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Abstract: Bio-inspired optimization algorithms have been successfully applied 
to solve many problems in engineering, science, and economics. In computer 
science bio-inspired optimization has different applications in different domains 
such as software engineering, networks, data mining, and many others. 
However, some applications may not be appropriate or even correct. In this 
paper we study this phenomenon through a particular method which applies the 
genetic algorithms on a time series classification task to set the weights of the 
similarity measures used in a combination that is used to classify the time 
series. The weights are supposed to be obtained by applying an optimization 
process that gives optimal classification accuracy. We show in this work, 
through examples, discussions, remarks, explanations, and experiments, that the 
aforementioned method of optimization is not correct and that completely 
randomly-chosen weights for the similarity measures can give the same 
classification accuracy.   

Keywords: Bio-inspired Optimization, Genetic Algorithms, Similarity 
Measures, Time Series Data Mining.  

1   Introduction 

Optimization is a ubiquitous problem that has a broad range of applications in 
engineering, economics, and others. In computer science optimization has different 
applications in software engineering, networking, data mining and other domains. 
Optimization can be defined as the action of finding the best-suited solution of a 
problem subject to given constraints. These constraints can be in the boundaries of the 
parameters controlling the optimization problem, or in the function to be optimized.  
Optimization problems can be classified according to whether they are: discrete/ 
continuous/hybrid, constrained/unconstrained, single objective/multiobjective, 
unimodal (one extreme point) /multimodal (several extreme points). 

Formally, an optimization task can be defined as follows: Let [ ]nbp21 x,...,x,xX = be 
the candidate solution to the problem for which we are searching an optimal solution. 
Given a function RR →⊆ nbpU:f  (nbp is the number of parameters), find the 
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is called the fitness function, the objective function, or the cost function.  
While fitness functions can sometimes be expressed analytically using 

mathematical formulas, in many cases there is no mathematical formula to express 
this function.   

Optimization algorithms can be classified in several ways, one of which is whether 
they are single solution –based algorithms; these use one solution and modify it to get 
the best solution. The other category is population-based algorithms; these use several 
solutions which exchange information to get the best solution. 

Optimization problems can be handled using deterministic algorithms or 
probabilistic ones. Metaheuristics are general approximate optimization algorithms 
which are applicable to a wide range of optimization problems. Metaheuristics are 
usually applied when the search space is so large, or when the number of parameters 
of the optimization problem is very high, or, and this is particularly important, when 
the relationship between the fitness function and the parameters is not clear.  

There are several paradigms to handle optimization problems, one of which is bio-
inspired, also called nature-inspired, optimization algorithms. These optimization 
algorithms are inspired by natural phenomena or by the collective intelligence of 
natural agents.   

Bio-inspired computation can be classified into two main families; the first is 
Evolutionary Algorithms (EA). This family is probably the largest family of bio-
inspired algorithms. EA are population-based algorithms that use the mechanisms of 
Darwinian evolution such as selection, crossover and mutation.  

The Genetic Algorithm (GA) is the main member of EA. GA is an optimization and 
search technique based on the principles of genetics and natural selection [8]. GA has 
the following elements: a population of individuals, selection according to fitness, 
crossover to produce new offspring, and random mutation of new offspring [11].  

In the following we present a description of the simple, classical GA. The first step 
of GA is defining the problem variables and the fitness function. A particular 
configuration of variables produces a certain value of the fitness function and the 
objective of GA is to find the configuration that gives the “best” value of the fitness 
function. GA starts with a collection of individuals, also called chromosomes, each of 
which represents a possible solution to the problem at hand. This collection of 
randomly chosen chromosomes constitutes a population whose size popSize is chosen 
by the algorithm designer. This step is called initialization. In real-valued encoding 
GA a candidate solution is represented as a real-valued vector in which the dimension 
of the chromosomes is equal to the dimension of the solution vectors [1]. This 
dimension is denoted by nbp. The fitness function of each chromosome is evaluated. 
The next step is selection, which determines which chromosomes are fit enough to 
survive and possibly produce offspring. This is decided according to the fitness 
function of the chromosome. The percentage of chromosomes selected for mating is 
denoted by sRate. Crossover is the next step in which offspring of two parents are 
produced to enrich the population with fitter chromosomes. Mutation, which is a 
random alteration of a certain percentage mRate of chromosomes, is the other 
mechanism which enables the GA to examine unexplored regions in the search space.  
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Now that a new generation is formed, the fitting function of the offspring is 
calculated and the above procedures repeat for a number of generations nGen or until 
a stopping criterion terminates the algorithm.                                                               □ 

Data mining is a branch of computer science that handles several tasks, most of 
which demand extensive computing. As with other fields of research, different papers 
have proposed applying bio-inspired optimization to data mining tasks [12], [13], 
[14], [15], [16]. Most of these tasks, however, include non-analytical fitness functions 
and the relationship between the parameters and fitness function is vague. Under 
certain circumstances this may result in “pseudo optimization”, that is; an 
optimization algorithm that seems to be functioning normally, but the outcome is 
unintuitive, or not different from what a completely random choice of values for the 
parameters can yield.  

We will show in this paper the consequences of an inappropriate application of bio-
inspired optimization on a particular data mining problem, and we try to explain the 
reasons for the unintuitive results obtained. In Section 2 we present this application 
we are referring to, in Section 3 we give our remarks on this application, we show 
through a counter example in Section 4 that the results of the application, which are 
supposed to be the outcome of an optimization process, can be obtained through a 
random solution of the problem, and we try to explain in Section 5 why the 
application we are referring to did not work, we conclude the paper in Section 6.  

2   On Using the Genetic Algorithms to Combine Similarity 
Measures of Time Series in a Classification Task 

A time series is a collection of observations at intervals of time points. These 
observations are measurements of a particular phenomenon. Formally, an n-
dimensional time series S is an ordered collection: 

 
          ( ) ( ) ( ){ }nn2211 v,t,...,v,t,v,tS =                                          (1) 

 
where  n21 t...tt <<< , and where iv are the values of the observed phenomenon at 
time points  it .  

Time series data mining handles several tasks such as classification, clustering, 
similarity search, motif discovery, anomaly detection, and others.  

The goal of classification, one of the main tasks of data mining, is to assign an 
unknown object to one out of a given number of classes, or categories [10]. One of the 
most popular classification techniques of time series is Nearest-Neighbor 
Classification (NNC). In NNC the time series-query is classified according to the 
majority of its nearest neighbors [10] 

A Classification task is based on another, fundamental task of data mining, which 
is the similarity search problem.  In this problem a pattern or a query is given and the 
similarity search task is to retrieve the data objects in the database that are “close” to 
that query according to some semantics that quantify this closeness. This closeness or 
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similarity is quantified using a principal concept which is the similarity measure or its 
more rigorous concept; the distance metric.  

There are many similarity measures or distance metrics (in this paper we will use 
these two terms interchangeably) in the field of time series data mining. The state-of-
the-art distance measures [5] include the Minkowski distance (Lp) mainly the 
Euclidian distance   (L2) and   the Manhattan distance (L1), Dynamic Time Warping 
(DTW), the Longest Common Subsequence (LCSS), the Edit Distance with Real 
Penalty (ERP), the Edit Distance on Real Sequences (EDR), Dissimilarity Distance 
(DISSIM), Similarity Search based on Threshold Queries (TQ), Spatial Assembling 
Distance (SpADe), and Sequence Weighted Alignment (Swale).  

In [2] the authors propose utilizing a similarity function defined as a weighted 
combination of several metrics. A similar idea was proposed in [3] where the authors 
present a retrieval method based on a weighted combination of feature vectors.  

The method we are discussing in this work [6] is called “Combination of Similarity 
Measures for Time Series Classification Using Genetic Algorithms”. We will refer to 
this method from now on as CSM-GA. The authors of CSM-GA propose the same 
idea of a weighted combination of similarity measures. As we can see, the idea is not 
new, although they describe their method as “novel”. They mention however that the 
closest work to theirs is that of [18], which also uses a weighted combination of 
distances on a text classification task, and where the optimized weights are also 
computed by applying the genetic algorithms, so we are not sure what the novelty of 
CSM-GA is.   

It is important to mention here that in our paper we are not going to discuss the 
validity of [18], since text classification is not our field of expertise (besides the 
application details are not presented in [18]), neither will we discuss the similarity 
measures proposed in that paper. We will not discuss either the correctness of 
applying the genetic algorithms, or any other optimization technique, to determine the 
weights of the similarity measures in a combination of similarity measures as a 
method to enhance the retrieval process in any kind of multimedia search in general. 
We are only discussing the validity of CSM-GA as described in [6].    

As mentioned earlier, the idea of CSM-GA is to use a weighted combination of 
similarity measures for time series, where the weights are determined using the 
genetic algorithms (GA), and the authors of CSM-GA apply it on a classification task. 
This is expressed mathematically as:  

∑
=

=
n

1i
iinew s.S ω                                                        (2) 

 
where Snew is the new similarity measure, (s1, s2,…, sn) are the n combined similarity 
measures, ωi are the associated weights, and where 0 ≤ ωi ≤ 1. 

CSM-GA uses a classical GA (described in Section 1) as an optimization technique. 
The fitness function to be optimized is the classification accuracy. 

As indicated earlier, the objective of CSM-GA is to find the optimal values of ωi  
which yield the highest classification accuracy.   

 The authors of CSM-GA use 8 similarity measures in the combination of similarity 
measures of relation (2). The similarity measures used in CSM-GA are the following: 
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i- Euclidean Distance (L2): defined between time series p and q as: 
 

                                                                                                ( ) ( )∑
=

−=
n

1i

2
ii1 qpq,ps  

 
ii- Manhattan Distance (L1): defined as: 
 

                                                                                                    ( ) ( )∑
=

−=
n

1i
ii2 qpq,ps  

 
iii- Maximum Distance (L∞): 
 
                                                                 ( ) ( )nn22113 qp,...,qp,qpmaxq,ps −−−=  
 
iv- Mean Dissimilarity:  

                                    ( ) ( )ii

n

1i
4 q,pdisim

n
1q,ps ∑

=

= ,    where: ( )
ii

ii
ii qp

qp
q,pdisim

−
−

=  

 
v- Root Mean Square Dissimilarity:  
 

                                                                                      ( ) ( )2ii

n

1i
5 q,pdisim

n
1q,ps ∑

=

=  

 
vi- Peak Dissimilarity:  
 

           ( ) ( )ii

n

1i
6 q,ppeakdisim

n
1q,ps ∑

=

= ,    where: ( ) ( )ii

ii
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vii- Cosine Distance: 

                                                            ( ) ( )θcos1q,ps7 −= ,      where: ( )
q.p

q.pcos =θ  

 
viii- Dynamic Time Warping Distance (DTW): DTW is an algorithm to find the 
optimal path through a matrix of points representing possible time alignments 
between two time series p={p1, p2,…, pn } and q={q1, q2,…, qm }. The optimal 
alignment can be efficiently calculated via dynamic programming [7]. The dynamic 
time warping between the two time series is defined as: 
 

             ( ) ( )
( )
( )
( )⎪

⎩

⎪
⎨

⎧

−−
−
−

+==
1j,1iDTW

j,1iDTW
1j,iDTW

minj,idj,iDTWs8
    , where ni1 ≤≤ , mj1 ≤≤  □ 



 6 

The authors of CSM-GA test their 
method on a 1-NN classification 
task of time series data. In k-NN 
each time series is assigned a class 
label. Then a “leave one out” 
prediction mechanism is applied to 
each time series in turn; i.e. the 
class label of the chosen time series 
is predicted to be the class label of 
its nearest neighbor, defined based 
on the tested distance function. If 
the prediction is correct, then it is a 
hit; otherwise, it is a miss.   

The classification error rate is defined as the ratio of the number of misses to the 
total number of time series [4]. 1-NN is a special case of k-NN, where k=1.  

The data sets chosen in the experimental part of CSM-GA are obtained from [9]. 
This archive contains 47 different datasets, where each dataset is divided into a 
training set, on which the algorithm for the problem at hand is trained, and a testing 
set, to which the outcome of the training set is applied [17]. To test CSM-GA the 
authors apply a different protocol where they split the original training datasets in [9] 
further into what they call training set and validation set (in other words, training set 
+ validation set in CSM-GA = training set in [9]), so they have three sets in their 
experiments as they report in Table 1 taken from their paper (we omit two columns 
which show the number of classes in the datasets and the size of the time series). 

The authors of CSM-GA do not explain the reason for choosing this protocol, 
neither do they explain the exact role of their training set and validation set. However, 
the authors report the results they obtain after running the genetic algorithms for 10 
generations on the datasets presented in Table 1 to obtain the optimal weights ωi of 
the distance measures si in relation (2). We show these optimal weights in Table 2 
(which is also taken from their paper).  

Then the weights in Table 2 are combined to form the new similarity measure 
which, as the authors explain in their paper, is used to classify the test data. The 
results are shown in Table 3, which also contains the results of applying each 
similarity measure separately, also on a 1-NN classification task, which the authors 
report for comparison reasons to show the merits of using a combination of similarity 
measures. We present Table 3 exactly as it was presented in CSM-GA. 

 
Table 2. weights assigned to each similarity measure after 10 generations of CSM-GA. 

 
Dataset s1 s2 s3 s4 s5 s6 s7 s8 

 

Control Chart 0.72 0.29 0.33 0.18 0.12 0.61 0.31 0.82 
Coffee 0.74 0.9 0.9 0.1 0.03 0.03 0.06 0.70 
Beef 0.95 0.09 0 0.48 0 0.62 0.58 0.73 
OliveOil 0.7 0 0.79 0 0 0 0.58 0.67 
Lightning2 0.95 0.38 0 0.78 0.42 0.81 0.49 0.59 
Lightning7 0 0 0 0.23 0.84 0.56 0 0.39 
Trace 0.62 0.08 0.28 0.39 0.14 0.47 0.23 0.98 
ECG200 0.052 0 0.21 0 0 0.98 0.90 0 

Dataset Size of Training 
Set 

Size of 
Validation Set 

Size of  
Test Set 

Control Chart 180 120 300 
Coffee 18 10 28 
Beef 18 12 30 
OliveOil 18 12 30 
Lightning2 40 20 61 
Lightning7 43 27 73 
Trace 62 38 100 
ECG200 67 33 100 

Table 1. The datasets used in the experiments 
of CSM-GA
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Table 3. Comparison of classification accuracy using CSM-GA and other similarity measures. 
 

Dataset Size CSM-GA 
mean ± std 

L2 L1 L∞ disim root 
disim 

peak 
disim 

cosine DTW 
 

Control Chart 600 99.07± 0.37 88 88 81.33 58 53 77 80.67 99.33 
Coffee 56 87.50± 2.06 75 53.57 89.28 75 75 75 53.57 82.14 
Beef 60 54.45± 1.92 53.33 50 53.33 46.67 50 46.67 20 50 
OliveOil 121 82.67± 4.37 86.67 80.33 83.33 63.33 60 63.33 16.67 86.67 
Lightning2 121 87.54± 1.47 74.2 81.9 68.85 55.75 50.81 83.60 63.93 85.25 
Lightning7 143 69.28± 2.97 71.23 71.23 45.21 34.24 28.76 61.64 53.42 72.6 
Trace 200 100.0± 0.00 76 100 69 65 57 75 53 100 
ECG200 200 90.00± 1.15 88 89 87 79 79 91 81 77 

 
The authors of CSM-GA do not explain how they obtained the standard deviation. 
The size of the data sets in Table 3, which is the sum of the training sets, the 
validation sets, and the test sets, would suggest that they tested the weights on the 
training sets+ validation sets+ testing sets all mixed together.  

The authors of CSM-GA conclude that the results obtained by their approach are 
“considerably better” and that their method “is guaranteed to yield better results”. 

3   Legitimate Remarks  

In the following we present a few remarks on CSM-GA as proposed and implemented 
in [6]: 
 
1- Some of the results presented in the experiments of CSM-GA are very unintuitive; 
e.g. L∞ gave better classification accuracy on (Coffee) than the combination itself. 
This means that after going through the costly optimization process, CSM-GA 
proposed an output which is not even as good as using a single similarity measure 
(whose complexity is low) and which does not require any optimization process. This 
was also the case with DTW on (Chart Control),  L1  , L∞ , and  DTW on (OliveOil) , 
L1  , L2   and  DTW on (Lightning7) ,   L1  and  DTW on (Trace) ,  peakdism on 
(ECG200). In fact for all the datasets reported in Table 3 we see that one or even 
several similarity measures give very close, or even better, classification accuracy 
than the combination itself, which requires a costly optimization process. To give an 
idea, the total time of training the two smallest datasets in Table 1 for 10 generations 
(run on Intel Core 2 Duo CPU with 3G memory) was 29 hours 43 minutes (Beef) and 
6 hours 23 minutes (Coffee), yet the datasets used in the experiments of CSM-GA are 
among the smallest datasets in [9]. As we can see, the optimization process is very 
time consuming, may be even impossible to implement for some datasets in [9] whose 
size is of the magnitude of 1800 (for comparison, the sizes of Beef and Coffee are 30 
and 28, respectively). Yet this optimization process proposed in CSM-GA is of very 
little benefit, if any. These surprising remarks make the motivation of applying CSM-
GA seriously questionable.    
 
2- The choice of some of the similarity measures in the experimental part of CSM-GA 
seems redundant. Some of these distances are of the same family (L1, L2, L∞), and 
(dism, rootdisim). They are even related numerically (L1 ≥ L2 ≥ L∞), (dism ≤, 
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rootdisim). Strange enough, although the authors present in the background of their 
paper the same similarity measures we mentioned in Section 2 as the state-of-the-art 
similarity measures, they use only 3 of these measures in their experiments.  
 
3- The outcome of the training phase in some cases is strange and unexplainable; for 
instance, Table 3 shows that the weight of s3 on dataset (Beef) is 0, which means that 
this similarity measure is completely useless in classifying (Beef), yet Table 3 shows 
that the performance of s3 as a standalone similarity measure on (Beef) is not worse 
than any other similarity measure of the others (on the contrary, it seems to be the 
best). This is also the case with s2, s4, s5, s6 on (OliveOil) and s1, s2, s3, s7 on 
(Lighting7) , and this was particularly strange with s2 on (Trace) whose value on the 
training set was very small; 0.08 whereas its performance as a standalone similarity 
measure is completely accurate (100%). In fact, this result itself refutes the basis of 
the whole method CSM-GA; if s2 (which is L1) gives and accuracy of 100% on 
(Trace) then why do we have to go through all this long and complicated optimization 
process to get the same results (which are not even intuitive since the solution 
obtained gives a very small weight to this distance, almost 0)? 
 
4- The most astonishing remark to us was the abnormal existence of all these zeros in 
Table 2, and in 10 generations only. This point needs particular attention; in genetic 
algorithms the only possibility to produce a certain value is either during initialization 
or through mutation (or a mixture of both). As for initialization, CSM-GA uses a 
population of 10 chromosomes each with 8 parameters (the similarity measures) we 
find it very hard to understand how a random generator of real numbers between 0 
and 1 (with 2 or 3 decimal digits) would generate the value zero 15 times out of 80 
(=10x8) . As for mutation, again, this is also a mystery; the authors of CSM-GA do 
not state the mutation rate they used, they only mention that it is small. However, 
most genetic algorithms use a mutation rate of 0.2 [8], so the number of mutations of 
CSM-GA is 10 (=population size) x 8 (=number of parameters) x 10 (=number of 
generations) x 0.2 (=mutation rat) =160 random real numbers between 0 and 1 (with 2 
or 3 decimal digits). Again we can not understand how 0 was generated 15 times.  
This remark strongly suggests that there was an error in the optimization process of 
CSM-GA.  

4   A Counter Example  

In this section we will show that the conclusion of CSM-GA; that there is an optimal 
combination of weighted similarity measures which gives an optimal classification 
accuracy of a time series 1-NN classification task, is unfounded, and that any, 
completely randomly-chosen combination of the weighted similarity measures 
presented in CSM-GA on the same datasets can give very close classification 
accuracy.  

In our example we will conduct a 1-NN classification task on the same time series 
presented in Section 2, using the same datasets, and the same similarity measures, 
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except that the weights of the similarity measures we use are chosen randomly and 
without any optimization process.  

To prove that the weights we choose are random and do not result from any hidden 
optimization process we choose weights resulting from a known irrational number; 
the number π=3.141592653589793238462…. Since in the experiments of CSM-GA 
there were 8 weights, each between 0 and 1, with two digits after the decimal point, 
we will remove the decimal point of π and assign each two successive digits, after 
dividing them by 100 (to scale them in the range [0, 1]; the range of ωi), to the 
successive similarity measures, so the weights will be: ω1=0.31, ω2=0.41, ω3=0.59, 
ω4=0.26, ω5=0.53, ω6=0.58, ω7=0.97, ω8=0.93. As we can see, the weights do not 
result from any optimization process whatsoever. Then we construct a combination of 
the similarity measures according to relation (2) with the above weights, so we get: 
 

87654321 s93.0s97.0s58.0s53.0s26.0s59.0s41.0s31.0S +++++++=π  
 
We also wanted to test another randomly chosen number, so we took the square root 
of 2 ; .... 730950488414213562312 = , which is also an irrational number, and we 
proceeded in the same manner as we did with π, i.e.: we remove the decimal point and 
we assign each two successive digits, after dividing them by 100, to the successive 
similarity measures in relation (2), so we get the following weights in this case;  
ω1=0.14, ω2=0.14, ω3=0.21, ω4=0.35, ω5=0.62, ω6=0.37, ω7=0.30, ω8=0.95 , and the 
combination in this case is: 
 

876543212 s95.0s30.0s37.0s62.0s35.0s21.0s14.0s14.0S +++++++=  
 
Now we test πS and 2S  on the same datasets on which CSM-GA was tested. Since 
in our experiment we are not applying any optimization process we do not have any 
training phase (which is used in CSM-GA to get the optimal weights), so we apply 
πS and 2S  directly on the test sets. In Table 4 we present the results we obtained 

(together with those of CSM-GA for comparison). As we can see, the results are very 
close in general and we do not see 
any significant difference in 
classification accuracy between 
CSM-GA, which is supposed to be 
the outcome of an optimization 
process, and two other 
combinations with weights chosen 
completely at random. In other 
words, any combination of weights 
could produce the same 
classification accuracy. We 
experimented with other randomly 
chosen combinations of weights 

Dataset CSM-GA 
mean ± std πS  2S  

Control Chart 99.07± 0.37 96 98.33 
Coffee 87.50± 2.06 92.85 89.28 
Beef 54.45± 1.92 56.66 53.33 
OliveOil 82.67± 4.37 83.33 80 
Lightning2 87.54± 1.47 83.61 88.53 
Lightning7 69.28± 2.97 80.82 76.71 
Trace 100.0± 0.00 96 95 
ECG200 90.00± 1.15 90 90 

Table 4. Comparison of the classification 
accuracy using CSM-GA and two randomly 
chosen combinations of weights wi
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and we got similar results, and we urge the reader to test any combination of weights 
(between 0 and 1) and he/she will draw the same conclusion that we did that there is 
no optimal combination of weights.  

It is also worth mentioning that [9] urges all those who use that archive to test on all 
the datasets to avoid “cherry picking” (presenting results that work well/ better with 
certain datasets). The authors of CSM-GA do not mention why they did not test their 
method on the other datasets in [9], or why they chose these datasets in particular. 
However, in this example we meant to test our random combinations on these datasets 
in particular because these are the ones on which CSM-GA was tested.  

It is very important to mention here that all the results, remarks and the example we 
present in this paper are reproducible; the datasets are, as mentioned before, available 
at [9] where the reader can also find the code for the classification task. As for the 8 
similarity measures used (Section 2) they are very easy to code. Besides, many 
scientific programming forums on the internet have the codes for these similarity 
measures, so all our results are easily verifiable. 

5   What Went Wrong With CSM-GA  

In this section we try to answer the question of why CSM-GA did not work. We were 
able to find two major errors in CSM-GA 
 
1-The most serious error in CSM-GA is that the similarity measures it uses were not 
normalized before being used in relation (2). These similarity measures have very 
different numeric values so they should be normalized. To give a rough estimation, 
we present in Table 5 the distances between the first and the second time series of the 
test datasets used in the experiments of CSM-GA using each of the 8 similarity 
measures used with CSM-GA. We believe Table 5 clearly explains the whole point; 
since all the weights wi are in the interval [0,1] then for a certain value of the weight 
the combination in relation (2) will be dominated by the similarity measures with the 
highest numeric values. We see in (Coffee) for instance that the value of DTW is 
6.3x106

 times larger than that of the Cosine Distance, so the influence of DTW on Snew 
in (2) will be far much stronger than that of the Cosine Distance in classifying 
(Coffee), so normalization is crucial.  
 
Table 5. A rough estimation of the numeric values of the similarity measures used in CSM-GA 

 

 

Control Chart 9.79 59.17 2.94 0.64 0.8 0.48 0.81 21.16 
Coffee 187.58 2932.7 18.77 0.23 0.48 0.19 0.001 10567 
Beef 0.93 13.8 0.14 0.53 0.73 0.38 1.05 50 
OliveOil 0.07 0.84 0.02 0.007 0.08 0.007 0.000 0.004 
Lightning2 32.85 358.24 18.36 0.75 0.87 0.50 0.85 294.06 
Lightning7 16.55 206.18 8.88 0.59 0.77 0.43 0.43 98.28 
Trace 27.57 389.97 5.08 0.76 0.87 0.56 1.39 437.4 
ECG200 3.90 28.48 1.53 0.36 0.60 0.26 0.08 6.34 

 

Dataset L2 L1 L∞ disim root 
disim 

peak 
disim 

cosine DTW 
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Since the numeric values of L1, L2, L∞, DTW are far much larger than those of the 
other 4 similarity measures, and since, as we can see from Table 3, the performance of 
L1, L2, L∞, DTW as standalone similarity measures is better than the other 4 similarity 
measures, we can easily understand the reason behind what it seems as the “optimal” 
classification accuracy of Snew. It is simply due to the fact that Snew is dominated by 
similarity measures whose performance is superior, and not as a result of an 
optimization process. This point explains the findings of our example in Section 4 that 
any combination will likely give similar classification accuracy as that of CSM-GA. 
 
2- The 1-NN classification task of time series has certain characteristics related to its 
nature. We will explain this through the following example; the size of (Beef) is 30, 
thus the number of mismatches on this dataset (whatever algorithm is used) will be 
NrMis= {0,1,2,…,30}, thus the 1-NN classification accuracy (which is the objective 
function of CSM-GA), whatever algorithm is used, will take one of these values: 
ClassAcc={30/30,29/30,28/30,…,0/30}. This set ClassAcc is finite (and even more it 
has a small cardinality), while the values of the weights wi belong to an infinite set 
(the interval [0, 1]), yet any combination of weights of similarity measures will yield  
1-NN classification accuracy that belongs to the finite (and small) set ClassAcc, this 
means that an infinite number of different combinations will give the same 
classification accuracy. In optimization language, such an objective function is highly 
multimodal, so the assumption that there is an optimal combination of similarity 
measures that gives maximum1-NN classification accuracy is incorrect and the search 
for such an optimal combination is meaningless (and the example we presented in 
Section 4 leads to the same conclusion).  

6   Conclusion  

There are far too many "new" bio-inspired optimization applications claiming their 
superior performance. But a deep investigation of these techniques may show that 
they are incorrect. Our purpose in this paper was by no means to refute a particular 
method or to show its incorrectness, but it was rather to shed light on certain cases 
where the careless, inappropriate, or erroneous application of bio-inspired algorithms 
may give false and even unintuitive results. While the widespread success of bio-
inspired algorithms encourages many researchers to apply these algorithms 
extensively, it is important to be careful to choose the right application that takes into 
account the problem at hand, in addition to the correct implementation of the bio-
inspired algorithm, especially that these algorithms require employing intensive 
computing resources, so we have to make sure that the results obtained will be better 
than those yielded by a random solution of the problem.  
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