
Analytic evaluation of the dipole Hessian matrix in coupled-cluster theory
Thomas-C. Jagau, Jürgen Gauss, and Kenneth Ruud 
 
Citation: The Journal of Chemical Physics 139, 154106 (2013); doi: 10.1063/1.4824715 
View online: http://dx.doi.org/10.1063/1.4824715 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/139/15?ver=pdfcov 
Published by the AIP Publishing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.242.114.146 On: Sat, 01 Mar 2014 14:43:29

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munin - Open Research Archive

https://core.ac.uk/display/392166042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/586982248/x01/AIP-PT/JCP_CoverPg_101613/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Thomas-C.+Jagau&option1=author
http://scitation.aip.org/search?value1=J�rgen+Gauss&option1=author
http://scitation.aip.org/search?value1=Kenneth+Ruud&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4824715
http://scitation.aip.org/content/aip/journal/jcp/139/15?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 139, 154106 (2013)

Analytic evaluation of the dipole Hessian matrix in coupled-cluster theory
Thomas-C. Jagau,1,a) Jürgen Gauss,1,b) and Kenneth Ruud2,c)

1Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
2Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø - The
Arctic University of Norway, N-9037 Tromsø, Norway

(Received 9 August 2013; accepted 26 September 2013; published online 17 October 2013)

The general theory required for the calculation of analytic third energy derivatives at the coupled-
cluster level of theory is presented and connected to preceding special formulations for hyperpo-
larizabilities and polarizability gradients. Based on our theory, we have implemented a scheme for
calculating the dipole Hessian matrix in a fully analytical manner within the coupled-cluster singles
and doubles approximation. The dipole Hessian matrix is the second geometrical derivative of the
dipole moment and thus a third derivative of the energy. It plays a crucial role in IR spectroscopy
when taking into account anharmonic effects and is also essential for computing vibrational correc-
tions to dipole moments. The superior accuracy of the analytic evaluation of third energy deriva-
tives as compared to numerical differentiation schemes is demonstrated in some pilot calculations.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824715]

I. INTRODUCTION

An important area of research in quantum chemistry is
the development of schemes for the determination of molec-
ular properties as they provide the link to a variety of experi-
mental data.1, 2 While molecular equilibrium structures and a
range of first-order properties can be determined by means
of energy gradients, second derivatives of the energy pro-
vide access to vibrational frequencies and infrared intensities3

within the harmonic approximation as well as other second-
order properties. Third- and higher-order energy derivatives
are of importance, for example, when studying nonlinear op-
tical properties4 or vibrational spectra beyond the harmonic
approximation.5, 6

The simplest approach to calculate molecular properties
is through numerical differentiation of the energy, but analytic
derivatives are superior for a number of reasons:

� The accuracy of analytic derivatives is, in principle,
equal to that of the undifferentiated parent quantity,
whereas numerical derivatives suffer from a discretiza-
tion error resulting from approximating derivatives by
finite differences as well as a rounding error due to all
quantities being determined and processed with lim-
ited precision. Choosing the right step size for the nu-
merical differentiation is crucial in order to minimize
the overall error, but this is not always easy and in
some cases, no step size leads to results of acceptable
accuracy.7 This problem becomes evident especially
when seeking higher than first derivatives.

� As a consequence of the 2n + 1 and 2n + 2 rules
of derivative theory,8–10 analytic derivatives are supe-
rior in terms of computational cost. As a general rule,
the purely numerical calculation of the n-th deriva-
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tive scales as Nn
pert with Npert as the number of per-

turbations, while the analytical evaluation scales as
N

(n−1)/2
pert and N

n/2
pert for odd and even derivatives, re-

spectively. Mixed numerical-analytical differentiation
schemes entail intermediate cost, but are not superior
to the fully analytical evaluation.

� Analytic derivatives can be evaluated more easily in a
black-box manner as compared to approaches involv-
ing numerical differentiation steps, where one might
face difficulties in describing the desired states with
sufficient accuracy.

� Analytic-derivative theory can be extended to time-
dependent and magnetic perturbations.1, 11 In contrast,
the calculation of frequency-dependent properties is
not straightforward when using numerical differentia-
tion and the calculation of magnetic properties via nu-
merical schemes is also rather involved as it requires
complex algebra.12

Molecular properties have been determined using a va-
riety of quantum-chemical methods, among which coupled-
cluster (CC) theory13, 14 (for a recent overview, see Ref. 15)
stands out due to its high accuracy and reliability. Analytic
first16–18 and second19–22 derivatives are nowadays used in
a routine manner in CC theory, but only selected third- and
higher-order CC energy derivatives have yet been calculated
analytically. Noteworthy achievements in this regard are im-
plementations of first23–25 and second26 hyperpolarizabili-
ties, Verdet constants,27, 28 and polarizability gradients.29 We
note that corresponding developments for Hartree-Fock (HF)
theory30–36 and more recently also for density-functional the-
ory (DFT)37–41 have been reported as well. Furthermore, it
is worth mentioning that theoretical expressions for general
third derivatives of the HF energy were presented more than
30 years ago8, 42 and analytic cubic43–46 and quartic47 force
constants as well as mixed electric-geometrical derivatives up
to fourth order48 were implemented for HF wave functions

0021-9606/2013/139(15)/154106/8/$30.00 © 2013 AIP Publishing LLC139, 154106-1
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more than 20 years ago. The corresponding achievements at
the DFT level have been reported recently.49 As regards exten-
sions to correlated wave-function based methods, theoretical
expressions for third-order energy derivatives at the second-
order Møller-Plesset9 (MP2) and the CC19 level of theory
were reported but have never been implemented. Instead,
numerical differentiation of analytic first or second deriva-
tives has commonly been used for the calculation of these
quantities.22, 50, 51 Furthermore, it has been common practice
to evaluate anharmonic contributions at a lower level of the-
ory than the corresponding harmonic force field,52 which of-
ten leads to acceptable results, but is not entirely satisfying
from a rigorous point of view.

In this article, we derive the theory for general analytic
third derivatives in the CC framework. In addition, we present
a first implementation for the analytic evaluation of the dipole
Hessian matrix for CC theory with singles and doubles exci-
tations (CCSD)53 as well as MP2 theory.54 The dipole Hes-
sian matrix is obtained by differentiating the energy once
with respect to an external electric field and twice with re-
spect to displacements of the nuclei. It is of importance for
the determination of infrared intensities when considering an-
harmonic effects as it contributes to the so-called electrical
anharmonicity55 and also delivers a contribution to the vibra-
tionally averaged dipole moment.56

The article is structured as follows: We begin with the
derivation of a general expression for the third derivative of
the CC energy in Section II. Section III deals with some de-
tails of our implementation, while Section IV features pilot
applications, in which we compare numerical and analytical
differentiation schemes with respect to their accuracy. Section
V finally presents some concluding remarks.

II. THEORY

In CC theory,15 the wave function is parametrized in an
exponential fashion as

|�〉 = eT̂ |�0〉 (1)

with �0 as reference wave function – which is usually chosen
as the HF wave function – and T̂ as the cluster operator. The
latter is defined as

T̂ = T̂1 + T̂2 + . . .

=
∑

a

∑
i

t ai â†
aâi + 1

4

∑
ab

∑
ij

tab
ij â†

aâi â
†
bâj + · · · , (2)

where â† and â represent the usual second-quantized creation
and annihilation operators and i, j, . . . and a, b, . . . stand for
occupied and virtual spin orbitals, respectively. The energy is
computed from the projection of the Schrödinger equation on
the reference wave function

E = 〈�0| e−T̂ Ĥ eT̂ |�0〉 , (3)

whereas the cluster amplitudes tab...
ij ... are determined from the

equations obtained via projection on the excited determinants
according to

0 = 〈�ab...
ij ... | e−T̂ Ĥ eT̂ |�0〉 . (4)

When deriving an expression for the third derivative of
the CC energy, it is preferable to start from an appropriate
Lagrangian9, 10, 19, 57, 58 in order to take advantage of the
2n + 1 and 2n + 2 rules of derivative theory, i.e., the fact that
wave function parameters and Lagrange multipliers of order
n determine the derivatives of the energy up to order 2n + 1
and 2n + 2, respectively. The CC Lagrangian reads

L = 〈�0| (1 + �̂)e−T̂ Ĥ eT̂ |�0〉 (5)

with the � operator defined as

�̂ = �̂1 + �̂2 + · · ·

=
∑

a

∑
i

λi
aâ

†
i âa + 1

4

∑
ab

∑
ij

λ
ij

abâ
†
i âa â

†
j âb + · · · . (6)

The Lagrange multipliers λ
ij...

ab... are determined from the sta-
tionarity condition

∂L
dtab...

ij ...

= 0. (7)

Equation (5) takes into account the non-variational nature of
CC theory, but in addition, one must deal with the depen-
dence of the CC energy on the molecular orbitals (MOs) if
the response of the reference wave function to the perturba-
tion (known as orbital relaxation) is considered. To this end,
the Brillouin condition and the orthonormality of the MOs are
included as additional constraints in Eq. (5), which leads to19

L = 〈�0| (1 + �̂)e−T̂ Ĥ eT̂ |�0〉
+

∑
ai

Zaifai +
∑
pq

Ipq(Spq − δpq), (8)

where the additional Lagrange multipliers Zai and Ipq are the
Z-vector59 and the energy-weighted density matrix, respec-
tively. p, q, . . . refer here to generic orbitals and fpq and Spq

denote the usual Fock-matrix and overlap-matrix elements in
the MO representation. In principle, Eq. (8) is a valid start-
ing point for the formulation of analytic derivatives. However,
from the point of view of implementation, it is advantageous
to resort to a density-matrix-based formulation.60 This yields
for the Lagrangian in Eq. (8)

L =
∑
pq

Dpqfpq +
∑
pqrs

�pqrs 〈pq||rs〉

+
∑
ai

Zaifai +
∑
pq

Ipq(Spq − δpq), (9)

where the elements of the one-particle and two-particle den-
sity matrices are given as

Dpq = 〈�0| (1 + �̂)e−T̂ {â†
pâq} eT̂ |�0〉 , (10)

�pqrs = 1

4
〈�0| (1 + �̂)e−T̂ {â†

pâ†
q âs âr} eT̂ |�0〉 (11)

and 〈pq||rs〉 denotes the antisymmetrized two-electron inte-
grals. We note that Eq. (9) holds for MP2 theory as well.

Differentiating the Lagrangian in Eq. (9) three times with
respect to arbitrary perturbations χ1, χ2, and χ3 while bear-
ing in mind the 2n + 1 and 2n + 2 rules yields for the third
derivative of the CC energy
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d3E

dχ1dχ2dχ3
= ∂3L

∂χ1∂χ2∂χ3
=

∑
pq

Dpq

(
∂3fpq

∂χ1∂χ2∂χ3

)(1)

+
∑
pqrs

�pqrs

(
∂3 〈pq||rs〉
∂χ1∂χ2∂χ3

)(1)

+
∑
pq

Ipq

(
∂3Spq

∂χ1∂χ2∂χ3

)(1)

+
∑
ai

Zai

(
∂3fai

∂χ1∂χ2∂χ3

)(1)

+P 3
123

[∑
pq

∂Dpq

∂χ1

(
∂2fpq

∂χ2∂χ3

)(1)

+
∑
pqrs

∂�pqrs

∂χ1

(
∂2 〈pq||rs〉

∂χ2∂χ3

)(1)

+
∑
pq

∂Ipq

∂χ1

(
∂2Spq

∂χ2∂χ3

)(1)

+
∑
ai

∂Zai

∂χ1

(
∂2fai

∂χ2∂χ3

)(1)
]

+P 3
123

[∑
pq

(
∂2Dpq

∂χ1∂χ2

)(1,1)
∂fpq

∂χ3
+

∑
pqrs

(
∂2�pqrs

∂χ1∂χ2

)(1,1)
∂〈pq||rs〉

∂χ3

]

+
∑
pqrs

(
∂3�pqrs

∂χ1∂χ2∂χ3

)(1,1)

〈pq||rs〉 (12)

with P 3
123 invoking a cyclic permutation of the perturbations

χ1, χ2, and χ3. In order to obtain a compact expression, we
have made use of the notation introduced in Refs. 25 and 29
for the higher-order derivatives of the density matrices, Fock
matrices, and two-electron integrals. The notation

(
∂nD

∂χ1∂χ2 . . .

)(1,1)

(13)

indicates that at most the first derivative of the cluster ampli-
tudes tab...

ij ... and Lagrange multipliers λ
ij...

ab... contributes to the
derivative of the density matrix D, whereas the Fock-matrix
derivative (

∂nf

∂χ1∂χ2 . . .

)(1)

(14)

contains coupled-perturbed Hartree-Fock (CPHF)
coefficients61 of at most first order. Similar definitions
hold for the derivatives of the two-electron terms. Also, we
note that the second and third restricted derivatives of the
two-particle density matrix vanish for MP2.

The exact expressions for the derivatives of D, �, and I
depend on the underlying wave function. However, they can
be obtained in a straightforward manner from the correspond-
ing unperturbed quantities. The second and third derivatives
of the Fock matrix are conveniently split into a one-electron
and a two-electron part according to(

∂2fpq

∂χ1∂χ2

)(1)

=
(

∂2hpq

∂χ1∂χ2

)(1)

+
∑

j

(
∂2 〈pj ||qj〉

∂χ1∂χ2

)(1)

,

(15)

(
∂3fpq

∂χ1∂χ2∂χ3

)(1)

=
(

∂3hpq

∂χ1∂χ2∂χ3

)(1)

+
∑

j

(
∂3 〈pj ||qj〉
∂χ1∂χ2∂χ3

)(1)

. (16)

The required derivatives of the one-electron Hamiltonian are
given as(

∂2hpq

∂χ1∂χ2

)(1)

= hχ1χ2
pq + P12

[∑
r

(
Uχ1

rq hχ2
pr +Uχ1

rp hχ2
rq

)+∑
rs

Uχ1
rp Uχ2

sq hrs

]
,

(17)

(
∂3hpq

∂χ1∂χ2∂χ3

)(1)

=hχ1χ2χ3
pq +P 3

123

∑
r

(
Uχ1

rq hχ2χ3
pr + Uχ1

rp hχ2χ3
rq

)

+P 6
123

∑
rs

Uχ1
rp Uχ2

sq hχ3
rs , (18)

where h
χ1
pq , h

χ1χ2
pq , and h

χ1χ2χ3
pq denote the first, second, and

third derivatives of the one-electron atomic-orbital (AO) in-
tegrals rotated into the MO basis and U

χi
pq denotes the CPHF

coefficients corresponding to perturbation χ i. P 6
123 invokes the

full set of permutations of χ1, χ2, and χ3 and P12 the per-
mutation of χ1 and χ2. The derivatives of the two-electron
integrals become
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(
∂2 〈pq||rs〉

∂χ1∂χ2

)(1)

= 〈pq||rs〉χ1χ2

+P12

[∑
t

(
U

χ1
tp 〈tq||rs〉χ2 +U

χ1
tq 〈pt ||rs〉χ2 + U

χ1
tr 〈pq||ts〉χ2 + U

χ1
ts 〈pq||rt〉χ2

)]

+P12

[∑
tu

(
U

χ1
tp Uχ2

uq 〈tu||rs〉 + U
χ1
tp Uχ2

ur 〈tq||us〉 + U
χ1
tp Uχ2

us 〈tq||ru〉

+U
χ1
tq Uχ2

ur 〈pt ||us〉 + U
χ1
tq Uχ2

us 〈pt ||ru〉 + U
χ1
tr Uχ2

us 〈pq||tu〉 )]
, (19)(

∂3 〈pq||rs〉
∂χ1∂χ2∂χ3

)(1)

= 〈pq||rs〉χ1χ2χ3

+P 3
123

[ ∑
t

(
U

χ1
tp 〈tq||rs〉χ2χ3 + U

χ1
tq 〈pt ||rs〉χ2χ3

+U
χ1
tr 〈pq||ts〉χ2χ3 + U

χ1
ts 〈pq||rt〉χ2χ3

)]

+P 6
123

[∑
tu

(
U

χ1
tp Uχ2

uq 〈tu||rs〉χ3 + U
χ1
tp Uχ2

ur 〈tq||us〉χ3 + U
χ1
tp Uχ2

us 〈tq||ru〉χ3

+U
χ1
tq Uχ2

ur 〈pt ||us〉χ3 + U
χ1
tq Uχ2

us 〈pt ||ru〉χ3 + U
χ1
tr Uχ2

us 〈pq||tu〉χ3
)]

+P 6
123

[ ∑
tuv

(
U

χ1
tp Uχ2

uqUχ3
vr 〈tu||vs〉 + U

χ1
tp Uχ2

uqUχ3
vs 〈tu||rv〉

+U
χ1
tp Uχ2

ur Uχ3
vs 〈tq||uv〉 + U

χ1
tq Uχ2

ur Uχ3
vs 〈pt ||uv〉 )]

, (20)

while the derivatives of the overlap matrix are given as(
∂2Spq

∂χ1∂χ2

)(1)

= Sχ1χ2
pq +P12

[∑
r

(
Uχ1

rq Sχ2
pr + Uχ1

rp Sχ2
rq

) +
∑

r

Uχ1
rp Uχ2

rq

]
,

(21)

(
∂3Spq

∂χ1∂χ2∂χ3

)(1)

= Sχ1χ2χ3
pq +P 3

123

∑
r

(
Uχ1

rq Sχ2χ3
pr +Uχ1

rp Sχ2χ3
rq

)

+P 6
123

∑
rs

Uχ1
rp Uχ2

sq Sχ3
rs , (22)

where quantities labeled by superscript χ i again refer to
derivatives of AO integrals rotated into the MO basis.

All equations presented so far hold for arbitrary CC
schemes as well as MP2 theory. Furthermore, no assumptions
have been made about the perturbations χ1, χ2, and χ3 ex-
cept for the fact that the wave function is assumed to remain
real-valued under their influence. Accordingly, Eqs. (17)–(22)
have to be modified if, for example, magnetic perturbations
are studied.62 When considering the dipole Hessian matrix
d3E/dxdydε with x and y as nuclear displacements and ε as
a component of an external electric field, some simplifica-

tions arise from the fact that the derivatives of the AO two-
electron integrals and overlap matrices with respect to ε van-
ish. We note that our expressions are not identical to those pre-
sented in Ref. 29 for the polarizability gradient d3E/dxdεidεj,
because in the latter article orbital relaxation was consid-
ered only for the geometrical perturbation x but not for the
electric-field perturbations εi and εj. It is, however, possible
to recover the expressions for orbital-unrelaxed derivatives
by setting to zero the corresponding CPHF contributions in
Eqs. (17)–(22). For hyperpolarizabilities and polarizability
gradients, the equations for orbital-unrelaxed derivatives can
be additionally modified to include a frequency dependence
of the electric field.

III. IMPLEMENTATION

Based on the expressions presented in Section II, ana-
lytic dipole Hessians at the CCSD and MP2 levels of the-
ory for use with closed-shell reference wave functions have
been implemented into the quantum-chemical program pack-
age CFOUR.63 Our implementation builds upon the preced-
ing third-derivative scheme for polarizability gradients29 and
the general framework for analytic second derivatives avail-
able in CFOUR.20 Since the latter is based on an asymmet-
ric formulation, i.e., it already provides the solution of both
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the first-order CC and � equations, no additional equations
have to be solved for analytic third derivatives. However, in
contrast to second derivatives, where a sequential treatment is
possible, perturbed wave-function parameters corresponding
to different perturbations are needed simultaneously for the
construction of the second and third derivatives of the density
matrices.

In our implementation, we first compute the first-order
CC and � amplitudes as well as the first-order Z-vectors
for all electrical perturbations and store them on disk. The
first-order equations for the geometrical perturbations are then
treated sequentially, while the final contributions to the dipole
Hessian matrix are evaluated in a triangular fashion, i.e.,
once the amplitudes dt/dx and dλ/dx have been calculated,
the contributions to all elements d3E/dxdydε with x ≥ y are
formed. All expressions that involve second or third deriva-
tives of AO integrals are evaluated in the AO basis after back-
transformation of the perturbed and unperturbed one-particle
and two-particle density matrices. The CPHF contributions
to the higher-order derivatives of the Fock matrix, the over-
lap matrix, and the two-electron integrals are calculated ac-
cording to Eq. (12), but we note that an evaluation where
all CPHF terms are added to the corresponding density ma-
trix prior to contraction with the integrals will most likely
be advantageous in terms of computational time. However,
such a reformulation is beyond the scope of the present ar-
ticle. Also, we note that our current implementation is not
optimized with respect to memory requirements and it does
not make use of point-group symmetry. Finally, we note that
the computation of the dipole Hessian matrix requires no fur-
ther integral derivatives than those needed for the calculation
of the harmonic force constants apart from the second geo-
metrical derivatives of the dipole integrals, which have been
made available by interfacing the integral-derivative library
GEN1INT64 to CFOUR.

IV. PILOT APPLICATIONS

In this section, we illustrate the usefulness of analytic
third derivatives by showing their superior accuracy as com-
pared to numerical differentiation. For this purpose, we re-
port the results of two series of calculations carried out
with our new implementation: (1) An investigation of the
higher-order geometrical derivatives of the dipole moment
of hydrogen fluoride and (2) a study on the contribution to
the dipole moment of hydrogen sulfide due to vibrational
averaging.

A. Geometrical derivatives of the dipole moment
of hydrogen fluoride

Table I summarizes the values for the geometrical deriva-
tives (dnμz/dRn)R=Req (n = 1–4, z-axis = molecular axis,
Req = 1.735686661 a.u.) of the dipole moment of hydrogen
fluoride as calculated at the CCSD level of theory using the
cc-pCVDZ basis set.65 The derivatives have been determined
in three different manners, i.e., starting from the analytically
evaluated dipole moment μz, from the dipole gradient dμz/dR,
and from the dipole Hessian d2μz/dR2. The remaining dif-
ferentiation steps were carried out numerically using the
formulas(

dA

dR

)
R=Req

= A(Req + 
R) − A(Req − 
R)

2
R
, (23)

(
d2A

dR2

)
R=Req

= A(Req + 
R) − 2A(Req) + A(Req − 
R)


R2
, (24)

(
d3A

dR3

)
R=Req

= A(Req + 2
R) − 2A(Req + 
R) + 2A(Req − 
R) − A(Req − 2
R)

2
R3
(25)

with A denoting the analytically evaluated quantity. In all cal-
culations, convergence criteria were chosen such that the en-
ergy was determined to a precision of 13 decimal places. It
is not straightforward to deduce the accuracy of the analyt-
ically calculated dipole moment, dipole gradient, and dipole
Hessian from the accuracy of the energy, but as a conserva-
tive estimate we assume a precision of 12 decimal places in
the following.

The results in Table I show how repeated numerical dif-
ferentiation impairs the accuracy of a target quantity and the
impact of both errors discussed in Section I is clearly visi-
ble. On the one hand, the number of significant digits in the
values for the numerical derivatives inevitably shrinks when
using small step sizes 
R or seeking higher derivatives. On

the other hand, values obtained with large step sizes 
R are
significantly contaminated by higher derivatives and thus in-
accurate. By means of error propagation, the error due to the
uncertainty η in the undifferentiated quantity can be estimated
as η/
Rn, while the error due to discretization is always pro-
portional to 
R2. From this, it follows that the overall error is
minimized when using a step size of 
R = n+2

√
η, i.e., for the

present example (η = 10−12) 
R ≈ 10−4 for a single differen-
tiation step, 
R ≈ 10−3 for two differentiation steps, and 
R
≈ 10−2 for three differentiation steps. The values in Table I
confirm these estimates and the comparison to the fully ana-
lytical values for dμz/dR and d2μz/dR2 shows that seven and
five significant digits are within reach when differentiating
numerically once and twice, respectively. When considering
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TABLE I. Geometrical derivatives of the dipole moment of hydrogen fluoride at the CCSD/cc-pCVDZ level of
theory in atomic units, bond lengths optimized at the same level of theory (Req= 1.735686661 a.u.).

Computed from 
R/Å
(

dμz

dR

)
R=Req

(
d2μz

dR2

)
R=Req

(
d3μz

dR3

)
R=Req

(
d4μz

dR4

)
R=Req

(
d5μz

dR5

)
R=Req

μz 10−2 − 0.3173676440 0.17871386 0.763567 0.0750 . . .
μz 10−3 − 0.317412644 0.178712 0.764 . . . . . .
μz 10−4 − 0.31741309 0.1787 . . . . . . . . .
μz 10−5 − 0.3174131 0.18 . . . . . . . . .

dμz/dR 10−2 . . . 0.1787160589 0.76369291 0.0748442 2.112
dμz/dR 10−3 . . . 0.178711645 0.763745 0.0714 . . .
dμz/dR 10−4 . . . 0.17871157 0.7656 . . . . . .
dμz/dR 10−5 . . . 0.1787139 0.77 . . . . . .

d2μz/dR2 10−2 . . . . . . 0.7636297628 0.075009981 2.11131
d2μz/dR2 10−3 . . . . . . 0.763754290 0.0750835 2.11
d2μz/dR2 10−4 . . . . . . 0.76375554 0.07509 . . .
d2μz/dR2 10−5 . . . . . . 0.7637555 0.075 . . .

Fully analytical value − 0.31741303392 0.17871155406 . . . . . . . . .

these numbers, one should bear in mind that a precision of 13
decimal places in the value for the energy is often not achiev-
able when studying larger molecules or employing larger ba-
sis sets. The accuracy obtained here should thus be regarded
as an upper bound. Since five significant decimal places is
already less than what is sometimes required in quantum-
chemical applications, one can conclude from the present ex-
ample that at most two differentiation steps should be carried
out numerically. We note that the performance of numerical
differentiation can be improved by taking into consideration
more points, but such protocols entail higher computational
cost. This shows that the reliable calculation of higher deriva-
tives is greatly facilitated when starting from analytic third
derivatives as they can be determined with guaranteed preci-
sion. At the same time, our results also provide a justification
for current efforts49, 66 to implement even higher than third-
order analytic derivatives.

B. Vibrationally averaged dipole moment
of hydrogen sulfide

Within the harmonic approximation, the expectation
value for a generic molecular property A can be expanded in
the normal-coordinate space as56, 67

〈A〉 = Ae +
∑

i

dA

dqi

〈qi〉 + 1

2

∑
i

d2A

dq2
i

〈
q2

i

〉 + · · · , (26)

where Ae stands for the equilibrium contribution and the re-
maining terms represent the contributions from vibrational
averaging. The latter involve the first and second property
derivatives dA/dqi and d2A/dq2

i as computed at the equilib-
rium structure as well as the expectation values of the normal
coordinates qi and their squares q2

i , which are given as

〈qi〉 = − 1

4ω2
i

∑
j

φijj

ωj

, (27)

〈
q2

i

〉 = 1

2ωi

(28)

with ωi denoting the harmonic force constants and φijj the
semidiagonal cubic force constants in terms of normal coor-
dinates.

The determination of vibrationally averaged properties in
a black-box manner is desirable. The common practice56, 67

has, however, been to evaluate the higher-order quantities in-
volved in Eqs. (26)–(28), i.e., d2A/dq2

i and φijj by numeri-
cal differentiation, which in some cases renders the reliable
determination of the vibrational averaging contributions cum-
bersome and results questionable. With our new implemen-
tation for the dipole Hessian matrix, the fully analytic eval-
uation of the third term in Eq. (26) becomes possible for
vibrationally averaged dipole moments. To demonstrate how
analytic third derivatives can help to increase the reliability
and robustness of the calculation of vibrationally averaged
properties, we have studied the contributions from vibrational
averaging to the dipole moment of hydrogen sulfide at the
MP2 and CCSD levels of theory using the aug-cc-pCVXZ
(X = D, T, Q) basis sets.65, 68, 69 The results are reported in
Table II. All calculations were carried out after optimizing
the molecular structure at the corresponding level of theory
and performed three times starting from either analytic first,
second, or third derivatives. Also, two different sets of con-
vergence criteria were used in all calculations: One denoted
as tight, where we chose all convergence thresholds as tight
as possible and one denoted as loose, where we applied mod-
est criteria for all relevant equations, which is generally not
recommendable but not always avoidable and thus a better
estimate for application-level calculations. Details are given
in Table II.

Several conclusions can be drawn from our results. First,
it is seen that the sensitivity towards the choice of convergence
criteria grows as expected with the number of differentiation
steps that are carried out numerically. The fully analytic eval-
uation yields acceptable results for all cases considered here,
whereas for double numerical differentiation this is the case
only when using tight convergence thresholds. In contrast,
the combination of loose convergence thresholds and dou-
ble numerical differentiation may lead to unreliable results.
Also, all CCSD results show a greater sensitivity towards the
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TABLE II. Contributions from d2μ/dq2
i to the vibrationally averaged dipole moment of hydrogen sulfide at the MP2 and CCSD levels of theory using the

aug-cc-pCVXZ (X = D, T, Q) basis sets, structures optimized at the corresponding levels of theory. All values in atomic units.

Computed Convergence
MP2 CCSD

from criteriaa aug-cc-pCVDZ aug-cc-pCVTZ aug-cc-pCVQZ aug-cc-pCVDZ aug-cc-pCVTZ

Analytic 1st Tight −0.00095130 −0.00104688 −0.00117564 −0.00005073 −0.00002575
derivatives Loose −0.00089444 −0.00103934 −0.00116499 0.00000556 −0.00002076

Analytic 2nd Tight −0.00095131 −0.00104688 −0.00117565 −0.00005073 −0.00002575
derivatives Loose −0.00095123 −0.00104705 −0.00117588 −0.00005395 −0.00002682

Analytic 3rd Tight −0.00095137 −0.00104682 −0.00117562 −0.00005079 −0.00002570
derivatives Loose −0.00095138 −0.00104683 −0.00117565 −0.00005032 −0.00002605

Total dipole moment 〈μ〉 −0.41640541 −0.38849189 −0.39125213 −0.40316564 −0.38499795

aThe HF-SCF equations were considered converged when the maximum absolute change in the density-matrix elements fell below a value of 10−N a.u. The zeroth-order and first-order
CC and � equations were considered converged when the maximum absolute change in the amplitudes fell below a value of 10−N a.u. Tight thresholds: N = 11 for the aug-cc-pCVDZ
basis set and N = 10 for the aug-cc-pCVTZ and the aug-cc-pCVQZ basis set. Loose thresholds: N = 6 for all basis sets.

convergence thresholds than the corresponding MP2 results,
which is due to the fact that for a CCSD calculation more
equations need to be solved than for an MP2 calculation: The
calculation of the first energy derivative requires the solution
of the HF-SCF and the Z-vector equations at the MP2 level of
theory, while for CCSD one needs to solve for the CC and �

amplitudes as well. Likewise, calculating the second and third
energy derivative involves in addition to a gradient calculation
the solution of the first-order Z-vector equations for MP2, but
also the solution of the first-order CC and � equations for
CCSD. For the molecule studied here, these factors lead to
inaccurate results especially for the CCSD/aug-pCVDZ cal-
culation, where loose convergence criteria and double numer-
ical differentiation were applied. We note that this example is
not artificial, rather it is representative of routinely performed
vibrational averaging calculations.70

To investigate the problems with this calculation in fur-
ther detail, we have summarized in Table III the contribu-
tions from individual normal coordinates to the values from
Table II. This shows that the contributions from the bending
mode and the symmetric stretch mode vary in the sixth dec-
imal place at most, while those from the asymmetric stretch
mode differ already in the fifth decimal place. For the latter
mode, acceptable accuracy in combination with loose con-
vergence criteria is achieved only when using analytic third
derivatives. We add that such problematic normal coordinates

cannot be easily identified. In total, this clearly shows that a
black-box evaluation of the vibrational averaging contribution
is only possible when using analytic third derivatives.

V. CONCLUDING REMARKS

In this article, we have presented the derivation of a
generic analytical expression for the third derivative of the CC
energy together with an implementation of the dipole Hessian
matrix at the MP2 and CCSD levels of theory and some pilot
applications. In contrast to preceding work on analytic third
derivatives in CC theory,23–25, 29 our implementation considers
for the first time orbital relaxation for all perturbations. Our
work should thus be seen as a key step towards the fully an-
alytical evaluation of anharmonic effects at CC levels of the-
ory. A number of extensions of our current implementation
are worthwhile to pursue and will help make analytic third
derivatives a standard tool in CC theory as analytic first and
second derivatives already are: The implementation of cubic
force constants at the MP2 and CCSD levels of theory is cur-
rently under way. Put together with the present code for the
dipole Hessian matrix, this will facilitate the thorough inves-
tigation of anharmonic effects in vibrational spectra at cor-
related levels of theory. Furthermore, we aim at extending
our implementation to other third-order properties. Specifi-
cally, the availability of gradients for second-order properties

TABLE III. Contributions from d2μ/dq2
i to the vibrationally averaged dipole moment of hydrogen sulfide at the MP2 and CCSD levels of theory using the

aug-cc-pCVDZ basis set broken down to individual normal coordinates, structures optimized at the corresponding levels of theory. All values are in atomic
units.

Computed Convergence
Bending Symmetric stretch Asymmetric stretch

from criteriaa MP2 CCSD MP2 CCSD MP2 CCSD

Analytic 1st Tight −0.00100065 −0.00079515 0.00034601 0.00062513 −0.00029666 0.00011929
derivatives Loose −0.00100054 −0.00079410 0.00034583 0.00062423 −0.00023974 0.00017543

Analytic 2nd Tight −0.00100065 −0.00079515 0.00034601 0.00062513 −0.00029666 0.00011929
derivatives Loose −0.00100068 −0.00079579 0.00034601 0.00062479 −0.00029656 0.00011704

Analytic 3rd Tight −0.00100074 −0.00079524 0.00034602 0.00062514 −0.00029665 0.00011931
derivatives Loose −0.00100076 −0.00079520 0.00034602 0.00062512 −0.00029665 0.00011994

aSee footnote to Table II for explanation.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.242.114.146 On: Sat, 01 Mar 2014 14:43:29



154106-8 Jagau, Gauss, and Ruud J. Chem. Phys. 139, 154106 (2013)

and Hessian matrices for first-order properties will allow for
a more reliable evaluation of vibrational averaging contribu-
tions to the corresponding properties than is possible with
current schemes. Finally, a generalization of our CCSD im-
plementation to arbitrary CC schemes and there in particular
the CCSD(T) approach is desirable in order to investigate the
impact of higher excitations on anharmonic effects.
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