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1. INTRODUCTION 
 
An important progress in the treatment of advanced non-small cell lung cancer (NSCLC) 

is the identification of driver mutations of cancer growth, and the subsequent 

development of agents that target these genetic alterations. However, heterogeneity in 

driver mutations is a hallmark of NSCLC, and a key reason why NSCLC patients that share 

the same histology and clinical stage can have different clinical outcomes and responses 

to treatment. Hence, combining both molecular and clinical information offers better 

means of customizing treatment for the individual NSCLC patient. Furthermore, the 

identification of subgroups of patients with targetable driver mutations have led to an 

improved patient outcome, together with an intense and ongoing research to identify 

new significant biomarkers and targeted therapies that can be used for other subgroups 

of patients with NSCLC.  

Genetic alterations in the cancer cells are considered to drive tumor growth and 

progression. Furthermore, the microenvironment of the cancer cell is known to 

influence the cancer phenotype. Therefore, when studying the prognostic impact of 

molecular markers, not only the expression in cancer cells must be evaluated. 

Additionally, the prognostic impact of the same biomarkers in the surrounding 

microenvironment must be taken into the account, since the microenvironment often 

assists cancer cells in their growth, infiltration and metastasis. Besides, targeted 

therapies may also affect these cells of the tumor environment. 
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The main aim of this thesis was to investigate the prognostic impact of hypoxia-

related markers and their relative expression in NSCLC. In vitro cell lines representing 

the two major subtypes and carcinoma-associated fibroblasts of NSCLC and a 

retrospectively collected cohort of 335 patients diagnosed with NSCLC stage I-IIIA were 

used in the thesis.   
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2. BACKGROUND 

2.1  Lung Cancer  

2.1.1 Epidemiology 
 
Globally, lung cancer is the major contributor to cancer mortality, accounting for 1.4 

million deaths in 20081. In Norway, lung cancer is the third most common cancer in both 

men and women, with 1618 and 1224 new cases respectively in 20112. In terms of 

mortality numbers, also in Norway, lung cancer is the major cause of cancer-related 

deaths in both sexes, responsible for 1267 and 917 deaths in men and women in 2011 

(Figure 1). 

 

 

 

Figure 1: Lung cancer trends in Norway (1965-2010). Incidence and mortality rates and 

5-year relative survival proportions (adapted from2). 
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  With incidence and mortality rates being similar, poor survival is still a trait of 

lung cancer. However, the estimated relative lung cancer survival in Norway has had a 

modest upturn from the period 2002-2006 to 2007-2011, with an improvement from 13 

to 17 per cent in women and 9 to 12 per cent for men2. These changes might reflect 

earlier detection, a genuine improvement of lung cancer management, less co-morbidity 

or changes in other factors that contribute to improved life expectancy3. Smoking is the 

major cause of lung cancer, making the disease largely preventable. Smoking accounts 

for 80% of the lung cancer incidences in men and at least 50% of the lung cancer cases 

in women1. The lung cancer risk increases with the number of daily cigarettes smoked 

and number of years smoking4. Passive smoking is also a risk factor5. In Norway, and 

globally, lung cancer incidence trends between genders largely reflects the phases of the 

smoking prevalence in men and women 20 years earlier1 (Figure 2).   

 Approximately 25% of lung cancer patients worldwide are never-smokers6. Other 

known risk factors for lung cancer are exposure to carcinogens such as asbestos, radon, 

arsenic and polycyclic aromatic hydrocarbons1. Never-smokers with lung cancer have 

been suggested a separate entity due to differences in epidemiological, molecular and 

clinical characteristics6. For example, never-smokers with lung cancer are reported to 

respond better to chemotherapy compared to lung cancer patients who are former or 

current smokers7. Furthermore, never-smokers with primary adenocarcinoma (AC) of 

the lung are shown to live longer compared to former or current smokers8. 
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Figure 2: Proportions of daily and occasional smokers in Norway, by sex (16-74 year old) 

(Figure adapted from9). 

 

2.1.2 Histopathology 

For clinico-pathological reasons, lung cancer is divided in two main categories: non-

small cell lung cancer (NSCLC) and small cell lung cancer (SCLC)6. Eighty-five per cent of 

lung cancer patients in Norway are diagnosed with NSCLC. This subgroup is further 

divided into three main histological subcategories: squamous cell carcinoma (SCC), AC 

and large cell carcinoma (LCC)6.        

 A major global and national trend is a decrease in SCC and a sharp rise in AC 

during the last decades10. AC has become the most prevalent histologic subtype of lung 

cancer, probably due to the increasing use of filter cigarettes with lowered nicotine and 

tar content6. AC is also the most frequent histologic subtype among never-smokers6. A 
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new classification of lung AC was released in 201111. One of the key differences from the 

former classification from 2004 is that the previous term bronchioloalveolar carcinoma 

(BAC) is included in the AC.  This AC is divided into pre-invasive lesions (atypical 

hyperplasia or in situ lesions), minimal invasive AC and invasive AC. The invasive AC is 

further divided into subgroups according to their growth patterns, like lepidic, acinar, 

papillary, micropapillary, colloid, fetal and enteric. These changes have little practical 

influence on the results of this thesis, as the BACs have been included in the AC 

subgroup for the statistical calculations. 

In recent years, therapeutic decisions in advanced NSCLC have become more 

dependent on histological diagnosis12. For instance, bevacizumab and pemetrexed is 

restricted to treatment of patients with non-SCC only13. For the antiangiogenic agent 

bevacizumab, the restriction is due to life threatening hemorrhage after treatment of 

patients with SCCs13. For pemetrexed, patients with non-SCC appear to have the 

greatest benefit from treatment with this chemotherapeutic agent13. Further, as 

epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase 

(ALK) rearrangements are almost solely seen in ACs, treatment with erlotinib and 

crizotinib respectively, is nearly exclusively administered to patients with ACs11,14,15. 
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2.1.3 Diagnosis, staging (TNM) and prognosis 
 
Sadly, as much as 70% of lung cancer patients have advanced stages at time of 

diagnosis16. This is due to few and vague symptoms at the early phase of the disease17. 

The symptoms are dependent on the localization of the primary tumor and the 

metastases17. Common symptoms of primary lung cancer are cough, dyspnea, chest 

pain and hemoptysis17. At advanced stages of the disease the common symptoms are 

reduced appetite, weight loss and fatigue17. 

Today, there is no lung cancer screening program in Norway. Low dose helical CT 

(computed tomography) screening of high-risk patients (≥30 pack years) has been 

observed to reduce lung cancer mortality18. However, before a screening program can 

be implemented in the clinic, further data from ongoing screening studies, an improved 

selection of high-risk groups, improved algoritms for dealing with mostly false positive 

findings and adequate CT capacities are needed18.  

 When lung cancer is suspected, the patient undergoes chest X-ray and CT scan of 

the chest (including the supraclavicular fossa) and upper abdomen (including the liver 

and the adrenal glands)19. If a lung tumor is detected, biopsies/cytology specimens have 

normally been obtained by bronchoscopy or for peripheral tumors by CT/ultrasound-

guided transthoracic core needle biopsy/fine needle aspiration19. Today, PET (positron 

emission tomography), esophageal ultrasound (EUS) and/or endobronchial ultrasound 

(EBUS) has been added to the staging workup19. To rule out possible brain metastases, 

especially in the case of SCLC, brain MRI (magnetic resonance imaging) is often 

performed during staging procedures19. 
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In 2007, IASLC published a new TNM classification for lung cancer20 (Table 1). In 

general, the TNM classification is essential to separate patients in different risk groups 

and to select the appropriate treatment regime.  

  



16 
 

Table 1. The seventh edition of TNM classifications and stage groupings (Table adapted 
from

20
) 

 
Stage Sub-

stage 
T Category N Category M Category 5-year 

survival  

Occult  
carcinoma 

 Tx Primary tumor not assessed or proven only 
by cells 

N0 No regional 
lymph node 
metastasis 

M0 (no distant 
metastasis) 

 

Stage 0  Tis carcinoma in situ N0 M0  

Stage I IA T1a Tumor ≤ 2 cm N0 M0 73% 

T1b Tumor ≤ 3 cm >2 cm  

IB T2a Tumor ≤ 5cm > 3 cm N0 M0 58% 

Stage  II IIA T1a N1 metastasis in 
ipsilateral hilar LN 

M0 46% 

T1b N1  

T2a N1  

T2b Tumor ≤ 7 cm > 5 cm N0  

IIB T2b N1 M0 36% 

T3 Tumor > 7 cm/invading chest wall, pleura 
or pericardium/in the main bronchus <2 cm 
from carina 

N0  

Stage III IIIA T1 N2 metastasis in 
ipsilateral 
mediastinal and/or 
subcarinal lymph 
nodes 

M0 24% 

T2 N2  

T3 N1  

T3 N2  

T4 Tumor invading mediastinum, heart, great 
vessels, trachea, esophagus, vertebral body, 
carina or tumor in another ipsilateral lobe 

N0  

T4 N1  

IIIB T4 N2 M0 9% 

Any T N3 metastasis in 
contralateral 
mediastinal, hilar, 
scalene or 
supraclavicular LN 

 

Stage IV IV Any T Any N M1A pleural or 
pericardial 
effusion or 
separate tumor in 
contralateral lobe 
M1B distant 
metastasis 

13% 

T, N and M sub classification description appears only once 
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2.1.4 Treatment of NSCLC 

2.1.4.1 Limited stage/curable NSCLC 
 
For patients with stage I NSCLC, surgery is the treatment of choice and no adjuvant or 

neoadjuvant treatment is given19. Patients with stage II and stage IIIA NSCLC, surgery 

and adjuvant chemotherapy are the treatment regimen of choice19,21. The preferred 

adjuvant regimen is four cycles of cisplatin and vinorelbine19. In addition, concurrent or 

sequential thoracic radiation is given to stage IIIA pN2 patients19,22-24. Postoperative 

radiotherapy is indicated for patients where positive surgical margins are detected 

and/or for patients with pN2 or pN3 disease19,25. If the patient is not technically or 

medically fit for surgery, radiation (66-70 Gy) with curative intention is given, with or 

without chemotherapy19.  

2.1.4.2 Advanced NSCLC 

Chemotherapy, radiation therapy or targeted therapy with a palliative goal is the main 

treatment regimen available for patients with advanced NSCLC19. For some of the 

patients in this group, no therapy is given due to severely reduced performance status 

and the seriousness of their disease.  

Standard treatment of advanced NSCLC is platinum doublets; platinum 

(carboplatin or cisplatin) in combination with docetaxel, gemcitabine, vinorelbine or 

pemetrexed19,26. Platinum-doublet chemotherapy is administered as 3-4 cycles19. In 

Norway, carboplatin and vinorelbine is the platinum-doublet combination of choice 

based on efficacy and toxicity profiles19,27. Some reports are implying that maintenance 
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chemotherapy with pemetrexed may have effect in ACs, and clinical practice guidelines 

recommend maintenance chemotherapy in selected patients19,28. 

Palliative thoracic radiotherapy is recommended to patients with advanced NSCLC 

and symptoms from the central airways19,29,30. For patients with brain metastasis or 

painful chest wall/bone metastasis, palliative radiotherapy should be considered19,31-33. 

In a cohort of 240 Norwegian lung cancer patients selected for surgery, 7,5% had 

EGFR-activating mutation (Mut+)34. Since therapies targeting the EGFR tyrosine kinase 

mutations show dramatically increased progression-free survival in the Mut+ subgroup 

of lung cancer patients35-38, all patients with NSCLC  in Norway are recommended for 

EGFR-activating mutation testing19. If EGFR Mut+ is confirmed, tyrosine kinase inhibitors 

(erlotinib/gefitinib) is recommended as first line treatment, instead of chemotherapy19. 

The monoclonal antibody bevacizumab have shown clinical benefit in treatment 

of metastatic colorectal cancer39. In non-SCC NSCLC, Sandler and co-workers observed a 

2 month survival benefit40. However, the follow-up European randomized phase III trial 

on bevacizumab in non-SCC did not demonstrate any survival benefit by adding 

bevacizumab to chemotherapy41. Consequently, bevacizumab is not recommended in 

our national lung cancer treatment guidelines19. 
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2.2 Tumor microenvironment  
 
The previous view that cancer cells in solid tumors act independently of cells in the 

surrounding tissue has changed dramatically over the last decade42. Cancers are now 

recognized as complex tissues, with the tumor microenvironment as an important 

contributor to the malignant phenotype, promoting cancer initiation, growth infiltration 

and metastasis42-44. 

The tumor stroma constitutes all cells in the surrounding area of the tumor45. 

These include fibroblasts, myofibroblasts, inflammatory cells, mesenchymal stem cells 

(MSCs), adipocytes, endothelial cells, pericytes and the extra cellular matrix45.  

Cancer cells are capable of producing stroma-modulating growth factors, that 

disrupt normal tissue homeostasis and creates a cancer supportive microenvironment43. 

In a paracrine manner, these growth factors activate resident stromal cells, induce 

angiogenesis and inflammatory responses which in turn may act pro-tumorigenic46. 

Fibroblasts were intuitively considered the origin of carcinoma-associated 

fibroblasts (CAFs), a prominent cell type of the tumor stroma  known to promote tumor 

growth, angiogenesis, inflammation and metastasis45. But with the growing interest in 

and studies on CAFs, various origins have subsequently been proposed including normal 

fibroblasts, MSCs, endothelial cells and trans-differentiated epithelial cells45. Recently, 

due to the many controversies around CAFs, including its cell of origin, a new definition 

was put forward leaving the view that CAFs is a distinct cell type45. In the new definition, 

cells in the tumor stroma with traits like mesenchymal appearance and tumor-

promoting ability, should be considered to be in a “CAF state”45. The new definition 
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implies that cells of different origins can exhibit a “CAF state”. Stromal cells in a “CAF 

state” are promising targets, since “CAF state” cells enable many of the hallmarks of 

cancer and are known to modulate the cancer cells sensitivity and exposure to anti-

cancer drugs43.  

The immune cells of the tumor microenvironment comprise both innate 

(macrophages, neutrophils, dendritic cells, myeloid-derived suppressor cells and natural 

killer cells) and adaptive immune cells (B and T lymphocytes)47. The immune cells are 

recruited to tumors in various ways, ranging from oncogenic signaling that trigger 

transcription of tumor-promoting cytokines and chemokines to necrotic cell death (due 

to hypoxia or cancer therapy) in the tumor with release of pro-inflammatory factors47. 

Like ”CAF state” cells, the immune cells communicate with cancer cells (and stromal 

cells) by means of direct contact or chemokine and cytokine production potentially 

impacting every step of tumor progression, from initiation to metastasis47. During 

tumorigenesis, it is assumed that anti-tumor immunity and tumor-promoting 

inflammation co-exist47. What decides in which direction the balance is tipped is the 

expression of various factors as well as the activation state and abundance of various 

immune cells in the tumor microenvironment47. Hence, immune cells of the tumor 

microenvironment may represent target opportunities for cancer therapy and 

prevention47.   

For development of future NSCLC therapies, understanding the nature of the 

tumor microenvironment may be equally important as understanding the nature of the 

cancer cells44. Consequently, our research group has sampled NSCLC tumor stroma, in 
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addition to NSCLC cancer cells, to be able to study the expression and prognostic impact 

of hypoxia-related markers and the angiogenic response to hypoxia. Further, it has been 

stated that the profile of molecular factors produced in the tumor microenvironment 

may be more important to study than the cellular origin of these molecular factors47. 

Therefore, when using the tissue microarray (TMA) platform, we chose to evaluate the 

hypoxia-related marker expression in the tumor stroma as a whole.  
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2.3 Hypoxia  

2.3.1 Hypoxia and hypoxia response pathway regulation 
 
Hypoxia (inadequate oxygen levels, usually defined at ≤2% O2) develops in solid tumors 

due to uncontrolled growth of cancer cells and insufficient angiogenesis and blood 

flow48,49. Intraoperative measurements of oxygen tension in patients with NSCLC tumors 

have shown that hypoxia is a feature of NSCLC50. Tumor hypoxia has been associated 

with a more malignant tumor phenotype, with reduced sensitivity to chemotherapy and 

radiotherapy in several cancers48,51. This has stimulated intensive research into hypoxia-

induced pathways and regulation of these pathways. On the other hand, hypoxia may 

also promote antiproliferative effect, by restricting cell proliferation, differentiation and 

inducing apoptosis and necrosis52.  

The primary response to hypoxia in both normal cells and cancer cells is mediated by 

the transcription factors hypoxia-inducible factors (HIFs)49. Also, recent observations link 

a microRNA (miRNA), miR-210, to a post-transcriptional regulation response to hypoxia 

in both a HIF-dependent and HIF-independent manner53-55. 

 

2.3.2 Hypoxia and angiogenesis 
 
To re-establish an adequate supply of oxygen and nutrients, hypoxic tumor cells mainly 

through HIFs, mediate cell survival through increased expression of genes that initiate 

angiogenesis (the growth of new vessels from pre-existing capillaries)56. Angiogenesis is 

one of the essential alterations in cell physiology that dictate malignant growth42. The 

angiogenic activation process is termed the “angiogenic switch”, and takes place when 
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pro-angiogenic mediators, like vascular endothelial growth factor (VEGF)-A, out-balance 

anti-angiogenic mediators, like thrombospondin-157.  

Cancer cells can gain excess to oxygen and nutrients by other mechanisms than 

angiogenesis, but the significance of these processes is not well understood56. For 

example, cancer cells can hijack the resident vasculature, a phenomenon called vessel 

co-option, or in other cases vascular mimicry occurs, in which cancer cells can line vessel 

walls56. Tumor endothelium can even be generated by cancer stem-like cells56.  

In contrast to physiologic angiogenesis, the induction of angiogenesis by 

transformed cells is not well organized. The blood vessels that are formed are irregular 

in size and shape57. Due to the structural malformations, chaotic blood flow, vessel 

leakage and increased intratumoral pressure are results from the cancer-related 

angiogenesis. Hence, local regions of hypoxia still prevail in malignant tumors. 

 

2.3.3 Hypoxia, glycolysis and lactate homeostasis 
 
Due to shifting, but prevailing areas of hypoxia, the cancer cells can no longer rely on 

adenosine triphosphate (ATP) generation through oxidative phosphorylation58. A shift in 

ATP generation through glycolysis by cancer cells, were identified several decades ago 

by Otto Warburg58. Glycolysis is the biochemical route where glucose is broken down to 

pyruvate and 2 ATPs58. Interestingly, glycolysis in cancer cells occurs even when there is 

enough O2 to support ATP production through oxidative phosphorylation58. This 

phenomenon is termed “aerobic glycolysis” or “the Warburg effect”58. The most 

selective advantage of the Warburg phenotype is an ongoing debate. It has been 
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proposed that “the Warburg effect” provides a biosynthetic advantage for tumor cells, 

in which glycolysis allows for effective shunting of carbon to generate biomass59. 

Alternatively, it has been proposed that glycolytic metabolism arises as an adaption to 

hypoxic conditions during the early avascular phase of tumor development, as it allows 

for ATP production in the absence of oxygen60.  

The final product of glycolysis is pyruvate58. When O2 is in short supply, lactate 

dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate with a 

simultaneous conversion of NADH (Nicotinamide Adenine Dinucleotide plus Hydrogen) 

to NAD+58. Lactate is then removed from the cell through the transmembrane 

transporter monocarboxylate transporter (MCT) 4, to maintain intracellular lactate 

homeostasis58. Subsequently, extracellular lactate homeostasis is believed achieved by 

lactate uptake both by oxidative cancer cells and tumor stroma cells61. Alternatively, 

cancer cells can allocate Warburg metabolism to CAFs, exploiting their lactate 

production to grow in a environment low on glucose, hence symbiotically adapting with 

stromal cells to glucose availability62. 

 

2.4 Hypoxia associated molecular markers covered in this thesis  
 

2.4.1 Paper I: HIF(1-2)αs, GLUT1, LDH5 & CAIX 
 
HIFs are the main transcription factors that regulate cancer cells’ adaption to hypoxia49. 

HIFs are heterodimeric transcription factors, composed of an O2-sensitive α-subunit 

(HIF-1α, HIF-2α, HIF-3α) and a stable β-subunit, which together binds to genes with 
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hypoxia responsive element sequences49. O2-dependent post-translational stabilization 

of HIF-1α and HIF-2α subunits controls the HIF activity during hypoxia49. However, O2-

independent mechanisms like increased oncogenic signaling can also regulate HIFα 

subunits49 . 

Available evidence points to HIF-1α and HIF-2α being responsible for the 

majority of HIF-dependent responses to hypoxia49. Little is yet known about the impact 

of HIF-3α on tumor progression in a hypoxic environment, but in normal cells HIF-3α 

acts as a negative regulator of HIF-1α and HIF-2α48,49. 

The two major categories of genes regulated by HIF-1 are those genes involved 

in increasing O2 delivery (e.g. VEGF) and those decreasing O2 consumption (e.g. 

glycolytic enzymes)63. Glycolytic enzymes are involved in the enzymatic breakdown of 

glucose to pyruvate64. Pyruvate is subsequently converted to lactate by LDHs65. Among 

five isoenzymes, LDH5, also called LDHA, has the highest efficiency in catalyzing 

pyruvate to lactate, and is also under HIF-1 transcriptional regulation65. 

A major consequence of this metabolic switch to glycolysis is a decrease in pH 

caused by lactic acid production65. Carbonic anhydrase IX (CAIX) is upregulated in a HIF-

dependent manner to export H+ ions, and hence maintain a normal intracellular pH 

level65.  

Compared to oxidative phosphorylation, glycolysis produces ATP more rapidly, 

but it is much less efficient in terms of ATP generated per unit of glucose consumed60. 

To compensate for the low ATP yield in the glycolytic pathway, HIF-1 upregulates the 

expression of the glucose importer glucose transporter 1 (GLUT1)65  
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2.4.2 Paper II: VEGF-A & VEGF-C 
 
The VEGF family expressed in mammals currently comprises five different members, 

with different receptor specificity and function56. VEGF-A (also known as VEGF) is the 

main component, and stimulates angiogenesis predominantly through VEGF-receptor-2 

(VEGFR-2)56.          

 A key regulator of VEGF-A gene expression is hypoxia and HIF-142,63. In addition, 

VEGF-A expression is also upregulated by a variety of cytokines and growth factors, 

including basic fibroblast growth factor-2 (FGF-2), interleukin 1β (IL-1β), interleukin 6 (IL-

6), transforming growth factor β (TGF- β), platelet-derived growth factor BB (PDGF-BB), 

some of which can act synergistically with hypoxia66.    

 VEGF-C activates blood-vessel cells through binding VEGFR-2 and VEGFR-367. 

VEGFR-3 is a key regulator of the formation of new lymphatic vessels 

(lymphangiogenesis), but has also been found to be important for angiogenesis67.  

VEGF-C expression in tumor cells may be induced by pro-inflammatory cytokines or 

growth factors68. Inflammatory cells in the tumor stroma may also be the source of 

VEGF-C68. 

 

2.4.3 Paper III: MCT 1-4 
 
MCTs are essential for the transport of monocarboxylates such as lactate and pyruvate 

across cell membranes69. MCT1 and MCT4 have a central role in cancer cell metabolism 

and are critical for the metabolic communication between cells70. MCT1 and MCT4 are 

located in the cell membrane61. MCT1 can promote both import and export of lactate 
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depending on the pH gradient, while MCT4 facilitates lactate release61,71. MCT2 and 

MCT3 in cancers are less studied. MCT2 is reportedly expressed in the mitochondrial 

membrane, where it is involved in the import of pyruvate following lactate oxidation72. 

MCT3 exports lactate, and is reported to be expressed in retinal pigment epithelium and 

choroid plexus epithelium73.         

 Only MCT4 is regulated by hypoxia in a HIF-1-dependent manner74. This is in 

agreement with HIF-1 responsive gene products which enhance the rates of glycolysis, 

and hence the need to export large amount of lactic acid is existing. The regulation of 

MCT1-3 remains to be fully elucidated. In fact, one study links MCT1 to p53 regulation75.  

 

2.4.4 Paper IV: miRNA-210 
 
miR-210 is the miRNA predominantly induced by low oxygen tension76. Several studies 

have identified a variety of miRNAs to be induced by low oxygen tension, but the one 

miRNA all reports had in common was miR-21077. miR-210 expression is reported to be 

under control of HIF-1 and HIF-2, but apparently also HIF-independent mechanisms53-55.  

miR-210 regulate a vast number of genes involved in cell cycle regulation, angiogenesis, 

tumor growth, DNA damage repair, mitochondrial metabolism and apoptosis78. 

Consequently, miR-210 has been named “the micromanager of the hypoxia pathway”78. 

In cancer cell biology, miR-210 has been reported to be both a tumor suppressor and 

oncomiR. But, due to the recent discovery of miR-210, its role in cancer is still rather 

unresolved. 
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3. AIMS OF THE THESIS 
 

In this thesis, we wanted to investigate if hypoxia-related markers were prognostic 

factors in NSCLC. Put differently, if they affected the pathobiology of NSCLC to such an 

extent that the degree of agressiveness of the cancer, and hence the patient outcome 

were affected. Further, we wanted to explore the angiogenic response to hypoxia in 

NSCLC cell lines.  

More specifically the aims were: 

 

- To investigate the prognostic significance of HIF-(1-2)αs and the HIF-regulated 

genes GLUT1, LDH5 and CAIX in NSCLC. 

- To explore whether hypoxia induces VEGF-A and VEGF-C secretion in NSCLC cell 

lines and primary NSCLC cell cultures, and if the response to hypoxia is 

dependent on histological subtype. 

- To assess MCT1-4s’ prognostic impact in cancer cells and tumor stromal cells, 

and the potential prognostic synergetic value of metabolic interplay between 

tumor stromal cells and cancer cells. 

- To examine the prognostic role of miR-210 in NSCLC tumor stromal and cancer 

cells. 
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4. MATERIAL AND METHODS 
 

4.1 NSCLC cell lines 
 
Commercial cell lines. The commercial cell lines used in the thesis were bought from 

ATCC (American Type Culture Collection). We chose two cell lines representing the two 

most common histological subtypes of NSCLC. The NCI-H520 (ATCC® HTB-182™) cell line 

is derived from a male patient with primary SCC of the lung. The NCI-H522 (ATCC® CRL-

5810™) cell line is derived from a male patient with primary AC of the lung. 

Authentication certificates and validation of the cell lines were provided by the 

manufacturer. 

Primary cell cultures. Primary cell cultures were established as an enriched 

population of defined cell types from freshly resected NSCLC tumor tissues. Patients 

who donated tissue participated after giving informed consent. The study was approved 

by the Regional Committee for Medical and Health Research Ethics (REK). Validated 

tumor samples were cut in tiny (1-1.5 mm3) pieces. Subsequent enzymatic digestion for 

1.5h in 10 ml DMEM/Ham’s F-12, containing 0.8 mg/ml collagenase (Sigma-Aldrich, St. 

Louis, MO, USA) was carried out. The digested NSCLC tissue was spun down, and 

resuspended in fresh growth medium (DMEM/Ham’s F-12) supplemented with 10% FBS.  

The primary AC cell line (PAC) was established after serial eliminations of CAFs. The 

remaining adherent tumor epithelial cell colonies were grown in a tailored serum-free 

medium that favors growth of epithelial cells. The epithelial cell cultures that tolerated 

subculturing were established as continuous cell lines. Characterization for purity and 
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cell identity was done by flow cytometry, using fluorescein isothiocyanat (FITC)-

conjugated anti-human pan cytokeratin (Sigma-Aldrich, St. Louis, MO, USA). 

The primary CAFs were characterized for cell identity and purity by flow cytometry, 

using FITC-conjugated anti-human α-smooth muscle actin (α-SMA) (Abcam, Cambridge, 

UK).  

At the time of the experiments, no primary SCC cell line had been successfully 

established in our research group. Only human PAC cells and CAFs were available.  

 

4.1.1 Experimental conditions 
 
For each cell line, three parallels were seeded into three separate series (n=9). The cells 

were seeded onto six different plates prior to each experiment, three plates for 

normoxic conditions (6h, 12h, 24h) and three plates for hypoxic conditions (6h, 12h, 

24h). Preceding each experiment, all plates were kept at normoxic condition (5% CO2 

and 21% O2) for 48h to allow cell adherence and equilibrium. Subsequently, fresh 

starvation medium (0.5% FBS) was added to the wells and the cells were then exposed 

to either normoxia (21% O2) or hypoxia (2.5% O2). Hypoxia was maintained by 

continuously infusing nitrogen gas in the incubator (Hera Cell150, Thermo Scientific).  

The supernatant from each well was harvested at the end of each incubation period and 

subsequently centrifuged, transferred to new eppendorf tubes and stored in -80° C prior 

to analysis. We took two replicates of each sample to increase the precision of our 

estimates.  
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4.1.2 ELISA & DC Protein assay  
 
ELISA (enzyme-linked immunosorbent assay) is a tool that uses antibodies and color 

change to quantify a specific protein in the sample. The VEGF-A and VEGF-C 

concentrations in the cell supernatants were quantified by R&D Systems Quantikine 

ELISA kit (Cat.no DVE00 and DVEC00, Quantikine ELISA kit, R&D Systems, Abingdon, UK). 

The principle of the ELISA Quantikine® assay can be divided into three steps. First, 

samples or standards were added to a microplate pre-coated with a capture antibody. 

Any VEGF-A/VEGF-C present in the sample/standard was bound by the immobilized 

antibody. Subsequently, unbound materials were washed away. Second, a horseradish 

peroxidase (HRP)-conjugated detection antibody was added, and bound to the captured 

VEGF-A/VEGF-C. Unbound detection antibody was subsequently washed away. Third, to 

quantify captured VEGF-A/VEGF-C, tetramethylbenzidine substrate solution was added 

to the wells, and a blue color developed proportionally to the amount of VEGF-A/VEGF-

C present. Next, color development was stopped and the absorbance of the color was 

measured at 450 nm.  

The VEGF-A and VEGF-C concentrations were normalized to total protein 

concentrations using the DC Protein Assay (cat.no 500-0116, Bio Rad, Hercules, CA, 

USA). The principle of the assay is based on two steps, where the proteins in the 

samples react with two reagents, which subsequently lead to color development. The 

absorbance of the color was measured at 750 nm. 
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4.2 NSCLC tissue samples 

4.2.1 NSCLC patient cohort 
 
Primary tumor tissue samples from 371 patients diagnosed with stage I-IIIA NSCLC (1990 

to 2004) were collected retrospectively at the University Hospital of Northern Norway 

and Nordland Central Hospital. From the original cohort of 371 patients, 36 patients 

were excluded due to inadequate paraffin-embedded fixed tissue blocks (n=13), other 

malignancy within 5 years prior to diagnosis (n=13) or chemotherapy or radiotherapy 

prior to surgery. Consequently, 335 patients with complete demographic and 

clinicopathological data were included in the study (Figure 4). 

Figure 4. The cohort with criteria for inclusion and exclusion of the 371 stage I-IIIA 
NSCLC patients enrolled in the study.  

 
 
  

371 NSCLC stage I-IIIA 
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4.2.2 Tissue microarray (TMA) 
 
TMA is a procedure used to investigate the molecular profile of large tissue cohorts, in 

an efficient and cost-effective way.  In one single operation, cores from hundreds of 

specimens, collected on a single slide, can be evaluated for biomarker expression 

simultaneously. It is possible to detect DNA, RNA and protein expression, using methods 

like immunohistochemistry or in situ hybridization. TMA have revolutionized the study 

on biomarkers.   

Assembly of TMA blocks. Experienced pathologists selected the most 

representative areas of cancer cells and tumor stromal cells to be samples from each 

donor block. The sampling was done with a 0.6 mm needle by Manual Tissue Arrayer 1 

(Beecher Instruments, Inc. WI, USA). The instrument samples cylindrical segments from 

donor blocks and places the cores into the predrilled recipient block. Two separate areas 

of cancer cells and tumor stromal cells, respectively, were sampled from each tumor. A 

total of 335x4=1340 cores were sampled and inserted into eight recipient blocks. In 

addition, 20 control specimens were collected in the same way from normal lung tissue 

and inserted in an additional control TMA-block. For the immunohistochemistry (IHC) 

and in situ hybridization (ISH) analyses, 4 µm sections were cut with the Rotary 

Microtome HM 355S (Microm International GmbH, Walldorf, Germany) and stained by 

specific antibodies or probes for molecular profiling of the NSCLC cohort (Figure 5). 
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Figure 5. Schematic presentation of the construction of TMAs (adapted from 79). 
 

4.2.3 Immunohistochemistry (IHC) 
 
IHC is a technique used to detect antigens in tissues with the use of specific antibodies 

that can be visualized through staining 80. It is possible to detect antigens, like amino 

acids and proteins. IHC is an important tool for biomarker detection, histopathological 

diagnostics and research. 

4.2.3.1 IHC procedures  

In Table 4, an overview of antibodies used in the thesis is presented. Both manual and 

automated staining procedures were used in this thesis. 
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Principle of the manual staining procedure (VEGF-A, VEGF-C, LDH5, MCT2 and MCT3): 

The antigen recovery for the IHC procedure started with the removal of paraffin from 

the TMA sections by heating up the samples. Then, the slides went through multiple 

xylene washes and were subsequently rehydrated through graded washes of ethanol in 

water, ending in a final rinse in pure water. To remove the methylene bridges between 

the proteins, formed by the formaldehyde, the heat-induced epitope retrieval (HIER) 

was used; The TMA slides was placed in 0.01M citrate buffer (pH 6.0) and exposed to 

microwave heating at 450W.         

  For VEGF-A and VEGF-C the EnVision+ System-HRP (DAB) system was used 

(Cat.no K4011, Dako North America Inc., CA, USA). The principle of the assays was as 

follows; The TMA slides were incubated with the diluted rabbit primary antibody 

(antibody diluent: S080981, Dako North America Inc., CA, USA) followed by incubation 

with secondary antibodies that were conjugated with HRP-labelled polymer. Staining 

was completed by incubation with 3-3’diaminobenzidine (DAB) substrate-chromogen, 

which resulted in a brown-coloured precipitate at the antigen site. 

For LDH5, MCT2 and MCT3 the VECTASTAIN® Elite ABC kit was used (Vector 

Laboratories, Inc., CA, USA). Non-specific staining was avoided by; 1) the TMA slides 

were incubated with blocking solution to quench endogenous peroxidase activity. 2) 

The TMA slides were incubated in diluted normal blocking serum that was prepared 

from the specimen the secondary antibody was made. The TMA slides were 

subsequently incubated with the diluted primary antibody, followed by diluted 

biotinylated secondary antibody solution. The slides were incubated in VECTASTAIN 
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Elite ABC Reagent followed by incubation in peroxidase substrate solution until desired 

stain intensity developed. 

Principles of the automated staining procedure (HIF-1α, HIF-2α, GLUT1, CAIX, MCT1 and 

MCT4): The TMA slides were loaded onto the Ventana Benchmark XT (Ventana Medical 

Systems, Illkirch, France), and followed the ultraview DAB® procedure. The 

deparaffinization and antigen retrieval (HIER using standard Cell Conditioning Solution 

(CC1)) steps were user-defined, but were performed by the automated Benchmark 

system. Following this, the primary antibodies were applied, using a secondary antibody 

whereby the HRP-enzyme is directly conjugated. The primary-secondary antibody 

complex is visualized with hydrogen peroxidase substrate and DAB chromogen, 

resulting in a brown stain where the antigen is located in the cell. Finally, all slides were 

counterstained with haematoxylin to visualize the nuclei. 

 

Table 4. Antibodies used in the IHC studies in the thesis. 

Antigen Type Manufacturer Catalog # Dilution 

HIF-1α Mouse monoclonal Novus Biologicals NB100-131 1:3500 

HIF-2α Rabbit polyclonal Abcam ab199 1:40 

GLUT1 Mouse monoclonal Abcam ab40084 1:500 

LDH5 Rabbit polyclonal Abcam ab53010 1:100 

CAIX Rabbit polyclonal Abcam ab15086 1:500 

VEGF-A Rabbit polyclonal Neomarkers RB-1678 1:10 

VEGF-C Rabbit polyclonal Zymed laboratories 18-2255 1:25 

MCT1 Rabbit polyclonal  Millipore AB3538P 1:75 

MCT2 Goat polyclonal Abcam ab129290 1:150 

MCT3 Rabbit polyclonal Abcam ab60333 1:50 

MCT4 Rabbit polyclonal Santa Cruz sc-50329 1:200 
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IHC controls. Paper I; all applied antibodies had been subjected to in-house 

validation by the manufacturer for IHC analyses on formalin-fixed paraffin-embedded 

material. Paper II; the VEGF-A and VEGF-C antibodies were subjected to in-house 

validation by the manufacturer for IHC analysis on paraffin-embedded material. As 

negative controls, the primary antibody was replaced by with the primary antibody 

diluent. Paper III; all applied antibodies had been subjected to in-house validation by the 

manufacturer for IHC analysis on paraffin-embedded material. For MCT1 and MCT4, we 

additionally employed Western blots to verify the specificity of the selected antibodies. 

The size corresponded well with the predicted sizes, consistent with the data provided 

by the manufacturers. The observed relative expression levels of MCT1 and MCT4 

proteins in the tested cell lines matched findings reported by others.  

 

4.2.4 In situ hybridization (ISH) 
 
We used ISH to determine the expression of miR-210, which visualizes the location of 

the miRNA in both its histological and cellular localization. This is in contrast to methods 

as Northern blotting and RT-PCR (real-time polymerase chain reaction) where cell 

homogenates are used. The ability to localize the miRNA was crucial since we were 

interested in investigating the impact of biological markers in both the cancer cell and 

tumor stroma compartment.  
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4.2.4.1 In situ hybridization procedure 

The ISH procedure was done according to the “One-day microRNA ISH protocol”. To 

obtain sensitive and specific detection of miR-210, some optimization of the protocol 

were done. The principal steps of the ISH procedure was as follows (for details, see the 

material and methods section in paper IV); First, the cores of the TMA was attached to 

Superfrost™ Plus Slides (Cat.no 12-550-15, Thermo Fisher Scientific, MA, USA) which, 

due to opposite electrical charge between the slides and the tissue, keeps the tissue 

adherent to the slides during the ISH procedure. With ordinary glass slides, about 50% 

of the tissue cores will partly or completely fall off81. In the next step the TMA slides was 

placed in xylene to remove the protective paraffin wax. Then, to remove the xylene, the 

slides were rehydrated in graded washes of ethanol (96-70%). Subsequently, the slides 

were washed in PBS before the tissue was digested by Proteinase K. Proteinase K is 

strong and well suited for tissue that has been fixed for a long time in formalin, which is 

true in our case. But one has to be careful that overdigestion does not occur, which will 

result in loss of tissue morphology. The hybridization step started after the slides was 

washed in PBS, dehydrated in graded washes of ethanol (70-96%) and air dried. The 

Locked Nucleic Acid (LNA) probes were denaturized by heating to 90°C. The TMA 

Superfrost™ Plus Slides were first covered with the probe and then with a polypropylene 

sterile coverslip and the hybridization reaction was allowed to proceed in a ThermoBrite 

hybridizer at 55°C. Then, the cover slip was removed and the slides went through 

stringent washes in pre-heated buffers. Next, unspecific binding was prevented by a 

blocking solution. The probe-miR-210 complex was visualized by alkaline phosphatase 
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(AP)-conjugated anti-DIG. Nuclear fast red was used as counterstain. During the whole 

procedure, a stringent approach was used to enable an RNase free work environment 

and RNase free solutions.  

ISH controls. As negative control, we used the scramble probe obtained from 

Exiqon (Vedbeak, Denmark). The scramble probe have identical sequence as the miRNA 

cDNA, but the nucleotides are ”scrambled” at random so that the homology with the 

target sequence is very low 81. As positive control, we used a small nuclear control 

probe; U6, hsa/mmu/rno (Exiqon). Weak or negative positive control may be due to 

degradation of tissue during the formalin fixation process or methodological errors. In 

addition, we used tissue known to be strongly negative and positive for miR-210. As 

negative tissue control we use samples from human epithelial ovarian cancer 82. In the 

epithelial ovarian cancer cells, miR-210 was downregulated compared to adjacent 

normal epithelial cells (results not shown). As positive tissue controls, we used samples 

from breast cancer, pancreatic cancer, glioblastoma and clear cell carcinoma from 

kidney 78. Further, two experienced pathologist performed a quality assessment of the 

ISH slides to secure specificity and avoid background staining. 

 

4.2.5 Evaluation of staining 
 
Apart from paper III, staining by IHC and ISH was evaluated by two experienced 

pathologists. Compared to digital image analysis, scoring by pathologists allows for 

distinction of biomarker expression in cancer cells versus tumor-associated stromal cells 

83. Further, it allows for future implementation into clinical practice, if the assays can be 
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validated. IHC scoring is a semiquantitative analysis, and to reduce subjectivity the slides 

were scored by two researchers (normally two pathologists; for paper III one pathologist 

and one trained physician). Interobserver reliability was calculated and found 

satisfactory.  

 

4.2.6 Statistical analysis 
 
All statistical analyses were done using the statistical package SPSS (Chicago, IL, USA); 

versions 15 (paper I), 16 (paper II) and 20 (paper III and IV).  

Paper II. The ELISA data were expressed as the mean ± SEM. The numerical 

outcome from both groups (normoxia and hypoxia group) was tested statistically with 

paired-sample t-test. Significance was defined as P<0.05.  

Paper I, III and IV. The chi-square test and Fishers exact tests were used to 

examine the associations between molecular marker expression and the 

clinicopathological variables. r-values are the Spearman’s rank correlation coefficient. 

Univariate survival curves were drawn using the Kaplan-Meier method. Statistical 

significance between the high and low marker expression was assessed by the log-rank 

test. Disease-specific survival (DSS) was the endpoint in paper I, III and IV. DSS was 

defined from the date of surgery to the time of lung cancer death. The last DSS update 

was in January 2011. Variables with significant P-values (P<0.05) from the univariate 

analyses were entered into the multivariate Cox regression analysis (backward stepwise, 

probability for stepwise entry and removal was set at 0.05 and 0.10). In paper III and IV, 

two models were used. In Model 1, marker expressions in cancer and stromal cells were 
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tested simultaneously against the significant clinicopathological variables, while in 

Model 2 the co-expression variables were tested separately against the significant 

clinicopathological variables. A P-value <0.05 was defined as statistically significant.  In 

paper IV, for a few of the tumor tissues, we only had one core for evaluation. Due to 

stringent assessment standards, we characterized these as missing as we did not want 

to extrapolate results from only one core. 
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5. MAIN RESULTS 

5.1 Paper I 

5.1.1 Correlations 

A strong correlation was observed between HIF-2α and LDH5 in stromal cells (r=0.41, 

P<0.001) and GLUT1 in cancer cells and SCC histology (r=0.37, P<0.001). 

5.1.2 Univariate analyses 
 

For all NSCLC patients, ↑HIF-1α (P<0.001) and ↑GLUT1 (P<0.013) in cancer cells and 

↓HIF-1 (P=0.028), ↓HIF-2α (P=0.001) and ↓LDH5 (P=0.011) in stromal cells 

correlated with poor DSS. For the SCC subgroup; ↑HIF-1α (P=0.001) in cancer cells and 

↓HIF-1α (P=0.009) and ↓HIF-2α (P=0.005) in stromal cells correlated with poor DSS.  In 

the AC subgroup, ↑GLUT1 (P=0.01) expression in cancer cells and ↓LDH5 in stromal 

cells (P=0.03) correlated with a poor DSS.  

5.1.3 Multivariate analyses 
 

For all NSCLC patients, ↑HIF-1α (HR: 2.3, 95% CI: 1.3-4.1, P=0.003) and ↑GLUT1 (HR: 

2.0, 95% CI: 1.1-3.4, P=0.02) in cancer cells and ↓HIF-1α (HR: 1.8, 95% CI: 1.3-2.8, 

P=0.003) and ↓HIF-2α (HR: 1.8, 95% CI 1.2-2.8, P=0.006) in stromal cells were 

associated with poor DSS. In the SCC subgroup, ↑HIF-1α (HR: 3.3, 95% CI: 1.7-6.6, 

P=0.001) in cancer cells and ↓HIF-1α (HR: 2.1, 95% CI: 1.2-3.7, P=0.008) and ↓HIF-2α 

(HR: 2.3, 95% CI: 1.3-4.1, P=0.005) in stromal cells were associated with a poor DSS.  In 

the AC subgroup, ↑GLUT1 (HR: 1.9, 95% CI: 1.0-3.6, P=0.046) in cancer cells and ↓LDH5 

(HR: 2.3, 95% CI: 1.1-4.8, P=0.03) in stromal cells were associated with a poor DSS. 
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5.2 Paper II 
 

5.2.1 VEGF-A response to hypoxia in AC and SCC cell lines 
 
The major trend in the VEGF-A secretion after exposure to hypoxia over time, was a 

significant increase in both AC cell lines (H522 and PAC). In contrast, the SCC cell line 

(H520) had over time a reduction in VEGF-A secretion. 

5.2.2 Comparison of the VEGF-A response to hypoxia between AC and SCC cell lines  
 
After exposure to normoxia, the VEGF-A secretion from the SCC cell line (H520) was 

higher when compared to that of the AC cell line (H522). During hypoxia, the VEGF-A 

secretion was lower in the AC cell line (H522) than in the SCC cell line (H520) at 6 h 

(P<0.0001) and 12h (P=0.02), but not at 24h (P=0.75).  

5.2.3 Comparison of the VEGF-A expression in tissues from patients with AC and SCC 
 
In line with the cell line results, the overall expression of VEGF-A in the SCC tumors was 

higher when compared to AC tissues, but the results did not reach statistically 

significance (P=0.059).  
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5.3 Paper III 

5.3.1 Correlations 
 
A correlation between MCT1 in cancer cells and GLUT1 (r=0.38, P<0.001) and MCT1 in 

cancer cells and histology was observed, with high expression in 58% of SCC compared 

to 34% of AC patients (r=0.484, P<0.001).  

5.3.2 Univariate analyses 
 
↑MCT1 expression in cancer cells (P=0.021) and ↑MCT2 (P=0.006) and ↑MCT3 

(P=0.020) expression in stromal cells and the co-expression marker ↑MCT1 in cancer 

cells + ↑MCT4 in stromal cells (P=0.006) correlated with a favorable outcome.  

↑MCT1 in stromal cells (P=0.003) and ↑MCT4 in cancer cells (P=0.027) and the co-

expression variables ↑GLUT1 in cancer cells + ↑MCT1 in stromal cells (P=0.001), 

↑GLUT1 + ↑MCT4 in cancer cells (P=0.003) and ↑MCT4 in cancer cells + ↑MCT1 in 

stromal cells (P=0.009) was associated with a poor DSS. 

5.3.3 Multivariate analyses 
 
↓MCT1 in cancer cells (HR: 1.9, 95% CI: 1.3-2.8, P=0.001), ↓MCT2 in stromal cells 

(HR:2.4, 95% CI:1.5-3.9, P<0.001 ) and ↓MCT3 (HR: 1.9, 95% CI: 1.1-3.5, P=0.031), 

↑MCT1 in stromal cells (HR:1.7, 95% CI: 1.1-2.7, P=0.016) and the co-expression 

variables ↑GLUT1 in cancer cells + ↑MCT1 in stromal cells (HR: 7.3, P=0.016) and 

↑GLUT1 + ↑MCT4 in cancer cells (HR: 3.3, P=0.031) were all significant and 

independent prognostic factors for poor DSS.  
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5.4 Paper IV 
 
In a pilot screening of the expression of 281 miRNAs by our group, tumor tissues from 

20 NSCLC patients, 10 worst and 10 best prognosis, as well as tissue from 10 normal 

lungs were used 84. The hypoxia related miR-210, was found to be upregulated in tumor 

tissue compared to normal tissue. As a consequence, we sought to study the prognostic 

impact of miR-210 in our large NSCLC cohort. miR-210 expression was evaluated in both 

cancer and stromal cells. 

5.4.1 Correlations 
 
We only found modest to weak, although highly significant, correlation between miR-

210 in stromal cells and the hypoxic and angiogenic markers HIF-1α (r=0.161, P= 0.006), 

HIF-2α (r=0.185, P= 0.002) and PDGFRα (r=0.210, P<0.001) in stromal cells. 

5.4.2 Univariate analyses 
 
High expression of miR-210 in cancer cells (P=0.039) was significantly associated with a 

favorable outcome. High expression of miR-210 in stromal cells (P=0.008) were also 

significantly associated with a positive outcome.  

5.4.3 Multivariate analyses 
 
Low expression of miR-210 in stromal cells (HR: 1.9, CI 95%: 1.1-3.0, P=0.013) was 

significantly and independently associated with a worse prognosis. miR-210 expression 

in cancer cells versus prognosis did not reach statistical significance. 

  



46 
 

6. DISCUSSION 

6.1 Methodological considerations 

6.1.1 Study designs 

A great strength of this thesis is the use of different study designs (experimental and 

observational cohort) to investigate the hypoxia response pathways in NSCLC. Besides, a 

broad range of methods have been used (cell cultures, ELISA, TMA, IHC, ISH and 

Western Blot) enabling us to answer the aims stated. 

 

6.1.2 Experimental study: Cell lines 

Experimental studies comprise studies where the investigator intervenes in some way to 

affect the outcome. The strength of these is the control of factors which may otherwise 

bias the outcome, providing more robust evidence when testing the hypothesis. 

Continuous  cell lines are commonly used as in vitro models in cancer research85. 

Their advantages are several; they are easy to handle, and represent an unlimited self-

replicating source. Further, they are relatively homogenous and are easily stored in 

frozen stocks. The disadvantage of continuous cell lines are that they are susceptible to 

genotypic and phenotypic changes as passages increases, making them less suitable as a 

model for the tumor type they originated from. 

Primary cell lines, on the other hand, may be an alternative source as an in vitro 

model of cancer. These cell cultures derive directly from in-house freshly resected 

tumors, and hence the biological response observed in an experimental setting may be 
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closer to an in vivo situation than the one obtained with a continuous cell lines. Further, 

detailed information about its histopathology is easily retained. The primary cell lines 

can be established as an explant culture (from small tissue parts, mixed cell populations 

grow out) or culture of individual cells, which is more desirable as you separate the 

epithelial cells from stromal fibroblasts, and thereby avoid that they are outgrown by 

fibroblast, which more easily adapt to in vitro conditions. Disadvantages of primary cell 

lines, which are also a disadvantage of continuous cell lines, is that they may behave 

differently in vitro as compared to their response in the tumor. This is due to cell-cell 

interactions in the tumor, which is lost in this in vitro model. Further, primary cell lines 

of epithelial cancer cells have slow doubling time and a short lifespan in vitro. This 

makes use of them problematic, especially for experiments running over a long time or 

where you need a large number of cells. 

 

6.1.3 Observational study: Cohort study 

An observational study is one where the investigator does not influence the outcome, 

but only observes what happens. Examples of observational studies are case-control and 

cohort studies. Usually, a cohort study includes a group of individuals that are usually 

followed over time (prospective cohort) or observed retrospectively as in this thesis 

(historical cohort). The demographic, clinical and histopathological data was obtained 

from medical records at the university hospital, local hospital and/or the patient’s 

general practitioner. The benefits of a retrospective/historical cohort are lower costs 

and more quickly available data when compared to prospective studies. The 
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disadvantage may be lower data quality and certainly the impossibility to do 

randomized studies. In addition, retrospective single center trials may be especially 

associated with bias due to selection, the nature of the center and inadequate records. 

 

6.1.4 TMA 
 
Like all methods, TMA have its strength and weaknesses (Table 3). The TMA technology 

has several advantages, compared to using whole sections of tissues with one slide for 

every patient. First, TMA is a time saving procedure for the technician and scorer(s). As 

an example, our material was composed of eight slides, instead of 335, and IHC and ISH 

can be performed on these eight slides in one single operation. Since TMA cores are 

from the most representative areas of each donor block (secured by a highly 

experienced pathologist). The experienced scorer will immediately see the areas of 

cancer and tumor stromal cells in the microscope, and do not have to locate suitable 

areas for scoring on a whole section slide. Second, TMA reduces costs significantly 

because of the significantly lower amount of antibodies/probes and other reagents and 

material needed when processing and cutting eight blocks instead of 335. Third, TMA 

slides are well suited for exchange between research groups. It is easy to compare 

scoring of slides and choice of cut-off values. Unstained slides make it possible to 

compare IHC and ISH procedures. 

On the other hand, producing and cutting TMA slides is technically challenging 

and is therefore dependent on a committed and well-trained technician. Further, by 

collecting tissue samples dating over a large time span, the chances of different 
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techniques in tissue processing (e.g. fixation) increases. Thus, it is important that the 

tissues included have been processed in a similar and reproducible way during the 

actual time period. 

Representativity is a common concern when comparing TMA with whole tissue 

slides, but studies addressing this issue have shown good correlation between scoring of 

whole sections and TMA slides when it comes to evaluating biomarker expression in 

larger cohorts86. In agreement, representativity of biomarker expression studied in TMA 

compared to regular sections is reported to be >90-95%87. In addition, representativity 

can be improved by increasing the number of cores from each patient88. Still, TMAs are 

not suitable for diagnostic purposes, as the cores will not reveal possible variations in 

heterogenous tissues89. Results from TMA studies should be prospectively validated in 

actual patient settings before implementing them in a clinical setting. 

 

Table 3: Strength and weaknesses of TMA 

Strengths Weaknesses 

Saves time Possible technically challenging 

Reduces costs Lower accuracy when heterogenous expression of 
biomarkers 

Saves tissue Variation through the core 

Enables study of larger cohorts Not suited for individual diagnosis 

Standardized staining conditions  

Research collaboration through sharing 
slides 
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6.1.5 IHC  
 
Polyclonal and monoclonal antibodies are two different antibody types with both 

strengths and weaknesses. Monoclonal antibodies are homogenous immunoglobulins 

directed against a single epitope of the antigen. The monoclonal immunoglobulins are 

produced by a single B-cell clone and are therefore identical. To mass-produce the 

monoclonal antibodies, the B-lymphocytes are isolated and fused with immortal 

myeloma cell lines and subsequently injected into the peritoneal cavity of an animal or 

placed in a bioreactor system. Monoclonal antibodies have the advantage of lot-to lot 

consistency, since its production depends on an immortal cell line and not on the life of 

the animal as with the polyclonal antibody production. 

Polyclonal antibodies are directed against various epitopes and are therefore a 

heterogenous mixture of antibodies. The polyclonal antibodies are produced by 

immunizing the animal with the antigen that the antibody produced is going to detect.  

The blood from the animal is collected three to eight months later and the antibody is 

purified. The polyclonal antibodies produced have slightly different affinities and 

specificities against the antigen. The polyclonal antibodies are more robust, and less 

false negative results are produced since the antibodies recognize various epitopes on 

the antigen. On the other hand, the same feature increases the chance of cross 

reactivity. 
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6.1.6 ISH 

In general, miRNAs are challenging to study. This is partly due to their short length (19-

23 bp), which leads to a melting temperature of the miRNA/cDNA probe hybridized 

complex which may be too low for their detection81. LNA is a nucleic acid analog, in 

which the ribose ring is locked in an optimal confirmation for a higher base paring 

affinity to the miRNAs compared to DNA and RNA90. Further, to enable specific 

identification, the design of LNA oligos allow for optimization of increased mismatch 

discrimination. LNA probes have shown great advantages in numerous platforms, 

including ISH.   

 

6.1.7 Determination of cut-off values  
 
 The expression of the biomarkers in this thesis varied over a continuous scale, and the 

choice of cut-off values is an important and difficult issue. To standardize cut-off values 

for each biomarker is challenging, due to variation in methods used among research 

groups, including differences in tissue handling, antibody type and manufacturer and 

assessment of biomarker expression. Many research groups have used mean value as 

the cut-off point, which makes the results easier to reproduce, but the chance of false 

negative results increase (type 2 errors). Since the risk of missing biologically important 

mechanisms increases by using mean values, we have used the cut-offs for each 

biomarker that gave the most significant difference in DSS between the subgroups, 

while maintaining large enough subgroups. By using this approach we aim to identify 

the biologically significant cut-offs, but the risk of getting false positive results increases 
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(type 1 errors). Therefore, it would be of great value to get an independent validation of 

our results, and hence we have initiated collaboration with other lung cancer research 

groups to establish validation sets. In addition, we are expanding our own material so 

that tissue specimens from one of the institutions can be used as a validation set for the 

training set. 
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6.2 DISCUSSION OF MAIN RESULTS 
 

Paper I  
 
Hypoxia in cancers is by itself associated with a poor outcome52. HIF-1α, the master 

transcriptional regulator of the hypoxic response, is reported to be an independent 

prognosticator for poor survival in several cancers91. 

 To our knowledge, we are the first to report that high expression of HIF-1α in 

NSCLC cancer cells is an independent prognostic marker for poor survival. 

Giatromanilaki et al. only found a trend towards an association with poor survival and 

high HIF-1α expression92. A similar negative prognostic impact by high HIF-1α expression 

in NSCLC tumors was found in univariate analysis by Kim et al.93. An explanation of HIF-

1α’s negative prognostic impact in NSCLC cancer cells may be that it serves as surrogate 

biomarker of hypoxia, which is associated with a poor outcome52. However, the fact that 

a stringent association between HIF-1α and hypoxia under standardized in vitro 

conditions is well established does not prove that this association is directly transferable 

to the clinic94.  

In contrast to the expression in NSCLC cancer cells, high HIF-1α and HIF-2α 

expression in tumor-associated stromal cells correlated with a favorable prognosis. The 

HIF-1α finding in tumor stroma is in agreement with a previous study in breast cancer 

showing that high HIF-1α expression in the stroma compartment was associated with a 

better prognosis95. Our data may be a result of in situ immunity, since we found a weak 

to moderate correlation between lymphocytes and hypoxia markers. In contrast to this 
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hypothesis, Lukashev et al. have reported that hypoxia, and subsequently HIF-1α activity 

in T lymphocytes, can protect cancer cells from damage by immune cells96. 

 In the subgroup analysis according to histological entities, HIF-1α in cancer and 

stromal cells and HIF-2α in stromal cells showed a prognostic role in SCC, but not in AC. 

SCC tumors are known to exhibit more necrosis, probably due to hypoxia, than other 

NSCLC subtypes. In support of this theory, a metaanalysis by Ren et al. showed that HIF-

1α expression was significantly higher in SCC than in AC97. 

Our data shows that high GLUT1 expression in NSCLC cancer cells has an 

independent negative prognostic impact. Consistently, Younes et al. and Minami et al. 

have previously reported associations between high GLUT1 expression in NSCLC cancer 

cells and poor survival98,99. However, Nguyen et al. did not find such an association100. 

High cancer cell GLUT1 expression had a significantly stronger prognostic impact in the 

AC than in the SCC subgroup, even though there was a higher proportion of SCC tumors’ 

expressing the marker. Consistent with our observation, Meijer et al. found a higher 

proportion of SCCs than ACs expressing GLUT1, and that a prognostic impact by GLUT1 

expression only was seen in ACs101. Besides, the study by Minami et al. confirms that 

GLUT1 is an independent prognostic factor in ACs of the lung99. 

Our data show that high LDH5 expression in stromal cells indicated a favorable 

prognosis. This finding may be explained by the observation that the stromal cells of 

these patients did not show a complementary metabolic profile between cancer cells 

and tumor-associated stroma as hypothesized by Koukourakis et al.72. 
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Our study provides additional evidence for why increased focus on histological 

subgroups in NSCLC and more personalized therapy is important along with the 

introduction of new molecular targeted drugs13. Further, our observations highlight the 

complexity of cancer biology, emphasizing that drugs with molecular targets may give 

diverging effects in cancer cells versus the cancer-related stromal compartment.  

 

Paper II 
 
To our knowledge, the in vitro VEGF-A response to hypoxia in AC compared to SCC has 

not been investigated previously. Our main finding is that the AC subgroup responded to 

hypoxia with increased VEGF-A secretion, while the SCC cell line reduced its VEGF-A 

secretion under hypoxic conditions.  

The large number of parallels in our in vitro experiment is a major strength of our 

data. In addition to the commercial cell lines, we included one in-house PAC cell line and 

one in-house CAF cell line. Our stringent approach to simulate tumor hypoxia levels 

(≤2% O2) in our in vitro environment makes the experimental set up highly relevant. 

Another strength of the in vitro results is that our PAC cell line showed similar responses 

to hypoxia as the commercial continuous AC cell line. We had obtained both ethical 

approvement and patient consent to establish primary cell cultures. An obstacle was, at 

the time, limited tissue availability, making only one PAC culture and primary CAF 

culture available at time of this study. Only one SCC cell line (H520) was available at the 

time of the experiments. 
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To our knowledge, we are the first to report the VEGF-A response of a SCC cell 

line to hypoxia. Fukuyama et al. have previously investigating the cytokine production 

(including VEGF-A secretion) in NSCLC SCC and AC cell lines, but this was performed 

under normoxic conditions only102. We have confirmed that AC cell lines respond to 

hypoxia with an increase in VEGF-A secretion, in agreement with three previously 

published studies103-105.  When comparing the VEGF-A response between the cell lines, 

we observed an overall higher VEGF-A expression in SCC compared to AC under hypoxic 

conditions. But surprisingly, the SCC cell line response to hypoxia was a down-regulation 

of VEGF-A. To further investigate the observed difference in in vitro VEGF-A expression 

in AC versus SCC, we used a large number of NSCLC tumor tissues to assess whether 

there is an overall difference in the VEGF-A expression between these histologic 

subtypes. We found that the VEGF-A expression tended to be higher in SCC than in AC 

tissues (p=0.059), which is consistent with our in vitro result. Our results are hypothesis-

generating and points to a potential difference between SCC and AC with respect to an 

angiogenic response to hypoxia. This finding may explain the observation that SCCs 

appear to be more hypoxic and necrotic than ACs106. We hypothesize that an overall 

higher VEGF-A expression might disrupt the balance of pro-angiogenic and anti-

angiogenic signals, resulting in distorted angiogenesis with abnormal vessel formation or 

no vessel formation at all. In support of this theory, studies on mean vascular density 

(MVD), which reflects in situ angiogenesis, have reported higher MVD in AC than in SCC 

of the lung101,107-109. Further, a study published in Radiology in 2012 showed that the 

flow-extraction product was significantly higher in AC than in SCC tumors, indicating that 
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AC has a more functional vasculature than SCC110. There is an apparent need for further 

studies to confirm our observations. Since SCC histology appears to be a subpopulation 

with inferior response to bevacizumab, when compared to AC, this difference may be 

related to difference in the VEGF-A secretion between these two major NSCLC cell 

types13. Further studies comparing angiogenic biomarkers in NSCLC histological 

subgroups are needed, as novel anti-angiogenic therapies are emerging. 

 

Paper III 
 

Our finding of an association between high MCT1 expression in NSCLC cancer cells and a 

favorable outcome was surprising. A few studies have reported that high MCT1 

expression is associated with an unfavorable outcome when expressed alone or co-

expressed with CD147 or p5375,111,112. Since 1) MCT1 is capable of transporting lactate 

both in and out of cells and 2) lactate imported by MCT1 is shown to induce a gene 

expression profile associated with a beneficial clinical outcome, we hypothesize that 

MCT1 in NSCLC import lactate. In other cancers where MCT1 is shown to have a 

negative prognostic impact, MCT1 may export lactate. Accordingly, the prognostic 

impact may diverge between different cancer types71,113. Besides, the positive 

prognostic impact by MCT1 expression in NSCLC cancer cells might be due to the 

accordingly decreased acidosis in the microenvironment. An acidic environment is 

associated with breakdown of the extracellular matrix, a process which favors 

invasiveness114. But if this is so, one would expect MCT1 expression also in stromal cells 

to be associated with a positive prognostic impact. Clearly, functional studies clarifying 
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MCT1s role in NSCLC is needed since MCT1 together with MCT4 has been observed to 

promote cancer cell invasion in lung cancer115. 

High MCT1 expression in stromal cells was associated with a poor outcome. This 

is supported by studies linking MCT1 expression with tumor angiogenesis 

activation116,117. In addition, MCT1 in stromal cells is linked to the contribution to a 

metabolic co-operation of lactate homeostasis between recruited stromal cells and 

glycolytic cancer cells118. This is also in agreement with our results.  

In agreement with NSCLC data from Meijer et al., ↑GLUT1 + ↑MCT4 in cancer 

cells was associated with a poor outcome101. While Meijer et al. found this association 

only in AC; we observed the same significant impact in all histological subgroups, 

possibly due to our larger study cohort. 

To our knowledge, we are the first to provide strong evidence supporting the 

metabolic co-operation theory of Koukourakis et al. as the co-expression of ↑GLUT1 in 

cancer cells + ↑MCT1 in stromal cells had a synergetic, strongly negative prognostic 

impact72,119. Interestingly, Fiaschi et al. observed an alternative metabolic co-operation 

between cancer cells and CAFs62. They found that cancer cells can allocate Warburg 

metabolism to CAFs, and subsequently take advantage of their lactate production to 

grow in an environment low on glucose, hence symbiotically adapting with stromal cells 

to low glucose availability. 

May MCT1 be a potential therapeutic target in NSCLC in light of our results? The 

MCT1 inhibitor AZD3965 is in Phase I clinical trials in the UK120. According to Miranda-

Concalves et al. this should be a promising treatment strategy as MCT1 inhibition will 
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indirectly starve latent malignant hypoxic cancer cells exhibiting both anti-tumor and 

anti-angiogenic activity121.   

According to our data, however, inhibition of MCT1 may be contraindicated as 

MCT1 in NSCLC cancer cells contribute to a tumor phenotype with a better prognosis. A 

optimal treatment approach might be to selectively target MCT1 in stromal cells. In fact, 

inhibition of MCT1 expressed in endothelial cells has recently been suggested116.  

 

Paper IV 
 
The observed positive prognostic impact of high miR-210 expressed in NSCLC cancer 

cells are in agreement with studies in renal cell carcinomas and soft-tissue sarcoma54,122. 

In contrast, high expression of miR-210 in head and neck cancer and breast cancer has 

been associated with poor outcome123,124. A possible explanation for the inconsistent 

prognostic impact of miR-210 across different tumors may be miR-210 regulatory effects 

varying according to cancer type.       

Rationales for a positive prognostic impact by miR-210 have emerged from 

several functional studies in cancer cells. miR-210 is observed to inhibit cell proliferation 

in ovarian cancer cell lines and esophageal SCC82,125. When human pancreatic or head 

and neck cancer cells ectopically expressing miR-210 were implanted in 

immunodeficient mice, miR-210 repressed initiation of tumor growth126. Consistently, 

miR-210 up-regulation in lung cancer cell lines inhibited proliferation and growth127.

 With respect to tumor stromal cells, possible explanations for the association 

between high miR-210 expression and positive outcome can be found in the following 
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two studies128,129. Torti et al. found that miR-210 is important for iron uptake in stromal 

cells, and that iron in these cells act as iron-pools which rapidly dividing cancer cells can 

feed on. Indirectly, high miR-210 can inhibit cancer cells proliferation due to iron 

depletion128. Faraonio and coworkers found that high expression of miR-210 in normal 

fibroblasts promote a senescent phenotype and reduce cell proliferation129. CAFs are 

known to exhibit pro-tumor activity by delivering paracrine oncogenic signaling to 

cancer cells and endothelial cells, and subsequently induce angiogenesis130. If high 

expression of miR-210 in CAFs can induce a senescent phenotype and reduce cell 

proliferation, is yet to be confirmed. If so, this would provide additional support for miR-

210’s positive prognostic impact in tumor stroma.  

Since miR-210 is reported to be “the micromanager of the hypoxia pathway”, we 

wanted to explore its associations with previously studied hypoxic and angiogenic 

markers in the same NSCLC cohort.  We found only a few significant and only modest 

correlations. This might be explained by hypoxia being a dynamic process, making ISH 

and IHC “snapshots” rather unreliable for determining the functional correlation of 

these markers131. 

According to our data, miR-210 is a prognostic biomarker in NSCLC. In general, 

miRNAs may be promising therapeutic agents in the future. In order to inhibit tumor 

growth, a tumor suppressor miRNA may be reintroduced in cancer cells, possibly given 

as a systemic drug132. Introduction of miR-210 in NSCLC patients expressing low tumor 

levels may be a potential future treatment approach, especially since miR-210 is 

associated with a positive prognostic impact in both cancer and stromal cells. 
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But first, functional studies are warranted, especially in light of a recent publication 

stating that miR-210 may be a negative predictive marker for radiotherapy in both lung 

cancer and hepatoma cell lines133. We explored the prognostic impact in the 

radiotherapy subgroup of our cohort (data not shown). In this subgroup, however, miR-

210 had a positive prognostic impact.  In a clinical NSCLC study, Li and coworkers 

showed a significant correlation between increased serum levels of miR-210 and more 

advanced clinical stage and regional lymph node involvement134. In our cohort, 

however, we found only weak or insignificant correlations (r<0.2) between miR-210 

expression and clinicopathological factors. 
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7. CONCLUSIONS AND IMPLICATIONS FOR FURTHER RESEARCH  
 
 
We show that high HIF-1α and GLUT1 expression in cancer cells are independently and 

significantly associated with a poor prognosis in NSCLC. We report that HIF-1α and HIF-

2α expression in stromal cells are independently and significantly associated with a 

favorable outcome in NSCLC. We are the first to show that the prognostic relevance of 

the hypoxia-related markers have different impact according to NSCLC histology.  

In NSCLC, we are the first to report that in vitro VEGF-A secretion in response to 

hypoxia differ between AC and SCC cell lines. Even though the overall secretion of VEGF-

A was higher in the SCC cell line (a trend confirmed in our TMA database), the response 

to hypoxia in the SCC cell line was a downregulation of VEGF-A secretion when 

compared to the normoxic condition. We hypothesize that AC might have a more 

balanced and functional angiogenesis, compared to SCC. Further functional studies to 

confirm our findings are needed. 

We are the first to show that in NSCLC, MCT1 has a divergent independent and 

significant prognostic impact in cancer cells versus stromal cells. In cancer cells, high 

expression of MCT1 was associated with a favorable outcome, while high expression in 

stromal cells was associated with a poor outcome. Moreover, we found a substantial 

synergistic prognostic effect of the co-expressions of GLUT1 + MCT1 and GLUT1 + MCT4.  

We found that miR-210 is associated with a positive prognostic impact in both 

NSCLC cancer and stromal cells. In stromal cells, high expression of miR-210 was 

associated with an independent and significantly favorable outcome in NSCLC.  
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In this thesis, I have sought to expand the knowledge on how hypoxia influences the 

tumor cell phenotype and hence the prognostic impact in NSCLC. I have dedicated my 

research to both the malignant cell and the resident tumor stromal cells, taking into 

account the budding current knowledge on how stromal cells affect cancer cells. 

Establishing a better understanding of the molecular details of this tumor-stroma 

interplay may lead to new treatment strategies.  

Hopefully, our research on hypoxia in NSCLC may help providing a conceptual 

framework for the interpretation of the complex biology of NSCLC, and that further 

progress may lead to therapeutic advances in this field. 
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