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Abstract
Recent technological advances provide large amounts of data for epidemiolog-
ical analyses that can provide novel insights in the dynamics of carcinogenesis.
These analyses are often performed without prior hypothesis and therefore
require an exploratory approach. Realizing exploratory analysis requires the
development of new systems that provide interactive exploration and visual-
ization of large-scale scientific datasets.

This thesis presents Kvik, an interactive system for exploring the dynamics of
carcinogenesis through integrated studies of biological pathways and genomic
data. Kvik is designed as a three-tiered application, an architecture that is
commonly used for peta-scale applications. It provides researchers with a
lightweight web application for navigating through biological pathways from
the kegg database integratedwith genomic data from the nowac postgenome
biobank.

In collaboration with researchers from the nowac systems epidemiology
group, we have described the requirements for such a system, and by us-
ing an iterative approach we implemented Kvik through small development
cycles, involving the end-users in the development process. Throughout the
project we have gained valuable interdisciplinary experience in developing
systems for use in explorative analysis of carcinogenesis.

Through an evaluation of the exploration tasks and workflow of an end-user,
we demonstrate that Kvik has the capability of interactive exploration of ge-
nomic data and biological pathways.

We believe Kvik is important to enable novel discoveries from the data pro-
duced in the nowac systems epidemiology project. It provides epidemiology
researchers with access to powerful compute and storage resources enabling
the use of advanced statistical methods for the analysis. Finally, from our
experiences in developing Kvik, we provide use cases and requirements for
future analysis, computation and storage systems developed in our research
group and by others.
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1
Introduction
Cancer is the leading cause of death in economically developed countries and
the second leading cause of death in developing countries. The number of
cancer victims is continuously growing as the world’s population is both aging
and increasing in size. Contributing to the increase is cancer-causing behavior
like smoking, poor diet or little excercise.

The authors of [1] reported that in 2008 there were about 12.7 million cancer
cases diagnosed and 7.6 million deaths from cancer around the world. By
2030 the authors estimated that there will be 21.3 million new cancer cases
and 13.1 million deaths just because of the growth and aging of the popu-
lation. Reducing the prevalence of cancer rely new tehcnologies providing
new insights and understanding that lead to better treatment and more ac-
curate diagnosis. In 2013 Science awarded the Breaktrough of the Year to
Cancer Immunotherapy[2], a treatment method that unleashes the immune
system against cancerous tumors. Biological discoveries such as this bring
hope and proves that it is possible to transform biological insights into life-
saving drugs.

From the discovery of the Deoxyribonucleic acid (dna) structure by Watson
andCrick in 1953[3] to the sequencing of the human genome in 2001 [4, 5] and
the massively parallel sequencing platforms in the later years[6], the scientific
advances have been tremendous. Today, single week-long sequencing runs
can produce as much data as did entire genome centers just years ago [7].
These technologies allow researchers to collect data faster and more efficient,

1



2 CHAPTER 1 INTRODUCTION

now making it possible to collect the entire genome from a patient in less
than a days work. As of 2010, the number of base pairs sequenced doubled in
less than every 6 months [8], leaving both storage capacity and computation
speed far behind. Andwhile sequencing is becoming cheaper, the downstream
analysis and interpretation of the results is still a major challenge[9].

With these massive quantities of research data, scientists from different fields
must collaborate to transform data into knowledge and develop newmethods
for diagnosis and treatment of cancer. Figure 1.1 illustrates the process of
gaining knowledge from data. With increased quantities of data the first step
of transforming data into information has become more time consuming and
challenging. Even more important is to develop systems for researchers to
extract knowledge from the information. To build such systems, computer
scientsist require both domain knowledge to understand the problems at
hand, as well as insight in managing large quantities of research data and
presenting it to end-users. A common approach to present large scale datasets
is to generate visualizations and statistics that allow the users to view the
data differently.

data information knowledge
process interpret

Figure 1.1: The process of gaining knowledge from data

This thesis presents Kvik, a system for interactive exploration of multi-omics
data from the Norwegian Women and Cancer (nowac) postgenome biobank.
The system was developed in close collaboration with cancer researchers from
the nowac Epidemiology research group at The Department of Community
Medicine.The thesis has a focus on visualizing biological pathways and how
cancer researchers can use Kvik to explore the nowac dataset.

The name Kvik comes from Norwegian polar history. Kvik was one of Fridtjof
Nansen’s sledgedogs on the Fram Expedition to The North Pole[10, 11]. The
word means means both brisk and quick-witted, and describes the character-
istics of the system.

1.1 Challenges
There are multiple general challenges when designing biological data explo-
ration tools[12]. Solving these challenges needs a wide range of solutions,
from new hardware platforms to novel visualization techniques. For a thor-
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ough review on visualizing biological data, see the author’s report NOWAC
Data Exploration [13].

In collaboration with domain experts in epidemiological research we have
identified three main challenges: i) providing scalable and sustainable storage
and computation models for future datasets; ii) providing effective visualiza-
tions; and iii) developing intuitive user interfaces.

1.1.1 Storage and Computation
The computational challenges in biological data exploration cover the prob-
lems of storing, performing computations on biological datasets.

Traditionally, researchers have used desktop computers to conduct exploratory
analyses, but with the growing datasets the computational power of the com-
puters has become a bottleneck. Peta-scale Next-generation sequencing (ngs)
datasets require distributed systems to provide the storage capacity and com-
putational power to provide an interactive exploration system.

Some projects do not yet want to publish datasets outside their research
group. To prevent unauthorized access, researchers store all data in a secure
in-house storage facility, making it necessary for visualization tools to access
the data remotely.

1.1.2 Effective Visualizations
Providing helpful visualizations of biological data is key to transforming large
quantities of information into knowledge. Not overwhelming researchers with
information in the visualizations is a challenge that is still largely unfulfilled
and will require the development of truly integrated and highly usable tools
[12]. Another aspect of providing effective visualizations is to visualize data
at correct zoom level. To understand diseases researchers collect data about
different levels in our body, from the atoms of the cells and up to the function
of organs. Showing the structure of atoms when looking at entire organs
could overwhelm researchers with irrelevant information.

In biology researchers require visualizations that integrate results from lit-
erature in textual form, as well as numerical data such as gene expression
profiles. A challenge is using many visualization techniques for different data
types.

Data cleaning is another challenge of data exploration. Important steps in
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the analysis of microarray datasets are the pre-processing stages, where re-
searchers are able to pre-process and normalize data. These stages may al-
ter the final dataset that goes into the visualization software, affecting any
downstream discoveries. When researchers perform the data exploration, the
optimal parameters going into these pre-processing stages are often unknown
until the final visualization steps. Modifying such parameters interactively
from a visualization tool may provide helpful insights[14].

There are currently a limited number of tools that allow users to integrate own
statistical methods into the data exploration task. Researchers would need
to use statistics packages like R1 to produce datasets that can be visualized
later in a separate piece of software.

The display resolution of a researcher’s monitor is a limiting component on
how much information it is possible to visualize at a time. Especially when
dealing with large scale biological datasets, this is a challenge since explo-
ration tools cannot visualize the entire datasets without compacting them.
The use of high-resolution displays have opened up for new possibilities for
researchers.

1.1.3 Simple User Interfaces
Exploration tools must be intuitive and easy to interact with,making it easy for
researchers to use them. Developers must understand how to design a usable
graphical user interface (gui) to make the exploration. If an application is
difficult to use, the chances that a researcher will continue using it are small.
Additionally, the aesthetics of a system influences the perceived ease of use
of the system[15], stressing that a simple and "pretty" user interface is of
importance.

Identifying tasks that data exploration systems can automate is a challenge
that can potentially speed up the exploration process. Ideally the tools should
provide visualizations for tasks requiring human inspection, while automating
others. If users tend to use the same outlier removal techniques, the data
exploration system could automate this step allowing users to start exploring
data faster.

1. r-project.org

r-project.org
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1.2 Norwegian Women and Cancer
The nowac sustems epidemiology research project is a study designed to
identify the possible relationships between lifestyle and the risk of cancer.
It started its data collection in 1991. In 2006 the study contained question-
naire information from over 170 000 women. Since then the data collection
started in 1998, the nowac postgenome biobank has grown to over 60 000
blood samples and 800 biopsies that have been, or will be, analyzed using
whole-genome gene expression analysis tools. Additionally the biobank con-
tains information about exposure through questionnaires answered by the
participants of the study. More information can be found at site.uit.no/nowac
and in [16].

The main objective in systems epidemiology is to test the assumption or hy-
pothesis that human carcinogenesis is communicated through blood. Through
the Transcriptomics in cancer epidemiology[17] research project the experience
was that it was necessary to run all genome analyses agnostic or without any
a apriori hypothesis. These results motivate the need for specialized analysis,
exploration and visualization for systems epidemiology data.

To enable researchers to gain knowledge from the large quantities of informa-
tion in the nowac postgenome biobank, the researchers require new solutions
for exploratory data analyses. In particular, visualization tools that integrate
data from multiple biological levels (e.g. from genes to a population), link-
ing to cancer databases and merging it together into a single interactive
system.

Currently, systems that produce such visualizations are often stand-alone
desktop applications managing both visualizations and data locally. Common
in industry is moving towards storing data in “cloud” services and providing
interfaces to this data in lightweight tools accessible thorugh lightweight
web browsers. Since researchers don’t need to install third-party libraries or
applications, they can explore data on any device with a modern web browser.
Using web applications has other advantages as well. The web application is
updated on the server, making it transparent to users. Also, web applications
allow users to use a wide variety of operating systems and hardware platform
to run the application.

Kvik is an interactive system that combines data intensive computations on
multi-level omics datasets and the transformation of information into knowl-
edge and biological insights. It merges different systems and data sources
together to provide a single interface for both biologists and statisticians
exploring multi-level nowac biobank.

site.uit.no/nowac
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Within biology, there are multiple solution for visualizing and presenting re-
search data. One such method is pathway maps, which are graphical represen-
tations of biological processes. With pathway maps it is possible to integrate
experimental data from e.g. blood samples and the structural organization
of biological processes in a single view. Kvik uses this approach.

1.3 Kvik
Through collaboration with Epidemiology researchers at the Institute of Com-
munity Medicine at the University of Tromsø, we performed a requirements
analysis and identified the following:

Interactivity Kvik should provide helpful visualizations in an interactive fash-
ion. Users should not have to wait an unnecessary amount of time before
they receive some feedback or result. Delays less than 0.1 seconds are
unnoticeable, but anything more than a second will act intrusive on the
users line of thought[18]. With visualizations that take more than one
second to load the system should present the user with a progress bar,
or an indication that the system has not crashed.

Scalability Kvik should scale to the upcoming petascale datasets. In addi-
tion to data handling, the visualization tools should also be capable of
visualizing large quantities of data.

Familiarity The visualizations provided by Kvik should follow familiar visu-
alization techniques. E.g. researchers in the nowac research group are
familiar with the manually drawn pathway maps used in kegg making
it obligatory for Kvik to follow this drawing convention. Other systems
such as enRoute[19] have also identified this requirement.

Heterogeneity Researchers are collecting data from a large number of sources,
both online databases and local datasets. Kvik should handle the addi-
tion of such data sources without any major overhead. It should also be
able to process different data sources, from textual sources like kegg or
numeric datasets like gene expression data from the nowac biobank.

Expandability Researchers are continuously discovering novel methods to
visualize or process data, making it essential for Kvik to be expandable
both to processing and representation of data. Kvik should also facilitate
data processing in systems such as Hadoop MapReduce2 or Apache

2. hadoop.apache.org

hadoop.apache.org
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Spark3 without any major developer overhead.

Simplicity Kvik should provide simplicity both in terms of the system but also
with regards ease of use for the users. Researchers should not have to
install a single piece of software in order to run Kvik. This requirement
dictates that the implementation uses software already installed on the
researchers computers or devices.

Security Since Kvik is a system thatwillmanage datasets containing sensitive
data, secure storage is of importance. Kvik must provide an interface
to access data from a secure storage facility, possibly behind restrictive
firewalls.

To our knowledge, no existing system fulfill all these requirements. There
are multiple online resources for visualizing biological pathways, like kegg
[20] or BioCarta [21], but they provide poor interaction support. These tools
require users to switch between separate views when selecting genes or com-
pounds in a pathway, making it difficult to keep the same line of thought
when exploring the biological pathways. VisANT [22], vanted [23] and KEG-
GViewer [24] are both systems for interactively exploring biological pathways,
but both of these lack visual cues, like cell walls, that would make the visu-
alizations familiar to the researchers. enRoute [19] and Entourage [25] both
included the Caleydo framework [26] provide familiar visualizations and
incorporates the possibility to visualize gene expression from multiple hetero-
geneous data sources. Nevertheless, the Caleydo framework is a standalone
application that requires installation on researchers computers, failing the
simplicity requirement. The Caleydo framework is not the only system failing
the simplicity requirement. VisANT and Vanted are both dependent on users
installing the Java Runtime Environment (jre) in addition to the application,
or a Java plug-in to run in the web browser. Pathway Projector [27] is a system
that visualizes biological pathways without any installation. It allows users
to browse biological pathways similar to viewing maps on Google Maps4, but
fails the security requirement since researchers must upload to their servers
for visualization. Chapter 6 describes these systems in more detail.

Kvik fulfill the above requirements as follows:

Interactivity Kvik achieve interactivity by visualizing biological pathways
and corresponding expression data in a single view using modern Hy-
perText Markup Language (html)5 technology.

3. spark.apache.org
4. maps.google.com

spark.apache.org
maps.google.com
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Scalability Kvik separates computational resources and display resources,
making it possible to explore large quantities of data even on lightweight
clients. Using this separation Kvik is able to make use of large storage
clusters and move computation to designated compute nodes.

Familiarity Kvik visualizes biological pathways using the traditional kegg
layout, achieving familiarity with contextual visual cues familiar to re-
searchers.

Hetereogeneity Kvik incorporates multiple heterogeneous data sources into
a single data engine.

Expandability With a modular design, Kvik is capable of adapting to both
software and hardware improvements, from data sources to screen
resolution.

Simplicity The exploration tool in Kvik runs in a modern web browser and
does not require any third party plug-ins or applications. Kvik is modular
by design, separating components into independent functional units.

Security Kvik uses a designated data engine for storing expression data from
the nowac study. Kvik will only expose visualizations to the researchers,
making it impossible to view or download any of the raw data.

This thesis presents Kvik, an interactive system for exploring the dynamics of
carcinogenesis through studies of biological pathways and genomic data. It
describes the future direction of the project and how it is designed to handle
both new data sources, analysis methods and visualization techniques.

We have evaluated Kvik by measuring the latencies to load the different vi-
sualizations. The results show that Kvik is usable for interactive exploration
of

In collaboration with researchers from the nowac research group, we demon-
strate how Kvik bridges the gap between biologists and statistics in a single ex-
ploration tool. From our experiences we demonstrate the importance of an it-
erative development process, and how Kvik has benefit from this model.

1.4 Contributions
The contributions of this work are:
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• A requirement analysis for visualization system for exploring and visu-
alizing data from the nowac postgenome biobank.

• The design and implementation of Kvik, a data exploration tool for
biological pathways and gene expression data. It provides interactive
exploration of biological pathways from the kegg database integrated
with genomic data from the nowac postgenome biobank.

• The experimental evaluation of Kvik, demonstrating that researchers
can use Kvik for interactive exploration of the full nowac biobank and
kegg databases.

1.5 Organization
The thesis is structured as follows. Chapter 2 gives an introduction for com-
puter scientists to get up to speed with the biology that goes into designing
and implementing an exploration tool for multi-omics data. Kvik, is outlined
in Chapter 3, which also describes the desired workflow of our collaborators.
Chapter 4 describes the architecture of Kvik and its three components. The
design and implementation follows in Chapter 5. A study of the state of the
art tools for visualizing biological pathways is given in Chapter 6. Chapter 7
covers the evaluation of Kvik, both with regards to the performance but also
usability for the researchers. Concluding remarks are given in Chapter 8 and
future work in Chapter 9.





2
Biological Background
The main goal of the nowac study is to understand the impact of exposores on
the risk of getting cancer. Making novel scientific discoveries that may lead to
understanding carcinogenesis requires the collaboration of multiple sciences.
With the collection of multi-level datasets, unique challenges for computer
scientists emerge, both regarding storage as well as analysis. Understand-
ing fundamental concepts in biology are crucial for developing effective and
intuitive data exploration tools for large scale biological datasets.

This chapter gives a brief introduction in molecular biology neccessary to
understand the challenges in exploring the nowac biobank. It describes cells,
dna, Ribonucleic acid (rna), proteins, and biological pathways. Finally the
chapter concludes in a description of the challenges faced by our partners
from the Institute of Community Medicine at University of Tromsø when ana-
lyzing data from the nowac study, and how Kvik addresses these. For a more
thorough description see the authors’s special curriculum report [13].

2.1 Molecular Biology
Carcinogenesis is the development of cancer in an organism. To understand
this process and how lifestyle and hormones may impact the risk of having
cancer, we need to understand the different building blocks that make an
organism.

11
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Cells are the smallest units of a living organism that still preform a function.
Cells perform multiple tasks: exchanging materials with their environment;
self duplication; transmitting and receiving signals with their environment;
and the synthesizing of molecules. The human body specializes every cell
and organizes them into tissues. These tissues for form organs which in turn
form organ systems. All cells contain the same genetic information, but not
everything is actually used. Nucleic acids are responsible for storing, trans-
mitting and expressing the genetic material. There are two types of nucleic
acids, Deoxyribonucleic acid (dna) and Ribonucleic acid (rna). dna stores
the genetic information, while rna decodes the information stored within
the dna. Small molecules known as nucleotides compose the strands of dna
and rna, forming a ribbon like structure. There are different classes of nu-
cleotides that compose the different nucleic acids, identified by four letters. a,
g, c and t describes the dna sequence, while in rna the letter u replaces the
t resulting in sequences of the letters a, g, c and u. Cells organize dna into
two complimentary strands in a double helix structure held together with
chemical bonds. These two strands contain sequences of the four letters a, g,
t and g, pairing a and t, and g and c between the two strands. Figure 2.1
illustrates a hypothetical strand of dna. rna consists only of a single strand,
as illustrated on figure 2.2.

…gtgcatctgactcctgaggagaag…    
…cacgtagactgaggactcctcttc…

Figure 2.1: The two strands of dna. Chemical bonds align the letters g and c, and a
and t.

…gugcaucugacuccugaggagaag…
Figure 2.2: A single strand of rna

The genetic information stored within cells determine how the body performs
different biological processes. The sequences or coding units of dna, called
genes, determine how an organism should synthesize large molecules called
proteins. This process from dna to proteins is called the Central Dogma of
Molecular Biology, first stated by Francis Crick in 1958[28]. The proteins aid
in a number of processes, for example by turning food into energy, the pro-
cess of cell development, and contribute to the distribution of oxygen in the
body. Humans have approximately 20.500 genes that make up the human
genome.

The protein synthesis process starts within a specific part of the cell. The first
step, transcription, is the flow of genetic information from dna to rna. The
strands of rna are then translated into sequences of amino acids, molecules
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Figure 2.3: The central dogma of molecular biology

consisting of carbon, hydrogen, oxygen and nitrogen, that describes the pro-
tein. The protein is then folded into a three dimensional structure and trans-
fered to its destination. Figure 2.3 depicts a high level view of this process.
Figure 2.4 illustrates a more detailed example of protein synthesis. It illus-
trates a sequence of dna with a gene highlighted on the top row. The second
row contains three letter sequences known as codons, with the corresponding
transcribed codon highlighted. Each codon encodes for a specific amino acid,
except the stop codons, which terminate protein synthesis. The sequence of
dna in this example transcribes the codon cau, which in turn translates to
the amino acid represented by the letter h.

gtgcatctgactcctgaggagaag 
    

gug cau cug acu ccu gag gag aag

v h l t p e e k

transcription

translation

cacgtagactgaggactcctcttc DNA

RNA

protein

Figure 2.4: The central dogma of molecular biology

Another important part of the central dogma is dna replication. This is a
continuous process within the body that starts with the dna within the egg
cell and continues to produce the ∼40 trillion cells [29] that make up the hu-
man body. The process takes a single dna molecule, divides the two strands,
and pairs the bases in the individual strands with a complementary bases. In
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other words, a special enzyme reads the letters in the strands sequentially
inserting e.g., t when it encounters any a’s, g when it encounters c’s and
so on. After the creation of the new dna molecule it goes through an error
correcting process, which should detect and fix any error. Mutations are alter-
ations in the nucleotide sequence in the dna, either switched bases or entire
parts of the dna strand deleted or added. The error correction process is
able to fix most errors, but with the large number of cells in the body some
errors will occur. Since 98% of the human genome does not contain any pro-
tein coding information [30], mutations may not cause any notable effect to
the cells. Nevertheless, mutations can effect either the organism itself or its
offspring.

2.2 Carcinogenesis
As mentioned, carcinogenesis is the development of cancer in an organism.
Cancer are results of gene mutations that can occur in any cell anytime. These
mutations may cause the cells to grow uncontrollably, resulting in tumors. A
tumor is a growing mass of tissue, which could be either benign or malignant.
Benign tumors have not invaded surrounding tissues, while malignant tumors
have spread to their surrounding tissues interrupting their functions. Cancer
is primarily a disease of old age, due to accumulation of mutations over years.
Some inherited mutations my increase the risk of cancer considerably, for
example the breast cancer genes brca1 or brca2 that has got much public
attention lately.

To understand carcinogenesis, researchers must often study changes in multi-
ple genes that possibly participate in different biological processes. Studying
the changes in a number of genes and how this affects the processes they
participate in is a challenging task. Not just because of the number of genes
and processes, but also the fact that researchers may look for small changes in
multiple genes, not necessary big changes in single genes. Another challenge
is the time aspect of carcinogenesis, how are the genes expressed prior to
diagnosis of cancer? Understanding this process requires the monitoring of
genes over time series spanning decades.

The nowac biobank was built to understand carcinogenesis through analyses
of blood samples. This main objective or hypothesis has been and is still
controversial, but the project is considered as “high risk – high gain”.
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2.3 Genomic Data
To study carcinogenesis researchers must collect genetic data from patients.
With Next-generation sequencing (ngs) it is now possible to get the genetic
information stored in dna at low cost in just a day’s work.

dna sequencing is the process of determining the order of nucleotides within
a strand of dna. Researchers must sequence patients dna to be able to detect
mutations that may lead to diseases. Previously sequencing has been both a
time consuming and costly process, but with ngs it is now possible of doing
what previously took weeks for only a fraction of the cost and time. Figure
2.5 shows how the cost of sequencing a megabase (a million letters from a
dna strand) has evolved over the past 13 years. In addition to the cost of
sequencing, the graph illustrates hypothetical data following Moore’s Law
[31], highlighting the extreme decline in cost starting early in 2008. This
decline marks the wide adaptation of the Next-generation sequencing (ngs)
techniques, that makes it possible to sequence longer strands of dna.
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Figure 2.5: Cost per RAW Megabase of DNA Sequence. Figure adapted from http:
//www.genome.gov/sequencingcosts/

Microarray is a high-throughput technology used in the nowac study that can
investigate different levels of biological data, from proteins to dna and rna.
Currently the nowac biobank consists of more than 70 000 blood samples
now being analyzed using this technology. In the future the researchers plan
to use other sequencing techniques such as Deep-sequencing.

dna microarrays are matrices on some solid surface (often glass) with single
stranded dna probes that correspond to genes. To analyse gene expression

http://www.genome.gov/sequencingcosts/
http://www.genome.gov/sequencingcosts/
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rna gets extracted from biological samples, pre-processed and placed on the
substrate. This material hybridizes, or connects, to probes on the substrates
using complimentary base pairing. Complementary base pairing is the process
of connecting the letters a and t, and g and c from the probes and the rna
material. After washing away any unbound material, the rna abundance is
quantitated by image analysis [32]. See figure 2.6 for an illustration.

2) Hybridization

Substrate

3) Detection and quantitation

1) RNA extraction 
processing

Sample

4) Data analysis

Probe

Figure 2.6: Microarray technology. Figure based on figure 8 from [32]

2.4 Biological Pathways
Living organisms are often described as complex biological networks ofmolecules
and interactions between them. These molecules may be genes, proteins or
other compounds. A biological pathway is the series of actions along a biolog-
ical network that leads to a specific effect, such as assembly of new molecules,
turning genes on or off, or spur a cell to move [33]. There are different types of
pathways, but the most common groups of pathways are metabolic pathways,
gene regulatory pathways and signal transduction pathways.

To understand the complex relationships in different organisms researchers
use abstract pathway maps. These maps hold information on how genes inter-
act with each other, the assembly of new molecules and signal transmission
within an organism. Pathway maps hold large amounts of information and is
an invaluable source of information for researchers.

Metabolic pathways are the chemical reactions within an organism. Exam-
ples of metabolic pathways are the processes breaking food down to
energy or the uptake of oxygen in the blood.
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Gene regulatory pathways are responsible for turning genes on and off. Turn-
ing genes off will stop an organism from producing the protein it codes
for, and turning it on may increase the ammount of proteins produced.

Signal transduction pathways are responsible frommoving signals from out-
side a cell to its interior. The messages sent to the cells may instruct it
to move or to perform some action.

With the graphical representation of biological pathways, researchers are able
to gain deep insights into complex biological phenomena. Often, researchers
compare pathways in healthy persons and persons with a specific illness to re-
veal similarities or differences. Identifying proteins or genes acting differently
in a pathway may reveal the roots of a specific disease. In cancer there are
usually a number of pathways and genes affected, requiring the researchers
to investigate these in combination.





3
Kvik
Kvik is a system helps researchers gain new knowledge and biological insights
from the multi-omics biobank of the nowac study. Kvik allows researchers
to explore dna expression profiles integrated in pathway maps. It integrates
gene expression data from nowac with pathway maps from the popular path-
way database kegg, providing state of the art pathway visualizations to the
researchers.

Kvik is a web application that researchers can run in web browsers on their
workstations, or even mobile devices. It uses open source libraries and does
not need any installation of third party applications or plugins. Figure 3.1
shows the gui of Kvik. It consists of a pathway viewer on the left, and a
gene information panel view on the right. Kvik visualizes pathway maps as
static kegg pathway images with gene expression data visualized on top of
the hand-drawn images. Gene expression data is retrieved from the nowac
biobank as the researcher explores pathways and genes.

Users can select genes from the pathway by clicking on the different gene
names, opening an adjacent view that visualizes gene expression profiles and
relevant information for the selected gene. The kegg database also contain
relevant information about genes, such as its definition, structure and which
pathways the gene is found in. Figure 3.1 illustrates how Kvik composes both
pathway visualization and a info panel for detailed inspection of genes. The
info panel includes a visualization of similar pathways to the pathway in the
main view. This simplifies the navigation to relevant pathways. Kvik measures
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Figure 3.1: Overview of the user interface of Kvik. The user is viewing the Estro-
gen Signaling Pathway (hsa04914) and inspecting the Mitogen-activated
protein kinase kinase 1 gene (hsa:5604)

similarity as the number of common genes between pathways.

Through the visualization of biological pathways researchers can investigate
and gain knowledge about different processes within an organism, e.g. the
intercellular PI3K pathway that contributes to cell growth [34]. Researchers
start data exploration by selecting a pathway of choice to explore. The user
is redirected to the main window of the Kvik Browser, where the pathway
is visualized. The pathway nodes that correspond to a gene is colored by
the difference in gene expression, or fold change, between the cases and the
controls in the nowac biobank. From this overview the researchers quickly
get an overview of the biological process and data from the nowac biobank.
Now the researchers can explore different hypotheses about data, if a gene
is more active in cancer patients how does it affect the other genes in the
pathway. Researchers can continue their exploration by clicking on nodes in
the visualization. Since Kvik is connected to the kegg database, the info panel
contains the most recent information about the genes. To allow researchers
dig further into the nowac biobank, the gene view includes a visualization
for all gene expression values in the dataset. With this researchers get more
in-depth knowledge about signals or trends in the nowac biobank. Since can-
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cer is a disease that can affect multiple processes and systems in a organism,
researchers often want to move between pathways. In Kvik similar pathways
is shown in the gene view, indicating pathways that may be of interest to the
researcher. With easy access to relevant pathways researchers can quickly get
an overview and knowledge from a large number of processes in an organ-
ism.

3.1 Development
As mentioned, Kvik was developed in collaboration with researchers from the
Department of Community Medicine. The system was developed using an it-
erative approach with small cycles getting valuable input from the researchers
in every cycle. Using this approach we were able to dynamically change the
requirements of Kvik throughout the development process. As new features
were added to the system, they were presented to the researchers that came
with feedback on what worked and what had to be changed.

3.2 Use Cases
Kvik is currently implements visualizing biological pathways and gene expres-
sion data. The system is designed to handle additional exploration tasks: i)
exploration of the data at gene level; ii) exploration of the data at pathway
level; and iii) targeted searches of genes and pathways.

These addition exploration tasks will be implemented by adding statistical
analysis tools from the nowac systems epidemiology group into the data
engine of Kvik. These are features we plan on implementing next.

3.2.1 Exploration of data at gene level
The researchers want to use Kvik to answer two questions: i) which genes are
significantly differentially expressed in a pathway; and ii) in which pathways
is a specific gene found.

To answer the first question Kvik must provide statistical packages to perform
gene-wise linear analysis (or other statistical methods such as Analysis of
Variance (anova) or 𝑡−test) on gene expression data from the nowac biobank.
It is also important for researchers to modify the parameters going into the
statistical analyses ad hoc, e.g. fold change cutoff or p-value cutoff, making
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it necessary for Kvik to provide a simple interface to the statistical packages.
The statistical analysis performed by Kvik should yield sorted tables of genes
and associated results for the analysis.

The second question requires Kvik to query a pathway database. There are
multiple online sources available, such asWikiPathways1, Reactome 2 or kegg3.
Kvik should allow researchers to browse biological pathways, visualizing fold
change direction (up/down regulation) and p-value (from statistical analyses)
in pathway diagrams.

3.2.2 Exploration of data at pathway level
Our collaborators want to answer the following when exploring pathways:
i) which pathways are "over-represented" in the list of differentially expressed
genes?; and ii) which pathways are significantly regulated according to pathway-
level analysis?

Both of these questions rely on advanced statistical methods, such as Gene
Set Enrichment Analysis (gsea), Gene Set Variation Analysis (gsva), or con-
ditional hypergeometric testing. In addition they rely on taking the output
of the gene-wise analysis (using specified cutoff values) as input to these
analyses. The analyses must produce lists of pathways that are helpful to the
researchers, and allow visualizations of these. Depending on the statistical
methods used, the visualizations can use either gene expression values or
using another measure to color nodes.

3.2.3 Targeted search
By using targeted searches for either genes or pathways researchers can in-
vestigate specific genes or pathways of interest. Researchers can either use
gene name or symbol to search for genes. To look up pathways researchers
can use pathway name, id, or by searching for keywords such as ”estrogen”.
The searches should yield the same table for exploring genes, and the same
pathway visualizations.

1. wikipathways.org
2. reactome.org
3. kegg.jp

wikipathways.org
reactome.org
kegg.jp


4
Architecture
Based on the requirements developed in collaboration with researchers at
the Department of Community Medicine, Kvik has a three-tiered architecture.
To satistfy the scalability requirement, it is apparent that the entire system
cannot run on a single computer. Desktop computers does not have the stor-
age capacity nor computational power to perform the necessary statistical
analyses on the nowac biobank in addition to running an visualization tool.
In addion, to meet the security requirement the data should be stored in a
secure location, making the user’s desktop computers unsuitable.

Kvik is a system for visualizing and browsing of biological pathways and
associated genomic data. It has a three tiered architecture consisting of i)
the Kvik Browser, an interactive system for visual exploration of biological
pathways and genomic data; ii) a Frontend that translates user interactions
in the Kvik Browser into queries that retrieves data and visualizations; and iii)
a Backend that provides the Kvik Browser with biological data and statistical
analyses. It contains both research data from sequencing platforms and also
research knowledge from public databases such as kegg. Figure 4.1 illustrates
the architecture of Kvik.

Users run the Kvik Browser on their local system, connecting to a Frontend
server to retrieve content to explore. The Frontend translates a request into
one ormore queries to the Backend. A typical request from the Kvik Browser is
to visualize a pathway. The Frontend is responsible for translating this reqeust
into different parts, e.g. get a graphical representation of the pathway, retrieve
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gene expression data of the genes in the pathway, and merge the two into a
visualization to the Kvik Browser. The Backend extracts data from multiple
hetereogeneous data sources and provide a simple interface for the Frontend
to connect to. This architecture separates compute and display resources,
reducing the constraints on compute resources availible at the researchers
using the system.

Kvik 
Browser

Frontend

Kvik 
Browser

Backend

User User

Figure 4.1: Kvik Architecture

4.1 Kvik Browser
The Kvik browser is the point of interaction for users. It should visualize both
biological pathways and gene expression, in addition to providing textual
information, and a clean and intuitive user interface.

The Kvik Browser consists of two major components, a pathway browser and
a gene viewer. The pathway visualization tool provides an interactive path-
way browser for researchers to explore biological pathways. With the gene
viewer users can dig further into details about specific genes, exploring gene
expression data from sequencing instruments and other research data from
online databases.

The user interface of Kvik integrates both views and is responsible for trans-
lating user input, from a keyboard, mouse or touch interface, to queries to
the Frontend. The user interface follows the guidelines in Human-Computer
Interaction (hci) providing feedback to users when the delay time from user
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interaction and result exceeds a second [18].

4.2 Frontend
The Frontend is a component that sits between the Kvik Browser and the
Backend. It is responsible for translating requests from the Kvik Browser into
queries that the Backend can execute. The Frontend exposes an interface
which multiple Kvik Browsers can connect to and retrieve data. Requests to
the Frontend are translated into one or more requests to the Backend which
executes them.

Placing a Frontend between the Kvik Browser and the Backend allows simpler
logic in the Kvik Browser. Since the Backend consists of mulitple components,
actions from the Kvik Browser may trigger requests for data that is stored in
different systems. Additionally since the different data source may require
some data parsing, everything is done in a different component than the Kvik
Browser.

4.3 Backend
The third component of the Kvik architecture is the Backend. The Backend is
the collection of data sources available to the Kvik browser.

In Kvik the Backend consists of two components: i) a database containing
biological pathway maps and information about genes and pathways; and
ii) a system for managing and performing analysis on gene expression data
from the nowac biobank.

The gene and pathway database is responsible for providing the Kvik Browser
with updated pathway maps and information about genes and pathways. For
more effective exploration of biological pathways, our collaborators identified
the need for updated research data presented along-side the raw research
data and gene expression results. With information about genes and pathways
within the Kvik browser, researchers are relieved of the burden of accessing
databases through different systems.

The second component is responsible for storing, managing and running sta-
tistical analyses on gene expression data from the nowac biobank. It is re-
sponsible for loading datasets that is available to researchers and responding
to queries from the Frontend. Our collaborators design and implement the
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statistical analyses, making the primary concern of this component to store
and manage the dataset.



5
Design and
Implementation
To satisfy the requirements in chapter 1, the design of Kvik follows that of
a modern web application. Industry has proven that the separation of data,
computation and display resources scales to large datasets and multiple ap-
plication types. Since our collaborators identified the need for an application
that did not require any installation, Kvik is designed and implemented as
a web application. Researchers can explore the multi-omics biobank of the
nowac cohort by simply visiting a url, without having to install any third-
party application or plugin. This design allows updates to Kvik without users
having to perform any other work than refreshing a web page. This is espe-
cially helpful for in-development apps that are continuously changing. With
the design Kvik can also update datasets in the background without any
user interaction. This relieves researchers of managing datasets which can
concentrate on more important tasks.

The architecture of Kvik consists of three separate parts, the Kvik browser, the
Frontend and the Backend. The Kvik Browser is designed and implemented
as a web application hosted on a web server and run in the user’s web browser.
The web server hosts static pages for the web application that is populated
with content from the Frontent. Once a user has downloaded a a webpage,
the Kvik Browser interacts with the Frontend to retrieve gene expression data
and other information. The Backend consists of components for databases and
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analysis engines, currently the kegg databases for information about genes
and pathways and the nowac Data Engine for exploring the nowac biobank.
Figure 5.1 illustrates how the different components of Kvik are organized.
Typically the Kvik Browser would run on a researchers workstation or laptop,
while the other components run in a cluster environment to provide storage
and computation capabilities beyond desktop computers.

The separation allows us to easily add new functionality such as new analysis
methods or new visualizations.

User Kvik Browser

Web ServerFrontend

NOWAC Data 
Engine

KEGG 
Databases

Figure 5.1: Kvik design

5.1 Kvik Browser
The Kvik Browser is the single point of interaction for users of Kvik. It provides
a web application for exploring gene expression data and biological pathways.
The Kvik Browser is a graphical tool that leverages html5 to provide inter-
active visualizations without users having to install any third party software.
With a html5 web application there are multiple advantages. First, users
receive updates to the application by simply refreshing Kvik Browser. Second,
with html5 users don’t need to install any third party plugin or application,
e.g. Java or Flash. html5 is a technology that allows the application to run on
mobile devices as well, which might be interesting for researchers presenting
or discussing results out of the office.

An illustration of the Kvik browser is shown on figure 5.2. It consists of a
pathway visualization (left) integrated with a gene viewer (right). When
users interact with the pathway on the left, updated information about the
genes they inspect is shown on the right.
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information

pathway gene

Figure 5.2: An illustration of the Kvik Browser

Users connect to the Kvik Browser by visiting a url in their web browsers,
redirecting them to the web server hosting the web application. The server
hosting theweb application uses the standard libraries in the Go programming
language, serving static pages and generating dynamic content using the
template package1. The Omics Browser itself uses the Javascript libraries
Cytoscape.js2 and D33 for generating visualizations of biological pathways
and gene expression data. During the first prototypes of the Kvik Browser the
pathway visualization tool was implementing using three.js 4 using WebGL.
three.js is a visualization library that is suitable for visualizing large graphs
since it utilizes WebGL for rendering. Since kegg pathway maps are relatively
small and the library lacks basic drawing functionality, Cytoscape is easier to
use for visualization of graphs such as pathway maps. With the popularity
of D3, implementing visualization is easy to get started with because of its
extensive list of examples5. D3 could have been used for visualizing pathways,
but since user interaction must be handled manually when using the html5
canvas, Cytopscape is a more suitable alternative since this feature comes out
of the box.

5.1.1 Visualizing Biological Pathways
The requirement in Chapter Our collaborators wanted a visualization tool
that could integrate pathway maps from kegg with the nowac biobank. From
the familiarity requirement 1, Kvik merges the static pathway images from
kegg with Cytoscape graph visualizations, drawing nodes on top of the static
images. This approach is used in other system such as Entourage [25].

1. golang.org/pkg/text/template
2. cytoscape.github.io/cytoscape.js
3. d3js.org
4. threejs.org
5. github.com/mbostock/d3/wiki/gallery and bl.ocks.org/mbostock

golang.org/pkg/text/template
cytoscape.github.io/cytoscape.js
d3js.org
threejs.org
github.com/mbostock/d3/wiki/gallery
bl.ocks.org/mbostock
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When users request to view a pathway, the Kvik Browser submits a query to
the Frontend. The Frontend generates a visualization of the applicable kegg
pathway and returns it to the Kvik Browser. From the nodes in the pathway
the Kvik Browser performs a second request to retrieve gene expression data
for the genes in the pathway visualization.

Kvik uses KEGG Markup Language (kgml) representations of biological path-
ways to generate the pathway visualizations. The kgml is an exchange format
used to represent kegg graph objects, especially the kegg pathway maps [35].
kgml follows an eXtensible Markup Language (xml) like syntax describing
the entities (nodes) and reactions (edges) of the pathway map. Figure 5.3
illustrates the syntax and structure of a kgml file describing the Estrogen
signaling pathway (hsa04915). This is the kgml file that is used to construct
the pathway figure 3.1.

<pathway name=“path:hsa04915” … > 
 <entry id=1 name=”hsa:2009” … > 
 . 
 . 
 . 
 <relation entryid1=1 entryid2=3 … > 
 . 
 . 
 . 
</pathway>

Figure 5.3: Illustration of the kgml syntax

The description includes information about the pathway itself, and a list of
entries and relations. The entries (nodes) describes genes, proteins or another
compounds, and the relations (edges) describes the reaction between the
entries, e.g. activation of a gene. Entries also describe the location of the
nodes, allowing Kvik to render nodes in the same location as in the kegg
pathway image.

The kgml file is lacking both edge routing information [36] as well missing
nodes. In addition, the manually curated pathway images does not display
every edge found in the kgml representation. Figure 5.4 illustrates the dif-
ferences between hand-drawn pathway maps (top) and automatically gen-
erated images from kgml representations (bottom). Hand-drawn pathway
maps bundles edges together and adds visual cues to the reader, e.g. the two
vertical lines in the center of the figure. Since our collaborators identified the
importance of familiar visualizations, Kvik only uses the nodes from the kgml
representation, and draws them on-top of the pathway image from kegg.
Figure 5.5 illustrates this approach.

Kvik uses the open-source JavaScript library Cytoscape.js, a graph theory li-
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Figure 5.4: Difference between kegg image and kgml representation

brary for analysis and visualization [37], to generate the interactive pathway
graphs. Cytoscape.js shares its name with the popular network visualization
software Cytoscape, and is the successor of Cytoscape Web. Cytoscape uses
the html5 canvas to render graphs, making it suitable for visualizing large
networks. Also the Cytoscapee.js library contain helpful graph analysis meth-
ods that may be interesting in the future, e.g. highlighting neighboring genes.
Kvik generates the pathway visualizations from the entries in the kgml repre-
sentation as well as a backgound node holding the pathway image from kegg.
It draws the background node onto the html5 canvas first, before adding
other nodes on top of the background image. When the nodes are added to
the image, they are colored accordning to gene expression values from the
nowac Data Engine. The process of generating the pathway visualization is
shown on figure 5.5

The Kvik Browser uses diverging Color Brewer palettes 6 to indicate up or
down regulation of a gene. To fetch expression values and other information
about the nowac dataset, Kvik uses the jQuery 7 JavaScript library that com-
municates with the Frontend through Hypertext Transfer Protocol (http)
get requests.

6. colorbrewer.org
7. http://jquery.com/

colorbrewer.org
http://jquery.com/
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(a) Original static pathway image from
kegg, placed as a background node

(b) Overlaying graph nodes from the kgml
representation of the pathway

(c) Final visualization

Figure 5.5: Visualizing gene expression data on kegg pathway maps

5.1.2 Visualizing Gene Expression Data
In addition to the coloring of nodes in the pathway maps, Kvik is capable of
visualizing gene expression profiles for the entire underlying dataset. When
users want to inspect a single gene, the Kvik Browser opens an information
panel containing a visualization of the gene expression profile using the D3
JavaScript library. Bar plots visualizes the difference between cases and con-
trols. As with the gene expression values added to the pathway maps, Kvik
uses the same approach to retrieve the gene expression profiles.

5.1.3 Visualizing Research Data
The Kvik browser adds information from the kegg database to the info panel
that opens when a user selects a gene. This info panel contains information
such as the description of a gene and other background information about it.
The Kvik Browser also adds a list of pathways this specific gene is a member
of. To indicate their similarity to the pathway in the main view, a small bar
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is visualized adjacent to the pathway names. Similarity is measured as the
number of common genes between two pathways.

5.1.4 Extensibility
With the modular design of the Kvik Browser it is possible to add features in
the future. If the Kvik Browser must visualize large quantities of data, it may
be interesting to move to visualization libraries that leverage gpus to provide
more interactive visualizations.

5.2 Frontend
The Frontend is the component that connects the Kvik browser and the Back-
end, providing an interface for the Kvik Browser to retrieve expression data
and other information. The Frontend provides a Representional state transfer
(rest) Application programming interface (api) for Kvik Browsers to con-
nect to. The RESTful interface consists of three groups of resources: i) a data
resource; ii) a information resource; and iii) a visualization resource. Table
5.1 contains a detailed description of the resources and their methods.

The Frontend is designed as a stand-alone process that exposes an http
rest interface. It uses the GoRest8 framework to implement the rest inter-
face.

5.2.1 Data Resource
The data resource provides the Kvik Browser with an interface to the nowac
Data Engine. The Frontend exposes two methods for either retrieving or
submitting data. To make the queries to the nowac Data Engine simpler, the
Query Engine forwards the query to the nowac Data Engine and returns the
result to the client.

5.2.2 Information Resource
The information resource contains the interface to the kegg databases. It pro-
vides the Genomic Browser with information on e.g. the name or description
of a gene, the amino-acid sequence of a protein or the common genes shared

8. code.google.com/p/gorest

code.google.com/p/gorest
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Table 5.1: The RESTful interface of the Frontend

Resource Description

GET /𝑑𝑎𝑡𝑎𝑒𝑛𝑔𝑖𝑛𝑒/{𝑞𝑢𝑒𝑟𝑦} Performs the given query on the
NOWAC Data Engine

POST /𝑑𝑎𝑡𝑎𝑒𝑛𝑔𝑖𝑛𝑒/{𝑑𝑎𝑡𝑎} POST the given data to the
NOWAC Data Engine

GET /𝑖𝑛𝑓𝑜/{𝑖𝑡𝑒𝑚} Returns all information possible
for the given item

GET /𝑖𝑛𝑓𝑜/𝑔𝑒𝑛𝑒/{𝑖𝑑}/𝑝𝑎𝑡ℎ𝑤𝑎𝑦𝑠 Returns a list of pathways a gene
is member of

GET /𝑖𝑛𝑓𝑜/𝑔𝑒𝑛𝑒/{𝑖𝑑𝑠}/𝑐𝑜𝑚𝑚𝑜𝑛𝑃𝑎𝑡ℎ𝑤𝑎𝑦𝑠 Returns a list of common path-
ways between the specified genes

GET /𝑖𝑛𝑓𝑜/𝑝𝑎𝑡ℎ𝑤𝑎𝑦/{𝑖𝑑}/𝑛𝑎𝑚𝑒 Translates pathway id to readable
name

GET /𝑖𝑛𝑓𝑜/𝑝𝑎𝑡ℎ𝑤𝑎𝑦/{𝑖𝑑𝑠}/𝑐𝑜𝑚𝑚𝑜𝑛𝐺𝑒𝑛𝑒𝑠 Returns a list of common genes
between the given pathways

GET /𝑣𝑖𝑠/𝑝𝑎𝑡ℎ𝑤𝑎𝑦/{𝑖𝑑} Returns a visualization of the
specified pathway

GET /𝑣𝑖𝑠/𝑔𝑒𝑛𝑒/{𝑖𝑑} Returns a visualization of the
specified gene

between two pathways.

The information resource may issue mulitple queries to the kegg databases.
For example, returning a list of common genes shared between two pathways
require the Frontend to issue two queries to kegg. To retrieve a list of genes
in pathway 𝐴, and one to retrieve the list of genes in pathway 𝐵. Then the
union of these are returned to the Kvik Browser.

5.2.3 Visualization Resource
The visualization resource collects data and generates visualizations for the
Kvik Browser. It combines the data and the information resource to generate
visualizations of both gene expression data and biological pathways as seen
on figure 5.2.

5.2.4 Extensibility
The extensibility of the Frontend allows new data sources to be added with lit-
tle development effort. Adding new data sources to the Frontend only requires
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adding or modifying the methods in the rest interface and implementing
the required action. A suggestion from our researchers is to add information
from GeneCards9 in the gene information panel. Updating the information
resource by adding an additional query to GeneCards allows the Kvik Browser
to view this updated information without any modifications.

5.3 Backend
5.3.1 KEGG
Kvik uses kegg as the primary source of information. The kegg database is
frequently updated, and is freely availible for academic users via their rest
api. There is also an File Transfer Protocol (ftp) subscription availible, but
at a fee. To avoid this fee, and having to manage the database and keeping
it updated, Kvik uses the kegg rest api. Through the rest api the entire
kegg database is available, but because of their location in Japan, the average
response times for retrieving information about a pathway is over a second. For
an interactive exploration system this is unacceptable, making it necessary
for the Backend to host a local cache with requests to the kegg database.
The cache writes every response from kegg to disk, allowing the Backend to
retrieve results locally before contacting kegg in case of a cache miss.

The kegg component of the Backend is implemented as a Go package that can
be used in any of the components of Kvik. The kegg component is responsible
for executing queries to kegg and parsing the responses. The kegg databases
responds with data stored as Tab Separated Values (tsv) for information
about genes and pathways, kgml files to describe pathways and PNG pathway
images.

5.3.2 NOWAC Data Engine
The nowac Data Engine is a stand-alone service that is suitable for computer
cluster environments, which can provide both storage and computational
resources. Currently we run in on a single server since it has enough resources.
The nowac Data Engine consists of three layers: i) a restful Interface that
is used by the Frontend; ii) a stand alone Execution Engine for performing
statistical analyses; and iii) a data management component responsible for
reading raw data from the nowac biobank and making it accessible for the
execution engine.

9. genecards.org

genecards.org
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Table 5.2: RESTful Interface of the NOWAC Backend

Resource Description

GET /𝑔𝑒𝑛𝑒/{𝑖𝑑} Returns all gene expression data on the given
gene

GET /𝑔𝑒𝑛𝑒/{𝑖𝑑}/𝑎𝑣𝑔 Returns themean difference in gene expression
between cases and controls in the dataset

GET /𝑔𝑒𝑛𝑒/{𝑖𝑑}/𝑠𝑡𝑑 Returns the standard deviation of the differ-
ences between cases and controls in the dataset

GET /𝑔𝑒𝑛𝑒/{𝑖𝑑}/𝑣𝑎𝑟 Returns the variance of the differences be-
tween cases and controls in the dataset

GET /𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑/{𝐶𝐶 𝑖𝑑}/ Returns background information about the spe-
cific case-control id

POST /𝑠𝑒𝑡𝑠𝑐𝑎𝑙𝑒/{𝑠𝑐𝑎𝑙𝑒} Allow users to specify which scale they want
the results in, logarithmic or absolute

When a query arrives at the nowac Data Engine, it performs a three-stage
process of handling the request. First the Data Engine extracts the applicable
data from the data management layer. If the request specified that the data
should run through a computation step, the execution layer performs the
computation. When the computation completes the Data Engine returns the
result of the query back to the Frontend.

Interface

The nowac Data engine offers a http rest api, that exposes both methods
for extracting raw expression data, as well as methods for performing statis-
tical analysis on the expression profiles. Table 5.2 shows an overview of the
resources and methods.

The Interface is implemented with the gorest package. It is responsible for
retrieving the applicable data for the query and performing the correct Remote
Procedure Call (rpc) on the Execution Engine. When the Execution Engine
completes the call it return the results to the Kvik Browser.

Because of the security requirement, the Backend exposes only aggregated
gene expression values to the Kvik Browser. No raw gene expression data is
ever transported out of the Backend.
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Execution Engine

The Execution Engine is as a stand-alone component that receives input data,
performs some computation on that data and returns it on completion. This
Execution Engine has support for executing multiple statistical analyses pro-
vided by our collaborators.

Because of the limited statistical libraries in Go, the nowac engine has a
separate Execution Engine accessible through rpc. This rpc module is im-
plemented in Python, exposing a JavaScript Object Notation (json)-like rpc
interface over ZeroMQ10. Using python packages such as RPy11 it is possible to
add open source analysis tools like Bioconductor12 to the rpc interface with
little developer overhead. With the ability to execute R code our collabora-
tors can upload their methods and view the results within the Kvik Browser.
Since the current data sizes are relatively small the rpcs request contains
both the method to be performed as well as the data to perform the operation
on. Separating the computational parts of the implementation allow future
versions to add a more complex statistical pacakge without affecting the other
components of the system.

Data Management

The datasets used in the nowac study are both scientifically and commer-
cially valuable, making it necessary to store it in a secure environment. Upon
initialization, Kvik loads the necessary datasets from disk and stores the en-
tire biobank in-memory during execution. Being in-memory, Kvik allow fast
queries for either gene expression data or extracting subsets of the dataset.

The nowac Data Engine manages the gene expression data naively. Since the
Kvik Browser performs queries either for a specific gene or a case-control pair,
the nowac Data Engine uses in-memory maps13 to store the data.

The nowac biobank is stored as Comma Separated Values (csv) files on a
compute node on Stallo, a super computer at The University of Tromsø. These
files are parsed and read into memory by the nowac Data Engine on inital-
ization. Since the raw data files use Illumina probe identifiers and not gene
names from the kegg database, the probe ids are translated using the lumi-
HumanIDMapping R package[38]. The Data Engine can add more datasets

10. zeromq.org
11. rpy.sourceforge.net
12. bioconductor.org
13. Maps as in the Go map type that implements a hash table

zeromq.org
rpy.sourceforge.net
bioconductor.org
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by simply reading more input data. Currently the implementation has sup-
port for parsing csv files with gene expression values, but new parsers can
be added to the management component to support more formats.

NOWAC Dataset

Kvik uses a subset of the nowac biobank as the main source of gene expres-
sion data. The dataset consists of gene expression profiles collected at time
of diagnosis for 77 women. In addition to the 77 women, expression data
for 77 controls were also added to the biobank. The rows describe the gene
expression for individuals. Using the Illumina Human WG Version 3 chip
our collaborators collected expression levels for 9101 genes, resulting in the
dataset outlined on table 5.3. In addition to the gene expression values, back-
ground data on the samples is also collected. These hold information on which
stage of cancer the patients were in, the type of cancer and details about the
lab environment the samples come from. See table 5.4 for an illustration of
the background dataset.

Table 5.3: Dataset layout

CC Id Probe 𝑛0 Probe 𝑛1 · · · Probe 𝑛𝑘−1

· · · · · · · · · · · · · · ·
1234 123.4 432.1 · · · 213.4
1234_1 321.4 234.1 · · · 312.4
· · · · · · · · · · · · · · ·

Table 5.4: Background dataset layout

labnr CC Id case_ctrl ET EN stage

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

5.3.3 Extensibility
The Backend is not restricted to only using the kegg databases and the nowac
biobank. Additional sources can, and will, be added in later versions of Kvik.
The rest interface allow implementations in other programming languages
or systems. Since the nowac Data Engine is a stand-alone component it is
possible to introduce storage backends such as HDFS or Hbase and execution
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engines such as Spark14. To incorporate these into an interactive exploration
system, such as Kvik, the systems must provide fast response times but will
be an interestin topic with the growth of the future datasets.

14. spark.apache.org

spark.apache.org




6
Related Work
In the last decades the methods for visualizing and exploring biological data
has improved greatly. The need for tools that canmanage the growing datasets
and allow fast exploration of these is growing. Especially tools that generate
massive amounts of data, like high-throughput dna sequencers, has driven
the need of novel data exploration tools. Today there are a wide spectrum and
large number of different tools, but biology research projects often require
custom built solutions for their specific problem set. For a more thorough
review of different visualization techniques and systems, see the author’s
special curriculum report [13].

6.1 KEGG
kegg is a freely available collection of 19 databases integrating genomic,
chemical and systemic functional information [20]. One of its core systems is
the pathway database which as of January 2014 is containing 456 manually
drawn pathways [39]. The pathway database contain molecular interactions
and reaction networks for metabolism, human diseases and cellular processes.
The kegg website hosts pathway maps for researchers to investigate. These
maps have hyperlinks on every node allowing further inspection of either
pathways, genes, reactions or enzymes. From the kegg website, users can
download pathways as Portable Network Graphics (png) images or text files
containing the kgml representation of the pathway.

41
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Figure 6.1: Estrogen Signaling Pathway from kegg. Image from rest.kegg.jp/get/
hsa04915/image

kegg allow developers to contact the entire database through a ftp 1 site and
a rest interface 2 . The ftp site requires an expensive license (5,000 USD) but
the rest interface is free of charge. There are multiple exploration tools that
use kegg as a data source, either using the static pathway images or the kgml
interface to construct own pathway visualizations. The decision to use kegg
as the primary data source for the visualization system in Lantern was the
combination of the open rest interface, our collaborators prior experience
and the number of pathways available in kegg.

6.2 BioCarta
BioCarta is a interactive online resource targeted to the life science research
community [21]. It is a resource much similar to kegg that allows resarchers
to view pathway maps and inspect single genes. Opposed to kegg, the path-
way maps found in BioCarta are visually different in that they are more sim-
ilar to traditional text-book illustrations. Similar to kegg, researchers can
inspect genes by clicking hyperlinks opening information about the genes
in a separate windows. Unfortunately BioCarta does not have any availible

1. Found at ftp.genome.jp
2. Found at rest.kegg.jp

rest.kegg.jp/get/hsa04915/image
rest.kegg.jp/get/hsa04915/image
ftp.genome.jp
rest.kegg.jp


6.3 CALEYDO 43

api, making it necessary to download pathway images manually. Figure 6.2
shows the CARM1 and Regulation of the Estrogen Receptor pathway from
BioCarta.

Figure 6.2: CARM1 and Regulation of the Estrogen Receptor. Figure from http://
www.biocarta.com/pathfiles/h_carm-erPathway.asp

6.3 Caleydo
Caleydo is an open source visual analysis framework targeted at biomolecular
data [40]. As of February 2014 Caleydo consists of four projects: StratomeX
[41], enRoute [19], Entourage [25] and LineUp [42]. Caleydo has the capa-
bility of visualizing multiple biological pathways simultaneously. Originally
using a 2.5D view for arranging pathways in a stack with edges interconnect-
ing different pathways, highlighting common nodes [26]. From version 3.1.0
the Caleydo framework incorporated the Entourage visualization technique
for visualizing multiple pathways [43].

Caleydo make use of the existing pathway layout supplied by kegg and Bio-
Carta for visualizing single pathways. It renders pathways as 2d graphs with
nodes and edges placed at coordinates from the kegg and BioCarta layout. In
the final pathway visualization Caleydo render the pathway graphs on top of
images from kegg and BioCarta, hiding internal edges. Using this technique
the visualizations contain contextual information from the static images, but

http://www.biocarta.com/pathfiles/h_carm-erPathway.asp
http://www.biocarta.com/pathfiles/h_carm-erPathway.asp
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it is possible to generate views containing multiple pathways.

Caleydo can color nodes according to gene expression levels, but cannot
change position from the original layout. To visualize mulitple pathways,
Caleydo render these as stack of images interconnected by edges between
shared nodes in the different pathways. In the original version of Caleydo,
researchers could store important pathways in a designated view for quick
access.

Caleydo is a open source framework written in Java using the Java OpenGL
(jogl) library for rendering, requiring that the system has got Java installed.
The source code is availible at GitHub 3 and is frequently updated.

M. Streit & M. Kalkusch & K. Kashofer & D. Schmalstieg / Navigation and Exploration of Interconnected Pathways

Figure 3: The jukebox view combines a textual list menu for browsing related pathways by name (1) with an interconnected
pathway stack (2), an area designated for a detailed examination of a graph (3) and a memo pad (4).

1. Pathway pool list
2. 2.5D stacked layer view
3. Graph under interaction view
4. Memo pad

Figure 3 shows the four stages of the jukebox setup anno-
tated in a screenshot. The setup works analogous to a juke-
box where audio records can be selected from a larger col-
lection and loaded to the turntable. A list of pathways is pre-
sented as a textual list containing the pathway names. By
selecting an entry in the list the graph is loaded to the inter-
mediate level where a predefined number of graphs is shown
in a 2.5D stacked layer view. The third stage shows a large
pathway for interactive inspection.

Caleydo employs a stack of graphs arranged in a 2.5D
layout to densely pack pathway information in the available
screen space, but also relate multiple planar graphs to one
another. Individual pathways are scaled down and also com-
pressed due to the orthographic (tilted) view. However, sig-
nature features and proportions familiar to the expert are re-
tained, which makes the pathways still highly recognizable
despite the compression. The relations between elements in
different pathways are visualized using straight lines among
the layers [Str07]. This approach is related to the VisLink ap-
proach [CC07] where the concept of inter-plane edge prop-
agation was generalized from a graph specific towards a vi-
sualization independent solution. In contrast to VisLink the

jukebox setup provides a solution for managing related 2D
visualizations in a hierarchical way.

In the context of pathways, the connection lines among
layers enable a fast identification of identical nodes in the
whole network. Stage 3 in figure 3 shows the gene IL3 that
is selected by the user in the IL 3 signaling pathway. Con-
sequently all representations of that specific gene are high-
lighted and interactively connected. Selecting a particular
gene allows the user to quickly determine its global rele-
vance to various aspects of the working set. Circumstances
where a gene appears in multiple pathways as part of an
identical chain of reactions can also be discovered. The user
can then choose a different pathway from the stack, which is
exchanged with the pathway in the main interaction view.
Moving a pathway up or down the hierarchy to another
jukebox stage is visually supported by animated transfor-
mations [Sho85]. We found that users value the continuous
transitions when the complex networks, which are scattered
over multiple pathway views, demand their full attention.

There are multiple reasons why an entity can be repre-
sented multiple times in a set of pathways. One reason are
layouting considerations. Another possibility is that a partic-
ular gene is catalyzing a specific reaction in a large variety
of biological processes in the cell. As a consequence, genes
appear several times in various pathways. Without global se-
lection it is hard to identify such situations. We therefore

c� 2008 The Author(s)
Journal compilation c� 2008 The Eurographics Association and Blackwell Publishing Ltd.

Figure 6.3: Navigation of Pathways in the original version of Caleydo. 1 shows possi-
ble pathways to explore, 2 illustrates the stacked view, 3 a detailed view
of a pathway, and 4 stored pathways for later inspection. Figure from
[26]

6.3.1 StratomeX
StratomeX is a integrative visualization tool that allows investigators to ex-
plore relationships of candidate cancer subtypes [41]. The system visual-
izes datasets as columns and cancer subtypes as bricks within the columns.
StratomeX uses heatmaps, parallel coordinates or histogramswithin the bricks
to visualize heterogeneous datasets To indicate relationships across datasets,
it displays ribbons between the different columns.

3. github.com/Caleydo/caleydo

github.com/Caleydo/caleydo
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Evaluating the functional impact of subtypes – In one
of our evaluation sessions we looked into the effect of the
Verhaak et al. gene expression subtypes on molecular pro-
cesses that are known to play a role in gliomas, which is
the family of brain cancers that GBM is part of. We opened
the “glioma” pathway from KEGG (Kyoto Encyclopedia of
Genes and Genomes) [KAG⇤08] as a dependent column to
see if there are any differences in the expression levels of
these pathways when stratified according to the subtypes.
The small multiples showed very clearly that the glioma
pathway indeed has different activation patterns across the
four subtypes (see Figure 7). In particular, we noted that
there was a striking difference between the proneural and the
classical subtype in the left part of the pathway. With the help
of a detailed view of the pathway that StratomeX provides
as a focus duplicate of the small multiples, we were able to
identify the genes that are showing the most notable differ-
ences between the classical and proneural subtypes in the
glioma pathway: EGFR and PDGF are upregulated whereas
PDGFRA is downregulated in classical GBM, and vice versa
in the proneural subtype. This observation is probably due to
a finding that Verhaak et al. reported, namely that increased
EGFR copy numbers are a hallmark of the classical subtype,
whereas copy number amplifications of PDGFRA are a char-
acteristic of the proneural subtype. These increases in copy
number are likely responsible for the increased gene expres-
sion levels that we observed here.

In general, our collaborators noted that the brick and rib-
bon metaphor to visualize patient subsets and their relation-
ships across different stratifications feels natural and intu-
itive. They also told us that the combination of small multi-
ples with details on demand is very useful, in particular for
the pathway maps. A very positive outcome of the evalua-
tion sessions with our collaborators was that in all cases they
asked us to load further data that they wanted to explore with
StratomeX. They also made suggestions on how to improve
the tool by integrating further analyses, for example, to clus-
ter data matrices on the fly or to compute statistical signifi-
cance values for observed differences in patient outcomes.

9. Conclusion and Future Work

In this paper we presented StratomeX, which was developed
to address the visual analysis needs of investigators who are
performing cancer subtype characterization based on large-
scale genomics data. In a series of case studies we docu-
mented the validity of our approach and its potential to gen-
erate new insights.

From a visualization research perspective, we contribute
a task analysis for subtype characterization, as well as a
method for comparative subset visualization of heteroge-
neous datasets that share at least one common identifier.
We also described the Data-View Integrator, a method that
supports the configuration of multiple datasets and stratifi-
cations as part of the exploration process.

Figure 7: Subtypes in the context of pathways. Column 1
shows mRNA gene expression subtypes identified by Ver-
haak et al. (from top: neural, mesenchymal, proneural, clas-
sical). The dependent Column 2 shows small multiples of the
“Glioma” pathway from KEGG overlaid with the average
gene expression levels for each subtype. The detail view in
the center shows the same pathway enlarged with the gene
expression levels for the classical subtype. The arrows indi-
cate a part of the pathway where we observed notable differ-
ences in gene expression levels between the subtypes. Note
that not all genes in the pathway have been mapped since
the gene expression data matrix only contained a subset of
the most variable 1,500 genes in the dataset.

In the future we aim for a tighter integration of StratomeX
into the overall cancer genome analysis workflow by incor-
porating additional analyses and further data sources sug-
gested by our collaborators. We are also planning to inte-
grate information to guide the exploration, for example, cor-
relation scores that could suggest stratifications that support
each other. We also aim to deepen our understanding of the
complex analysis process by making the software available
to a larger group of investigators in TCGA. We intend to con-
duct longitudinal observations on how StratomeX is used in
these scenarios. Ultimately, we will distribute a public re-
lease of StratomeX.
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Figure 6.4: Cancer subtypes in the context of pathways. Illustrates how StratomeX
visualizes expression data and biological pathways. Figure from [41].

6.3.2 enRoute
enRoute is an exploration tool that allow researchers to explore experimental
data from paths that are dynamically extracted from biological pathways [19].
It visualizes biological pathways by extracting graph nodes from the kgml
description of a pathway and overlaying them on top of the static pathway
image from the kegg database. enRoute highlights selected nodes within
a pathway and visualizes the associated experimental data for side-by-side
comparison. The system supports visualization of expression levels inside the
nodes of the pathway maps.

enRoute: Dynamic Path Extraction from Biological Pathway Maps for
In-Depth Experimental Data Analysis
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Figure 1: enRoute A path highlighted in orange in the pathway map in (a) is extracted and shown next to associated experimental data in (b).

ABSTRACT

Pathway maps are an important source of information when analyz-
ing functional implications of experimental data on biological pro-
cesses. Associating large quantities of data with nodes on a path-
way map and allowing in depth-analysis at the same time, however,
is a challenging task. While a wide variety of approaches for doing
so exist, they either do not scale beyond a few experiments or fail to
represent the pathway appropriately. To remedy this, we introduce
enRoute, a new approach for interactively exploring experimental
data along paths that are dynamically extracted from pathways. By
showing an extracted path side-by-side with experimental data, en-
Route can present large amounts of data for every pathway node.
It can visualize hundreds of samples, dozens of experimental con-
ditions, and even multiple datasets capturing different aspects of a
node at the same time. Another important property of this approach
is its conceptual compatibility with arbitrary forms of pathways.
Most notably, enRoute works well with pathways that are manually
created, as they are available in large, public pathway databases.
We demonstrate enRoute with pathways from the well-established
KEGG database and expression as well as copy number datasets
from humans and mice with more than 1,000 experiments at the
same time. We validate enRoute in case studies with domain ex-
perts, who used enRoute to explore data for glioblastoma multi-
forme in humans and a model of steatohepatitis in mice.
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biological processes, expression data, copy number variation.
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1 INTRODUCTION

Pathway maps are an important tool for studying biomolecular pro-
cesses. There is a wide variety of pathway maps available that
model interactions of proteins, chemical reactions and their catalyz-
ing enzymes, as well as cellular signaling processes. Pathways are
small to medium-sized graphs representing consensus knowledge
that is backed up by literature and typically either describe a pro-
cess in healthy organisms or a specific disease. Consequently, path-
ways are often activated or inactivated in particular conditions, as
diseases or other influences change the processes within the cells.

A common approach to study specific influences on cellular pro-
cesses is to concurrently analyze experimental data for one or mul-
tiple conditions. A condition in this sense describes a group of
measurements that are semantically homogeneous. Examples for
this homogeneity criterion are samples taken from one species in a
multi-species analysis, or samples of patients belonging to a sub-
type of a form of cancer. Looking at pathways in the context of
experimental data can tell analysts that, for example, branches of a
graph are inactive for a given condition. Examples of such observa-
tions are omnipresent in the literature. For instance, the gene PTEN
is known to regulate a signaling pathway relevant to the regula-
tion of cell-growth (phosphoinositide 3-kinase signaling pathway)
[4]. If PTEN is mutated, however, the pathway becomes deacti-
vated, leading to unchecked cell division and tumor growth. In
other well-studied examples, pathways such as the p53 signaling
pathway or the tyrosine kinase pathway are affected by mutations
and de-regulations of PIK3R1, NF1, and ERBB2, which play a role
in subtypes of glioblastoma multiforme (GBM), a brain cancer [29].
In previous work, we described a case where different subtypes of
GBM have highly differential behavior in mRNA expression pat-
terns in the Glioma pathway [16]. It is also well documented that
these molecular subtypes and their effect on biochemical processes
captured in pathways have serious implications for prognosis, treat-
ment, and patient well-being (e.g., [29, 21]). Our goal with the de-
velopment of enRoute is to visually support the analysis processes
leading to such insights.

Due to the relevance of the problem, it is not surprising that a

Figure 6.5: Pathway and expression data visualized in enRoute. Figure from [19].

6.3.3 LineUp
LineUp is an exploration technique for visualize multi-attribute rankings [42].
The authors use LineUp it to investigate how different universities rank ac-
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cording to some property, for example their academic reputation or their
world wide ranking has evolved over time. To our knowledge LineUp is not
used for genomic data yet, however the authors plan to use it to rank genes,
clusters and pathways in the future [42]
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LineUp: Visual Analysis of Multi-Attribute Rankings

Samuel Gratzl, Alexander Lex, Nils Gehlenborg, Hanspeter Pfister, and Marc Streit

Fig. 1. LineUp showing a ranking of the top Universities according to the QS World University Ranking 2012 dataset with custom
attributes and weights, compared to the official ranking.

Abstract—Rankings are a popular and universal approach to structuring otherwise unorganized collections of items by computing a
rank for each item based on the value of one or more of its attributes. This allows us, for example, to prioritize tasks or to evaluate
the performance of products relative to each other. While the visualization of a ranking itself is straightforward, its interpretation
is not, because the rank of an item represents only a summary of a potentially complicated relationship between its attributes and
those of the other items. It is also common that alternative rankings exist which need to be compared and analyzed to gain insight
into how multiple heterogeneous attributes affect the rankings. Advanced visual exploration tools are needed to make this process
efficient. In this paper we present a comprehensive analysis of requirements for the visualization of multi-attribute rankings. Based
on these considerations, we propose LineUp - a novel and scalable visualization technique that uses bar charts. This interactive
technique supports the ranking of items based on multiple heterogeneous attributes with different scales and semantics. It enables
users to interactively combine attributes and flexibly refine parameters to explore the effect of changes in the attribute combination.
This process can be employed to derive actionable insights as to which attributes of an item need to be modified in order for its rank
to change. Additionally, through integration of slope graphs, LineUp can also be used to compare multiple alternative rankings on the
same set of items, for example, over time or across different attribute combinations. We evaluate the effectiveness of the proposed
multi-attribute visualization technique in a qualitative study. The study shows that users are able to successfully solve complex ranking
tasks in a short period of time.

Index Terms—Ranking visualization, ranking, scoring, multi-attribute, multifactorial, multi-faceted, stacked bar charts

1 INTRODUCTION

We encounter ranked lists on a regular basis in our daily lives. From
the “top at the box office” list for movies to “New York Times Best-
sellers”, ranked lists are omnipresent in the media. Rankings have the
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important function of helping us to navigate content and provide guid-
ance as to what is considered “good”, “popular”, “high quality”, and
so on. They fulfill the need to filter content to obtain a set that is likely
to be interesting but still manageable.

Some rankings are completely subjective, such as personal lists of
favorite books, while others are based on objective measurements.
Rankings can be based either on a single attribute, such as the num-
ber of copies sold to rank books for a bestseller list, or on multiple
attributes, such as price, miles-per-gallon, and power to determine a
ranking of affordable, energy-efficient cars. Multi-attribute rankings
are ubiquitous and diverse. Popular examples include university rank-
ings, rankings of food products by their nutrient content, rankings of
computer hardware, and most livable city rankings.

When rankings are based on a single attribute or are completely
subjective, their display is trivial and does not require elaborate vi-
sualization techniques. If a ranking, however, is based on multiple
attributes, how these attributes contribute to the rank and how changes
in one or more attributes influence the ranking is not straightforward to
understand. In order to interpret, modify, and compare such rankings,
we need advanced visual tools.

Figure 6.6: Rankings of the top Universities visualized in LineUp. Figure from [42].

6.3.4 Entourage
Entourage is a visualization technique that provides contextual information
when visualizing multiple related pathways. It uses a single focus pathway
for main interaction and exploration, and visualizes only what is important
to researchers from other related pathways. Bubble Sets [44] highlights the
selected nodes within a pathway. Entourage visualizes subsets of related
pathways to give context information about the location of user selected genes
within related pathways.

Since pathway maps generally are large in size, this technique allow users to
view and interact with a large number of pathways given the relative small
monitor size commonly used by researchers. Entourage uses the enRoute
technique to visualize experimental data [25].

6.4 VisANT
VisANT is a freely available open source application for integrating biomolecu-
lar interaction data into a cohesive, graphical interface [22]. It is a stand-alone
desktop application that integrates multiple online datasets and databases
(for example kegg) into a single application allowing thorough exploration
of pathways and systems biology. The core of VisANT is its graph visualiza-
tion system, capable of visualizing pathway or other interaction networks. To
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Entourage: Visualizing Relationships between Biological Pathways
using Contextual Subsets

Alexander Lex, Christian Partl, Denis Kalkofen, Marc Streit, Samuel Gratzl,
Anne Mai Wassermann, Dieter Schmalstieg, and Hanspeter Pfister

Fig. 1. Entourage showing the Glioma pathway in detail and contextual information of multiple related pathways.

Abstract—Biological pathway maps are highly relevant tools for many tasks in molecular biology. They reduce the complexity of the
overall biological network by partitioning it into smaller manageable parts. While this reduction of complexity is their biggest strength,
it is, at the same time, their biggest weakness. By removing what is deemed not important for the primary function of the pathway,
biologists lose the ability to follow and understand cross-talks between pathways. Considering these cross-talks is, however, critical in
many analysis scenarios, such as judging effects of drugs. In this paper we introduce Entourage, a novel visualization technique that
provides contextual information lost due to the artificial partitioning of the biological network, but at the same time limits the presented
information to what is relevant to the analyst’s task. We use one pathway map as the focus of an analysis and allow a larger set of
contextual pathways. For these context pathways we only show the contextual subsets, i.e., the parts of the graph that are relevant to a
selection. Entourage suggests related pathways based on similarities and highlights parts of a pathway that are interesting in terms of
mapped experimental data. We visualize interdependencies between pathways using stubs of visual links, which we found effective
yet not obtrusive. By combining this approach with visualization of experimental data, we can provide domain experts with a highly
valuable tool. We demonstrate the utility of Entourage with case studies conducted with a biochemist who researches the effects of
drugs on pathways. We show that the technique is well suited to investigate interdependencies between pathways and to analyze,
understand, and predict the effect that drugs have on different cell types.

Index Terms—Pathway visualization, biological networks, subsets, graphs, biomolecular data
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1 INTRODUCTION

All living organisms can be considered as highly complex networks of
biomolecules (genes, gene products, and metabolites) and biochemical
reactions. It is the sum of tightly controlled and regulated interactions
between these components that determines an organism’s form and
function. In the study of biological networks, the series of actions
among biomolecules that lead to specific biological effects are com-
monly described as biological pathways. In other words, a pathway
is a meaningful subset of biomolecules and reactions whose interplay
fulfills a function in a cell or organism. Some pathways describe
metabolic processes, e.g., the production of the amino acid tyrosine
(Tyrosine metabolism pathway), whereas other pathways highlight the
processes involved in a disease, such as the Glioma pathway, which
describes the molecular mechanisms dysregulated in brain cancers.
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Figure 6.7: The Glioma pathway visualized in Entourage. Figure from [25].

construct graphs from different pathways it uses kgml files from kegg which
describes nodes and edges. The pathways are then reconstructed and visu-
alized using multiple layout algorithms including force-direction, or a kegg
based layout using coordinates specified in the kgml files. VisANT is a general
purpose network visualization system and lacks support for visual guidelines
such as cell walls found in static kegg images.

It is a three tiered system consisting of: a (i) a data layer for storage; (ii) a
data control layer for interacting with the multiple data sources in the data
layer; and (iii) a data presentation layer for visualization and presentation
of data. It is a Java application requiring the jre to run, and uses a VisANT
backend to deliver pathway maps and other information to the user. This
backend is responsible for downloading an integrating multiple databases
including kegg [45]. The VisANT application has been regularly updated
since 2003 with the last update in August 2013.

6.5 KGML-ed
kgml-ED is a tool for exploring and editing pathways generated from kgml
files supplied by kegg. It provides the functionality of editing existing path-
ways and exporting kgml versions of these for later inspection. kgml-ED allow
users to start exploration at an overview of multiple pathways and expand
those of interest. It integrates mulitple pathways into the same view to explore
their relationships.
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It is a stand-alone Java application that runs on any system with the jre
installed and requires users to manually download kgml files to visualize
them in kgml-ed.

It also requires that users download database files and store them locally for
example to lookup compound names from kegg identifiers. The software
is freely available for download online, but has not seen updates since mid
2007.

6.6 KEGGViewer
KEGGviewer is a BioJS [46] component to visualize kegg pathways and to
allow their visual integration with functional data [24]. It uses the kgml rep-
resentations of pathways from the kegg rest api to build pathways, and
visualizes them in a web browser using the Javascript library Cytoscape.js.
It makes it possible for researchers to embed pathway maps into web pages
with minimal developer effort. Since KEGGViewer only uses the kgml repre-
sentation to generate the visualizations, they are lacking both in contextual
information as well as nodes and edges. Figure 6.8 illustrates the difference in
the final visualization of the same pathway using KEGGViewer and Kvik.

Since KEGGViewer is an open source tool, we downloaded and evaluated
the system against Kvik. The usage examples of KEGGViewer visualizes the
insulin signaling pathway.4 Visualizing this pathway in KEGGViewer and Kvik
revealed that the KEGGViewer used an average of 2.03 seconds (sd = 1.05 sec-
onds) while Kvik only used an average of 0.46 seconds (sd = 0.67 seconds) to
load the visualization. The main contribution to the load time in KEGGViewer
is the latency to the kegg servers. KEGGViewer performs a http GET reqeust
every time it visualizes a pathway, while Kvik caches the request to kegg in
the Backend. This reduces load times to less than a second.

6.7 VANTED
vanted is a tool for the vivsualization and analysis of networks with related
experimental data [23]. It allows visualization and exploration of biologi-
cal networks, including kegg pathways, along with experimental data im-
ported either from local files or remote databases. Pathways are visualized as
networks that can be arranged in a wide variety of layouts including force-

4. genome.jp/kegg-bin/show_pathway?hsa04910

genome.jp/kegg-bin/show_pathway?hsa04910
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(a) KEGGViewer (b) Kvik

(c) KEGGViewer zoomed in (d) Kvik zoomed in

Figure 6.8: The Insulin signaling pathway visualized by KEGGViewer and Kvik. Both
contextual information and nodes and edges are lost in the KEGGViewer
visualization.

directed layout, tree layout, circle layout or expression matrix layout [47].
Unlike other tools for visualizing biological networks, vanted enables users
to visualize statistical data within the nodes or edges in the network. For
example gene expression data can be visualized on top of nodes in a path-
way.

vanted is an open source application written in Java released under the GNU
Public License (gpl), and requires the jre to run. It is based on the graph
library Gravisto, and supports extension written using BeanShell or jRuby
[23].

6.8 Pathway Projector
Pathway Projector is a pathway browser that uses the Google Maps api for
navigating integrated pathwaymaps based upon the kegg Atlas [27]. It allows
users to navigate from an overview of the complete kegg Atlas and down to
gene and enzyme level through panning and zooming displaying content in
a single view. In contrast to multiple other systems for visualizing pathways,
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Pahtway Projector does not require any installation of additional software,
like the jre, except the standard web browser you find on practically every
computer or smart device.



7
Evaluation and Use Case
The main goal of the evaluation is to evaluate the design choices and imple-
mentation of Kvik. To do this, Kvik is evaluated using three metrics i) latency,
ii) resource utilization and iii) system scalability. In addition we conducted an
informal evaluation of the system with regards to usability from an end-user’s
perspective.

Kvik is a system for interactive exploration ofmulti-omics data,making latency
the most important metric to evaluate. The latency is measured as the time
from a user clicks or interacts with the system, until the resulting visualization
or information is shown.

It is also helpful to measure resource utilization when using the Kvik Browser.
Since the Kvik Browser only visualizes the data and handles user input, it is
expected that it does not use excessive memory or cpu power. In addition,
the proposed design of the backend systems should also handle the data from
the nowac cohort and the kegg database.

There are several factors that have an impact on the observed latency and
resource usage in Kvik:

Pathway Size The number of entities (genes, proteins or compounds) in a
pathway affects the latency since the Kvik Browser gathers information
from the Backend for every entity. In addition to the information, gene
expression values are fetched from the nowac Data Engine.

51
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Dataset Size Kvik uses a subset of the nowac cohort which contains 9102
expression values for 154 individuals. Increasing the dataset size, e.g.
the number of patients, has an impact on the start-up time of the Data
Engine. Executing the simple statistical analyses (mean, Standard devi-
ation (sd) and variance) is not affected by the dataset size. With more
advanced statistical analyses this is expected to change in the future.

KEGG Response Time Kvik relies on the kegg database for all background
information about genes and pathways. Since Kvik uses the freely availi-
ble rest api the response time has significant impacts on the end-to-end
latency of the system.

7.1 Experimental Setup
Kvik was tested and evaluated using commodity hardware. All experiments
were run on a 2013 Mac Mini with a 2.66 GHz Intel Core i7 processor, 16 gb
1600MHz DDR3 SDRAM and a 1 TB Fusion Drive, connected to two 1920x1080
Acer P246HBD displays.

The experiments were run in OS X 10.9.2 running Firefox version 29.0. To
evaluate the visualizations, the JavaScript library Benchmark.js1 was used.
The experiments on the backend systems uses the Go testing package2 in Go
version 1.2rc3.

The experiments that measures the end-to-end latency in the Kvik Browser
uses real data form the nowac databank and the kegg database. This dataset
contained 9102 expression values from 154 individuals. To measure how the
nowac Data Engine scales to larger datasets it was necessary to generate
random datasets for the experiments. This is due to the present unavailability
of larger datasets. The following sections give a detailed description of the
datasets.

7.2 Experiments
To evaluate the latencies of the visualizations in Kvik, we measure the load
times of different pathways, and the load times of different genes in the gene
inspection view. To measure how well the nowac Data Engine scales, it was

1. benchmarkjs.com
2. golang.org/pkg/testing

benchmarkjs.com
golang.org/pkg/testing
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measured both with regards to load time of the data, as well as memory
consumption. Finally, to evaluate the need for a local cache in the Backend,
the latencies of the visualizations in Kvik were measured without caching
enabled.

To be able to run many experiments and get accurat results, it was necessary
to automate user actions. We used the Benchmark.js library to execute the
generation of different visualizations automatically. The JavaScript library
executes a given section of source code a given number times, and does not
require any modifications to the source code being measured3. The results for
the visualization latencies are for 200 samples. Evaluating the Kvik Browser
is done by measuring runtimes and sending them to an external server for
further inspection. Most web browsers have the capability of profiling web
sites, but since they require manual user interaction, this approach was not
chosen. Profiling web pages manually is just too tedious to get statistically
significant results.

Accurate measurements of the performance of the nowac Data Engine was
retrieved through multiple runs of the Go testing package. As with the latency
experiments the results are for 200 samples.

7.2.1 Load Pathway
To measure the load times relative to the pathway size, four pathways were
chosen. Table 7.1 lists the pathways and their sizes.

Loading a pathway requires the Kvik Frontend to retrieve the both the path-
way description and image from kegg, in addition to the gene expression for
the different genes in the pathway. The latency is measured from the user
clicks on a pathway to visualize in the Kvik Browser, until it is rendered in
the web browser.

Table 7.1: Pathways used to evaluate Kvik

Id Name Number of nodes

hsa04630 Jak-Stat signaling pathway 35
hsa04915 Estrogen signaling pathway 74
hsa4151 PI3K-Akt signaling pathway 120
hsa05200 Pathways in cancer 267

Figure 7.1 shows the distribution of the measured latencies to load each of the

3. Note that asynchronous functions require special setup
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four pathways. From the histograms it is possible to conclude that the latencies
follow a log-normal distribution. From this observation the results on table 7.2
are presented using geometric mean and geometric (or multiplicative) sd to
give a more correct description. Note that because of the geometric measures,
it is important to notice that 68.3% confidence interval are not defined by 𝑥̄±𝑠
where 𝑥̄ is the mean and 𝑠 is the standard deviation confidence but 𝑥̄⋆ 𝑥/ 𝑠⋆,
where 𝑥̄⋆ is the geometric mean and 𝑠⋆ is the geometric sd[48].

Table 7.2 shows the results for loading different pathways. The results show
that for relatively small pathways the average load times are around 0.3 sec-
onds. For larger pathways the load times increase to about a second. Note
the large variance in the measured latencies. For all pathways the sd is more
than 1.2 seconds indicating in the similar variability in load time for all path-
ways.

Table 7.2: Time to load pathway visualization

Id Geometric mean Geometric sd

hsa04630 0.20s 1.30s
hsa04915 0.34s 1.20s
hsa04151 0.62s 1.26s
hsa05200 1.00s 1.48s

Figure 7.2 illustrates the cumulative distribution of the measured latencies for
the different pathways. For the three first pathways over 95% of reqeuests are
completed within a second. With the large hsa05200 (Pathways in cancer)
pathway, 95% of the requests are completed after about 2 seconds. As reported
in [18], response times more than 1 second is intrusive on a user’s line of
thought. In Kvik all visualizations and events display a progress indicator
letting users know that the system is performing some work. According to
our collaborators the load times of the pathways were satisfactory and the
visualizations were presented within a reasonable amount of time. Still, this
pathway has a long tail of requests that is not served after several seconds.
We believe the garbage collector in Firefox is responsible for the long tail.
Larger pathways allocate more memory and if this is not handled correctly
there might be issues with memory management. We have not investigated
this hypothesis yet.

To reduce the latencies client-side caching could have been used. Kvik loads
the pathway images from kegg every time it visualizes a pathway. These
images rarely change within a session and may have been cached in the
client web browser. Since the pathway images are relatively small in size
html5 can easily provide sufficient storage for these. As an example, the
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Figure 7.1: Distributions of the measured latencies to visualize pathways
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Figure 7.2: Cumulative distribution of the measured latency

image of the large hsa05200 pathway is approximately 93KB large. With the
5MB available local storage it is possible to store more than 5 000 copies of
this pathway image (2% of all kegg images).
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7.2.2 Inspect Gene
The second visualization evaluated in Kvik is the gene inspection view. This
panel opens when users click on a gene and visualizes gene expression for
the entire dataset as well as other information from kegg and a overview of
pathways of interest. To evaluate this visualization, four different genes were
chosen. These genes differ from each other by the number of pathways they
are a part of. Table 7.3 lists the different genes and the number of pathways
they are a part of. This is an interesting number since the Kvik Browser has
to visualize more data with a higher count of pathways.

As in the previous experiment, the latency from user input to the display of
a visualization is measured. In this case, from a user clicks on a gene in the
pathway visualization and until the information panel is opened.

Table 7.3: Genes used to evaluate Kvik

Id Name Number of pathways

hsa:4313 MMP2 6
hsa:3303 HSPA1A 12
hsa:6654 SOS1 32
hsa:5604 MAP2K1 55

Figure 7.3 show the distribution of the measured latencies to load the gene
information panels. As for the first two genes, all requests complete within
a second. For the other two the variance is large and the results show a
high percentaage of requests not completing until after 5 seconds. Figure 7.4
illustrates the cumulative distribution, and the long tail of requests for the
last two genes is apparent.

The latencies to the gene visualizations follow a similar log-normal distri-
bution as the pathway visualizations. Table 7.4 include the results for the
different genes. Although the averages fall under a second, the long tail of re-
quests that fall outside a second is a serious issues. The load times of the info
panel should be consistent for a gene, not ranging from under a second up
to eight seconds. As with the pathway visualizations we believe that the long
tail of requests is due to garbage collection in Firefox. We have not investivate
this yet.

As with the pathway visualizations, client-side caching could improve perfor-
mance.
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Figure 7.3: Distributions of the measured latencies to load gene information
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Figure 7.4: Cumulative distribution of the measured latency

7.2.3 Load Dataset
To evaluate the nowac Data Engine it was necessary to generate test datasets.
From the discription in table 5.3 additional case-control pairs were added to
increase the dataset size. The number of genes in humans are expected to
stay the same, while the number of cases/controls will increase when new
samples are added to the nowac biobank. The gene expression values for the
cases/controls were generated randomly. It does not matter what the values
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Table 7.4: Time to load gene details

Id Geometric mean Geometric sd

hsa:4313 0.16s 1.18s
hsa:3303 0.21s 1.18s
hsa:6654 0.47s 1.98s
hsa:5604 0.75s 2.11s

are.

The experiment datasets ranged in size from the original subset, and up
to a dataset containing 9102 gene expression values for 3080 case-control
pairs. The complete nowac cohort contains blood samples from 6000 women,
making the 20x experiment dataset approximately 50% of the available gene
expression data.

In the experiment the nowacData Engine is initialized using different datasets.
The initalization reads the dataset from a disk, generates the in-memory struc-
tures and initializes the rest interface. We measure the time taken from the
nowac Data Engine starts to read the dataset until it can receive requests
from the Frontend.

Table 7.5 show the results from initializing the nowac Data Engine. The ini-
tialization reads the dataset from disk and stores it in main memory. To load
the original dataset consisting of 9102 genes and 77 case-control pairs takes
on average 2.63 seconds and uses 353 MB of memory. As the results show
both memory usage and load time appears to scale linearly. From the results
it is apparent that the nowac Data Engine can hold the experiment datasets
in memory. Datasets that grow larger than available DRAM will probably de-
grade performance, making it necessary to introduce either enough resources
or use other distributed systems.

Table 7.5: Time to load nowac dataset

Time Memory

Size Mean sd Mean sd

1x 2.63s 0.13s 353.55 MB 0.04 MB
2x 5.39s 0.26s 703.54 MB 0.06 MB
5x 13.94s 0.29s 1652.38 MB 0.10 MB
10x 28.06s 0.28s 3320.06 MB 0.19 MB
20x 58.18s 0.68s 6579.74 MB 0.85 MB
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The statistical analyses in the nowac Data Engine operates on the columns of
the gene expression table. Because the number of rows will add up to 3080
for the 20x dataset, the statistical analyses has not been evaluated. Since the
analyses only perform simple tasks like calculating an average or standard
deviation, this was left out.

7.2.4 KEGG Caching
We must cache requests to the kegg database for two reasons: i) the reponse
times; and ii) licensing issues with the rest api. First, since Kvik is an inter-
active system that uses kegg extensively, e.g. performing over 200 requests to
load the hsa05200 pathway, response times of several hundred milliseconds
for every request are unacceptable. Second, as the api restrictions read: “This
service should not be used for bulk data downloads.”4 it is necessary to limit
the traffic to their servers.

To measure the impact caching has on the Kvik Browser, the latency exper-
iments in 7.2.1 and 7.2.2 were run, each 200 times. The visualization of the
large hsa05200 pathway generates 267 requests on information about the
entities in the pathway, 1 request for the kgml representation of the pathway
and 1 request to fetch the static pathway image. Visualizing this pathway 200
times results in over 53 000 requests to kegg, clearly violating the terms of
use and introducing unnecessary long latencies.

From table 7.6 we see the huge benefit in caching kegg responses. For every
pathway measured there is over a 140x speedup in load times when caching
kegg responses. For genes the benefit is smaller, but still significant. The size
of the cache is small. Visualizing the four experiment pathways resulted in 693
elements in the cache adding up to 5.7MB used disk space server side.

7.2.5 Resource Consumption
To measure the load on the client computer when using the Kvik Browser, we
measure cpu and memory utilization by Firefox when using the Kvik browser
to load the four experiment pathways.

Figure 7.5 show a timeseries of cpu and memory usage when loading the
different pathways from the previous experiments.

The results show that loading a large pathway compared to a smaller pathway

4. from kegg.jp/kegg/rest

kegg.jp/kegg/rest
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Table 7.6: Comparing load times with and without caching of kegg requests

Method Caching Enabled Caching Disabled

Load pathway hsa04630 0.20s 53.18s
Load pathway hsa04915 0.34s 59.63s
Load pathway hsa04151 0.62s 123.99s
Load pathway hsa05200 1.00s 142.30s

Inspect gene hsa4314 0.76s 5.35s
Inspect gene hsa3303 1.05s 4.92s
Inspect gene hsa6654 1.90s 5.10s
Inspect gene hsa5604 1.73s 5.32s

does not have any impact on cpu nor memory usage. Overall the Kvik Browser
uses at peak 50% cpu and less than 4% memory when it is loading the vi-
sualization, and then settles down after the visualization has been rendered.
It is safe to say that the Kvik Browser does not hog the cpu or use excessive
memory.

Since the Kvik Browser is implemented using the html5 canvas, it is also inter-
esting to evaluate the system on mobile devices. Early trials show promising
results, but we still have left to investigate the performance thoroughly.

7.2.6 Comparison of different hardware
The previous experiments were run on high-end systems. To compare Kvik on
lower-end systems we used a 5 year old mid-2009 Macbook Pro. The Macbook
Pro had a 2.66 GHz Intel Core 2 Duo Processor, 8 GB of 1067 MHz DDR3 RAM.
We ran the same experiments to evaluate the pathway visualization and
inspect if newer hardware would speed up the load times.

Table 7.7 show the load times for the different pathways. Even with 5 year
old hardware the performance is acceptable.

7.3 Usability
The development process of Kvik followed an iterative approach,with frequent
meetings and continuous feedback about the usability and lacking features
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Figure 7.5: cpu and memory utilization when loading different pathways

Table 7.7: Comparison of pathway load times

Id Mac Mini Macbook Pro

hsa04630 0.20s 0.48s
hsa04915 0.34s 0.97s
hsa04151 0.62s 1.91s
hsa05200 1.00s 4.00s

of Kvik. Through these meetings the following results emerged.

Generating pathway visualizations using the traditional layout of kegg was
a feature that was chosen early. We explored other techniques, e.g. using a
force-directed layout, but these maps were unusable by the researchers who
were used to browsing the hand-drawn pathway maps in kegg. Providing
pathway visualizations based only on the kgml representation was suggested,
but since these quickly became too complex to navigate, our collaborators
requested another alternative. Visualizing nodes on top of the static kegg
images was a game-changer for our collaborators. The researchers we’re able
to orient themselves in the traditional pathway maps, allowing them to start
data exploration faster. After the pathway visualization was completed, re-
searchers could browse through pathway maps of their choice, investigating
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genes and their relationships interactively. The next step in the development
process, was the design and implementation of the gene inspection panel.
Also with this component it took several iterations before the results were
satisfactory to our collaborators. Throughout the project, adding features to
Kvik was done using this iterative approach, by implementing and presenting
one feature at a time.

From the iterative development process, adding components to Kvik became
simpler with every feature. It is evident that collaborating in a team with
frequentmeetings is helpful both for biologists to come upwith improvements
and new features, but also for computer scientists to understand the problems
from the end users’ perspective.

With the development process that was used in Kvik, we believe that it builds
a solid foundation for developing a more advanced exploration tool for the
entire nowac cohort study.

We have identified three use cases discussed in Chapter 3.



8
Conclusion
This thesis presents Kvik, an interactive system for exploring the dynamics of
carcinogenesis through integrated studies of biological pathways and genomic
data. It provides researchers with a lightweight web application for navigating
through biological pathways from the kegg database and genomic data from
the nowac postgenome biobank.

While state of the art data explorations systems for biological pathways and
genomic data exploration run as stand-alone desktop applications, we have
demonstrated that it is possible to design and implement such a system as a
lightweight web application. Kvik consists of three separate components: i)
The Kvik Browser, an interactive system for visual exploration of biological
pathways and genomic data; ii) a Frontend that translates user interactions
in the Kvik Browser into queries that retrieves data and visualizations; and iii)
a Backend that provides the Kvik Browser with biological data and statistical
analyses. We describe and demonstrate the advantages of separating compo-
nents, allowing the researchers to explore large datasets using lightweight
clients. Kvik is designed to handle both new data sources, analysis methods
and visualization techniques. We have identified three new important use
cases for Kvik, that can easily be added.

In collaboration with researchers from the nowac research group, we have
performed a requirement analysis that targets the challenges of performing
exploratory analysis of biological pathways and genomic data. From these
requirements we have designed and implemented the first version. Using an
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iterative approach we have improved the system through small development
cycles by involving the end-users in the development process. Throughout the
project we have gained valuable interdisciplinary experience in developing
data exploration systems for use in cancer research.

Through an evaluation of the exploration tasks and workflow of an end-user,
we demonstrate that Kvik has the capability of interactive exploration of ge-
nomic data and biological pathways. We measured load times in the Kvik
Browser to be less than 1 second, demonstrating that it is an interactive sys-
tem. We demonstrate that the nowac data engine scales to the full size of the
nowac biobank.

We believe Kvik is important to enable novel discoveries from the data pro-
duced in the nowac project. It provides access to powerful compute and
storage resources enabling the use of advanced statistical methods for the
analysis. Finally, we use our experiences from developing Kvik to provide use
cases and requirements for analysis, compute and data management infras-
tructure developed in our group and by others.

Kvik is released as an open-source project hosted at github.com/fjukstad/
kvik.

github.com/fjukstad/kvik
github.com/fjukstad/kvik


9
Future Work
Kvik fulfills our initial requirements and have proven useful. During devel-
opment and deployment we have identified areas of improvement. From
section 3.2 our collaborators identified the worklow in a system for explo-
ration of the multi-level nowac databank. While Kvik implements a simple
exploration tool with a pathway browser and a gene viewer, our researchers
require the addition of more advanced analyses like gsea to perform more
complex exploration of the nowac databank. The addition of such analyses
is possible through the extensive Backend, but was not done due to time
constraints.

The first version of Kvik supports a single user, and does not store history
about the researcher’s exploration. This is common in exploration tools for
genomic data, but with future versions of Kvik we plan to allow multiple users
and individual storage of results within the Kvik Browser. When different
researchers start to use Kvik it is necessary to introduce user accounts, both
to enforce restriction on the content the users can view, but also to allow users
to store results in Kvik for later inspection. Currently there are no restrictions
on what data the user can view in the Kvik Browser. Since the nowac databank
cannot be published yet, access restriction is a feature that is required in every
component of Kvik. With user accounts the researchers can also store their
results or save pathways to view later. Introducing a web framework like
Revel1 makes it possible to add multi-user functionality with little developer

1. revel.github.io
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effort.

Another feature in Kvik our collaborators requested was the ability to export
a complete workflow, or session, much like the work done in Wrangler [49],
Galaxy2 or the syntax files in SPSS3. Users want to record the data exploration
steps, e.g. the navigation through pathways and statistical analyses done, and
share it with other researchers.

Currently, Kvik has only access to gene expression data at time of diagnosis.
The nowac databank consists of large quantities of other research data, such
as gene expression and exposure through questionnaires that have been col-
lected over decades. Ultimately researchers want to develop new methods for
diagnosis which relies on additional statistical analyses, data from multiple
levels and integrated analyses. With the extensibility of Kvik this is possible
with minor overhead.

Since Kvik is an interactive system, these systems must provide fast, sub-
second response times. See [14] for a discussion ofmodern data-intensive com-
puting systems and their application in processing of biological data.

The Kvik Browser is currently limited to visualizing one pathway at a time.
We plan to incorporate visualization of multiple pathways in the same view,
much like the functionality in Entourage [25]. Navigating multiple pathways
is often necessary to understand complex diseases such as cancer, and keeping
them in the same view can speed up the exploration.

2. galaxyproject.org
3. ibm.com/software/analytics/spss

galaxyproject.org
ibm.com/software/analytics/spss
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A
Source Code
The source code follows on a CD-ROM and can also be found at github.com/
fjukstad/kvik.
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