where the predicted chlorophyll content is the greatest are indicated with red and orange
colours, whereas region with little or no chlorophyll content are shown in blue colour. In order to
illustrate the advantageous property of the GPR, the predictive variance, the certainty map of
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the prediction with the 10 most relevant bands were also implemented. The resulting certainty
map can be shown in Fig. 8.5. The certainty map presents the computed predictive variances
for each pixel. Figure 8.5 shows that the certainty level of the prediction for the circular parcels
are quite high (blue/ dark blue), while the regions in red colour indicate uncertain predictions.
A possible interpretation of Fig. 8.4 and Fig. 8.5 is as it follows. Using the 10 most sensitive

Figure 8.5: Predicted variance map with the 10 most sensitive bands.

bands for chlorophyll content mapping can �nd the areas which contain chlorophyll (irrigated
parcels), with a relative high certainty. Areas (dry vegetation and/ or bare soil) which contain
little or no chlorophyll are also identi�ed by using the 10 most sensitive bands, however the
certainty level for the estimated chlorophyll content for these region is relative low.

GPR for chlorophyll content mapping with the 10 least sensitive bands were also carried out
in order to perform sanity check. Figure 8.7 shows the result of the estimated chlorophyll content
for each pixel on the test image. It can be observed that the chlorophyll content assigned to the
pixels is signi�cantly less as it was when the 10 most sensitive bands were used for chlorophyll
content mapping. Figure 8.6 also shows that not all the circular parcels were identi�ed. Using
the 10 least important bands for chlorophyll content prediction resulted little chlorophyll content.
Figure 8.6 indicates an area which is dominated with dry vegetation or no vegetation at all. In
order to gain information about the certainty level of the prediction with the 10 least sensitive
bands, the predictive variances were computed for each pixel on the test image. The resulting
variance map can be seen in Fig. 8.7. It can be observed that using the 10 least sensitive bands
for chlorophyll content mapping resulted a remarkably increased uncertainty. Most areas in Fig.
8.7 are indicated with red colour, which corresponds to high uncertainty. In addition, those
circular parcels, which were identi�ed in Fig. 8.6, resulted decreased certainty level in Fig. 8.7.
The light blue, greenish colour assigned to these regions corresponds to decreased certainty for
the predicted chlorophyll content.

8.1.1 Summary

The sensitivity analysis of the land chlorophyll dataset resulted that band-31, band-32, band-
33, band-34, band-35 and band-41 are the most sensitive bands. These bands correspond to
wavelengths centred at 712.17 nm, 718.37 nm, 724.74 nm, 731.23 nm, 737.76 nm and 780.01 nm
respectively. These results indicate that bands around the red-edge are most sensitive in chloro-
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Figure 8.6: Predicted chlorophyll content map with 10 least sensitive bands.

Figure 8.7: Predicted variance map with the 10 least sensitive bands.
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phyll content prediction with GPR. However, bands corresponding to wavelengths 957.79 nm
and wavelengths between 978.47 nm and 999.94 nm were also included in the ten most sensitive
bands. This could be due to the fact that dry vegetation results di�erent re�ectance spectrum.
This might indicate that bands corresponding to the dry vegetation re�ectance spectra can also
contribute to chlorophyll content mapping. In order to perform sanity check the least important
bands were also analysed. The least important bands correspond to the lowest wavelengths of
the measured spectrum, between 410.56 nm and 583.14 nm. Using the same amount of bands
for carrying out GPR with the most sensitive bands and with the least sensitive bands allowed
to gain information about the di�erences of the predictions. Both the regression �gures (Fig.
8.2 and Fig. 8.3) and the computed model statistics con�rmed that using the 10 most relevant
bands for chlorophyll content prediction results a better model. The model statistics for the
predictions are summarized in Table 8.1. The computed RMSE and R2 values in Table 8.1
shows that using the 10 least sensitive bands for GPR results worse regression.

Table 8.1: Evaluation of the land chlorophyll dataset.
Band RMSE R2

31, 32, 33, 34, 35, 41, 58, 60, 61, 62 6.0931 0.8197

4, 5, 6, 7, 8, 9, 10, 11, 12, 16 9.4558 0.5657

In order to reveal information about the biophysical structures that might contribute to
chlorophyll content prediction, the CHRIS image which was used for testing the GPR with the
10 most sensitive and 10 least sensitive bands, was approximately localized in Fig. 6.2 (Part
II). Furthermore, the locations of the chlorophyll content measurements was attempted to be
identi�ed, based on Fig. 6.3 (Part II). Unfortunately the exact coordinates of the chlorophyll
content measurements were unknown, therefore the identi�cation of the regions and crop types
were based on visual judgement ability. Figure 8.8 shows the approximate location of the CHRIS
image in the blue square, whereas the red square indicates the area of the test site of Barrax.
Figure 8.8 also shows the possible type of crops that fell in the CHRIS image. It can be noticed
that most of the measurements which are included in the CHRIS image are chlorophyll content
measurements originating from potato, alfalfa, onion, garlic and corn. The absorption spectrum
of the various type of crops might di�er slightly, which might manifest in the measured re�ectance
spectrum. Using sensitivity analysis to reveal the most sensitive spectral bands could contribute
to the deeper understanding of the various absorption spectra of vegetation. Figure 8.9 shows
the resulting predicted chlorophyll content maps and the corresponding predicted variance maps
of the GPR by using the 10 most sensitive and 10 least sensitive bands. Figure 8.9 indicates
the di�erences between the amount of predicted chlorophyll contents. This might be due to the
fact that the most sensitive bands, specially the ones around the red-edge, are characteristics
for those type of crops which are in the CHRIS image, whereas using the least sensitive bands
for chlorophyll content mapping in the test image by GPR, could not discriminate between the
various type of vegetation. Note the blue circular parcels in the predicted chlorophyll content
map by using the 10 least relevant bands. The predicted variance maps in Fig. 8.9 also indicates
the di�erences between the predicted chlorophyll contents. The variance map produced by the
10 most sensitive bands shows high certainty of the estimated values, specially for the vegetated
regions, while the variance map predicted with the 10 least bands assigns low certainty to the
predicted values. It can be observed that the highest uncertainty occurs in the areas where
there are little or no chlorophyll. These uncertain region are specially apparent when the 10
least sensitive bands were used for prediction. However, the sensitivity analysis resulted that
bands corresponding to wavelengths above 950 nm are also important in the prediction, thus the
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Figure 8.8: GPR with the 10 most important bands and with the 10 least important bands.

exclusion of those bands, might have resulted this great uncertainty. It can be concluded the the

Figure 8.9: GPR with the 10 most important bands and with the 10 least important bands.

sensitivity analysis could most probably reveal the most important bands for land chlorophyll
prediction for the test site. GPR with the most relevant bands resulted reasonable predictions.
Thus the introduced methodology for sensitivity analysis of features can be recommended for
further studying of terrestrial vegetation. The methodology might provide the possibility to
uncover unknown information about the absorption/re�ectance spectrum of vegetation.

8.2 Sensitivity analysis of the ocean chlorophyll datasets

Ocean chlorophyll content prediction from multispectral data can be challenging when Case-2
water conditions are present [Robinson, 2004]. One of the available ocean chlorophyll datasets
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Figure 8.10: Sensitivity maps of the SeaBam dataset.

is mostly representative for Case-1 water conditions (SeaBam dataset), while the other dataset
also includes measurements from Case-2 water conditions (MERIS dataset). Applying sensitivity
analysis of features to these datasets might provide the possibility to be able to discriminate
between Case-1 and Case-2 waters. Therefore the sensitivity analysis of features was carried out
for the ocean chlorophyll datasets as well. The sensitivities of the predictive mean function and
the predictive variance function were computed by using the implemented sensitivity functions,
"SensitivityMean" and "SensitivityVariance", respectively. The resulting most sensitive bands
were picked out in order to perform GPR. Sanity check was carried out by using the least
sensitive bands for GPR. The results were analysed and interpreted.

8.2.1 The SeaBam dataset

The sensitivity analysis of the predictive mean function of the GPR for the Seabam dataset was
performed by applying the function "SensitivityMean" to the dataset. In order to gain informa-
tion about the variance of the most sensitive bands, the sensitivities of the predictive variances
were also computed. The resulting sensitivity maps can be seen in Fig. 8.10. It can be observed
in Fig. 8.10 that band-2 is the most desirable band for ocean chlorophyll content prediction
when Case-1 water conditions are dominated, since band-2 has the highest sensitivity of the
predicted mean and a relative low sensitivity of the predictive variance, indicating a quite stable
variance. The highest sensitivities of the predictive mean are band-2 and band-5 respectively. In
addition the sensitivity analysis of the predictive variance resulted that band-2 has more stable
variance in comparison with band-5. The results of the sensitivity analysis suggest that band-2
and band-5, which correspond to 433-453 nm and 545-565 nm respectively, represents the most
relevant bands for predicting chlorophyll content from satellite data. A possible interpretation
of these results is the following. Ocean chlorophyll occurs in phytoplankton. Phytoplankton are
usually represented in populations in the ocean. Dying phytoplankton cause scattering. Absorp-
tion from phytoplankton populations and backscattering occur around 540 nm [Robinson, 2004].
However, slightly below 540 nm there is a decrease in the measured re�ectance, while slightly
above 540 nm there is an increase in the measured re�ectance. Band-5 starts at 545 nm, which
might cover the increasing re�ectance of the measured spectrum. In addition, increasing ocean
chlorophyll content results an absorption maximum at 440 nm [Robinson, 2004], which corre-
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Figure 8.11: Predicted chlorophyll content by using only band-2 and band-5 (Method A).

sponds to a minimum in the re�ectance. The wavelength, 440 nm falls in the range of band-2.
Figure 8.24 shows the Seabam bands (and MERIS bands) and the expected changes in the
re�ectance due to the presence of chlorophyll.

GPR was carried out with the two most important bands (band-2 and band-5) by both
Method A and Method B.

Method A

GPR was performed by using only band-2 and band-5. The procedure of the prediction was the
same as it was described in Part II in Section 6.2.1. Figure 8.11 shows the predicted chlorophyll
content function and the actual chlorophyll content function. It can be observed in Fig. 8.11 that
even though the predicted chlorophyll content function is �uctuating, it still can learn the trend
of the actual chlorophyll content function. In order to bene�t from the advantageous property of
the GPR, namely the predictive variance, the con�dence region was also computed by applying
Eq. (6.1). Figure 8.12 shows the con�dence region of the prediction, the predicted chlorophyll
content function and the actual chlorophyll content function. The black square indicates an
enlarged area of the functions. It can be observed that the con�dence region is narrow, indicating
high certainty for the prediction. In order to evaluate the model performance of the GPR with
the two most sensitive bands, model statistics were computed. The resulting RMSE was 0.1600
and the R2 value was 0.9266. These values indicate a good model performance. In order to
carry out a reasonable comparison of the sensitivities of the bands, sanity check was performed
with the two least sensitive bands (band-1 and band-3). Fig. 8.13 shows the resulting estimated
chlorophyll content values and the measured chlorophyll contents. It can be noticed that the
predicted chlorophyll content function shows an increased wobbly behaviour, with values that
greatly deviate from the actual chlorophyll content values. The con�dence region was also
computed, so that the certainty level of the prediction could be revealed. Figure 8.14. shows the
con�dence region of the predictions. Comparing the enlarged area in Fig. 8.14 with the enlarged
region in Fig. 8.12 reveals that the con�dence region increased, when the two least sensitive
bands were used for regression, indicating increased uncertainty of the estimated values. The
computed RMSE = 0.2651 and R2 = 0.7988 values also con�rm that the model performance is
worse when band-1 and band-3 are used for chlorophyll content prediction. These results show
that the sensitivity analysis performed well. The methodology could successfully assign feature
relevance to the SeaBam spectral bands.
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Figure 8.12: Predicted chlorophyll content and the corresponding con�dence region by using
only band-2 and band-5 (Method A).

Figure 8.13: Predicted chlorophyll content by using only band-1 and band-3 (Method A).

Figure 8.14: Predicted chlorophyll content and the corresponding con�dence region by using
only band-1 and band-3 (Method A).
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Figure 8.15: Predicted chlorophyll content by using only band-2 and band-5 (Method B).

Figure 8.16: Predicted chlorophyll content and the corresponding con�dence region by using
only band-2 and band-5 (Method B).

Method B

GPR with the two most important bands was carried out by using Method B (Part II Section
6.2.1) as well, so that the performance of the model with the two most important bands could be
evaluated on a larger dataset. The predicted chlorophyll contents and the measured chlorophyll
contents are presented in Fig. 8.15. It can be observed that the predicted chlorophyll content
values follow the trend of the measured chlorophyll content values similarly to Method A in Fig.
8.11. The con�dence region was computed for the case of Method B as well. Figure 8.16 shows
the con�dence region, the predicted chlorophyll content function and the actual chlorophyll
content function. The black squared area presents an enlarged part of the function, in order to
provide better visibility of the con�dence region. The con�dence region is narrow, showing a
high certainty level of the prediction. The model performance improved slightly when Method B
was used. This improvement occurs due to the increased training set. The RMSE decreased to
0.1526, while the R2 increased to 0.9338. GPR with the least sensitive bands (band-1 and band-
3) was also performed by using Method B. The predicted chlorophyll contents and the measured
chlorophyll contents are presented in Fig. 8.17. The predicted chlorophyll content values show
greater deviations from the actual chlorophyll content values. The corresponding con�dence
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Figure 8.17: Predicted chlorophyll content by using only band-1 and band-3 (Method B).

Figure 8.18: Predicted chlorophyll content and the corresponding con�dence region by using
only band-1 and band-3 (Method B).

region can be seen in Fig. 8.18. It can be observed that by using the least sensitive bands
resulted increased con�dence region. The black square in Fig. 8.18 shows that in addition to
the greater uncertainty, the distance between the predictions and the measured values increased
as well. The chlorophyll content function is more wobbly. The RMSE value for the GPR
with band-1 and band-3 was 0.2527, while the R2 value was 0.8185, con�rming that the model
performance worsened, when the two least sensitive bands are used for ocean chlorophyll content
prediction.

Summary

Applying the sensitivity analysis of features to the SeaBam dataset resulted that band-2 and
band-5 are the most important spectral region for ocean chlorophyll content prediction, when
Case-1 water condition dominates. Figure 8.10 also revealed that not only the most important
bands can be discovered by using the feature selection methodology, but due to the additional
property of the GPR, the predictive variance, the sensitivity of the variance can be accessed as
well. The resulting most relevant spectral bands are in good correspondence with the expec-
tations. Case-1 water condition refers to phytoplankton dominated waters. Since phytoplank-

87



ton contain chlorophyll, the expected most important spectral bands should correspond to the
chlorophyll absorption spectrum. The resulting most important bands of the sensitivity analysis
re�ects this expected absorption spectrum of the ocean chlorophyll. In addition, performing
GPR with these two most relevant bands, also corroborated the results of the sensitivity analy-
sis. Table 8.2 summarizes the computed model statistics for the GPRs. It can be observed that
the model performance worsened only slightly when band-2 and band-5 were used for chlorophyll
content prediction in comparison to the prediction when all the �ve channels were used. How-
ever, using band-1 and band-3 for prediction resulted signi�cantly decreased model performance.
Thus, it can be concluded, that the sensitivity analysis has shown a reasonable performance,

Table 8.2: Evaluation of the SeaBam dataset.
Method Band RMSE R2

A 1, 2, 3, 4 and 5 0.1437 0.9408

A 2 and 5 0.16 0.9266

A 1 and 3 0.2651 0.7988

B 1, 2, 3, 4 and 5 0.1414 0.9432

B 2 and 5 0.1526 0.9338

B 1 and 3 0.2527 0.8185

when it was applied to the SeaBam dataset.

8.2.2 The MERIS dataset

The MERIS dataset representative for both Case-1 and Case-2 waters. Finding the most im-
portant spectral regions for the MERIS dataset can contribute to the understanding of ocean
chlorophyll content prediction when Case-2 waters are also present in the mapped area. The
sensitivity analysis of features was performed by using the function "SensitivityMean" and "Sen-
sitivityVariance" in order to compute the sensitivity map of the predictive mean function and
the predictive variance function of the GPR, respectively. The resulting sensitivity maps are
presented in Fig. 8.19. The most sensitive bands for the predictive mean function are band-1,
band-6, band-7 and band-8. The sensitivity map of the predictive variance shows that band-1
and band-6 have a slightly more stable variance than band-7 and band-8. However, the sensitiv-
ity map of the predictive mean assigns a relative high importance to band-8. It can be observed
on Fig. 8.19 that although band-8 has the most unstable variance, the relative di�erence be-
tween the sensitivity of the predictive variance for band-8 and the sensitivity of the variance
for band-1, band-6 and band-7 is not that signi�cant. Therefore, in the case of the MERIS
channels, it can be concluded, that the most relevant band for Case-1 and/or Case-2 water con-
ditions is band-8. The interpretation of the results is based on the book by [Robinson, 2004].
Chlorophyll �uorescence occurs at about 685 nm, which corresponds to band-8. Chlorophyll-a
molecules have an absorption maximum at 660 nm in addition to the absorption maximum at
440 nm. Band-7 ranges from 660 nm to 670 nm, which corresponds to the second absorption
maximum. The sensitivity analysis resulted that also band-6 and band-1 were sensitive. This
might be due to the fact, that the MERIS dataset contains Case-2 waters as well, thus other
dissolved matters, such as dissolved organic matter (DOM), also contribute to the measured re-
�ectance spectrum. Increasing DOM content leads to an increased re�ectance spectrum around
620 nm, which corresponds to band 6. In addition, absorption by DOM increases from 440
nm to 400 nm. Band-1 o�ers the possibility for distinguishing between chlorophyll content and
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Figure 8.19: Sensitivity maps of the MERIS dataset.

Figure 8.20: Predicted chlorophyll content and actual chlorophyll content (using the four most
sensitive bands).

DOM. Thus, the computed sensitivities suggest also the Case-2 waters conditions. Figure 8.24
illustrates the MERIS bands (and SeaBam).

GPR was performed with the four most important bands in order to gain information about
the performance of the regression when only four bands are used for prediction. GPR was
carried out by the same method as it was done in Part II in Section 6.2.2. The resulting
predicted chlorophyll contents and the actual chlorophyll contents for the �rst 100 observation
can be seen in Fig. 8.20. The predicted chlorophyll content function shows a very good �t, even
though only half of the available bands were used for prediction. The con�dence region was also
computed by using Eq. (6.1) (Part II). The resulting con�dence region, the predicted chlorophyll
content function and the actual chlorophyll content function for the �rst 100 observations are
presented in Fig. 6.13. It can be observed that the con�dence region is very narrow for most
of the predictions. However, there are some exceptions, when the con�dence region increases.
This might be due to the fact, that the value di�ers from the majority of the observations.
For example, observation 75 in Fig. 8.21 indicates an observation, where the con�dence region
shows great deviation. The con�dence region for most of the observations in Fig. 8.21 shows
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Figure 8.21: Predicted chlorophyll content and the corresponding con�dence region (using the
four most sensitive bands).

Figure 8.22: Predicted chlorophyll content and actual chlorophyll content (using the four least
sensitive bands).

high certainty level of the predicted values. Presenting the entire predicted chlorophyll content
function wouldn't have been informative, due to the large number of observations. Therefore,
the computed model statistics reveal deeper understanding about the model performance. The
resulting RMSE and R2 were 0.1352 and 0.7908, respectively. These values indicate a quite
good regression.

In order to perform sanity check, GPR was carried out by using the four least sensitive bands
as well. The resulting predicted chlorophyll contents and the actual chlorophyll content can be
seen in Fig. 8.22. Figure 8.22 shows that using the four least important spectral bands for
chlorophyll content prediction resulted worsening in the model �t. The deviation between the
predicted values and the measured values are quite large. In order to gain information about the
reliability of the prediction, the con�dence region was computed. The resulting con�dence region
for the �rst 100 observations is presented in Fig. 6.13. It can be seen that the con�dence region
increased signi�cantly. Figure 8.23 also shows how the pattern of the con�dence region can be
interpreted in order to access more information about the prediction. Although the con�dence
region increased, there are some observations when it decreases. These narrowed parts indicate,
that the certainty level of the prediction is high in those predicted values. It can be observed
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Figure 8.23: Predicted chlorophyll content and the corresponding con�dence region (using the
four least sensitive bands).

that the regions where the con�dence region rapidly decreases, corresponds to those areas where
the predicted chlorophyll content approaches to the actual chlorophyll content. Thus, using
the additional property, the predictive variance, of the GPR can reveal information about the
prediction.

The performance of the GPR with the four least sensitive bands was evaluated by using
model criteria. The computed RMSE value was 0.4582 and the R2 value was 0.1443. These
model statistics indicate a remarkable worsened prediction, particularly the resulting R2 value,
which is very low, signifying a bad model �t.

Summary

The sensitivity analysis of the predictive mean function for the MERIS dataset resulted that
bands, which fall outside the chlorophyll absorption spectrum, are also relevant for prediction.
Since the MERIS dataset includes measurements from Case-2 waters as well, other structures also
contribute to the re�ectance spectrum (such as DOM and/or sediments). Band-8 resulted the
highest sensitivity relative to the rest of the bands. This indicates most probably the chlorophyll
�uorescence (Fig. 8.24), thus showing the presence of the primary producers. In addition, band-
6 was also found to be an important bands, which also shows chlorophyll content. However,
the sensitivity analysis assigned importance to band-6 and band-1, allowing the discrimination
between Case-1 water conditions and Case-2 water conditions. Figure 8.24 shows the position
of band-1 and band-6. It can be observed that these bands cover the characteristic re�ectance
spectrum of the DOM.

The sensitivity analysis of the predictive variance hasn't revealed signi�cant di�erence in the
stability of the variances for the four most sensitive bands. This suggests that the variance of
the four most sensitive bands do not di�er signi�cantly from each other.

Performing GPR with most and least sensitive bands also con�rmed that the sensitivity
analysis resulted reasonable results. Table 8.3 shows the computed model statistics. Note the
di�erence in the R2 value between the model with the four most important and with the four
least relevant bands.

It can be concluded the using the methodology of the introduced sensitivity analysis of
features for ocean chlorophyll content prediction, not only can reveal the di�erent type of water
conditions, but it can also provide information about the type of constituents of the ocean.
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Table 8.3: Evaluation of the MERIS dataset.
Band RMSE R2

1, 2, 3, 4, 5, 6, 7 and 8 0.0060 0.9999

1, 6, 7 and 8 0.1352 0.7908

2, 3, 4 and 5 0.4582 0.1443

Figure 8.24: SeaBam and MERIS bands.
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Chapter 9

Conclusion

Gaussian process regression showed an excellent performance for predicting both land chloro-
phyll content and ocean chlorophyll content from remotely sensed multi- and hyperspectral data.
The trained GPR can provide pixelwise prediction, thus allowing chlorophyll content mapping.
This thesis examined the �exibility of the this nonparametric machine learning method. GPR
could easily learn the relationship between spectral re�ectance and measured chlorophyll content
regardless whether the data originates from a terrestrial environment or a marine environment.
One of the advantages of applying GPR for chlorophyll content mapping (besides its excellent
predictive performance) is that the approach provides an additional information about the pre-
diction, namely the variance. The predictive variance shows the certainty of the prediction.
Thus using the predictive variance for producing certainty maps in addition to chlorophyll con-
tent maps, can retrieve the power of the predictions, allowing the identi�cation of regions where
the certainty of the predictions are high or eventually low. This can be a powerful tool, when
chlorophyll content maps provide the base for other scienti�c �elds. After examining the predic-
tive capabilities of GPR, the main contribution of this thesis, the sensitivity analysis of features,
was introduced. Empirical estimates for the sensitivity of the predictive Gaussian process mean
function and variance function were derived. Then these Gaussian process sensitivity models
were applied to the chlorophyll datasets in order to determine the relevance of the spectral
bands, and to gain information about the variance of the most important spectral bands. The
sensitivity analysis of the predictive mean for the land chlorophyll dataset showed that bands
around the red-edge are the most important for chlorophyll content prediction. In addition,
bands outside the chlorophyll absorption spectrum also seems to contribute to the estimation of
the chlorophyll. The sensitivity analysis of the predictive variance revealed that bands centred
around 720 nm and bands centred around 990 nm have the most stable variance, thus choosing
these bands for chlorophyll content mapping by GPR seems to be a reasonable choice. The
sensitivity analysis of features for ocean chlorophyll content prediction was performed on two
datasets. One of the datasets, the SeaBam data, is mostly representative for Case-1 water con-
ditions, whereas the other dataset, the MERIS dataset, includes both Case-1 and Case-2 water
measurements. The sensitivity analysis of the SeaBam dataset resulted that band-2 (433-453
nm) is the most relevant band with the most stable variance for Case-1 water chlorophyll con-
tent mapping. This is in good correspondence with the largest absorption peak (440 nm) of
the chlorophyll-a molecule. The sensitivity analysis of the MERIS dataset resulted that band-1,
band-6, band-7 and band-8 are the most relevant bands for predicting ocean chlorophyll content,
when Case-2 water conditions are also present. The sensitivity analysis of the variance of these
bands hasn't revealed a remarkable di�erence of the stability of the variance. This suggests that
all these four bands contribute signi�cantly to the prediction of ocean chlorophyll, when both
Case-1 and Case-2 water conditions are present.
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It can be concluded that the sensitivity analysis of features for the GP can reveal relevance
of the spectral bands and also the stability of the variance of these channels. Using these most
relevant and stable bands as an input for the GPR results a fast, easy and accurate prediction
of chlorophyll content.
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Chapter 10

Future work

Sensitivity analysis can provide a powerful tool for feature selection when the dataset has high
dimension. Therefore further study of the method on hyperdimensional data is recommended.
The GPR and the sensitivity analysis of features were carried out on chlorophyll data. How-
ever, the methods are not limited to chlorophyll content prediction, thus allowing applications
for various scienti�c �elds. In order to illustrate the translational potential of the introduced
methodology, some examples for the possible applications of the sensitivity analysis of features
are presented in Appendix A.

For future applications, a web side is going to be created in order to provide easy accessibility
of the method. It is planned that the implemented sensitivity functions and also GPR functions
going to be available for Matlab users, where the methods would only require a dataset for
input. The web side would help the further development of the methodology in addition to the
application purposes.
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Appendix A

Examples for applications of the

sensitivity analysis

Out of the scope of the thesis some examples for the possible applications of the sensitivity
analysis of features are presented. These examples show that the sensitivity analysis of features,
introduced in this thesis, has the untapped potential to reveal the importance of features, in
other �elds as well.

A.1 Sensitivity analysis of the Madelon dataset

The Madelon dataset is an arti�cial dataset1. The dataset has 500 features, where only 20
features are informative. The training dataset consists of 2000 observations. In order to illustrate
the sensitivity analysis of features, the �rst 100 observations and the corresponding labels were
chosen. Then the functions "SensitivityMean" and "SensitivityVariance" were applied to the
chosen training data. The resulting sensitivity maps can be seen in Fig. A.1. Figure A.1
shows the computed sensitivities of the predictive mean and the predictive variance. It can be
observed that both the sensitivity analysis of the predictive mean and the sensitivity analysis of
the predictive variance could discriminate between the features. Unfortunately, there were no
information provided about the position of the 20 informative features. However, the resulting
20 most sensitive features of the sensitivity analysis were located. Figure A.2 presents the
sensitivity map of the predictive mean for all the features, the located 20 most important features
and the corresponding sensitivities of the predictive variance. Figure A.2 shows that the 20 most
important features are spread evenly. The corresponding sensitivities of the predictive variances
are quite low, suggesting stable variances, with no outstanding values. Applying the sensitivity
analysis of features to the Madelon dataset showed that the model can assign feature relevance
to other datasets besides the chlorophyll data.

A.2 Sensitivity analysis of the digit dataset

In Section 7.4.1 the sensitivity analysis of features was carried out on a digit dataset. The focus
in Section 7.4.1 was to illustrate the performance of the sensitivity of the predictive variance.
Furthermore, the digit dataset can also be used for identifying the most important pixels for
discriminating digits from their surroundings. Therefore, the sensitivity analysis was tested on
the same dataset as it was described in Section 7.4.1. The training data consists of an input
matrix X and the corresponding output vector y. The size of X is 6×256, where 6 corresponds to

1The dataset can be found on the web side: http://archive.ics.uci.edu/ml/datasets/Madelon.
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Figure A.1: Sensitivity analysis of the Madelon dataset.

Figure A.2: The position of the 20 most sensitive features and corresponding sensitivities of the
variances of the Madelon dataset.
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Figure A.3: Sensitivity analysis for digit identi�cation.

the observations and 256 is the dimension of each observation. All the 6 observations correspond
to the handwritten digit 0. The output vector y = [1 1 1 1 1 1]T holds the labels. The function
"SensitivityMean" (and the additional "SensitivityVariance") was applied to the training data
(Section 7.4.1). The resulting sensitivities of the pixels were ranked in a descending order.
Thereafter, the position and the value of the �rst 128 most sensitive pixels were picked out. In
order to test whether these most sensitive pixels can be used for identifying digits, a test set
was chosen. The test set contains eight digits. The chosen digits were: 0, 0, 1, 1, 3, 3, 7 and 7.
Then the pixels of each test digit was set to the value zero. Finally, the resulting most sensitive
128 pixels were located in each test digit, and the corresponding pixels were set to the value of
the resulting sensitivities in order to test whether the 128 most sensitive pixels can be used for
identifying digits. Figure A.3 shows the results. It can be observed that using the most sensitive
pixels to the test set, could identify the test digits. All numbers are clearly distinguishable. Note
that although the pixel sensitivities were computed on a training set, which consists of only the
digit 0, the resulting 128 most sensitive pixels could be used for distinguishing other digits (1, 3
and 7 in addition to 0) from their environment. Applying the sensitivity analysis of features to
the digit dataset for �nding the most important pixels for digit distinguishing, showed a good
performance. This example also suggests that the introduced methodology for feature selection
translates to other �elds.
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Appendix B

Determining feature relevance by using

λj

The sensitivity analysis of features for the land chlorophyll dataset showed that bands outside
the chlorophyll absorption spectrum also contribute to the prediction of chlorophyll (Section
8.1). Finding spectral bands outside the chlorophyll absorption spectrum to be important in the
prediction of chlorophyll content has been done by [Verrelst et al., 2012b]. Although sensitivity
analysis of features in the context of GPR for land chlorophyll content prediction by using
the methodology introduced in Part III in Chapter 7 was �rst carried out in this thesis, the
identi�cation of the most important spectral bands in the same context have been studied by
[Verrelst et al., 2012b]. Their approach for �nding the most relevant bands by using GPR for
the same chlorophyll dataset was based on assigning feature relevance to the characteristic
length-scales hyperparameters λj .

It has been pointed out in the book by [Rasmussen and Williams, 2006] that the relative
value of λj can be interpreted as feature relevance. The greater the value of λj , the lower the
relevance of the feature. Inversely, relative low values of the characteristic length-scales, indicate
important features. Using this approach for determining the importance of the spectral bands for
the land chlorophyll dataset, [Verrelst et al., 2012b] found that the four most important bands
were band-18, band-25, band-57 and band-60. Their results partially overlaps with the resulting
most important spectral bands using the methodology introduced by this thesis. They also found
that bands (band-57 and band-60) outside the chlorophyll absorption spectrum contributes to
the prediction of the land chlorophyll content. However, the other two relevant bands, band-18
and band-25, are in contrast of the resulting most relevant bands (bands between band-31 and
band-35) by using the sensitivity analysis of features.
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