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Summary of the thesis 

Objectives: To investigate how cardiac function, remodeling and gene expression are 

affected in pregnancy in response to cardiovascular stress and to detect possible adverse 

effects of chronic AngII infusion, transverse aortic constriction (TAC) or high-intensity 

interval training (HIIT) on the fetus.  Additionally we wanted to evaluate if coronary 

endothelial function is influenced by pregnancy and increased cardiac afterload. 

Materials and methods: Pregnant and non-pregnant rats were subjected to chronic AngII-

infusion, TAC or HIIT in three separate studies. Echocardiography was used to evaluate 

maternal heart function and fetal hemodynamics. Blood flow velocities in the left main 

coronary artery were measured using Doppler echocardiography, and coronary flow reserve 

(CFR) was assessed using 3.5% inhaled isoflurane as a vasodilating agent. A conductance 

catheter placed via the right carotid artery was used for invasive measurements of aortic blood 

pressure and left ventricle (LV) pressure-and volume. Histological sections of the maternal 

LV were used to determine collagen content (Sirius Red staining), vessel density (β-actin 

immunolabelling) and myocyte size (Toluidine Blue). RT-PCR was used to quantify the gene 

expression in maternal myocardium, placenta, fetal heart and fetal liver. Total antioxidant 

capacity and oxidative stress (peroxidase and superoxide dismutase activity and 

malondialdehyde content) was measured in the placentas, fetal hearts and livers in the HIIT-

study.  

Results: Chronic AngII infusion resulted in an increase in myocardial collagen content, and 

pregnancy reduced this effect. Vessel density in LV was decreased in AngII infused compared 

to sham non-pregnant rats, but not significantly in pregnant rats. Fetal hemodynamics was not 

affected by chronic AngII-infusion. Calculated stroke work in pregnant TAC rats was double 

compared to pregnant shams, whereas it was only 35% higher (not significant) in non-

pregnant TAC rats compared to non-pregnant shams. The ratio of β-MHC to α-MHC 

expression was higher in pregnant TAC compared to non-pregnant TAC. Myocyte transverse 

circumference was increased by pregnancy, but not by TAC. HIIT did not alter maternal 

cardiac structure or function, fetal growth or oxidative stress and total antioxidant capacity in 

the placenta, fetal heart and fetal liver. However, the expression of some genes related to 

oxidative stress or cardiac remodeling was changed in fetal heart and liver. CFR could be 

calculated in 60 of 75 (80%) rats. There were no differences in CFR between rats with 
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increased afterload (AngII or TAC) and sham controls. CFR was lower in pregnant sham 

compared to non-pregnant sham rats.  

Main conclusions: AngII infusion caused cardiac hypertrophy in pregnant rats. However, 

pregnancy was protective against fibrosis and preserved angiogenesis in AngII infused rats. 

On the other hand, the differences in cardiac structure, function and gene expression between 

pregnant and non-pregnant rats following TAC indicated that increased afterload may be less 

tolerated in pregnancy. Pregnancy does not lead to significant heart hypertrophy in rats, but 

induces changes in the expression of a wide range of genes involved in cardiac remodeling 

independent of afterload. HIIT is feasible and well tolerated by pregnant rats. CFR is reduced 

in late pregnancy, but not influenced by increased afterload caused by TAC or chronic AngII 

infusion. HIIT does not induce significant changes in oxidative stress in the fetus, but altered 

the expression of some genes in fetal liver and heart indicating that adaptive mechanisms are 

activated. 
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1. Introduction 

1.1 Cardiovascular adaptations to pregnancy 

This thesis will focus on how pregnancy influences heart function, structure and gene 

expression in health and disease.  Women who become pregnant undergo profound alterations 

of the cardiovascular system. In this section the pregnancy induced adaptive changes of the 

heart and cardiovascular system are summarized. 

1.1.1 Heart rate and cardiac output  

The first hemodynamic adaptation to take place is an increase in resting heart rate which starts 

between 2 and 5 weeks gestation and continues throughout pregnancy [1, 2]. Maternal heart 

rate is also increased during exercise, but less evident at higher intensities. The increase in 

heart rate is primarily a result of reduced parasympathetic modulation [3]. LV stroke volume 

starts to increase early in pregnancy, reaching a plateau at approximately 24 weeks of 

gestation [2]. Thus the rise in total cardiac output, the product of stroke volume and hear rate, 

is most pronounced in the first trimester with more than 50% of the change in cardiac output 

taking place before 8 weeks gestation [4]. In the third trimester, the gravid uterus may 

obstruct the inferior vena cava when lying in the supine position, leading to reduced venous 

return to the heart and a subsequent decrease in cardiac output. 

1.1.2 Myocardial contractility 

Data on how pregnancy will influence myocardial function is conflicting. Some researchers 

have reported an increase in LV contractility during pregnancy [5-7], while others have found 

no change [8] or decrease in contractile function of the maternal heart in health pregnancies 

[9]. In vivo measurements of cardiac function in pregnancy are highly dependent on the 

loading conditions of the heart and these are influenced by a variety of factors in pregnancy 

[10, 11]. 

1.1.3 Systemic vascular resistance and blood pressure 

During early pregnancy active vasodilatation through the action of local mediators as nitric 

oxide and prostacyclin as well as increased blood flow in the uteroplacental circulation leads 

to a decrease in systemic vascular resistance [5, 8, 9, 11-13]. Systemic BP falls early in 
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gestation and diastolic BP will average 10 mmHg bellow non-pregnant values in the second 

trimester before gradually increasing towards basal values at term [11, 13].  

1.1.4 Blood volume 

In normal pregnancies blood volume will start to increase between 10 and 20 weeks of 

pregnancy averaging a total blood volume 40-45% above non-pregnant levels [14-18]. Two 

thirds of the rise consists of increased plasma volume where as the rest is attributed to an 

increase in red blood cell volume, leading to a relative hemodilution and lower levels of 

hemoglobin. Similarly, colloid osmotic pressure decreases during pregnancy, lowest at 30-34 

weeks of gestation [19]. The increase in plasma volume is likely to be triggered by the fall in 

systemic vascular tone in pregnancy [12].  

1.1.5 Aerobic capacity 

Resting or su ma imal    2 during weight-bearing exercise increases proportional to 

maternal weight gain during pregnancy whereas    2max during pregnancy is poorly explored 

due to the perceived risk of inducing fetal stress during testing including reports of fetal 

bradycardia [3, 20]. However there is evidence that    2max is conserved during pregnancy, 

and athletes and physically fit women may even increase their    2max following pregnancy 

indicating that pregnancy may have an added effect in well trained women [17, 21]. 

1.1.6 Adaptation of the endocrine system 

Pregnancy influences a wide range of hormones. Progesterone is produced by the corpus 

luteum in the luteal phase of the menstrual cycle and early pregnancy. After eight weeks of 

pregnancy, placental trophoblasts become the main source of progesterone. Progesterone and 

estrogens increases during pregnancy, and both sex steroid hormones can influence cardiac 

growth, cardiac output and blood volume in animals. Progesterone can induce hypertrophy 

whereas estradiol have anti-hypertrophic properties and increases cardiac output [22]. Relaxin 

produced by the corpus luteum contribute to the decrease in vascular resistance and increased 

cardiac output in pregnancy [23]. How the levels of circulating catecholamines are affected by 

pregnancy is debated [22], but noradrenalin infusion leads to less vasoconstriction in healthy 

pregnant women, compared to both non-pregnant women and women with pregnancy-induced 

hypertension [24]. In pregnant women an increase in estrogens leads to  an upregulation the 

renin-angiotensin system (RAS)  and the serum AngII levels are increased [25]. However, in 
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healthy pregnancies RAS activity remains low as AngII sensitivity is decreased [26], due to 

specific changes in the AngII-receptors sensitivity [25, 27, 28]. 

1.2 Differences between physiological and pathological heart 

hypertrophy 

 

Figure 1 Physiological heart hypertrophy 

Schematic representation of the left ventricle in short axis showing physiological postnatal 

heart growth. In the human heart endurance training or pregnancy leads to heart hypertrophy 

characterized by a proportional increase in wall thickness and chamber enlargement. The 

hypertrophy is reversible, i.e. the heart will go back to normal size postpartum or if the 

training ceases. Figure modified from Bernardo et al [29] . 

Increased ventricular mass as a response to chronically increased afterload or volume 

overload on the heart is referred to as pathological hypertrophy.  Cardiac hypertrophy is 

considered a poor prognostic sign and may represent the first stage in development of heart 

failure. However, the heart hypertrophy observed in postnatal growth [30], in response to 

exercise training [29, 31, 32] and in pregnancy [7, 22, 33, 34] differs from pathological 

hypertrophy both at the structural, functional and molecular levels and may be referred to as 

physiological hypertrophy [29, 31, 35] (Figure 1). The growth of human hearts is most rapid 

during the first postnatal months. The neonatal period is characterized by myocyte hyperplasia 

whereas in the heart growth of childhood the total number of myocytes remains relatively 

constant while myocyte volumes and deposition of collagen and the number of connective 

tissue cells increases [30].  

Different stimuli induce different forms of ventricular hypertrophy. A pathologically 

increased afterload, such as in hypertension or in obstruction of the outflow tracts of the 
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ventricles, increases systolic wall stress and typically lead to a concentric hypertrophy with 

thickening of the walls of the heart, a small ventricular chamber and increased myocyte 

diameter whereas a pathologically increased volume load, as can be seen in valve disease, 

such as in aortic regurgitation, produces increased diastolic wall stress and may lead to an 

eccentric hypertrophy with an increased luminal diameter, a thinner ventricular wall and 

increased myocyte length [22, 29, 35] (Table 1 and Figure 2). 

Table 1 Characteristics of physiological and pathological heart hypertrophy 

 Physiological Concentric Eccentric/dilated 

LV wall and 

chamber growth 

LV wall = 

LV chamber 

LV wall > 

LV chamber 

LV wall << LV 

chamber 

Myocyte growth Proportional Length < Width Length >> Width 

Cardiac dysfunction No Maybe Advanced 

Fibrosis No Yes Extensive 

Myocyte damage No Necrosis and 

apoptosis 

Myocyte cell death 

Table based on Bernardo et al [29], Chung et al [22] and Heineke et al [35]. 

Physiological stimuli may also induce concentric and eccentric hypertrophy. Both endurance 

training and pregnancy will increase venous return to the heart leading to increased volume 

load and an hypertrophy characterized by a proportional increase in wall thickness and 

chamber enlargement, in contrast to the thinning of the ventricular walls seen in pathological 

eccentric hypertrophy following volume overload or the concentric hypertrophy following 

pressure overload [29]. 

Despite some similarities at the macroscopic level, there are distinct differences between 

physiological and pathological heart hypertrophy at the structural, functional, metabolic and 

molecular level (Table 1). Pathological hypertrophy causes cell death via apoptosis and 

necrosis leaving room for extracellular accumulation of collagen causing fibrosis. The 

increased stiffness of the ventricles and impaired electrical signal conduction lead to impaired 

mechanical function of the ventricles. Reduced capillary density and interstitial accumulation 

of fibrotic tissue lead to reduced tissue oxygen tension, myocardial ischemia, and further cell 

death. These sequences of structural and functional changes may eventually lead to advanced 

cardiac dysfunction and heart failure [29, 35]. The heart is capable of utilizing fatty acids, 
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glucose and lactate as substrates for ATP-production, with fatty acid oxidation responsible for 

2/3rds of the ATP synthesis in the normal heart [36]. In pressure induced heart hypertrophy 

there is an early impairment of fatty acid oxidation followed by a progressive decrease in 

glucose oxidation and overall ATP-production before development of heart failure [37]. Thus 

the failing heart could be referred to as an engine out of fuel [38].  In heart hypertrophy 

following high intensity aerobic exercise, there is improved mitochondrial function and an 

increase in glucose oxidation allowing more effective energy production as glucose oxidation 

will produce more ATP per molecule of oxygen consumed compared to oxidation of fatty 

acids [39]. 

 

 

Figure 2 Pathological heart hypertrophy 

Schematic representation of the left ventricle in short axis. Volume overload, as seen in valve 

regurgitation, leading to eccentric hypertrophy. Pressure overload, as in systemic 

hypertension or obstruction of LV outflow tract, leads to concentric hypertrophy. Heart 

dilatation and failure represent the end stage of these processes. A sick or damaged 

myocardium, as seen in dilated cardiomyopathy or after massive myocardial infarction, may 

lead to dilated heart failure without hypertrophy. Figure adapted from Heineke et al [35] and 

Bernardo et al [29] . 
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Table 2 Differences between physiological (caused by pregnancy and exercise) and 

pathological cardiac hypertrophy 

 Pregnancy Exercise Pathological 

Cardiac function - -/↑ ↓↓ 

Reversibility + + - 

Fetal gene induction - - ↑ 

Fibrosis - - ↑ 

Angiogenesis - -/↑ ↓ 

Signaling pathways PI3K/Akt 

ERK1/2 

Calcineurin 

PI3K/Akt 

 

Gaq 

MAPKs 

Calcineurin 

Table adapted from Chung et al [22]. 

Physiological heart hypertrophy following endurance training and in pregnancy are often 

regarded as similar phenomena following different stimuli. However, Chang et al have 

pointed out several characteristics that distinguish heart hypertrophy in pregnancy from 

hypertrophy following exercise training [22] (Table 2), and describe evidence of specific 

cardiac transcriptional profiles defining pregnancy and exercise [40]. 

1.3 Increased afterload on the heart in pregnancy 

The cardiovascular and hemodynamic changes that take place in pregnancy has a potential to 

make the heart more vulnerable to stress, and manifestations of heart conditions well 

compensated for before conception can unmask during pregnancy. The pregnant woman may 

be at risk for complication during pregnancy, delivery and in the postpartum period [11]. 

1.3.1 Pregnancy in women with congenital heart disease 

Advances in cardiac surgery and improved care for children with congenital heart defects has 

lead to an improved survival, and there is a growing population of women of childbearing age 

with congenital heart disease [11, 41, 42].  Many of these will have residual impairment of 

their heart function that increases their risk of cardiovascular complications during pregnancy 

[11, 43, 44]. Significant LV outflow tract obstruction, as can be seen in aortic stenosis, 

coarctation of the aorta, interrupted aortic arch and in some complex cardiac defects, will 
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increase afterload on the ventricles. Severe symptomatic LV outflow tract obstruction is a 

contraindication for pregnancy and should be treated before pregnancy, or the woman should 

be counseled against pregnancy [11]. However, some women with significantly increased 

afterload on the heart will get pregnant, and knowledge of how pregnancy influences cardiac 

structure and function is crucial for providing optimal care for these women and their fetuses. 

1.3.2 Hypertensive disorders of pregnancy 

Systemic hypertension is often the cause of increased cardiac afterload in pregnancy.  

Hypertension may be preexisting, as in essential hypertension or as a part of metabolic 

syndrome, or it can be secondary to other medical conditions, such as renal disease or 

endocrine disorders. Failure of the cardiovascular system to adapt to physiological changes of 

pregnancy can lead to hypertensive disorders of pregnancy, frequently associated with 

adverse outcomes for mother and offspring [11, 45]. Approximately 3-10 % of pregnancies 

are complicated by preeclampsia, characterized by hypertension developing together with 

proteinuria after 20 weeks of gestation. Although preeclampsia is a heterogenous condition 

and several mechanisms may be involved, abnormal placentation, with poor penetration of 

cytotrophoblasts into the maternal deciduas and adjacent spiral arteries, appears to be central 

in its pathophysiology [46]. Early onset disease is more severe and associated with a higher 

rate of premature birth, small for gestational age neonates as well as a higher rate of 

recurrence. As we are currently not able to effectively predict and prevent the development of 

preeclampsia, early recognition is required to assure adequate antenatal care and management. 

Premature delivery may be necessary to prevent eclampsia, the end stage of the disease 

characterized by generalized seizures, or to rescue fetuses with severely compromised 

circulation and growth restriction due to placental insufficiency.  

In contrast to healthy pregnancies, where decreased systemic vascular tone leads to an 

increase in circulating blood volume, relative hemodilution and decrease in colloid osmotic 

pressure, preeclampsia is characterized by high vascular resistance due to peripheral 

vasoconstriction and decreased arterial compliance [47]. Thus the increase in blood volume is 

small, or absent, leading to a relative hemoconcentration compared to in healthy pregnancies 

[16].  Endothelial dysfunction may play a central role in the pathogenesis of preeclampsia. 

There is firm evidence that several circulating factors that are released by the injured or 

https://www.google.no/search?espv=210&es_sm=122&q=insufficiency&spell=1&sa=X&ei=h8A5U5bSEqSD4gSKjYHQBA&ved=0CCsQvwUoAA
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activated placental endothelium in preeclamptic women are capable of inducing endothelial 

dysfunction in the maternal circulation [47]. 

 

Figure 3 The renin-angiotensin system (RAS) in pregnancy. 

RAS components and AT1-receptors in healthy pregnancy (purple arrows) and preeclampsia 

(red arrows).  

The regulation of the RAS in preeclampsia differs from that in healthy pregnancy. AngII 

levels are high but the pressor response to AngII is reduced in normal pregnancy. 

Preeclamptic women have lower circulating levels of RAS components, but increased AT1-

receptor activation [25, 27, 28] (Figure 3). Renin synthesis is suppressed in preeclampsia, 

possibly due to negative-feedback as stimulation of the AT1-receptor suppress renin release 
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[25]. The discovery of AT1-receptor agonistic autoantibodies (AT1-AA) in preeclamptic 

women may explain this feature [48-52]. In rats AT1-AA reduces trophoblast invasion [51] 

and induces renal changes and atherosis-like lesions in the spiral arteries of the placenta 

similar to in what is seen in women with preeclampsia [52]. Furthermore, AT1-AA can 

activate the inflammatory response similar to what is seen in preeclampsia through 

stimulation of ROS production [27, 51, 53], and AT1-AA from preeclamptic women can 

induce preeclampsia-like changes if infused into pregnant mice [54].  

1.4 Endurance training and exercise in pregnancy 

Cardiovascular training, in terms of repeated episodes of physical activity performed over a 

longer period  causes adaptations in the cardiovascular system that enables the trained person 

to increase physical performance i.e. exercise at a higher intensity or at the same intensity for 

a longer period of time. Regular endurance training increases LV cavity volume, stroke 

volume and thus maximal CO leading to increased    2max reflecting an improved overall 

aerobic capacity and a higher level of cardiovascular fitness [17].  

1.4.1 Training in normal pregnancies 

Clinical guidelines encourage moderate exercise in pregnancy due to its multiple beneficial 

effects for both the mother and her offspring [17, 55-57]. In the long-term, women who 

continue to exercise during pregnancy appear to exercise at a higher intensity, deposit less fat, 

improve fitness, have a lower cardiovascular risk profile, a more favorable metabolic profile 

with less gestational diabetes, lower incidence of low back pain and urinary incontinence and 

reduced symptoms of depression compared to women who cease to exercise during pregnancy 

[17, 58, 59]. In a study by Clapp et al women who continue to engage in vigorous training 

during pregnancy had babies that weigh slightly less than among the regular training women 

who quit exercise in pregnancy. There were no negative effects on physical growth or 

neurodevelopmental outcome at five years, exercise offsprings performed slightly better on 

Wechsler scales and tests for oral language skills, and they weighed less and had less 

subcutaneous fat deposits [60]. Well-trained athletes tolerate high volumes of training during 

uncomplicated pregnancies and aerobic training during pregnancy may even have an additive 

effect on physical fitness post pregnancy compared to before pregnancy [21, 61]. However, 

there remains some concern regarding high intensity training because of the possible adverse 

effect on the placental blood flow and episodes of fetal bradycardia observed in pregnant elite 
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athletes training at high intensity above 90% of maximal heart rate examined in the second 

trimester [20]. Thus, a recent comparison of guidelines for physical activity during pregnancy 

identified conflicting recommendations in between countries regarding vigorous-intensity 

activity in pregnancy [57].  

1.4.2 Training in complicated pregnancies 

Although there is good evidence that training during healthy pregnancy is beneficial, there are 

concerns about how to advice women with complicated pregnancies. 

1.4.2.1 Preeclampsia 

A systematic review of evidence indicates a trend towards a protective effect of physical 

activity in the prevention of preeclampsia [62]. Exercise may protect against preeclampsia by 

reducing oxidative stress, improving placentation and preventing endothelial dysfunction. 

Training during pregnancy might mitigate the effects of placental insufficiency or the 

angiogenic imbalance associated with preeclampsia [62, 63]. However, a large (>85000 

pregnant women) prospective cohort study from Denmark indicated that physical activity for 

more than 270 minutes per week may increase risk of severe preeclampsia.  

1.4.2.2 Heart disease 

Evidence based recommendations of how to balance the possible risk related to strenuous 

exercise against the advantages of physical fitness in pregnancies complicated by heart 

disease are lacking.  In the European Society of Cardiology (ESC) Guidelines on the 

management of cardiovascular disease during pregnancy exercise testing is recommended to 

assess disease severity and predict outcome but do not advise for or against physical activity 

in pregnancy in different settings of heart disease in pregnant women [11].  

1.4.2.3 Adiposity and diabetes 

There is some evidence that physical training in pregnancy reduces risk of gestational diabetes 

and restricts weight gain in healthy pregnant women [56, 59, 64, 65]. However, the 

information available in the literature is limited with regard to the role of physical activity for 

pregnant women with established diabetes mellitus or severe obesity. According to the 

American College of Obstetricians and Gynecologist committee opinion for obesity in 
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pregnancy “...all overweight or obese women, ... should be encouraged to follow an exercise 

program.” However, what such an exercise program should entail is not specified [66]. 

1.5 Clinical evaluation of cardiovascular function in pregnancy 

As summarized earlier, pregnancy induces a variety of hemodynamic changes which may 

alter the balance in compensated cardiovascular diseases and put the pregnant woman or fetus 

at risk. All women in reproductive age with significant cardiovascular disease should be 

counseled before planning to get pregnant. In pregnant women with cardiovascular disease a 

throughout cardiovascular assessment is required to detect women at risk of adverse outcome 

and to customize an adequate cardiovascular follow-up throughout pregnancy, labor and in 

the postnatal period [11]. In addition, previously undiagnosed heart conditions may become 

symptomatic due to the hemodynamic alterations in pregnancy and pregnancy associated 

cardiovascular diseases like peripartum cardiomyopathy. More commonly, hypertensive 

disorders like preeclampsia will debut during pregnancy.  

In all pregnancies, a general history should be taken and a clinical examination including 

auscultation of the heart and measurement of blood pressure should be performed at regular 

intervals, and if heart disease is suspected further examinations should be done, and followed 

up accordingly [11].  

Procedures involving radiation exposure should be minimized, and if possible, deferred to 

after 12 weeks of gestation to reduce the risk of radiation induced congenital malformations. 

Computer tomography is not recommended. Magnetic resonance imaging may be used to 

diagnose complex heart defects or aorta disease, but gadolinium should be avoided in 

pregnancy.  

Electrocardiography (ECG) and echocardiography are non-invasive procedures that can be 

performed safely, and repeated if necessary, in pregnancy.  In late pregnancy the heart is 

rotated towards the left and there is a 15-20 left axis deviation on ECG.  Changes in ST 

segments, Q wave and T wave as the heart changes position can mimic LV hypertrophy. 

Echocardiography is indicated when dyspnoea occurs during pregnancy or a new pathological 

murmur is heard. In some cases, such as in women with complex congenital heart disease, 

transeosophagal echocardiography may be a useful tool [11].  
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Exercise testing is useful in assessing functional capacity in pregnant women with congenital 

heart disease or asymptomatic valve disease. According to ESC Guidelines submaximal 

exercise test to 80% of predicted maximal heart rate should be used in asymptomatic pregnant 

women with suspected cardiovascular disease [11]. Dobutamine stress test should be avoided. 

Stress echocardiography can be used to detect ischemia or prior to conception to assess 

myocardial reserve in patients with cardiomyopathy, valvular disease or congenital heart 

defects and reduced LV function.   

Impedance cardiography (ICG) is a highly accessible, non-invasive, operator-independent and 

easy to perform non-invasive test to measure CO in pregnancy, and the new generation of 

ICG machines have been validated and shown to be accurate, reproducible, reliable and useful 

also in pregnant population [67, 68] 

Endothelium-dependent vasodilatation can be examined non-invasively in humans measuring 

flow mediated dilatation (FMD) of the brachial artery [69, 70], and several studies have 

evaluated FMD in pregnancy [71-77]. However, it is debated whether endothelial function in 

the peripheral vessels correlates with endothelial function in the coronary vascular bed [70, 

78-80]. We are not aware of any published studies evaluating endothelial function in the 

coronary circulation during pregnancy, and to our knowledge the effect of increased afterload 

on coronary flow reserve (CFR) during pregnancy has not been reported.  
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2. Aims of the thesis 

The aims of this thesis were to investigate how cardiac function, remodeling and gene 

expression are affected in pregnancy in response to cardiovascular stress and to detect 

possible adverse effects of chronic AngII infusion, TAC or HIIT on the fetus.  Additionally 

we wanted to evaluate if coronary endothelial function is influenced by pregnancy and 

increased cardiac afterload. 

The specific objectives were to: 

 Investigate the effects of chronic AngII infusion on the hearts of pregnant rats and to 

test the hypothesis that pregnancy protects against presumed detrimental changes 

caused by AngII.  

 Investigate the effect of isolated chronic pressure load induced by TAC on the hearts 

of pregnant rats and to test the hypothesis that pregnancy is protective against the 

negative effects of increased afterload on the heart.   

 Evaluate whether an established model of HIIT in rats is applicable in pregnancy and 

to investigate the effect of HIIT on the maternal heart. 

 Determine if HIIT has any adverse effects on the fetus. 

 Evaluate a non-invasive method of assessing CFR in rats using high concentration of 

inhaled isoflurane for coronary vasodilation. 

 Investigate the differences in CFR between pregnant and non-pregnant rats and study 

how CFR is affected by increased afterload in pregnant and non-pregnant rats.  
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3. Methods and methodological considerations 

We used animal experiments to approach clinical problems related to cardiac remodeling in 

pregnancy. Ideally experiments should have been performed on humans. However, to test the 

effects of increased afterload on the heart, we had to do invasive procedures that could not be 

performed in pregnant women for obvious ethical reasons. Despite species differences, animal 

studies have some advantage compared to studies in human as they can be performed under 

strictly controlled laboratory conditions. Using animals of the same strain, age and size results 

in considerably less individual variability, and thus a lower number of subjects are necessary 

to find relevant differences between groups.  

Rats are often used as animal models in pregnancy research because they have a similar type 

of placenta to human [81] and the duration of rat pregnancy is relatively short (~21-22 days). 

Furthermore, rats are regarded as robust when it comes to tolerating surgical interventions and 

there is an abundance of experiments performed investigating circulatory physiology in non-

pregnant rats. Compared to mice, larger size of rats makes it is easier to investigate their heart 

function using echocardiography and intracardiac conductance catheter.  

3.1 Animal models 

All animal experiments were performed at Unit of Comparative Medicine, Faculty of Health 

Sciences, University of Tromsø and experiments conformed to the Directive 2010/63/EU of 

the European Parliament on the protection of animals used for scientific purposes [82]. All 

procedures were approved by the Norwegian Committee on Ethics in Animal 

Experimentation with project ID 907 (Paper A and D), ID 2177 (Paper B and D) and ID 2853 

(Paper C). In Paper A, B and D Wistar rats where used. In Paper C Sprague-Dawley rats were 

used based on experience from previous studies on a HIIT-protocol similar to ours in non-

pregnant rats. The CFR studies presented in Paper D were performed on the same rats 

presented in Papers A and B. 

3.1.1 Power analysis 

In order to comply with good ethical standards in animal research [83], we strived towards 

using as few animals as possible needed to give reliable results by doing power analyses 

before starting experiments. Assuming that following interventions eight out of ten rats will 

develop cardiac hypertrophy compared to less than one out of ten in the control group, we 
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calculated that nine animals are required in each experimental group to detect the effect of 

intervention at a significance level (alpha) of 0.05 with a power (beta) of 80%. In Paper C 

fewer rats than expected became pregnant after mating and the number of pregnant animals is 

smaller than predicted when designing the study (five and seven, respectively). .  

3.1.2 General considerations on animal models in pregnancy 

In all our studies we used young female rats aged 9-12 weeks at the start of experiments. Thus 

the rats were not fully grown and non-pregnant as well as pregnant rats continued to gain 

weight during the observation period. The animals were housed in cages in pairs under 

controlled conditions of temperature and humidity and light-dark periods of 12 h, and with 

free access to water and food. All rats (pregnant and non-pregnant) were fed a pellet diet 

especially produced for breeding rodents (Rat and Mouse NO.3 Breeding, Special Diet 

Services, Witham, Essex, U.K.) ad libitum and had free access to tap water. 

3.1.3 Mating and length of gestation 

In Papers A and B pregnant rats were obtained by mating with a male rat housed together with 

two female overnight for 12-18 hours. The rats where constrained in a cylindrical tube, an 

otoscope was inserted in the rat vagina and the presence of a vaginal sperm plug confirmed 

that copulation had taken place. The day of the vaginal plug was considered gestational day 

(GD) 0.5. Rats are naturally nocturnal animals, and since the training sessions for practical 

reasons had to take place in daytime, the circadian rhythm of the rats in Paper C was changed 

by reversing light/dark (12/12 hour) cycle. The rats were housed together with a male rat and 

mated at daytime for 6-7 hours, and the day of the mating was considered GD 0. In Paper C 

we experienced that fewer animals conceived after mating than in Papers A and B, both in 

HIIT and sedate rats. Thus the decreased pregnancy rate was not caused by decreased fertility 

in training rats, but probably related to a shorter time of pairing together with a male.  As the 

estrous cycle in rats is strongly influenced by light periodicity the reversed light/dark cycle 

applied in Paper C may also have affected the pregnancy rate negatively.  

The normal gestational length in the rat is 21-22 days. In Paper A the terminal experiments 

were performed at GD 18.5-20.5 in pregnant animals. However, fetal weight gain in the last 

few days of pregnancy is significant [84], and the mean body weight of the fetuses in each 

dam more than doubled from GD 18.5 (1.36±0.03 gram) to GD 20.5 (3.08±0.65 gram). Thus 

in Paper B and Paper C we strived towards doing all experiments at the same length of 
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gestation. In Paper B 20 out of 22 pregnant rats was examined at GD 20.5, one at GD 19.5 

and one at 21.5. Two rats delivered between GD 20.5 and 21.5 and were excluded from 

further analyzes. In Paper C all pregnant rats were examined at GD 20.  

3.1.4 Chronic angiotensin II infusion 

Increase in circulating AngII is a key component in the mechanisms behind pathological 

remodeling of the heart and thus inhibition of the response to AngII is essential in treatment 

of cardiovascular diseases [85-87].  AngII may induce heart remodeling through its direct 

effects on the heart and via increased afterload due to vasoconstriction in the systemic 

circulation [87-89]. In pregnancy the renin-angiotensin system (RAS) is upregulated leading 

to an increase in plasma concentrations of AngII [25, 90]. Even if the exact mechanism 

causing preeclampsia is not known, angiotensin receptor activation appears to drive the  

vascular maladaptation seen in pregnancy [91], pregnant women who subsequently develop 

preeclampsia appear to be more sensitive to infused AngII  [25, 92] and there is some 

evidence of AT1-AA playing an important part in the development of preeclampsia [48-54]. 

Thus the heart’s response to AngII in pregnancy is of particular interest.  

In Paper A heart hypertrophy was induced by implanting mini osmotic pumps (Alzet
®
 Model 

2002, Cupertino, CA, USA) releasing AngII subcutaneously. Before including pregnant 

animals, four different concentrations of AngII infusion (0, 150, 300 and 400 ng/kg/min) were 

tested in a total of 16 animals. The lowest rate of AngII infusion (150 ng/kg/min) that led to 

heart hypertrophy was chosen as a low concentration was considered closest to a 

physiological challenge, and higher concentrations of chronic AngII infusions may lead to 

cachexia without cardiac hypertrophy [89].  The pumps were implanted 9-10 days before 

terminal experiments, corresponding to GD 8.5-9.5 in pregnant dams. Mini osmotic pumps 

releasing saline were used in control animals (sham). Thus four groups were studied; non-

pregnant and pregnant sham, and non-pregnant AngII and pregnant AngII. 

3.1.5 Transverse aortic constriction 

Whereas Ang II may induce heart remodeling through direct effects on the heart as well as 

increased afterload, inducing LV outflow obstruction by mechanical constriction of the aorta 

will mimic the effects of purely increased afterload, as seen in aortic stenosis, co-arctation of 

the aorta or an interrupted aortic arch. 
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In Paper B the surgical procedure was performed on intubated and ventilated rats under 

general anesthesia with inhaled isoflurane (2.5% in 100% oxygen for maintenance). The rats 

were put in a closed chamber filled with 4% isoflurane in 100% oxygen (Vevo Compact 

Anesthesia System, VisualSonics, Toronto, Canada). The spontaneously breathing rats were 

fixated on a semi upright worktop hanging by the incisors on a tight string. Isoflurane was 

provided by a mask held over the snout to maintain anesthesia. The tongue was carefully 

pulled out by a pair of blunt tweezers and the vocal cords were visualized by pointing a bright 

light source at the external larynx. A 16G peripheral venous catheter with a shortened and 

blunted stylet used as mandrin was inserted in the rat trachea, the stylet was removed and the 

catheter was connected to a ventilator (New England Medical Instruments Inc., Medway, MA, 

USA) delivering tidal volumes of 2-3 ml at a frequency of 60 per minute. 2.5% isoflurane in 

100% oxygen was used to maintain the anesthesia. The rats were placed supine on a warm 

electric pad and the temperature was kept stable at approximately 38°C. The heart rate and the 

rectal temperature were monitored continuously. A heating lamp was used when required. 

Hair was removed with a mechanical shaver and application of depilatory cream (Vichy 

Laboratories, Paris, France). Surgery was performed under sterile conditions. Analgesia was 

provided with subcutaneous buprenorphine (Temgesic, Reckitt Benckiser, UK) 0.05 mg/kg 

and local bupivacaine (Marcain, AstraZeneca, Sweden). Pain reflexes were checked before 

surgery and concentration of inhaled isoflurane was increased if appropriate. After skin 

incision, the upper half of the sternum was divided in the midline using blunt scissors. Care 

was taken to remove the thymus in one piece, as in our experience this would reduce the risk 

of extensive bleeding.  In most cases satisfactory hemostasis could be obtained by applying 

gentle pressure with a sterile swab.  Then the aortic arch was carefully dissected free of the 

surrounding tissues. TAC was performed by tying a blunted and bended stylet from a 16G or 

18G IV catheter (Optiva, Smith Medical International Ltd., Rossendale, UK) tightly to the 

aortic arch between the brachiocephalic trunk and the left common carotid artery. When the 

stylet was removed, a partial constriction of the transverse aorta was created. In sham animals, 

the exact same procedure was performed; the aortic arch was lifted, but not tied. The 

sternotomy and the skin incision were closed with 5-0 sutures (Polysorb, Synture, Mansfield, 

MA, USA). The rats were extubated and put in an incubator (Vetario S10 Intensive Care Unit, 

Brinsea Products Ltd, N. Somerset, UK) at 28-30° C for the recovery period. Postoperatively 

they were kept in separate cages with free access to water and food. Analgesia with 

buprenorphine 0.05 mg/kg subcutaneously was provided every 12 hour for 48 hours. 
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Surgery was performed in a total of 57 rats. Four animals died during surgery. In three 

animals we were unable to control extensive bleeding from the vascular bed of the thymus or 

the internal thoracic arteries. In one rat the transverse aorta was tied completely without 

having the stylet in place and the animal developed acute heart failure and died of respiratory 

failure within minutes. Six animals died or were euthanized after surgery; three developed 

symptoms of acute heart failure (dyspnoea, cyanosis and hemoptysis), one respiratory distress 

due to pneumothorax, one stopped breathing shortly after extubation, probably related to drug 

overdose, and one was found dead in the cage. In the 47 surviving rats, there was no 

statistically significant difference in weight gain after surgery in TAC animals compared to 

sham animals. 

In the initial experiments we tested two sizes of TAC, using stylets from 16 and 18 G 

catheters. A total of nine rats had a tighter TAC using a stylet from an 18G IV catheter. Three 

of them developed symptoms of acute heart failure postoperatively and were euthanized, 

while this did not happen to any rats where the bigger stylet was used. Thus the less 

pronounced constriction was performed in the majority of animals. Two rats with a tighter 

aorta constriction were excluded due to inappropriate banding time, and two rats are included 

in each TAC group (pregnant and non-pregnant).  

We performed the surgery 14 (range, 13-17) days before terminal experiments, corresponding 

to GD 5.5-8.5 in pregnant rats, thus imitating hypertensive disorders of pregnancy. A longer 

period following TAC could have lead to more pronounced LV hypertrophy and overt heart 

failure [93], but the short duration of pregnancy in rats did not allow this.  

3.1.6 High intensity interval training 

Rats are used as an animal model in exercise in pregnancy for several reasons. The rat 

placenta is quite similar to the human placenta, rats adapt to training similar as humans do 

and, most importantly, rats appear to enjoy running [81]. Sprague-Dawley rats were subjected 

to high intensity interval training (HIIT) modified from a protocol originally described by 

Wisløff et al [94] and previously used in mice at our facility [39, 95].  

3.1.6.1 High intensity interval training in pregnant rats 

Five days/week one group of rats was subjected to exercise sessions of 10 bouts of 4 min high 

intensity treadmill running at 25° inclination separated by 2 min of treadmill running at low 

intensity (50-60% of the speed re uired to achieve estimated    2max).  Three or four rats ran 
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in parallel tracks on the same treadmill. Stimulation such as gentle physical handling, an 

airbrush or low current shock grids were used to secure high intensity. Usually the use of the 

shock grids was not necessary and painful stimulus was kept to a minimum. Contrary to 

described by Wisløff et al [94], rewarding the rats with chocolate was not effective in 

stimulating the rats to maximal effort. Speed was set in bouts of 85 to 90  of the speed 

re uired to achieve estimated    2max of rats at baseline, slowest in the first bouts of each 

session. Typically rats tolerated and achieved highest speed in the last bouts of each session. 

All rats were continuously monitored during the training sessions. Throughout the training 

period treadmill speed was increased gradually as long as the rats did not show signs of 

exhaustion.  

After 11-12 sessions of training, training was stopped for one day and one male rat was put in 

a cage with two female rats for 6-7 hours. The second day after mating, the rats resumed HIIT 

again. In pregnant rats, the day of mating was considered GD 0. HIIT was stopped 

corresponding to GD17-18 in pregnant rats out of concern for how the highly pregnant rat 

would perform on the tread mill and with regards to animal welfare as advised by the 

responsible veterinarian. The rats in the HIIT groups completed a total of 24 one hour 

sessions of HIIT with an average total running distance of 83±4 km per rat. Rats of the same 

age and size was kept as sedentary controls, pregnant and non-pregnant. 

3.1.6.2 Measuring maximal oxygen consumption in the rat 

 a imal o ygen consumption     2max) was measured in seven rats during the first days of 

training. The rats ran on a treadmill at 25° inclination in a metabolic chamber (Modular 

treadmill with Oxymax open circuit calorimeter, Columbus Instruments, OH, USA). Ambient 

air was pumped into the chamber at a fixed rate and samples of extracted air form the 

cham er were continuously analyzed for o ygen and car on dio ide. The speed was gradually 

increased until o ygen consumption leveled off despite increased running speed, and 

   2max was defined as    2 measured at this speed divided by rat weight [39, 94]. The 

treadmill velocity at    2max was used to set the speed of the treadmill for HIIT.    2max was 

measured again in the same rats after 11-12 training sessions, before mating. 

When running on a treadmill in a closed chamber, the rat is not accessible to physical 

stimulation except low current shock grids. We found it difficult to assure that the rats 

actually ran at their highest performance, and sometimes the rats would sit down on the low 
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current grid instead of running, even if     -measurements indicated that they was not 

running at their    2max . The estimated    2max varied considera ly.  efore training, mean 

   2max  was 78 (range 70-90) ml/kg/min, corresponding to a maximal running speed of mean 

1   range 1 - 1  m min. When    2max   was measured again after 11-1  training sessions 

mean measured    2max   was not increased,     range   -    ml  g min, while average speed 

at    2max   had increased by 16% to 22 (range 19-2   m min, indicating that that the 

   2max  measured did not detect an actual increase in physical performance. Thus    2max-

measurements were stopped after the first group of seven animals, and running speed in each 

session was set by the best judgment of the operator in the rest of experiments. 

3.2 Small animal echocardiography 

Echocardiography was performed using a high resolution ultrasound imaging system 

equipped with a RMV-710B transducer with a frequency of 25 MHz and a fixed focal length 

of 15 mm mounted on an integrated rail system (Vevo 770, Visualsonics, Toronto, Canada). 

Prewarmed ultrasound gel was used. The rats were anesthetized with isoflurane as previously 

described and silk tape (Leukosilk
® 

1.25cm, Smith&Nephew, London, UK) was used to fix 

the paws to the electrodes integrated in the plate provided with the ultrasound equipment. 

Conductance cream was used to secure good ECG signals. In Paper A the rats were 

spontaneously breathing 1.5-3.5% isoflurane in 100% oxygen provide by a mask over the 

snout. In Paper B and C the rats were intubated. 

In Paper A the studies were performed by two investigators, M.C.S. and N.T.S., and all 

analyzes were performed offline by M.C.S. N.T.S. did only studies on non-pregnant (Ang II 

and sham) animals in Paper A. In Paper B and C all studies were performed and analyzed by 

N.T.S. In Paper D, only CFR calculations performed and analyzed by M.C.S. were included 

from the Ang II-study and N.T.S. performed and analyzed all studies from the TAC-study.  
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3.2.1 Motion-mode echocardiography 

 

Figure 4 M-mode echocardiography from maternal left ventricle (LV) 

A. Parasternal short axis view through the LV anterior wall (AW), papillary muscle (PM) and 

LV posterior wall (PW). B. Measurement of LVAW, LV inner diameter (ID) and LVPW in 

diastole (d) and systole (s).   

Motion (M-) mode echocardiography recordings were obtained from the parasternal short- or 

long-axis views. All ultrasound based measurements were performed off-line without the 

 nowledge of the animals’ identity (Figure 4). Care was taken to select three consecutive 

cycles with good quality signals. The internal dimensions of the LV cavity and thickness of 

the anterior and posterior LV walls were measured. The heart rate (HR) was obtained from 

the electro-cardiogram signals. LV fractional shortening % was calculated as 100 x ((LVIDd-

LVIDs)/LVIDd) where, LVIDd = LV internal diameter in diastole and LVIDs = LV internal 

diameter in systole. Stroke volume (SV) was calculated as LV EDV – ESV where, EDV = 

end diastolic volume and ESV = end systolic volume. The LV EDV was calculated as 7.0/(2.4 

+ LVIDd)xLVIDd
3 

and the LV ESV was calculated as 7.0/(2.4 + LVIDs)xLVIDs
3
 [96]. 

Cardiac output per minute (CO) was calculated as SV x HR. Relative wall thickness (RWT) 

was calculated using the formula: RWT = (LVPWd + LVAWd )/LVIDd where, LVPWd= LV 

posterior wall thickness and LVAWd = LV anterior wall thickness. LV mass was calculated 

using the formula: LV mass =1.04x(LVIDd + LVPWd + LVAWd )
3
 - LVIDd

3
 [97].   
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3.2.2 Coronary flow reserve 

Coronary flow reserve (CFR) is used as a measure of coronary endothelial function. In the 

AngII- and TAC-studies, Doppler echocardiography was used to measure velocities in 

coronary artery and thus calculating CFR. This method is described in detail and evaluated in 

Paper D. In short, high concentrations (3.5%) of inhaled isoflurane were used as a 

vasodilating agent and were compared to the standard dose (1.5%) of isoflurane used to 

maintain anesthesia in rats not exposed to painful stimuli. CFR was calculated as the ratio 

between the peak coronary flow velocities (CFRpeak) and the velocity-time integrals (CFRVTI) 

recorded at hyperemia (3.5%) and at baseline (1.5%). 

3.2.3 Doppler echocardiography  

Doppler echocardiography was performed in the AngII-study. Ejection time (ET), 

isovolumetric relaxation time (IRT), isovolumetric contraction time (ICT) and Tei-index was 

calculated from pulsed-wave Doppler signals from the LV inflow and outflow recorded 

simultaneously as following: ET, ejection time (total time of LV outflow). IRT, time from the 

end of LV outflow signal to start of the mitral flow signal. ICT, time from the end of mitral 

flow signal to the start LV outflow signal.  Tei-index = (ICT+IRT)/ET [98]. Mitral valve E/A-

ratio is the ratio of the early (E) to late (A) LV peak filling velocities. Results are presented in 

Appendix 1.  

In the TAC-study we planned to evaluate the size of the banding and estimate the pressure 

gradient across the banding by B-mode and Doppler echocardiography. However, in most 

animals we were not able to visualize the banding site satisfactory, possibly due post-

operative scaring. Color Doppler mode may have been useful in locating the constriction and 

thus facilitating obtaining useful measurement, but this was not available in the ultrasound 

machine used (Vevo 770) when these studies were performed. 

3.2.4 Fetal echocardiography 

In the AngII-study fetal echocardiography was performed in 126 fetuses in 29 dams. Data 

from two AngII-treated rats was excluded due to fetal bradycardia indicating that the rats 

were hemodynamically unstable during the experiment. Thus ultrasound measurements from 

a total 119 fetuses from 27 animals (12 AngII and 15 sham) were included. E/A-ratio, ICT, 

IRT and Tei-index [98] were calculated from fetal mitral flow signals. Doppler flow velocity 
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waveforms were obtained from the umbilical artery, ductus venosus and ductus arteriosus and 

the pulsatility index (the difference between peak systolic and minimum diastolic velocities 

divided by time-averaged maximum velocity) was calculated for all vessels. Results are 

presented in Appendix 2.  

3.3 Intravascular blood pressure measurements and pressure-volume 

analysis of the rat heart 

In the AngII- and TAC studies a 2F microtip pressure-volume (PV) catheter (SPR-838; Millar 

Instruments Inc, Houston, TX, USA) was inserted via the right carotid artery into the 

ascending aorta and through the aortic valve into the LV. The procedure was performed 

immediately after echocardiographic examinations (Figure 5A). Pain reflexes were checked 

and isoflurane concentrations increased as appropriate. Sharp scissors were used to cut 

through the skin and platysma muscles and trachea was identified (Figure 5B). The right 

carotid artery and vagus nerve was carefully dissected free, lifted up and split apart (Figure 

5C). A micro vascular clamp was fixed to the proximal artery (Figure 5D) and the distal part 

of the artery was tied by sutures an externally fixated. A bend needle of an insulin syringe 

(Figure 5E, Omnican
®
, B. Braun Medical AG, Melsungen, Germany) was used to perforate 

artery and keep the perforation open as the catheter was introduced. Two sutures were tied 

tightly around the artery and the catheter to prevent bleeding as the clamp was removed and 

the catheter advanced into the carotid artery and ascending aorta (Figure 5D). Aortic BP was 

measured before the catheter was introduced into the LV. The PV-signal was recorded by a 

PowerLab using a LabChart 7 acquisition system (AD Instruments) and was used to verify 

proper position of the catheter in the LV (Figure 5F). The animal was allowed to stabilize 

before the baseline PV-loops were recorded. In Paper B PVAN 3.6 software (Millar 

Instruments Inc) was used to analyze PV-loop data. 

Raw signals from volume measurements were calibrated with SV calculated from M-mode 

echocardiography. Mean arterial pressure (MAP) was calculated as 2/3 x diastolic BP + 1/3 x 

systolic BP, total peripheral resistance (TPR) as MAP divided by CO, and LV stroke work 

was calculated as the difference between maximum and minimum LV pressure multiplied 

with SV. Effective arterial elastance (Ea) was calculated as the ratio of LV end-systolic 

pressure to SV. dP/dtmax, dP/dtmin and isovolumetric relaxation constant (Tau) were calculated 
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by the software. LV end-systolic  elastance (Ees) was calculated as the ratio of end systolic   

pressure to ESV. 

 

Figure 5 Pressure-Volume loop recording from the left ventricle of a rat 

Insertion of conductance catheter via right carotid artery (A-E) and screen capture of PV-

loop recordings from LV (F). 
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In Paper B the right carotid artery was cannulated in three rats to measure the pressure 

gradient across the aortic constriction. However, these rats became clinically unstable (drop in 

BP, cyanosis, bradycardia) shortly after catheter placement, and thus we refrained from 

bilateral catheter placement in the majority of animals.  The cardiovascular deterioration 

associated with bilateral catheter placement may be related to cerebral ischemia or direct 

effects on vascular baroreceptors.  

3.4 Morphometry 

Rats were weighed and body weight (BW) determined before terminal experiments were 

performed, immediately before anesthesia. In the end of terminal experiments, the rats were 

euthanized with sodium pentobarbital 100 mg/kg administered intravenously or 

intraperitoneally. The hearts were excised immediately, washed in phosphate-buffered saline 

(PBS) or 0.9% NaCl and dried rapidly on a piece of gauze before it was weighed (HW). In the 

TAC- and HIIT-studies the LV was dissected free from the right ventricle, the atria and the 

mitral and tricuspid valves, and weighed (LV weight) and the right tibia was dissected free 

and measured with calipers. Which parameter best describes cardiac hypertrophy in 

pregnancy remains controversial. Conventionally used parameters include HW, LV weight 

and HW/BW-ratio. As maternal BW increases with advancing gestation, use of HW/tibia ratio 

[99] may be better than HW/BW ratio in pregnancy and was therefore used in Papers B and 

C. The fetoplacental units were removed from the uterus and put in a petri dish filled with 

PBS or 0.9% NaCl. Placentas and fetuses were dissected free, gently dried on gauze and 

weighed and crown-rump length (CRL) was measured without actively extending the fetus. 

The fetus was put back into the petri dish and the thoracic cavity cut open and the fetal heart 

was removed using a pair of bended sharp tweezers. A magnifying glass was used to ascertain 

that the tissue collected was from the heart as liver or lung tissue can easily be mistaken for 

heart tissue in small fetuses. Fetal hearts were put on individually preweighed eppendorf tubes 

filled with tissue storage reagent (RNAlater
®
, Qiagen, Hilden, Germany) and fetal heart 

weight was calculated as the difference of weight of the tubes before and after.  

3.5 Histology 

Myocardial tissue samples were taken from the LV and fixed in formalin. Slides stained with 

Toluidine Blue were used for the measurement of cardiomyocyte size, Sirius Red staining was 
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used for quantification of collagen content and β-actin immunolabeling for vessel density 

calculation. 

3.5.1 Cardiomyocyte size 

In the AngII-study pictures were taken using a Leitz Aristoplan microscope with a Leica 

DFC320 digital camera (Leica Microsystems Digital Imaging, Cambridge, United Kingdom). 

Minimum myocyte diameter at the level of the nucleus was measured using computer based 

morphometry (Leica CTR 600 & Leica Qwin V3, Leica Microsystems, Wetzlar, Germany) on 

a minimum of thirty cells in each heart. Only cells with visible nucleus were used for 

quantification. In the TAC-study a Leica DM2000 microscope was used for viewing slides, 

and sixteen photographs from each slide were taken with a Leica DFC 425 digital camera. 

97±7 cardiomyocytes cut in short axis and containing a nucleus were identified from each 

heart. Cell circumference was outlined digitally using Image J (National Institutes of Health, 

Bethesda, MD, USA) and the myocyte transverse circumference was expressed in arbitrary 

units (Paper B, Figure 3).  In the HIIT-study we refrained from doing microscopic studies of 

tissues as there were no significant changes in gross measurement, cardiac function as 

measured by ultrasound or expression of any mRNAs related to heart hypertrophy. 

3.5.2 Fibrosis and collagen content in heart tissue 

Collagen content was analyzed in the AngII- and TAC-studies. Formalin-fixed sections of the 

left ventricle were paraffin embedded and sliced, and Sirius Red staining of collagen fibers 

(Direct Red 80, Sigma-Aldrich, Germany) was performed. In the AngII-study transverse 

ventricular sections were examined under microscope using conventional and polarized light 

at magnification 50x and 200x. The level of staining as well as tissue changes and injury was 

evaluated and scored by an experienced pathologist (dr. Samer Al-Saad), who was blinded to 

information about AngII or pregnancy status. Each heart was finally assigned to one category 

with respect to collagen content and also scored according to presence of necrosis or not. The 

results are presented in Paper A, Table 4. In Papers A and B myocardial collagen content was 

measured in a minimum of 20 (Paper A) or 16 (Paper B) sampled images (200x) from each 

heart. Image J was used to analyze % tissue area stained by Sirius Red as described online by 

the developer [100]. Perivascular areas (containing higher concentrations of extracellular 

collagen) were outlined using Image J and excluded from quantification. As we did not expect 
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pathological accumulation of collagen in HIIT, we did not quantify collagen content in this 

study.  

3.5.3 Vessel density in left ventricular myocardium 

In Paper A angiogenesis was evaluated by estimating vessel density in hearts by 

immunohistochemistry using non-muscular β-actin to identify endothelial cells [101, 102]. 

Staining was performed using primary antibody against non-muscular β-actin protein (mouse 

anti rat, Beta-Actin; clone AC-74, Sigma). The slides were counterstained with haematoxylin 

to visualize the nuclei. Sections were examined under light microscope at 200x and twelve 

pictures of each heart section were taken from the left ventricle from four different areas. 

Using Image J software, a grid of 80 points (area per point was 3.22 cm
2
) was applied on each 

picture and relative vessel density was expressed as the number of points crossing a blood 

vessel. 

3.6 Gene expression in tissues 

Gene expression analysis was performed to study changes induced by pregnancy or 

experimental interventions (AngII infusion, TAC or HIIT). Real time polymerase chain 

reaction (RT-PCR) was used to quantify expression of genes in maternal myocardium, 

placenta and fetal heart and liver. In all studies presented, relative quantification was used. 

Tissue was stored in RNA later (Qiagen, Hilden, Germany) and the samples were 

homogenized and lysed and total RNA was isolated according to the RNeasyFibrous Tissue 

protocol (Qiagen). RNA concentration was measured by spectroscopy (NanoDrop, Witec, 

Switzerland), and stored at - 80 °C before use. Reverse transcription of RNA was carried out 

according to High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster 

City, CA, USA). The qualitative RT-PCR was performed in an ABI PRISM 7900 HT Fast 

real-time thermal cycler using the SYBR green or TaqMan Fast Universal PCR master mix 

(Applied Biosystems). The relative expression ratio of the target gene was calculated based on 

its real-time efficiency and threshold cycle differences between groups. The expression of the 

target genes were normalized to the stably expressed reference gene based on testing by 

Norm-Finder (Aarhus University Hospital, Aarhus, Denmark) of possible reference genes 

[103]. The presented data is normalized to controls. The reference genes and primers used are 

presented in Appendix 5. In fetal heart, the expression of Ddx3y (DEAD box polypeptide 3, 
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Y-linked) and Eif2s3y (eukaryotic translation initiation factor 2, subunit 3, Y-linked) was 

used to different male from female fetuses. 

3.7 Oxidative stress and total antioxidant capacity 

In Paper C level of oxidative stress and total antioxidant capacity was measured in placentas 

and fetal hearts and livers. Decreased total antioxidant capacity and increased level of 

malondialdehyde (MDA) together with the decreased superoxide dismutase (SOD) and 

peroxidase activities are indicators of oxidative stress. 

Frozen tissue samples from 2-3 feto-placental units from each dam was thawed, weighed and 

homogenized for 2-3 min with a mechanical homogenizer in the buffer supplied in the assay 

kits to prepare 50 mg/ml suspensions. The homogenized suspension was checked with light 

microscope and centrifuged to 14000 x g for 15 min at 4° C. The supernatant was separated 

and stored in working aliquots at -70° C. All analyses were performed on the supernatant 

according to the instructions provided by the manufacturers of the assay kits. 

3.7.1 Malondialdehyde level 

MDA content was quantified by using OxiSelectTM TBARS Assay kit (Cell Biolabs, Inc., 

San Diego, CA, USA). All samples and standards were assayed in duplicate. The 

thiobarbituric acid reaction was completed in a microcentrifuge tube (1.5 mL) at 95° C for 1 

hour. 200 µL of the reaction product was transferred into a 96 well microplate and the color 

was read with a spectrophotometric plate reader at 532 nm using blank as control. 

3.7.2 Superoxide dismutase activity  

SOD activity was carried out by using the procedure as provided with the SOD activity assay 

kit (Abnova GmbH EMBLEM, Heidelberg, Germany). This assay kit measures total (both 

cytosolic and mitochondrial) SOD activity and the results are reported as inhibition rate %. 

All reactions were carried out in a 96 well microplate in triplicate, and the absorbance was 

read at 450 nm using a microplate reader.  

3.7.3 Peroxidase activity  

Peroxidase activity reactions (Sigma-Aldrich, St. Louis, MO, USA) were carried out in a 96 

well microplate in quadruplet, and the absorbance was read at 570 nm. 
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3.7.4 Total antioxidant capacity 

Cumulative antioxidant capacity was quantified using an antioxidant assay kit (Sigma-

Aldrich, St. Louis, MO, USA). All reactions were carried out in 96 well microplate in 

duplicate. The absorbance was read at 405 nm using a microplate reader and the results are 

presented as the inverse of optical density readings. 

3.8 Data analysis and statistical methods 

All measurements and analyzes were performed without the knowledge of pregnancy status 

and intervention. For obvious reasons the operator could not be blinded for pregnancy status 

when performing echocardiography, inserting PV-catheters and collecting tissue samples. 

However, echocardiograhy and PV-data were analyzed off-line with the investigator blinded 

to the allocation of experimental groups.  

All data are reported as mean±standard error of the mean (SEM). A p-value 0.05 was 

considered statistically significant. Logarithmic transformation was used to achieve normal 

distribution of continuous variables when appropriate. As fetoplacental units from the same 

mother should not be handled as independent units, mean values for each mother was used 

when analyzing effects of interventions on pregnancy outcome (biometry, fetal 

echocardiography, oxidative stress and RT-PCR). Correlation between parametric variables 

was checked using Pearson Correlation coefficient. Categorical data comparison between 

groups was performed using chi-square test. Independent-Samples T-test was used to compare 

two groups. One way analysis of variance (ANOVA) was used to compare the 4 groups of 

rats. Two way ANOVA was used to investigate the influence and interaction between 

pregnancy status and interventions (AngII, TAC or HIIT) and the influence and interaction 

between fetal sex and interventions on gene expression in fetal tissues. Only differences in 

influence without significant interaction between pregnancy and TAC are presented for two 

way ANOVA. The Holm–Sidak method was used as post-hoc test. Sigma Plot 12.0 (Systat 

Software Inc, San Jose, CA, USA) software was used for two way ANOVA and PASW 

Statistics 18.0.3 (SPSS Inc., Chigaco, IL, USA) software was used for all other statistical 

analyses. 
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4. Results 

In this section the results from Papers A-D are summarized and some supplementary data are 

presented.  

Paper A: Pregnancy protects against antiangiogenic and fibrogenic effects 

of angiotensin II in rat hearts 

4.1 Summary of the results  

The effects of chronic AngII infusion on pregnant and non-pregnant Wistar rats were 

compared to infusion of 0.9% NaCl (sham). AngII infusion for 9-10 days led to an increase in 

diastolic and systolic BP compared to sham, while pregnancy status did not significantly 

influence BP. Heart weight and LV relative wall thickness were higher in pregnant AngII 

infused rats compared to AngII infused non-pregnant rats, pregnant sham and non-pregnant 

sham. Myocyte diameter was not affected by AngII or pregnancy. Ejection fraction was 

higher in AngII infused pregnant rats than in non-pregnant and pregnant sham. AngII infusion 

resulted in an increase in collagen content, and pregnancy ameliorated this effect. Vessel 

density in LV was decreased in AngII infused compared to sham non-pregnant rats, but not 

significantly decreased in pregnancy. AngII infusion led to significant changes in LV 

expression of genes related to function, fibrosis and apoptosis, with an increase in ANF, BNP, 

ANKRD1, PKCα, PKCδ and TP  . Pregnancy itself did not induce increased e pression of 

known markers of pathological remodeling,  ut reduced the e pression of α- HC, TNFα, 

TP53, eNOS and iNOS. Fetal size, placenta weight or litter sizes were not influenced by 

AngII infusion. 

We concluded that pregnancy and chronic exposure to a moderate dose of AngII has 

contrasting effects on fibrosis and angiogenesis in the heart. Pregnancy seemed to counteract 

the detrimental effects of AngII on fibrosis and angiogenesis in heart despite synergistic 

effects with respect to heart hypertrophy. Pregnancy and AngII lead to partly opposite 

changes in the expression of some of the genes related to heart function and remodeling. 

4.1.1 Supplementary data  

Data presented in Paper A are from six randomly selected rats from each group; Sham, 

Pregnant, AngII and Pregnant Ang II. Supplementary echocardiographic measurements from 
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all rats are presented in Appendix 1. Calculations derived from B-mode echocardiography 

were not significantly affected by pregnancy or AngII infusion. 

Fetal echocardiography was performed on a total of 126 fetuses in 29 dams. Results are 

presented in Appendix 2. There were no significant differences between any of the measured 

variables.  

Expression of genes in fetal hearts from pregnant rats infused with AngII and sham rats is 

presented in Appendix 3. Expression of genes is normalized to fetuses from sham rats and 

mean values of fetal hearts (n=2-3) from each dam is calculated. Fetal sex did not 

significantly affect gene expression in fetal heart (data not presented). 

 Paper B: Effect of transverse aortic constriction on cardiac structure, 

function and gene expression in pregnant rats 

4.2 Summary of the results  

The effect of increased afterload on the heart was studied ~2 weeks after TAC in non-

pregnant and pregnant Wistar rats. Aortic systolic, but not diastolic BP was increased by 

TAC. Diastolic BP was decreased in pregnant compared to non-pregnant sham operated rats. 

TAC for ~2 weeks did not lead to overt heart failure. Heart weight and LV weight was 

increased by TAC, but not by pregnancy. Ejection fraction or cardiac output was not 

influenced by pregnancy or TAC.  Stroke work in pregnant TAC rats was double compared to 

pregnant shams, whereas it was only 35% higher (not significant) in non-pregnant TAC rats 

compared to non-pregnant shams. Myocyte transverse circumference was increased by 

pregnancy, but not by TAC. Nine out of the 19 genes examined related to cardiac remodeling 

were affected by pregnancy independent of TAC.  The increase in expression of β-MHC was 

higher in pregnant (5-fold) compared to non-pregnant rats (2-fold) after TAC, and the ratio of 

β-MHC to α-MHC expression was higher in pregnant TAC compared to non-pregnant TAC. 

Myocardial tissue collagen was not influenced by pregnancy or TAC, but expression of 

fibrosis related genes (COL3A1, COL1A1, FN1 and TIMP1) was up-regulated by TAC. Fetal 

size, placental weight and litter sizes were not influenced by TAC. 

In conclusion this study demonstrated that pregnancy per se does not lead to significant 

cardiac hypertrophy in Wistar rats and does not protect against the negative effects of 

increased afterload caused by TAC. The differences in cardiac structure, function and gene 
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expression between pregnant and non-pregnant rats following TAC indicated that increased 

afterload may be less tolerated in pregnancy. 

4.2.1 Supplementary data  

Gene expression in fetal hearts from TAC and sham operated pregnant rats is presented in 

Appendix 4. Expression of genes is normalized to female sham fetuses and mean values of 

two fetal hearts from each dam is calculated. Fetal sex did not significantly affect gene 

expression in fetal heart (data not presented). 

Paper C: High intensity interval training in pregnant rats alters gene 

expression in fetal heart and liver without inducing oxidative stress 

4.3 Summary of the results   

We studied the effects of six weeks of HIIT on the heart, placenta and fetuses of Sprague-

Dawley rats. HIIT was well tolerated by pregnant rats. HIIT for six weeks or pregnancy did 

not lead to significant heart hypertrophy. Myocardial expression of 22 genes related to cardiac 

remodeling was not influenced by HIIT, but the expression of 11 of these genes was 

decreased in the myocardium of pregnant compared to non-pregnant rats. Fetal and placental 

growth or litter size was not affected by HIIT. Oxidative stress (peroxidase and superoxide 

dismutase activity and malondialdhyde level) and total antioxidant capacity in placenta, fetal 

liver and fetal heart was not influenced by HIIT, and HIIT did not alter the expression of 

genes related to oxidative stress in the placenta. However, HIIT reduced the expression of 

eNOS, HIF1A and GPx4.2 in the fetal liver and increased the expression of VEGF-β, SOD1 

and TIMP3 in the fetal heart. Total antioxidant capacity was higher in fetal liver than in fetal 

heart and placenta independent of HIIT, suggesting that the placenta and developing heart are 

more vulnerable to oxidative stress compared to liver. 

We concluded that HIIT is feasible in pregnant rats, but HIIT for six weeks did not lead to 

cardiac remodeling. There were no obvious adverse effects of HIIT in pregnancy on the 

mother. Fetal and placental growth as well as the level oxidative stress and total antioxidant 

capacity in placenta, fetal heart and liver were not affected by HIIT. However, some genes 

related to oxidative stress were altered in the fetal heart and liver indicating that adaptive 

mechanisms are activated.  
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Paper D: Coronary flow reserve in pregnant rats with increased left 

ventricular afterload 

4.4 Summary of the results  

We evaluated a Doppler echocardiographic method to non-invasively measure CFR in rats 

using different concentrations of inhaled isoflurane. High concentration (3.5%) of inhaled 

isoflurane was used as a coronary vasodilator. CFR was measured in the same pregnant and 

non-pregnant rats that were used in AngII and TAC studies. We found that CFR can be 

measured non-invasively in rats using this technique. We were able to calculate CFR using 

Doppler flow velocity waveforms of LMCA in most animals. CFR was reduced in pregnant 

rats compared to non-pregnant. CFR was not significantly affected by AngII infusion for ~10 

days or TAC for ~2 weeks. 
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5. Discussion 

5.1 Study design 

In Papers A, B and C we used a similar design where an intervention (AngII, TAC or HIIT) 

was applied to pregnant and non-pregnant animals. Thus we had four groups of rats of same 

sex, similar age and size for studying the effects of both the pregnancy and the intervention. 

This simple study design reduces confounding to a minimum as all rats are as equal as 

possible except for the intervention and pregnancy status. We are aware of only a few other 

experimental studies in pregnancy that has used a similar design [104-107]. In most previous 

studies non-pregnant animals has been compared to pregnant animals [6, 7, 33, 108-114], 

pregnant control animals have been compared to pregnant animals subjected to an 

intervention [54, 63, 92, 115, 116] or both [117]. In some studies pregnant animals have been 

compared to non-pregnant animals subjected to an intervention [33, 40, 63, 118]. To illustrate, 

in one frequently cited study of physiological hypertrophy, pregnant mice were compared to 

non-pregnant mice and to male mice subjected to TAC [33], thus not taking possible effects 

of gender and differences in size into account. In addition to minimizing confounding, our 

study design enabled us to determine if changes in structure, function or gene expression can 

be attributed to pregnancy, intervention, or both, allowing us to get reliable data using a 

relative small sample size. We found this design particularly advantageous when analyzing 

gene-expression data using two-way ANOVA as a statistical method for comparing groups. 

Reducing the unnecessary use of animals is important when performing research on animals 

for animal welfare reasons [83], as well as out of obvious economical and practical 

considerations.  

5.2 Physiological effects of pregnancy on the heart in the rat 

In all three studies we included groups of non-pregnant and pregnant control animals. Thus 

we could evaluate the effects of pregnancy per se on the heart, as well as the effects of the 

interventions applied (AngII infusion, TAC or HIIT).  

5.2.1 Pregnancy does not lead to significant heart hypertrophy in rats 

It is widely believed that pregnancy causes physiological cardiac hypertrophy characterized 

by chamber enlargement without any increase in LV wall thickness/chamber diameter ratio 

[2, 22, 33, 40, 119, 120] (Figure 1). Pregnancy leads to significant heart hypertrophy in 
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humans [2, 9, 119, 120]  and mice [7, 33, 40], and some authors have previously reported 

increased cardiac mass in pregnant rats [108-110, 118]. Thus, when planning and designing 

the first (AngII) study we expected to find evidence of physiological heart hypertrophy in 

pregnant as well as AngII infused rats. Interestingly, we did not find any evidence of 

significant heart hypertrophy in pregnant compared to non-pregnant control animals in any of 

the presented studies. 

Total HW, LV weight and HW/BW-ratio are conventionally used parameters of heart 

hypertrophy. As BW increases with advancing gestation, use of HW/tibia ratio [99, 118] may 

be better than HW/BW ratio. However, none of the parameters measured supported the 

evidence of significant cardiac hypertrophy in pregnant Wistar (Paper A and Paper B) or 

Sprague Dawley rats (Paper C). These findings are in contrast to some other studies 

performed in rats. Jankowski et al. found a 28% increase in both HW and LV weight in 

pregnant Sprague-Dawley rats at GD21 (n=8 in each group, age not reported) [109], and 

Rimbaud et al. found an increase in both HW and HW/tibia-ratio of 10% in nine pregnant 15-

weeks old Wistar rats at GD18-19 compared to in ten non-pregnant rats [118]. Virgen-Oritz et 

al. report an increase in HW/BW-ratio from 3.69 in non-pregnant (n=8) to 4.34 in pregnant 

(n=8) Sprague-Dawley rats at GD18-21 without providing actual weight [110]. This is in 

contrast to ours as well as others [109, 118] findings of decreased HW/BW-ratio in pregnant 

rats. Gonzalez et al. [108] report an increase of 70 % in LV mass calculated using 

echocardiography in pregnant compared to non-pregnant Sprague-Dawley rats. However, 

uncertainty in morphological data presented for five rats in each group make their conclusions 

questionable as the HW (89 – 95 g) and LV weights (78 – 93 mg) presented appear way out of 

range for adult, female rats. The TAC-study had an 80% statistical power to detect an increase 

in HW of 13%. When all pregnant (n=24) and non-pregnant (n=18) sham animals from the 

AngII- and TAC-studies were pooled together there was still no difference in HW between 

groups (730±20 vs 700±14 mg, p=0.24). We are not aware of studies in rats that report 

increased cardiac mass in pregnancy with equally high number of pregnant animals included. 

In support of our findings, Buttrick et al did not find increased heart weight in pregnant 

compared to non-pregnant 12-14 weeks old Wistar rats (eight rats in each group) [6], and 

Bassien-Capsa et al even report a significant decrease in wet heart weight in 13-14 weeks old 

pregnant Sprague-Dawley rats (n=17) compared to non-pregnant (n=19). Dry heart weights 

were similar in pregnant and non-pregnant animals. Both Buttrick and Bassien-Capsa refrain 
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from discussing the lack of hypertrophy in pregnancy further in their papers [6, 117]. 

Interestingly LV wall thickness measured with M-mode echocardiography was increased in 

pregnancy in the same rats [117]. In both studies reporting increased LV wall thickness in 

pregnant rats using ultrasound, the authors do not report if the investigators performing 

echocardiography or performing offline measurements were blinded to rats pregnancy status 

[108, 117]. Thus one may suspect overestimation of the LV mass in pregnant rats (error of 

anticipation) using echocardiography. 

In humans, pregnancy is associated with an increase in blood volume leading to an increase in 

preload and the LV end-diastolic volume [14, 15, 17, 18]. Increased filling of the heart leads 

to increased SV and CO. However, in the TAC-study LV internal diameter in diastole and LV 

end-diastolic pressure were not increased in pregnant sham rats indicating that preload is not 

increased in pregnancy in rats. Slangen et al used electromagnetic flow probes around 

ascending aorta to show that pregnancy increased CO in pregnant Wistar rats. Heart weights, 

or any other measures of hypertrophy were not reported [121]. Studies in mice indicates that 

there is a good correlation between measurements obtained by flow probes and 

echocardiography [122]. However, our studies did not detect differences in CO between 

pregnant and non-pregnant control animals using M-mode echocardiography. Lack of an 

increase in CO in pregnancy may explain why the heart size was not increased by pregnancy 

in our studies on rats. High estrogen levels in pregnant animals may also be responsible for 

this, as in a recent study by Pedram et al [123] estrogen is shown to prevent cardiac 

hypertrophy in cultured neonatal rat cardiomyocytes via the estrogen receptor-β.  

In general, concentric cardiac hypertrophy due to increased afterload on the LV is associated 

with a greater increase in cardiac myocyte width compared to length,  whereas eccentric 

cardiac hypertrophy is associated with an increase in myocyte length [29, 35] (Table 1). Thus 

increased myocyte size in pregnancy has been attributed to increased myocyte length [33, 

110]. In the AngII-study there was no difference in cardiomyocyte diameter and in the TAC-

study there were no significant difference in cardiomyocyte transverse circumference between 

pregnant and non-pregnant sham rats. However, in the TAC-study the myocyte circumference 

was increased in pregnancy when the analysis was performed on all rats independent of TAC-

status (two way ANOVA, p=0.01). Reliable measurements of myocyte length are not possible 

to obtain using histological sections of LV myocardium. To explore this aspect of heart 

hypertrophy at the cellular level, single myocytes should be examined [110, 117]. As 
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pregnancy per se did not lead to cardiac hypertrophy in rats in our studies, and there was no 

echocardiographic evidence of LV dilatation (similar LV inner diameter in diastole in all 

studies) studies on single myocytes were not done. Bassien-Capsa et al report a small (113.4 

vs 117.5 µm) but significant difference in myocyte length between the hearts of pregnant and 

nonpregnant rats. However, as the statistical analysis was performed on the single cell level, 

and not on individual animal level this result remains questionable. In our opinion, statistics 

should be performed on mean myocyte length from each rat as individual single cells from the 

same heart should not be regarded as independent. 

The lack of significantly increased heart mass in pregnant rats was surprising, but was 

reproduced in all three studies. Echocardiographic measurements have several limitations, but 

the accuracy of the HW and LV weight should be indisputable. Thus we conclude that 

pregnancy does not lead to a significant increase in heart mass in rats, and we would advise 

against using pregnant rat as an experimental model of physiological heart hypertrophy. 

5.2.2 Heart function and pregnancy 

In all studies echocardiographic evaluation of heart function was performed measuring LV 

fractional shortening and ejection fraction. SV and CO output were calculated from M-mode 

echocardiographic measurements. In AngII-study, the evaluation of heart function was 

supplemented with indices of mitral valve blood flow velocity signals (Appendix 1). In Paper 

B we presented pressure-volume data obtained from pregnant and non-pregnant sham 

operated animals. The only significant difference in any measure of cardiac function between 

pregnant and non-pregnant control rats was a decreased dP/dtmax in pregnant (7.7±1.1 

mmHg/sec*10
3
) compared to non-pregnant (10.9±0.7 mmHg/sec*10

3
) animals in the TAC-

study (Paper B, Table1). dP/dtmax is used as a measure of LV systolic/contractile function, and 

is highly dependent on both preload and afterload [124]. Thus, a significantly lower dP/dtmax 

may also be explained by a lower BP in pregnancy (Paper B, Figure 2) rather than reduced 

contractile function. 

The data on how pregnancy influences heart contractility is conflicting. In a longitudinal 

study of healthy, pregnant women Gilson et al used M-mode echocardiography to 

demonstrate enhanced myocardial performance in late gestation pregnancy compared to early 

pregnancy and post-partum [5]. In contrast, Clark et al did not find any significant difference 

in LV function when central hemodynamic measurements (pulmonary artery catheterization 
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and arterial line placement) were performed at 36-38 weeks gestation and 11-13 weeks post 

partum [8], and Geva et al found a transient decrease in contractility in the second trimester 

using serial echocardiographic measurements during and after pregnancy [9]. As described in 

the introduction heart function in pregnancy is vastly influenced by the variability in the 

loading conditions in pregnancy [9-11]. In clinical studies as well as in in vivo animal studies, 

it is not possible to correct for all parameters influencing pre- and afterload in pregnancy. 

However, in the isolated working heart both pre- and afterload can be tightly controlled and 

neuroendocrine influences neutralized [6, 125]. Buttrick et al found an increased contractile 

performance in isolated rat hearts of third trimester pregnant rats, compared to controls, 

whereas cardiac contractility was not significantly improved in the heart of first trimester or 

postpartum rats [6]. Data from our studies could not underpin these findings. More studies on 

the isolated hearts of pregnant animals might prove to be valuable when exploring the effects 

of pregnancy on cardiac function and metabolism. Since we did not detect cardiac 

hypertrophy in pregnant rats, mouse models may be more appropriate [126]. 

5.2.3 The coronary circulation and pregnancy 

Coronary flow reserve (CFR) calculated from Doppler measurements of LMCA flow 

velocities at low and high concentrations of inhaled isoflurane in the AngII and TAC-studies 

are presented in Paper D. In the TAC-study CFRpeak was significantly reduced in pregnant 

compared to non-pregnant sham operated rats (Paper D, Figure 2C). The same trend was 

observed for CFRVTI in the TAC-study (Paper D, Figure 2D) and in sham treated rats in the 

AngII-study. Combining data on sham animals from two studies, we found that both CFRpeak 

and CFRVTI were significantly lower in pregnant compared to non-pregnant rats (Paper D, 

Figure 3).   
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Figure 6 Coronary autoregulation, blood pressure and coronary flow reserve 

Coronary flow is determined by coronary perfusion pressure. It is regulated by coronary 

vascular resistance and will remain relatively constant over a wide range of perfusion 

pressures. When high doses of inhaled isoflurane are administered, the vessels of the 

coronary bed are maximally dilated (corresponding to the upper dotted line) and the 

autoregulation is revoked. Thus the calculated CFR is directly dependent on the coronary 

perfusion pressure. Adapted from Baumgart et al [127]. 

Flow mediated vasodilatation (FMD) is believed to reflect the endothelial function in the 

peripheral resistance vessels but may not correlate with that of the coronary vascular bed [70, 

78, 79, 128]. Studies in pregnant women have shown that FMD decreases towards term [72, 

73, 76] which is in line with our findings. The coronary circulation is subjected to 

autoregulation and coronary blood flow is constant over a wide range of pressures [80, 129] 

(Figure 6). When the vascular bed of the heart is maximally vasodilated (e.g. by adenosine or 

isoflurane) the coronary autoregulation is revoked and coronary blood flow exhibits a linear 

relationship with the myocardial perfusion pressure [80, 127]. As coronary flow is 

predominantly diastolic in the rat LMCA (Paper D, Figure 1BC), an increase in diastolic BP 

may increase calculated CFR. Therefore, the reduced CFR in late pregnancy may be a result 
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of reduced diastolic BP rather than impaired coronary endothelial function in healthy 

pregnancy (Figure 6). Examining CFR and BP at mid-term could have added valuable 

information, but we refrained from anaesthetising the animals twice during pregnancy to 

avoid adverse effects on mother and fetuses. 

A possible explanation for the reduction in CFR at late term in rats could be vasodilatation of 

the coronary vascular bed due to metabolic or endocrine changes in pregnancy. Hirata et al. 

have shown an increase in CFR associated with increasing levels of 17β-estrogen in the 

follicular phase of the menstrual cycle in young, healthy women and after administration of 

conjugated estrogen in postmenopausal women [130]. In third trimester pregnancy estrogen 

levels are high. However, profound changes in several other hormones that occur during 

pregnancy could be responsible for reduced CFR that we observed in rats close to term. 

5.3 Three models of heart hypertrophy in the rat 

Three different models of cardiac hypertrophy were applied to pregnant and non-pregnant rats 

to explore how pregnancy affects cardiovascular adaptation to pathological and physiological 

stress. 

5.3.1 Angiotensin II infusion 

As elaborated in the Introduction RAS is activated in preeclampsia, and the presence of 

autoantibodies to the AngII-receptor type 1 (AT1-AA) may play a key role in the development 

of preeclampsia [50-52]. Thus a model of chronic AngII infusion may be of particular interest 

when exploring the possible mechanism behind heart remodeling in preeclampsia. 

Interestingly, infusion of AngII for 9-10 days led to hypertrophy in terms of a significant 

increased heart weight and LV wall thickness only in pregnant rats (Paper A, Table 3). 

Pregnant AngII infused rats also had increased ejection fraction compared to non-pregnant 

AngII infused rats. Although there were no significant differences in BPs measured in the 

ascending aorta, there was a trend towards lower systolic and diastolic BP in the pregnant 

AngII infused rats compared to non-pregnant AngII infused rats. Thus a difference in BP 

cannot explain increased heart mass. When looking at components related to interstitial 

remodeling such as collagen content, qualitative grading of fibrosis and vessel density, 

pregnant rats were less affected by AngII infusion than non-pregnant rats. As the increase in 

heart mass caused by AngII infusion in pregnancy did not appear to be related to increased 

deposits of extracellular components one would expect an increase in total myocyte mass. 
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However, there was no significant difference in myocyte diameter between any groups. The 

increase in heart mass in pregnant AngII infused rats could be related to an increase in 

myocyte length, which was not measured.  

5.3.2 Transverse aortic constriction 

TAC is used as a model of chronic pressure overload and non-pregnant rats typically develop 

progressive concentric LV hypertrophy and ultimately LV dilatation and heart failure [93] 

(Figure 2). However, in our TAC-study there were no differences in filling pressure, heart 

rate, SV, CO and weight gain between TAC and sham operated animals irrespective of 

whether they were pregnant or not. This indicates that moderate constriction of the transverse 

aorta for ~2 weeks is well compensated with LV hypertrophy and increased stroke work 

(Paper B, Table 1, Figures 2 and 4).  

Women with hypertensive disorders of pregnancy are susceptible to pulmonary edema [131]. 

The more pronounced increase in cardiac stroke work after TAC observed in pregnant rats 

compared to in non-pregnant rats indicate that he hearts of pregnant TAC rats may had 

entered a hypercontractile state with increased myocardial metabolic demand representing the 

stage before decompensated heart failure [132] and thus indicating that pregnancy renders the 

heart more vulnerable to additional stress. A longer time following TAC could lead to overt 

heart failure [93], but the short duration of pregnancy in rats (about 21-22 days) did not allow 

this. Performing TAC before mating, or banding the ascending aorta on juvenile rats [133], 

could be options that may be more relevant to simulate clinical scenarios of pregnancy in 

women with congenital heart defects or acquired heart diseases with LV outflow obstruction, 

and these options should be considered for future studies. However, the effect of aortic 

constriction on fertility in rats is not known. 

5.3.3 High intensity interval training 

We were surprised to find that HIIT for six weeks did not lead to significant heart 

hypertrophy and that HIIT did not significantly change the expression of any of the genes 

related to cardiac hypertrophy we studied.  This lack of cardiac hypertrophy stands in contrast 

to Wisløff et al [94] who reported a significant increase in LV mass of ~10% in female 

Sprague-Dawley rats after four weeks of HIIT and a ~35% increase after 13 weeks. In the 

study by Wisløff et al, the rats exercised for a longer time period (2 h/day) at intervals of 8 

min duration at 85-90% of   O2max[94]. Longer training sessions or longer intervals might 
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have increased the LV mass in animals in the HIIT-study. We felt reluctant to use such an 

aggressive model of HIIT on pregnant rats, and chose a protocol based on what has previously 

been done in mice at our facilities [39] and similar to the more recent studies on rats from 

Wisløffs group [134, 135].  As pregnant rats were able to run ten intervals of four minutes per 

day, and both longer lasting bouts of high intensity running or longer training sessions may be 

tolerated by pregnant rats, and this could be explored in future studies. A longer total period 

of HIIT could have lead to significant increase in LV mass, but due to the short duration of 

pregnancy in rats (~21 days) this was not possible. As the main goal of the study was to 

investigate the effect of HIIT in pregnancy and vice versa we regarded a longer training 

period before mating as not relevant.  

It is a paradox that six week of hard interval training including 24 one hour sessions of HIIT 

with an average total running distance of 83±4 km pr rat did not lead to significant change in 

heart mass or function and that none of the 22 examined genes related to cardiac function and 

remodeling was significantly affected. HIIT rats were able to increase their maximal running 

speed at intervals by 42% during the training period, indicating that their physical fitness was 

improved. Out of animal welfare reasons, HIIT was not performed in the last days of 

gestation, when the rats were heavily pregnant, and thus the rats rested for 2 or 3 days before 

terminal experiments. We chose to do the terminal experiments close to term, at 20 GD, as we 

wanted to investigate the effects of HIIT on the fetus and placenta, and half of the increase in 

fetal and placental weight will take place during the last few days of pregnancy [84]. We 

would not expect cardiac hypertrophy to regress following a couple of days rest towards the 

end of pregnancy. However, the lack of change in expression of genes could be attributed to 

the time lag between cessation of HIIT and collection of samples. The average half-life of 

mRNA (2.6-7 hours) is much shorter than the half-life of proteins (46 hours) in mammalian 

cells [136]. Thus we believe that a long duration from cessation of stimulus (training) to 

sampling of specimens may be the most important explanation for not finding any significant 

changes in expression of mRNAs. In contrast, AngII infusions were continued and the 

increased afterload due to TAC was present until tissues were sampled. 

We used young (9-11 weeks at inclusion) female rats that continued to grow during the 

training period. The hearts of maturing young female rats may respond to the physiologic 

stimuli of pregnancy and/or exercise differently than the heart of mature adult rats. In future 

studies where the primary aim is to investigate effects of HIIT on the heart, one could 
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consider doing terminal experiments and tissue sampling at an earlier stage in pregnancy, 

closer to cessation of HIIT. One could consider using fully grown female rats not needing to 

take into account the natural physical growth of the body and heart in the young, maturing rat. 

Using ultrasound to evaluate cardiac function and to calculate LV mass longitudinally may 

also be possible, but the effects of applying repeated sessions of isoflurane anesthesia in 

pregnancy is not known and repeated procedures could interfere with the intensive training 

regime.   

5.3.4 Comparing models 

Whereas AngII infusion could mimic some of the patho-physiologic changes observed in 

preeclampsia (increased RAS activation), TAC imitates the situation of mechanical 

obstruction of the LV outflow tract as seen in some congenital heart defects (coarctation of 

the aorta, interrupted aortic arch and aortic stenosis). Both interventions lead to an increase in 

afterload, however TAC is in principle a mechanical intervention predominantly leading to an 

increase in systolic BP, whereas by AngII infusion, both diastolic and systolic BP is 

increased. Probably the increased diastolic pressure generated by TAC in the proximal aorta 

is absorbed by increased vascular elastance in the unaffected vascular bed supplied by the 

right brachial artery. AngII leads to increased afterload via its vasoconstricting properties on 

the peripheral circulation. Furthermore there is evidence that AngII stimulate heart 

hypertrophy through direct effects on myocytes as ACE-inhibitors prevents hypertrophy in 

aortic banded rats even if afterload is not reduced [137] , and AngII is able to induces cell 

growth and increases protein synthesis in isolated cardiac myocytes [138].  

The increase in heart weight following AngII infusion was significantly (p=0.006) increased 

in pregnant compared to non-pregnant rats, whereas pregnancy did not significantly affect 

heart weight, LV weight or HW/tibia-ratio following TAC. The increase in mass was not 

related to a higher content of collagen and there was no increase in myocyte diameter. 

Increased myocyte length in pregnancy may account for increased mass; however, there were 

no signs of cardiac dilatation on echocardiography. Water content is increased in heart muscle 

after excessive stretch in dogs [139] and there are reports of increased water content in 

myocytes of pregnant rats [117]. Increased water content may explain an increase in heart 

weight. To our knowledge AngII does not alter water content in cardiac tissue. This could 

easily be addressed in future studies by comparing wet and dry heart weights [117].  
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5.4 Influence of pregnancy on heart remodeling  

Even if pregnancy and HIIT did not lead to significant cardiac hypertrophy, pregnancy per se 

altered expression of a wide range of genes whereas HIIT did not. These data may support 

Chung et al’s assertion that the mechanisms driving the physiologic remodeling following 

exercise are different from those in pregnancy [22, 40] (Table 1). 

5.4.1 Effect of pregnancy on cardiac function in models of increased afterload 

In Paper B we presented pressure-volume data showing that TAC doubled stroke work in 

pregnant rats, whereas the increase in stroke work attributed to TAC in non-pregnant rats was 

only 35% (Paper B, Figure 4D). TAC is used as a model of chronic pressure overload and 

non-pregnant rats generally develop progressive concentric LV hypertrophy and ultimately 

LV dilatation and heart failure [37, 93].  Doenst et al studied the effects of TAC applied in 

juvenile (3 weeks old) Sprague-Dawley rats 2, 6, 10 and 20 weeks later. The pressure 

overload led to progressive heart hypertrophy with preserved systolic cardiac function (EF) at 

2, 6 and 10 weeks and dilatation and impaired function at 20 weeks. However, impairment in 

fatty acid oxidation and reduced cardiac power was demonstrated ex vivo as early as 2 weeks 

after TAC [37]. In the TAC-study there were no differences in filling pressure, heart rate, EF, 

CO and weight gain between TAC and sham operated animals irrespective of whether they 

were pregnant or not, indicating that a moderate constriction of the transverse aorta for ~2 

weeks is well compensated with LV hypertrophy and increased stroke work. As expected 

TAC increased afterload, but the increase in afterload attributed to TAC was not affected by 

pregnancy. In contrast to chronic pressure load caused by AngII, aortic diastolic BP was not 

affected by TAC. The increase in systolic afterload caused by TAC was compensated by an 

increase in stroke work and this increase was more pronounced in pregnant animals. This may 

be related to the fact that pregnancy in combination with TAC led to an increase in myocyte 

circumference. Additionally, cardiac remodeling following TAC was associated with a more 

than three-fold increase in the ratio of β-MHC/α-MHC-gene expression in pregnant compared 

to non-pregnant rats. 

5.4.2 Influence of pregnancy on cardiomyocytes 

As discussed earlier (5.2.1) pregnancy per se did not lead to significant increase in myocyte 

diameter or circumference, and heart hypertrophy following AngII for ~10 days or TAC for 

~2 weeks did not increase the myocyte diameter/circumference significantly. However, the 
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myocyte transverse circumference was significantly higher in pregnant TAC rats compared to 

non-pregnant sham operated rats. An increased β-MHC expression and decrease in α-MHC 

expression has been considered as hallmarks of cardiac hypertrophy [140, 141]. As expected, 

expression of β-MHC was increased and expression of α-MHC was decreased following 

TAC. Interestingly this shift in MHC-expression towards the β- isoform was more 

pronounced in pregnant rats. A recent study in mice has shown that β-MHC protein is induced 

by pressure overload only in a minor subpopulation of myocytes that  are smaller than 

myocytes containing α-MHC only [142]. This may explain why TAC for ~2 weeks did not 

lead to an increase in average myocyte circumference even if the ratio of β-MHC to α-MHC 

expression and contractility was increased.  

5.4.3 Myocardial fibrosis in pregnancy 

In Paper A we showed that AngII infusion for ~10 days lead to a marked deposition of 

extracellular collagen and that pregnancy opposed this effect. There was a significant increase 

in the expression of COL3A1 in AngII and a trend towards less expression of fibrosis related 

genes COL1A1, COL3A1 and FN1 in AngII treated pregnant rats compared to AngII treated 

non-pregnant rats (Paper A, Figure 1 and Table 5). In Paper B the up-regulation of COL1A1, 

COL3A1, FN1 and TIMP1 genes was less pronounced following TAC for ~14 days compared 

to following AngII infusion and there was no increase in collagen deposition. Pregnancy 

increased the expression of TIMP1 independent of TAC (p=0.02). There was a non-

significant trend towards less expression of COL1A1 and COL3A1 in pregnant compared to 

non-pregnant TAC (Paper B, Figure 3B and Tables 2 and 3). In Paper C, the expression of 

COL1A1, COL3A1 and TIMP1 genes was reduced by pregnancy, but not affected by HIIT. 

As HIIT did not lead to significant change in cardiac mass or changes in gene expression and 

fibrosis is not induced by exercise training, we did not analyze collagen content in tissue in 

the HIIT study.  

The difference in myocardial response to increased afterload caused by AngII compared to the 

effects of obstruction of LV outflow tract is probably related to the direct effect AngII on the 

heart independent of increase in BP [137, 138, 143]. TGF-β acts as a regulator of cardiac 

remodeling through its direct actions on the cardiomyocyte, the fibroblast and the 

extracellular matrix, and is induced by hemodynamic overload [144]. TGF-β1 acts 

downstream to AngII in inducing myocardial fibrosis [144]. The expression TGF-β genes was 
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not examined in Paper A, but in Papers B and C the expression of TGF-β1, TGF-β2 and TGF-

β3 in LV myocardium was lower in pregnant compared to non-pregnant rats, both in 

intervention groups and in controls. Thus downregulation of TGF-β signaling pathways may 

explain why pregnancy counteracts the development of fibrotic remodeling of the LV in 

AngII infused rats presented in Paper A. In addition, some AngII-receptors are less sensitive 

to AngII during pregnancy as they are switched from a heterodimeric to a monomeric state 

that is inactivated by reactive oxygen species [28]. Furthermore, the high estrogen levels of 

late pregnancy may inhibit fibrosis via direct effects on the estrogen receptor-β in cardiac 

fibroblast and cardiomyocytes [145]. 

Heart hypertrophy following TAC for ~14 days did not lead to significant myocardial fibrosis, 

but fibrosis is inevitable if the heart is exposed to increased afterload for a longer period of 

time [93]. However, due to the short gestation (~21 days), rat models with banding of the 

aorta may not be suitable to determine if pregnancy  protects against fibrosis following 

increased LV outflow obstruction as seen in pregnant women with congenital heart defects.  

5.4.4 Effects of pregnancy on the coronary circulation in models of increased 

afterload 

Effects of pregnancy and increased afterload on the coronary circulation were evaluated in 

several ways; through measurement of expression of genes related to angiogenesis, by 

evaluating vessel density and by using CFR measurements to evaluate endothelial function.  

5.4.4.1 Microcirculation and vessel density 

Gene expression of VEGF-α and VEGF-β was decreased in pregnant compared to non-

pregnant rats in all studies (Paper A; Table 5, Paper B; Tables 2 and 3, Paper C; Table 2).  

None of the examined interventions (AngII, TAC or HIIT) influenced the expression of 

VEGF-α or VEGF-β. In the AngII-study, vessel density tended to increase in pregnant 

compared to non-pregnant in both sham and AngII infused rats, and decrease in both pregnant 

and non-pregnant AngII infused rats (Paper A, Figure 2). Thus we concluded that pregnancy 

may counteract the detrimental effects of AngII on angiogenesis in the heart. VEGF-α is an 

angiogenic factor activated by hypoxia and is essential for angiogenesis and remodeling in 

several organs, including the heart [146]. Expression of VEGF-β is critical for the survivel of 

vascular endothelial cells [147]. Unlike in other studies [101], AngII alone did not increase 

the expression of VEGF in this study, and the decrease in vessel density in AngII infused rats 
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was not accompanied with significant changes in  VEGF expression.  Furthermore, the 

increase in vessel density in pregnancy was accompanied with lower expression of VEGF. 

Thus vessel density in the heart in AngII treated rats might be regulated through other 

mechanisms than the VEGFs or the change in of VEGF gene expression is not reflected at the 

protein level. 

5.4.4.2 Coronary flow reserve 

In contrast to previous findings in dogs [148] and mice [149] with increased afterload , in our 

study CFR was not reduced by AngII infusion or TAC in rats. In addition to species 

differences, there could be several other reasons for this discrepancy. Hittinger et al. found 

that CFR was preserved in dogs with compensated heart hypertrophy, but was exhausted 

when the dogs developed decompensated pressure overload left ventricular hypertrophy 

[148].  In our studies the animals did not have decompensated heart failure when CFR was 

measured .   

The course and outcome of pregnancy may be affected by maternal heart disease [150], and 

death from heart disease is the leading cause of indirect maternal death in the UK [151]. A 

recent study showed that the utero-placental blood flow is impaired in pregnant women with 

congenital heart diseases [152]. As the effects of pregnancy on CFR have not been studied 

before, and it is not known if reduced CFR can predict an increased risk of adverse 

cardiovascular events in pregnancy, there is a need for non-invasive tests to asses risk and 

predict outcome in pregnant women at risk.  Thus, studies of CFR in healthy human 

pregnancies and in pregnant women with hypertension or heart diseases using non-invasive 

methods and a safe vasodilating agent are warranted. Adenosine is probably safe, but is 

associated with unpleasant side effects such as dyspnea, chest discomfort and transient 

asystole. Dipyridamole, a FDA category B drug, could be a safe alternative [127]. 

Inhalation of isoflurane is not an alternative for pregnant women, but the findings in Paper D 

indicates that estimating CFR using different concentrations of isoflurane is an easy, quick 

and non-invasive method of evaluating CFR in research animals. This is of particular 

importance when several procedures are scheduled as increased time in anesthesia increases 

the risk of destabilizing the animal and thus failure in getting valuable results from the study.  



62 

 

5.5 High intensity interval training during pregnancy 

HIIT was well tolerated by pregnant rats. However, six weeks of HIIT did not lead to 

significant changes in cardiac structure, function, and gene expression irrespective of whether 

the rats became pregnant or not. As high-intensity training in humans leads to heart 

hypertrophy, and others have demonstrated hypertrophy in rats subjected to HIIT [94], one 

could argue that the rats were not exposed to adequate doses of training. However, as the rats 

ran ten bouts of four minutes at 85-90% at    2max five days/week for six weeks, this is not 

likely. Looking at the translational aspect of our experiments it is not likely that even the most 

vigorously training pregnant women would train at this level during pregnancy.  

HIIT did not affect body weight significantly in non-pregnant or pregnant rats and all rats 

gained weight during the course of experiments. This suggests that HIIT is not effective in 

reducing weight in young female non-obese rats, independent of pregnancy status. Maternal 

obesity and excessive weight gain in pregnancy are known risk factors for adverse pregnancy 

outcomes [66, 153]. As the prevalence of obesity in pregnancy is increasing [66], from a 

translational perspective it would be of interest to examine the effects of HIIT in pregnant 

obese animals. It is possible that the ratio of skeletal muscle to adipose tissue mass is affected 

by training. Measures of body composition and other markers of metabolic profile could be 

addressed in future studies on HIIT in pregnancy. 

The present study was performed in young, healthy rats. In the developed world the average 

maternal age is rising [154] and in future studies one could consider replacing young, 

adolescent rats with fully mature rats to add translational relevance.  

5.6 Rat models of heart hypertrophy and the fetus 

None of the interventions tested, i.e. HIIT carried out from 3 weeks before pregnancy and 

continued until 2-3 days before term gestation, chronic AngII infusion or TAC in the last half 

of pregnancy, led to significant changes in fetal or placental size or the litter size. In the 

AngII-study the fetal hemodynamics was not affected (Appendix 2). There were subtle 

changes in gene expression in fetal heart in all three studies, but no consistent differences in 

findings were observed (Paper C, Table 5 and Appendix 3 and 4). Based on our findings, we 

can conclude that these interventions applied to pregnant rats do not seriously affect the 

fetuses.  
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One of the objectives of our study was to evaluate the safety of HIIT in pregnancy. In HIIT 

fetuses there were some minor changes in gene expression in liver tissue indicative of 

oxidative stress, but we did not find any significant changes in ROS-activity in placenta, fetal 

liver or heart (Paper C, Figures 3 and 4). A more extreme model of HIIT (longer training 

sessions, longer intervals, HIIT continued until term) might compromise fetal wellbeing, but 

the translational relevance of such protocol is questionable and there would be obvious animal 

welfare concerns. The changes in gene expressions were small and the translational 

significance of these findings is uncertain. However, they may indicate that protective 

mechanisms are activated. Thus, before extensive training at the anaerobic threshold can be 

ruled in as safe in pregnancy, our findings should be tested by other researchers and 

preferably in other animal species. Based on the combined experience, clinical studies with 

meticulous monitoring of the fetus may then be performed.  
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6. Main conclusions 

 Cardiac remodeling caused by chronic infusion of moderate doses of AngII in 

pregnant rats is associated with heart hypertrophy. However, pregnancy protected 

against fibrosis and preserved angiogenesis in AngII infused rats.  

 Some differences in cardiac structure, function and gene expression observed between 

pregnant and non-pregnant rats following TAC indicate that afterload increase is less 

tolerated in pregnancy.  

 Pregnancy induces changes in the expression of a wide range of genes involved in 

cardiac remodeling independent of afterload. 

 Pregnancy per se does not lead to heart hypertrophy in rats. Therefore, rat models may 

not be suitable for studying physiological heart hypertrophy of pregnancy. 

 It is feasible to measure CFR in rats non-invasively using Doppler echocardiography 

and high concentration of inhaled isoflurane as the vasodilating agent. 

 CFR is reduced in late pregnancy in rats. CFR is not affected by increased LV 

afterload caused by chronic infusion of moderate doses of Ang II or TAC, regardless 

of pregnancy status. 

 HIIT is feasible and well tolerated by pregnant rats. It does not appear to alter 

maternal cardiac structure or function, and oxidative stress and total antioxidant 

capacity in the placenta, fetal heart and fetal liver. 

 Litter size, placental weight and fetal size are not affected by AngII infusion, TAC or 

HIIT. Some genes related to cardiac function and oxidative stress are altered in the 

fetal heart and liver in HIIT, indicating that adaptive mechanisms are activated. 
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7. Translational relevance and future perspectives 

Management of pregnant women with cardiac disease or hypertension remains a challenge. 

Experimental studies on cardiac remodeling in pregnancy, especially those relevant to heart 

diseases and pregnancy complications are sparse. Studies presented in this thesis try to 

explore basic mechanisms involved in cardiovascular adaptation to pregnancy under 

physiological and pathological circumstances, and therefore have some translational value. 

However, further studies are needed to better understand physiological and pathological 

cardiac remodeling in pregnancy at basic and clinical levels that may lead to new therapeutic 

approaches when dealing with hypertension and cardiac diseases in pregnancy.  
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8. Erratum 

Paper C, page 20. 

Table 2 Maternal myocardial expression of genes related to cardiac remodeling in pregnant 

and non-pregnant HIIT compared to pregnant and non-pregnant sedentary rats and influence 

of pregnancy on gene expression 

Influence of pregnancy (sixth column); ns (not significant) , corrected to na (non-applicable) 

due to significant interaction between pregnancy and HIIT for α-MHC, BNP and FN1.  
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Appendices 

Appendix 1 

Echocardiography performed on pregnant and non-pregnant rats infused with saline or 

angiontensin II 

 Sham Pregnant  AngII  Pregnant 

AngII 

M-mode echocardiography (n) 7 14 8 14 

Fraction of shortening (%) 44±4 46±2 54±5 61±4
*#

 

Ejection fraction (%) 72±4 76±2 82±5 88±3
*#

 

Stroke volume (µL) 149±13 158±10 141±10 132±11 

Cardiac output (mL/min) 59±4 68±4 61±4 55±5 

LV inner diameter in diastole 

(mm) 

1.6±0.1 1.6±0.1 1.8±0.1 2.0±0.1 

LV relative wall thickness (%) 51±4 45±3 57±2 76±7
*#

 

LV mass (g) 0.64±0.02 0.58±0.04 0.61±0.04 0.72±0.06 

Doppler echocardiography (n) 6 15 8 14 

Mitral valve E/A-ratio 0.99±0.04 1.13±0.03 1.04±0.04 1.01±0.04 

Isovolumetric contraction time 

(ms) 

15±1 15±1 13±1 14±1 

Isovolumetric relaxation time (ms) 18±2 19±2 20±3 21±2 

Tei-index 0.59±0.05 0.64±0.05 0.63±0.09 0.70±0.06 

Data were analyzed using one-way ANOVA and Holm-Sidak post hoc test and is presented as 

mean±SEM, p<0.05 compared to sham (*) and pregnant (#). LV, left ventricle, AngII, 

angiotensin II. 
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Appendix 2 

Fetal echocardiography performed on pregnant rats infused with saline (sham) and 

angiotensin II  

 Sham  

(n=15) 

AngII 

(n=12)  

p-value 

Fetal heart rate (min
-1

) 254±5 

(69) 

242±5 

(50) 

0.09 

E/A-ratio 0.37±0.04 

(37) 

0.33±0.01 

(37) 

0.3 

Isovolumetric contraction time (ms) 24±1 

(69) 

24±1 

(50) 

0.8 

Isovolumetric relaxation time (ms) 43±2 

(69) 

45±2 

(50) 

0.5 

Tei-index 0.65±0.03 

(69) 

0.66±0.02 

(50) 

0.9 

Umbilical artery pulsatility index 1.70±0.02 

(69) 

1.72±0.03 

(50) 

0.5 

Ductus venosus pulsatility index 0.87±0.03 

(67) 

0.94±0.03 

(47) 

0.1 

Ductus arteriosus pulsatility index 1.75±0.02 

(68) 

1.75±0.03 

(49) 

0.9 

Data is presented as mean±SEM. AngII, angiotenin II, (n), number of fetuses 
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Appendix 3 

Gene expression in fetal hearts from pregnant rats infused with angiotensin II or sham 

Gene expression 

 

Sham 

(n=8) 

AngII 

(n=6) 

p-value 

Protein kinase C α 1.00±0.05 0.99±0.05 0.9 

Protein kinase C δ  1.00±0.03 1.00±0.05 1.0 

Protein kinase C ε 1.00±0.05 1.03±0.02 0.6 

α-Myosin heavy chain 1.00±0.09 0.97±0.14 0.8 

β-Myosin heavy chain 1.00±0.07 1.03±0.05 0.8 

Atrial natriuretic peptide 1.00±0.05 1.06±0.11 0.6 

Brain natriuretic peptide 1.00±0.08 1.31±0.11 0.031 

Vascular endothelial growth factor-α 1.00±0.07 1.03±0.06 0.7 

Vascular endothelial growth factor-β 1.00±0.05 1.00±0.05 1.0 

Superoxide dismutase 1 1.00±0.04 0.99±0.05 0.9 

Superoxide dismutase 2 1.00±0.04 1.01±0.01 0.9 

Inducible nitric oxide synthase 1.00±0.04 0.84±0.06 0.025 

Tissue inhibitor of metallopeptidase 1 1.00±0.11 0.89±0.10 0.5 

Tissue inhibitor of metallopeptidase 3 1.00±0.04 1.11±0.05 0.08 

Tissue inhibitor of metallopeptidase 4 1.00±0.06 0.90±0.05 0.3 

Hypoxia-inducible factor 1α 1.00±0.3 0.99±0.04 0.8 

Relative expression of genes in fetal heart tissue normalized to mean values in fetuses of sham 

rats. Data is presented as mean±SEM. (*), p<0.05 
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Appendix 4 

Gene expression of fetal hearts of rats subjected to transverse aorta constriction 

compared to sham surgery 

Gene expression 

 

Sham 

(n=9) 

TAC 

(n=7) 

p-value 

Protein kinase C α 1.00±0.07 1.10±0.10 0.4 

Protein kinase C δ  1.01±0.02 1.06±0.02 0.1 

Protein kinase C ε 1.03±0.06 1.10±0.11 0.6 

α-Myosin heavy chain 0.98±0.08 1.12±0.15 0.4 

β-Myosin heavy chain 0.99±0.13 1.05±0.09 0.8 

Atrial natriuretic peptide 1.14±0.14 1.02±0.29 0.7 

Brain natriuretic peptide 0.92±0.07 0.96±0.11 0.7 

Vascular endothelial growth factor-α 0.98±.011 1.01±0.12 0.9 

Vascular endothelial growth factor-β 1.02±0.02 1.20±0.09 0.06 

Superoxide dismutase 1 0.96±0.08 0.92±0.07 0.8 

Superoxide dismutase 2 0.99±0.07 0.86±0.09 0.3 

Inducible nitric oxide synthase 0.92±0.08 1.20±0.09 0.6 

Tissue inhibitor of metallopeptidase 1 0.93±0.12 0.97±0.18 0.9 

Tissue inhibitor of metallopeptidase 3 0.97±0.09 0.89±0.09 0.6 

Tissue inhibitor of metallopeptidase 4 1.03±0.10 1.20±0.20 0.4 

Hypoxia-inducible factor 1α 0.90±0.08 0.87±0.10 0.8 

Relative expression of genes in fetal heart tissue normalized to mean values in female fetuses 

of sedentary rats. Data is presented as mean of the mean value of fetuses in each pregnant rat 

±SEM. TAC, transverse aorta constriction 
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Appendix 5 

Primers used for real-time polymerase chain reaction analysis. Primer sequence (5’-3’) 

Rat mRNA 

Forward primer 

Reverse primer 

Reference genes: 

GADPH: Glyceraldehyde-3phosphate dehydrogenase 

CTG-CAC-CAC-CAA-CTG-CTT-AC 

CAG-AGG-TGC-CAT-CCA-GAG-TT 

HPRT: Hypoxanthine phosphoribosyltransferase 

GAC-CGG-TTC-TGT-CAT-GTC-G 

ACC-TGG-TTC-ATC-ATC-ACT-AAT-CAC 

Cyclo: Cyclophilin 

CTG-ATG-GCG-AGC-CCT-TG 

TCT-GCT-GTC-TTT-GGA-ACT-TTG-TC 

B2M: β-2 microglobulin 

TGC-CAT-TCA-GAA-AAC-TCC-CC 

GAG-GAA-GTT-GGG-CTT-CCC-ATT 

LDHA: Lactate dehydrogenase 

GAT-CTC-GCG-CAC-GCT-ACT 

CAC-AAT-CAG-CTG-GTC-CTT-GAG 

SDHA: Succinate dehydrogenase complex, subunit A 

CCC-TGA-GCA-TTG-CAG-AAT-C 

CAT-TTG-CCT-TAA-TCG-GAG-GA 

RPL13a: 60S ribosomal protein L13a 

GAT-CTC-GCG-CAC-GCT-ACT 

GGT-ACT-TCC-ACC-CGA-CCT-C 

 

 

 

Studied genes: 

PKC-α: Protein kinase C-α 

CAA-GCA-GTG-CGT-GAT-CAA-TGT 

GGT-GAC-GTG-CAG-CTT-TTC-ATC 

PKC-δ: Protein kinase C-δ 

TCA-AGA-ACC-ACG-AGT-TCA-TCG 

GCA-TTG-CCT-GCA-TTT-GTA-GC 

PKC-ε: Protein kinase C-ε 

CGT-CAC-TGA-TGT-GTG-CAA-TG 

TCG-AAC-TGG-ATG-GTG-CAG-TTG 

α-MHC: α-Myosin heavy chain 

CAA-GGC-AAA-CCT-GGA-GAA-AG 

GGG-TAT-AGG-AGA-GCT-TGC-CC 

β-MHC: β- Myosin heavy chain 

GAG-GAG-AGG-GCG-GAC-ATT 

ACT-CTT-CAT-TCA-GGC-CCT-TG 

ANP: Atrial natriuretic peptide 

CAA-CAC-AGA-TCT-GAT-GGA-TTT-CA 

CGC-TTC-ATC-GGT-CTG-CTC 

BNP: B-type natriuretic peptide 

GTC-AGT-CGC-TTG-GGC-TGT 

CAG-AGC-TGG-GGA-AAG-AAG-AG 
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Studied genes cont.: 

ANKRD1: Ankyrin repeat domain-containing protein 1 

GCTGGAGCCCAGATTGAA 

CTCCACGACATGCCCAGT 

TNF-α: Tumor necrosis factor-α 

GCC-CAG-ACC-CTC-ACA-CTC 

CCA-CTC-CAG-CTG-CTC-CTC-T 

TGF-β1: Transforming growth factor β1  

AAG-AAG-TCA-CCC-GCG-TGC-TA 

TGT-GTG-ATG-TCT-TTG-GTT-TTG-TCA 

TGF-β2: Transforming growth factor β2 

ATC-GAT-GGC-ACC-TCC-ACA-TAT-G 

GCG-AAG-GCA-GCA-ATT-ATC-CTG 

TGF-β3: Transforming growth factor β3 

CCC-GAT-GGC-GAA-AGG-CCG-AG 

TAG-GGT-AGC-CGG-AGG-CCC-CT 

Cth: Cystathinase 

TGG-GAC-CAG-AGC-CGG-AGC-AA 

AAG-GCC-CCG-AGC-GAA-GGT-CA 

VEGF-α: Vascular endothelial growth factor-α 

CAA-GCC-AAG-GCG-GTG-AGC-CA 

TCT-GCC-GGA-GTC-TCG-CCC-TC 

VEGF-β: Vascular endothelial growth factor-β 

ACC-AGA-AGA-AAG-TGG-TGT-CAT-G 

TGA-GGA-TCT-GCA-TTC-GGA-CTT-G 

PGF: Placental growth factor 

GTG-TGG-GGC-CGC-AGC-TAC-TG 

AGC-GCC-ACA-CAG-TGC-AGA-CC 

 

 

SOD1: Superoxide dismutase 1 

TTC-GTT-TCC-TGC-GGC-GGC-TT 

TTC-AGC-ACG-CAC-ACG-GCC-TT 

SOD2: Superoxide dismutase 2 

ATT-AAC-GCG-CAG-ATC-ATG-CA 

CCT-CGG-TGA-CGT-TCA-GAT-TGT 

eNOS: Endothelial nitric oxide synthase  

TGA-CCC-TCA-CCG-ATA-CAA-CA 

CGG-GTG-TCT-AGA-TCC-ATG-C 

iNOS: Inducible nitric oxide synthase 

ACCATGGAGCATCCCAAGTA 

CAGCGCATACCACTTCAGC 

TP53: Tumour suppressor gene(TP53) 

GTT-AGG-GGG-TAC-CTG-GCA-TC 

CGA-CTG-TGA-ATC-CTC-CAT-GA 

Casp-3: Apoptosis related cysteine protease; caspase 3 

CCG-ACT-TCC-TGT-ATG-CTT-ACT-CTA 

CAT-GAC-CCG-TCC-CTT-GAA 

Bcl-2: B-cell leukaemia/lymphoma 2 

GTA-CCT-GAA-CCG-GCA-TCT-G 

GGG-GCC-ATA-TAG-TTC-CAC-AA 

COL1A1: Collagen type I-α1 

CAT-GTT-CAG-CTT-TGT-GGA-CCT 

GCA-GCT-GAC-TTC-AGG-GAT-GT 

COL3A1: Collagen type III-α1 

TCC-CCT-GGA-ATC-TGT-GAA-TC 

TGA-GTC-GAA-TTG-GGG-AGA-AT 

FN1: Fibronectin 1 

CAG-CCC-CTG-ATT-GGA-GTC 

TGG-GTG-ACA-CCT-GAG-TGA-AC 



 

TIMP1: Tissue inhibitor of metallopeptidase 1 

CAG-CAA-AAG-GCC-TTC-GTA-AA 

TGG-CTG-AAC-AGG-GAA-ACA-CT 

TIMP 3: Tissue inhibitor of metallopeptidase 3 

GAA-CGG-AAG-CGT-GCA-CAT-G 

CAG-CTT-CTT-TCC-CAC-CAC-TTT-G 

TIMP 4: Tissue inhibitor of metallopeptidase 4 

AGG-GAG-AGC-CTG-AAT-CAT-CA 

GCA-CTG-CAT-AGC-AAG-TGG-TG 

HIF1A: Hypoxia-inducible factor 1α 

TGC-TTG-GTG-CTG-ATT-TGT-GA 

GGT-CAG-ATG-ATC-AGA-GTC-CA 

CAT: Catalase 

TTT-TCA-CCG-ACG-AGA-TGG-CA 

CCC-ACA-AGG-TCC-CAG-TTA-CC 

HK2: Hexokinase II 

TCG-CAT-ATG-ATC-GCC-TGC-TT 

GCC-ATT-GTC-CGT-CAC-CCT-TA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GPx1: Glutathione peroxidase 1 

AGT-TCG-GAC-ATC-AGG-AGA-A 

AGG-GCT-TCT-ATA-TCG-GGT-TC 

GPx2: Glutathione peroxidase 2 

GCC-TAG-TGG-TTC-TCG-GCT-TCC 

AGG-GTA-GGG-CAG-CTT-GTC-TTT-C 

GPx4.1: Glutathione peroxidase 4 transcript variant 1 

GCC-GCT-TAT-TGA-AGC-CAG-C 

GTG-GGC-ATC-GTC-CCC-ATT-TA 

GPx4.2: Glutathione peroxidase 4 transcript variant 2 

CCC-ATT-CCC-GAG-CCT-TTC-AA 

TAT-CGG-GCA-TGC-AGA-TCG-AC 

Ddx3y: DEAD box polypeptide 3, Y-linked 

ACG-GTG-GCT-TGC-TCC-GTG-AA 

GCC-AAC-CGT-ATT-TTC-CGC-CGC 

Eif2s3y: eukaryotic translation initiation factor 2, 

subunit 3, Y-linked 

GGT-TGG-GCA-GGT-CCT-TGG-TGC 

CGC-CAG-TGC-TTT-TCA-ACT-CGT-CG 
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