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1 Introduction
Large-scale motions in planetary atmospheres are largely turbulent in space and time. Although

the large-scale mrbulent motions are actually three-dimensional, one can consider them to be
nearly two-dimensional (2D) on a horizontal surface owing to the stratification of atmospheres
and the rotation of planets. For example, synoptic-scale disturbances in the atmosphere have
such quasi-2D mrbulent characteris $\dot{\mathfrak{a}}cs$ as shown by Boer&Shepherd (1983) with a global atmo-
spheric data set;energy spectra and transfer functions in the spherical domain have some feamres
of an ensffophy inertial subrange for a high-wavenumber region of $n>10$, where $n$ is the total
wavenumber of the spherical harmonics.

A geophysical application of the $2D$ mrbulence theory (Kraichnan 1967; Leith 1968; Batchelor
1969) was firstly done by Rhines (1975) with a numerical $m\alpha lel$ on a $\beta$-plane to investigate
the effect of the rotation of planets on the $2D$ turbulence. He showed that the upward energy
$cmeridiona1gradientoftheCo1iorisparameterf;teconversionfromturbulenceintoRossbywavesascadeceasesrough1yatawavenumberk_{\beta}=\beta\ulcorner/2U,whereUisther.m.s.velocityand\beta the$

takes place around the wavenumber $k_{\beta}$ . He also found that the flow field becomes anisotropic
and a zonal band $S\mathfrak{a}uCture$ emerges owing to the $\beta$-effect. Malmid&Vallis (1991) numerically
studied the forced $2D$ turbulence on a $\beta$-plane with a high-resolution model (256 or 512 grids)
under recent advanced computing facilities. In their experiments with low-wavenumber forcing,
coherent vortices, which were found by Basdevant et al. (1981) and McWilliams (1984) in the
numerical experiment on planar $2D$ turbulence, become weak while anisoffopy of the flow field
increases as the strength of the $\beta$-effect increases, although energy soecmm in the enstrophy-
cascading range remains relatively unchanged (steeper than $k^{-3}$ ). An energy specmim nearly
proportional to $k^{-5/3}$ was also observed in the energy-cascading range in the experiments with
high-wavenumber forcing.

Williams (1978) reproduced a band smcture similar to that of Jovian atmosphere in a numerical
expenment on the forced $2D$ turbulence on a rotating sphere. Nozawa and $Y\propto len$ (1994) did a
series of numerical experiments with the same framework as Williams aiming at a methodical
sweep in parameter space. When the amplitude of the $stochas\dot{u}c$ vorticity forcing is not very
small and the latitudinal wavenumber of the forcing is relatively small, a clear band $sOucmre$

which consists of altemating easterly and westerly jets emerges in the flow field. However, the
numerical model has a cyclic boundary condition in longitudes of $45^{o}$ , and the forcing function
is anisotropic. Thus the obtained band smcture might be influenced by the assumed longimdinal
periodicity and the anisotropic vorticity forcing.

数理解析研究所講究録
第 892巻 1995年 248-262 248



In this paper, we perfomi a series of numerical experiments on the forced $2D$ mrbulence in
a full spherical domain with a homogeneous and isotropic forcing at high wavenumbers. The
sensitivity to the rotation rate and that to the choice of the random numbers for the forcing are
studied in detail. The flow field, pmicularly the formation of the band smctuoe, is investigated
as well as the energy spcmim and the transfer function. The numerical $proeedure$ is described in
section 2, and results are given in section 3. Discussion is given in section 4, and conclusions are
given in section 5.

2 Model and experimental procedure
Two-dimensional nondivergent flow on a rotating sphere is govemed by a vorticity equation:

$\frac{\partial(}{\partial t}+\frac{1}{a^{2}}J(\psi, \zeta)+\frac{2\Omega}{a^{2}}\frac{\partial\psi}{\partial\lambda}=\nu(\nabla^{2}+\frac{2}{a^{2}})(+F$ , (1)

where $\psi(\lambda, \mu, t)$ is a streamfunction field, $((\lambda, \mu, t)=\nabla^{2}\psi:vorticity,$ $\lambda:longimde,$ $\mu$ :sine latitude,
$t$ :time $\nabla^{2}:horizonta1$ Laplacian, $J(\psi, \zeta)$:horizontal Jacobian, $a;radius$ of the sphere, $\Omega$ :rotation
rate of the sphere, $\nu;kinematic$ viscosity coefficient, and $F(\lambda, \mu, t)$ :vonicity forcing function. The
radius of the sphere is set to that of Jupiter;a $=7.\alpha$) $\cross 10^{7}m$ and the time $t$ is measured by Jovian
day; 1 J.day $=2\pi/\Omega_{J}=3.57\cross 10^{4}s$ , where $\Omega_{J}=1.76\cross 10^{-4}$rad $s^{-1}$ is the rotation rate of
Jupiter. The kinematic viscosity coefficient of $\nu=5.00\cross 10^{5}m^{2}s^{-1}$ is adopted in this study.

For the forcing function $F$ , a random Markovian $fo$–ulation is used as in Lilly (1969) and
Williams (1978):

$F(\lambda, \mu,j\Delta t)=RF(\lambda, \mu, C-1)\Delta t)+(1-R^{2})^{1/2}\hat{F}(\lambda, \mu,j\Delta t)$ , (2)

where $R$ is a dimensionless memory coefficient ( $R=0.98$ as in Williams (1978)), and $\hat{F}$ is a
random vorocity source at every time step. Here the random vonicity source function is defined
as follows:

$\hat{F}(\lambda, \mu,j\Delta t)=\sum_{n=n_{mn}}^{n_{r}}\sum_{m--1}^{n}\hat{F}_{n}^{m}C)P_{n}^{m}(\mu)e^{im\lambda}$ , (3)

where $\hat{F}_{n}^{m}(j)$ is an expansion coefficient of $\hat{F}$ with spherical haronics, which is deteimined so
that it has random amplitude and phase at eveiy time step $j$ in order to consmct a homogeneous

and isotropic forcing under the resmction of $||\hat{F}(\lambda, \mu,j\Delta t)||=\ovalbox{\tt\small REJECT}_{m=1}^{n}$ (con-

stant). The forcing is given in a narrow range of $n_{mm}=77$ and $n_{\max}=81$ and the amplitude is held
constant to $F=7.85\cross 10^{-11}s^{-2}$ for all the experiments in this study. Figuoe 1 shows an example
of the forcing field at a paticular J.day.

A pseudospectral method with a triangular mncation of T199 $(n\leq 199=N)$ is used for
the computation of the advection (Jacobian) term;grids for the $s\varphi$ctral transformation are 600 in
longitudes and 300 in latimdes. Equation (1) is integrated ffom an initial condition of zero velocity
field for a period of 1000 J.days. The fourth-order Runge-Kutta-Gill method is used for the time
integrations with $\Delta t=0.05$ J.days. All of the computations are done in double precision.

As an experimental parameter, six values of the rotation rate aoe taken $:\Omega/\Omega_{J}=0.\alpha$), $0.25$ ,
0.50, $1.\alpha),$ $2.tX)$, and 4.(X). The sphere has $\Omega/\Omega_{J}$ rotations par unit J.day. For each rotation rate,
three mns are done with different random sequences for the amplimde and phase of the vorticity
source function.
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Fig.1: Vorticity forcing field at $t=1\alpha$) J.days. Contour interval is $1.0\cross 10^{-10}s^{-2}$ and negative
areas are drawn by dotted lines.

3 Results

Figure 2 shows the time variation of the total kinetic energy $\mathcal{E}(t)=\sum_{n=2}^{N}E(n, t)$ and the total

ens$\sigma ophy\mathcal{Q}(t)=\sum_{n=2}^{N}Q(n, t)$ for six values of the rotation rate, which aoe ensemble averages of

thoee $mns$ . Here the energy specmm density $E(n, t)$ and the enstrophy specmm density $Q(n, t)$

are, respectively, defined as follows:

$E(n,t)$ $=$ $\frac{n(n+1)}{2}\sum_{m=-n}^{n}|\psi_{n}^{m}(t)|^{2}$ , (4)

$Q(n, t)$ $=$ $\frac{n^{2}(n+1)^{2}}{2}\sum_{m=-n}^{n}|\psi_{n}^{m}(t)|^{2}$ , (5)

where $\psi_{n}^{m}(t)$ is an expansion coefficient of $\psi$ with spherical harmonics :

$\psi(\lambda, \mu,t)=\sum_{n=2}^{N}\sum_{m=-n}^{n}\psi_{n}^{m}(t)P_{n}^{m}(\mu)e^{im\lambda}$ (6)
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At the beginning of $t<20$ J.day, both of the total energy and the total enstrophy increase sharply,
growth rates of which aoe almost independent of the rotation rate. As the time goes by, the en-
ergy increases gradually while the enstrophy decreases. The energy is smaller for larger $\Omega/\Omega_{J}$ ,
although it is not very different for the expenments with $\Omega/\Omega_{J}\leq 1.\alpha$). On the other hand, the
enstrophy is larger for larger $\Omega/\Omega_{J}$ . Even at the end of time integrations $(t=1\alpha n$ J.day $)$ , the
total energy goes on increasing slightly while the enstrophy becomes nearly constant.
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Fig.2: Temporal variation of the total kinetic energy $\mathcal{E}(t)(a)$ , and the total enstrophy $\mathcal{Q}(t)(b)$ for
six values of $\Omega/\Omega_{J}$ . Ensemble averages of three $mns$ .
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Figure 3 shows the energy spectra for six values of $\Omega/\Omega_{J}$ . These are time averages from $8\infty$

to ltXn J.days. Three mns are plotted for each rotation rate. A wavenumber $n_{f}$ indicates the
forcing wavenumber: $n_{f}= \frac{n_{\min}+n_{\max}}{2}=79$ , which corresponds to the wavenumber of energy
and enstrophy inputs. The power law of the energy specffum is close to $n^{-4}$ in the ens$\sigma ophy-$

cascading range, which slope is independent of the choice of the random numkrs for each $\Omega/\Omega_{J}$ .
$7be$ slor in this range becomes a little gentle as the rotation rate increases, although it is yet
steeper than $n^{-3}$ even for the mns with $\Omega/\Omega_{J}=4.\alpha$) $(f)$ .

For all the expenments, an upward energy-cascading range is obtained. The energy spectra
are nearly proportional to $n^{-5/3}$ in the energy-cascading range, and the slope steepens $sligh\ddagger ly$

as $\Omega/\Omega_{J}$ increases. Three energy $spec\sigma a$ of different random numkrs are very similar in this
range as well as those in the enstrophy-cascading range. In the case of no rotation (a).the energy
specmm is steeper than $n^{-5/3}$ At the low wavenumbers of $n<5$ owing to the finiteness of the
spherical domain. For the experiments with rotation (b-f), on $\tilde{th}e$ other hand, the specmim does
not obey the power law at low wavenumbers;the energy-cascading range becomes nanow and the
energy specmm in this range kcomes noisy as $\Omega/\Omega_{J}$ incoeases. Here another wavenumber $n_{\beta}$

is in$\sigma oduced$ following to Nozawa and Yoden (1994):

$n_{\beta}\equiv a\sqrt{\frac{\{\beta\rangle}{2U}}$ , (7)

where $U$ is the r.m. $s$ . velocity $(U=\sqrt{2\mathcal{E}})$ at $t=1000$ J.day (ensemble averages of three mns
here), and $\langle\beta\rangle$ is the spherical average of $\beta:\langle\beta\rangle=\frac{1}{2}\int_{-1}^{1}\beta d\mu=\pi\Omega/2a$ . At the horizontal scale of
$a/n_{\beta}$ , the nonlinear Jacobian term is comparable to the $\beta$-term” in Eq.(l). Figure 3 shows that $n_{\beta}$

roughly gives the lower bound of the energy-cascading range. The specmm does not show any
clear power law in $2\leq n<\sim n_{\beta}$ (b-f), where the $\beta$-term” is larger than the nonlinear term. In this
range, the energy specmm is very noisy and it depends on the choice of the random numbers. For
larger $\Omega/\Omega_{J}$ (e.f), the energy density is relatively small at the lower wavenumbers in this range.
This is why the total energy is relatively small for larger $\Omega/\Omega_{J}$ as seen in Fig.2 (a).

The energy flux function $\Pi(n, t)$ is calculated from the energy $\sigma ansfer$ function $T(n, t)$ :

$\Pi(n, t)$ $= \sum_{n=2}^{n}T(n’, t)$ , (8)

$T(n, t)$ $=$ $- \sum_{m=-n}^{n}\{\psi_{n}^{m}(t)\}^{*}N_{n}^{m}(t)$ , (9)

where $N_{n}^{m}(t)$ is the expansion coefficient of the nonlinear Jacobian term, and * denotes complex
conjugate. Figure 4 shows the energy flux functions for six values of $\Omega/\Omega_{J}$ , which are time
averages from 800 to $1\alpha$)$0$ J.day and ensemble averages of the three $mns$ . For the case of no
rotation, the energy flux is nearly constant in the range of $2\leq n<\sim 20$, thus the energy is transferred
as far as the lowest wavenumber of $n=2$. When the rotation rate is small or moderate (0.m $<$

$\Omega/\Omega_{J}\leq 1.\alpha))$ , the energy flux function in the range of $n_{\beta}<\sim n\leq n_{f}$ is parallel to that of no
ratation, indicating that the effect of the rotation is weak in this range. The energy flux in this
range becomes large as $\Omega/\Omega_{J}$ increases kcause the energy density is larger for larger $\Omega/\Omega_{J}$ in
this range as seen in Fig.3 (a-d). In the range of $2\leq n<n_{\beta}$ the energy flux function is not
parallel to that of no rotation, but it has a large decline;only a little energy is transfened to this
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TOTAL WAVENUMBER $n$ TOTAL WAVENUMBER $n$

Fig.3: Energy specmm $\overline{E}(n)$ averaged from 800 to 1000 J.days for six values of $\Omega/\Omega_{J}$ . The
forcing wavenumber is indicated by $n_{f}$ and the wavenumber $n_{\beta}$ is also indicated, at which scale
the $\beta$-term” is comparable to the nonlinear Jacobian term. Three $spec\sigma a$ are plotted for each
figure. The specmm obtained with the same random numbers is plotted with the same line type.
A line of $\overline{E}(n)\propto n^{-5/3}$ is added in the range of $n_{\beta}\leq n\leq n_{f}$ , and lines of $n^{-3}$ (above) and $n^{-4}$

$(\Re 1ow)$ are also added in the range of $n_{f}\leq n\leq N$ .
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range beyond $n_{\beta}$ . The process of the energy interchange is largely influenced by the rotation.
For large $\Omega/\Omega_{J}(\geq 2.00)$, on the other hand, the energy flux function is not parallel to that of no
rotation even in the range of $n_{\beta}<\sim n\leq n_{f}$ , indicating that the process of the energy interchange
is largely influenced by the rotation even in the energy-cascading range. The energy flux is nearly
equal to zero in the lower range of $n<\sim 6$ for the largest rotation rate $(\Omega/\Omega_{J}=4.m)$;little energy
is transferred to this range because the energy upward cascade is suppressed by the rotation. This
is the reason why the energy density in this range is relatively small for these mns as seen in Fig.3
(f).
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Fig.4: Energy flux function $\overline{\Pi}(n)$ for six values of $\Omega/\Omega_{J}$ . Ensemble averages of three $mns$.

The $s\sigma eamfunction$ field at $t=1000$ J.days is shown in Fig.5 for six mns. The same random
sequance of the vorticity forcing is used for these $mns$. For the case of no rotation (a), the stream-
function field has a very large pattem which is characterized by the lowest wavenumber $n=2$
in consistent with the fact that the transfemd energy is accumulating at the lowest wavenum-
ber (Fig.3 (a), Fig.4). This flow pattem moves irregularly on the sphere withom changing the
pattem largely. For the experiments with rotation (b-f), on the other hand, zonal band $smctu\infty s$

become dominant in the streamfunction field. As the rotation rate increases, the zonality of the
streamfunction field increases. Although details of the flow pattems change with time, the zonal
structures aoe unchanged panicularly for large rotation rates.
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Fig.5: Streamfunction field at $t=1000$ J.days for six values of $\Omega/\Omega_{J}$ . Contour interval is
$2.5\cross 10^{8}m^{2}s^{-1}$ and negative weas are drawn by dotted lines.
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Figure 6 shows the temporal variation of the zonal mean angular momenmm for the same six
mns as in Fig.5. For the case of no rotation (a), the intensity of the angular momentum is not
very large and the easterly or westerly flow dominates over a hemisphere. Temporal variation
of the mean zonal flow is large in consistent with the $ii\tau egular$ movement of the flow pattem.
For the cases with rotation $(b- f\gamma$ , on the other hand, the altemating easterly and westerly bands
do not change their positions after the establishment of the band smcture. They become clear
and robust as the rotation rate increases. They are aloeady discemible in early stages by $t=1\alpha$)

J.days. For large $\Omega/\Omega_{J}(e)f)$ , several mergers of westerly bands take place and the width of the
bands increases. The number of the bands increases while their width decreases as the rotation
rate increases.

Figure 7 (a) shows the time variation of an index of $aniso\sigma opyAi$ intrOduced by $He\pi\dot{m}g$ (1975):

$Ai= \frac{\langle u^{2}\}-\langle v^{2}\rangle}{\langle u^{2}\rangle+\langle v^{2}\rangle}$ , (10)

where $u(\lambda, \mu, t)$ and $v(\lambda, \mu, t)$ are eastward and northward velocities, respectively, and $\langle\cdots\}$ de-
notes the spherical average. These are ensemble averages of the three mns. For the case of no
rotation, the flow field is nearly isotropic $(Ai\sim 0)$ throughout the integration time. For the ro-
tating cases, on the other hand, the anisotropy kcomes large with time;the flow field increases
its zonality $(\langle u^{2}\}>\langle v^{2}\rangle)$ . The anisotropy increases as the rota$\dot{\mathfrak{a}}on$ rate increases in consistent
with the fact that the streamfunction field has soeonger zonality for larger $\Omega$ (Figs.5 and 6). The
dependence of $Ai$ on $\Omega/\Omega_{J}$ at $t=1\alpha$)$0$ J.days is shown in Fig.7 (b). For small rotation rate
$(\Omega/\Omega_{J}<1.00)$ , the index of anisotropy is largely different between the three mns but it has a
tendency to increase with $\Omega$ . For large $\Omega$ , on the other hand, $Ai$ is nearly the same for the three
runs $(0.8\sim 0.9)$ .

Figure 7 (c) shows the time variation of the energy-weighted total wavenumber for the zonal
component $n_{0}$ :

$n_{0}= \sum_{n=2}^{N}nE_{0}(n, t)/\sum_{n=2}^{N}E_{0}(n, t)$ , (11)

where $E_{0}(n, t)$ is the energy density of the zonal component. The wavenumber $n_{0}$ is a gross mea-
sure of the number of the altemating easterly and westerly bands. These are ensemble averages
of three $mns$ . For all the mns, $n_{0}$ decreases sharply by $t\sim 1\alpha$) J.days, and it $\Psi^{adually}$ decreases
after that. For the last $2\alpha$) J.days, $n_{0}$ is nearly constant except for the case of $\Omega=0.\alpha$}. $7he$

wavenumber $n_{0}$ becomes large as $\Omega/\Omega_{J}$ increases in consistent with the fact that the number of
the altemating bands increases with $\Omega/\Omega_{J}$ as seen in Fig.6. The de$\Psi$ndence of $n_{0}$ on $\Omega/\Omega_{J}$ at
$t=10\alpha)$ J.days is shown in Fig.7 (d), where $n_{0}$ for the three mns are plotted for each $\Omega/\Omega_{J}$ . The
wavenumber $n_{0}$ is nearly proportional to $\Omega/\Omega_{J}$ and has little dependence on the choice of the
random numbers.

The relative vorticity field at $t=1000$ J.days is shown in Fig.8 for the same six mns as in Figs.5
and 6. The center of each figure is the same as that in Fig.5. Typical size of the vortices $a\infty$ nearly
equal to that of the forcing as seen in Fig.1. For the case of no rotation (a), the vorticity field is
isotropic. It also seems to be nearly iso$\sigma opic$ for the small and $m(rerate$ rotation rate (b-d). For
large $\Omega(e.f\gamma$ , on the other hand, the vorticity field is elongated zonally and the altemating positive
and negative vonicity bands emerge. The intensity of the $vor\dot{o}city$ increases as $\Omega/\Omega_{J}$ increases
in consistent with tha fact that the enstrophy is larger for larger $\Omega/\Omega_{J}$ as seen in Fig.2 (b).
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4 Discussion
For the case of no rotation, the energy supplied around $n_{f}$ is transferred upward and the rate of

the energy cascade is nearly constant in the range of $2\leq n<20$ as shown in Fig.4, which fact is
consistent with the $2D$ mrbulence theory. For the cases $wit\tilde{h}$ rotation Malmd and Vallis (1991)
has already studied in their numerical experiment on a $\beta$-plane. They showed that the $\mathfrak{a}\cdot ansferred$

energy accumulates near $k_{\beta}$ because the upward energy cascade is suppressed by the rotation, and
that the power law in the energy-cascading range remains nearly proponional to $k^{-5/3}$ . Although
the wavenumber $n_{\beta}$ we used is not identical to $k_{\beta}$ , these feamres of the energy specmm influenced
by the rotation was obtained in our experiments for small and moderate $\Omega$ (Fig.3 (b-d), Fig.4).
For the cases with larger rotation rate $(\Omega/\Omega_{J}\geq 2.00)$ , on the other hand, the process of the
energy interchange is largely influenced by the rotation and the energy is accumulating even in
the energy-cascading range. Thus the energy specmm in this range becomes steeper than $n^{-5/3}$

as shown in Fig.3 $(e_{2}f)$ .
Williams (1978) and Nozawa and Yoden (1994) studied the forced two-dimensional turbulence

on a rotating sphere with a cyclic boundary condition. Although they showed some impressive
clear band smctures, the flow field in this study using the isotropic vonicity forcing function
does not show such a clear band smctures as in our previous study with the same experimental
parameters. Thus their results may be influenced by the anisotropic forcing functions and by the
cyclic boundary condition.

Yoden and Yamada (1993) studied the decaying $2D$ turbulence on a rotating sphere, and showed
the emergence of strong easterly circumpolar-jets. In this study on the forced $2D$ mrbulence, clear
band $smc\iota ures$ which consist of the altemating easterly and westerly jets appear in all the latitudes,
and almost all the circumpolar-jets are easterly (Fig.6). The emergence of easterly jets in high
latitudes seems to be a general featuoe of $2D$ turbulence on a rotating sphere. Interactions between
the mean zonal flow and Rossby waves, of which energy is convened from the turbulent motions
by means of the upward energy cascade, seem to be a fundamental dynamics of the fomiation
of the band smcture, namely, these Rossby waves might redisnibute the zonal mean angular
momentum to maintain the band smcmre.

Nozawa and Yoden (1994) have already studied the organization of the band smcture for dif-
ferent random numbers and showed that intensity and width of the jets are not very different,
although position of the jets depends on the choice of the random numbers. This is consistent
with the fact that the energy-weighted total wavenumber for the zonal component $n_{0}$ doe$s$ not
largely depend on the choioe of the random numbers as shown in Fig.7 (d). The band smcture
is formed in early stages and then the smcmre becomes robust and persistent for the cases with
rotation as shown in Fig.6 $(b- f\gamma$ (see also Appendix).

5 Conclusions
A series of numerical experiments on the forced $2D$ turbulence on a rotating sphere were done

with a high-resolution barotropic $m\alpha lel$ . The formulation of the homogeneous and isotropic vor-
ticity forcing was adopted. Sensitivity of the energy specmm and the flow field to the rotation
rate and that to the choice of the random numbers for the forcing are investigated

The energy supplied at the forcing wavenumber, $n_{f}$ , cascades upwaM to low wavenumbers and
the enstrophy supplied at $n_{f}$ cascades downward to high wavenumbers for all the experiments in
this study. The upward energy cascade ceases around a wavenumber $n_{\beta}$ at which the $\beta$-term” due
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to planetaiy rotation is comparable to the nonlinear Jacobian term. The energy-cascading range
becomes narrow as the rotation rate increases, because the upward enrgy cascade ceases around
$n_{\beta}$ and the $\sigma ansferred$ energy accumulates in the range of $2\leq n<\sim n\rho$ . The slope in the energy-
cascading range becomes a little steep while it in the enstrophy-cascading range becomes a little
gentle as the rotation rate increases, although they remain close to $n^{-5/3}$ and $n^{-4},$ $resN^{C\dot{0}Vely}$.
The energy specmm in these ranges does not depends on the choice of the random numbers.

For the case of no rotation, the streamfunction field shows a very large flow pattem and the
flow field such as the relative vorocity field is isotropic. As the rotation rate increases, zonal band
smctures become dominant in the sffeamfunction field;the flow field increases its anisotropy and
the number of altemating easterly and westerly bands increases. The band smcmres are already
discemible in early stages and they are robust and persistent for the integration period.

GFD-DENNOU Library was used for drawing the figures. This work was supponed in part by
the Grant-in-Aid for the Cooperative Research with Center for Climate System Research, Uni-
versity of Tokyo, and was done in pan on the KDK system at Radio Atmospheric Science Center,
Kyoto University.

Appendix
In order to investigate the sensitivity of the zonal band $smc\iota u\infty$ to the random sequanses of

the vonicity forcing, we perform a series of supplementary experiments. For a certain experiment
using a random sequence of I, the random sequence is replaced to that of $\Pi$ after the time $t_{c}$ J.days,
and integrated till $t=1000$ J.days. Figure A shows the dependence of the zonal mean angular
momentum at $t=1\alpha$)$0$ J.days for $\Omega/\Omega_{J}=4.\alpha$) on the replaced time $t_{c}$ . The mean zonal angular
momentum at $t_{c}=1000$ J.days is obtained using full random sequence of I, and that at $t_{c}=0$ J.days
is using full random sequence of II. The mean zonal angular momenmm is almost unchanged for
$t_{c}\geq 180$ J.days;the zonal band smcture is already formed by that $\dot{\mathfrak{a}}me$ and it becomes insensitive
to the choice of the random numbers after that time. In high latitudes this timing is earlier than
in low and middle latitudes;for example, the band smcture is unchanged for $t_{c}\geq 30$ J.days in
southem high latitudes. When the replaced time is very early ($t_{c}\leq 10$ J.days), the band smcmre
is very sensitive to $t_{c}$ .

R EP L ACE D T I ME $(J. doy)$
Fig. $A$ : Dependence of zonal mean angular momentum at $t=1\alpha$)$0$ J.days on replaced time $t_{c}$ .
$\Omega/\Omega_{J}=4.\alpha)$ .
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