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SUMMARY 
 

Background: Prenatal exposure to environmental toxicants is of major concern, as foetal 

development is one of the most sensitive life stages for endogenous and exogenous insults, due 

to rapid cell division and apoptosis, morphogenesis, and cellular differentiation.  Due to limited 

renal and biliary elimination, and the inability to metabolise toxicants in utero, prenatal exposure 

affects birth outcomes and early childhood development.  Permeability of the placenta allows not 

only for environmental contaminants, but also contaminants released from maternal body stores 

during pregnancy, to be transferred to the foetus.  At present, exposure to multiple chemicals 

amongst pregnant women has been studied, but more research is required on the subject. 

 

Most of the exposure assessments in pregnant women and birth outcome studies have been 

performed in developed industrialised countries, mainly in the northern hemisphere.  There is a 

paucity of such assessments from developing countries and countries that are in transition 

(UNEP, 2011). Populations of the southern hemisphere, where most of these developing 

countries are situated, may be more susceptible to toxic effects of pollutants, due to their 

compromised health and economic status, as well as changes in climatic conditions, including a 

rise in temperatures which may lead to an increase in the number of malaria mosquitoes and 

changes in their geographic distribution. The same trends may be observed for other insect 

vectors as well, with the final outcome being an increased use of 1,1,1-trichloro-2,2-di(4-

chlorophenyl)ethane (DDT).  It is predicted that coastal populations in the southern hemisphere 

will be most affected.  

 

 The reintroduction of controlled indoor residual spraying (IRS) of DDT for malaria control in 

2001 in malaria endemic regions in South Africa (SA), permitted an opportunity to assess 

prenatal exposure and enhance the current understanding of DDT and other selected 

contaminants in malaria and non-malaria regions situated along the coast. 

 

This study was initiated as a follow up to a pilot study which evaluated the extent of prenatal 

exposures to persistent toxic substances (PTS) and birth outcomes in selected geographical 

regions of SA. The regions under study consisted of three very distinctive rural study sites 
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situated along the western coast of the Indian Ocean, in the KwaZulu Natal province, namely, 

site 1 - a malaria endemic site; site 2 - a non-malaria site; and site 3 - an intermittent malaria site. 

   

Results and discussion: In the malaria endemic site, high concentrations of DDT, in particular 

p,p'-1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (p,p'-DDE) and p,p'-DDT, were found in the 

maternal plasma.  These levels were significantly higher when compared with the other two sites 

(i.e. intermittent malaria and non-malaria).  In addition, subjects in the malaria endemic site, 

were not only exposed to elevated levels of DDT, but also exposed to mercury (Hg), γ-

Hexachlorocyclohexane (γ-HCH) and endosulfan, although to a lesser extent.  In both the 

intermittent malaria and non-malaria sites, elevated levels of p,p'-DDE and p,p'-DDT were also 

found in maternal plasma.  A p,p'-DDE/p,p'-DDT  ratio of 5 and 4 was found in the intermittent 

and non-malaria sites, respectively, indicating recent exposure, and suggesting that food is not 

the only source of DDT exposure in these two areas.  The reason for the elevated levels of DDT 

in these areas is not clear, considering the long residence time of participants in each site. 

Overall, maternal age and weight negatively influenced p,p'-DDE levels, whereas, having one’s 

home sprayed by the malaria vector control personnel, using wood for cooking and consuming 

tinned fish significantly increased the p,p'-DDE levels. 

 

The γ-HCH and endosulfan 1 and 2 were elevated in all three regions, however, significantly 

higher levels of endosulfan and γ-HCH were found in the intermittent malaria site, possibly due 

to the large commercial and subsistence farming activities in the area.  The two compounds, 

endosulfan and γ-HCH correlated strongly with each other, indicating a similar source of 

exposure.  For γ-HCH, drinking borehole water (positive), weight (positive), age (negative) and 

consumption of processed meat (negative) were strong predictors.  Growing one’s own food, 

self-reported poor air quality or exposure to environmental pollution around the home, were all 

positively associated with endosulfan levels.  Consumption of processed meat and dairy products 

was a negative predictor of endosulfan levels.  γ-HCH levels were much higher when compared 

with some other regions, such as Australia, Mexico and Poland.  As γ-HCH and endosulfan are 

now listed as banned and persistent substances by the Stockholm Convention, efforts must be 

made to reduce sources of exposure in SA. 
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The other isomers of Hexachlorocyclohexane (HCH) (α, β- HCH), and the pyrethroid pesticides 

(cis-permethrin, cyfluthrin, cypermethrin and deltamethrin) were detected in less than a fifth of 

the samples, and Hexachlorobenzene (HCB) was not detectable in any of the samples.  This 

study found low levels of β-HCH compared to those in Russia and Spain.  

 

Very low maternal concentrations of the Polybrominated Diphenyl Ether (PBDE) isomers, 28, 

49, 71, 47, 66, 77, 100, 119, 99, 85, 154, 153, 138, were observed across all three sites, although 

PBDEs have been reported in other studies in breast milk, leachates and catchment areas in 

South Africa.    

 

Hg was detected in 100% of maternal and cord blood samples in the malaria endemic site, with 

significantly higher concentrations than the intermittent and non-malaria sites.  There was a 

strong positive correlation (r2 = 0.66) between maternal and cord blood Hg levels.  For umbilical 

cord blood Hg concentrations, the following were strong predictors in the multivariate regression 

model: maternal blood Hg levels, living in the malaria endemic site, environmental pollution in 

the home and a household member being involved in fishing. 

 

Conclusion: This thesis evaluated the extent of concomitant exposure to selected organic 

compounds and Hg in utero. Although, as expected, elevated levels of DDT from IRS were 

found in the malaria endemic site, substantial concentrations of Hg, γ-HCH and endosulfan were 

also found.  In addition, DDT was also found in the intermittent and non-malaria sites, although 

to a lesser extent.  The p,p'-DDE/p,p'-DDT ratios in the two sites indicate recent on-going use of 

DDT, possibly illegal use, since DDT use is only allowed in designated areas.  Furthermore, high 

levels of the now banned γ-HCH and endosulfan were found in the intermittent malaria site, with 

lower levels in the malaria endemic site and non-malaria sites.  In the intermittent malaria site, 

there is an indication of recent use of DDT, as well as significant exposure to γ-HCH and 

endosulfan.  This study has confirmed that pregnant women in these study sites were exposed 

concurrently to a mixture of chemicals, many classified as endocrine disruptors, indicating the 

need for the implementation of policies that curtail the use of these chemicals. 
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1. INTRODUCTION 

 

Environmental contaminants are both naturally occurring substances, such as metals and 

elements, as well as man-made chemical substances, which includes both organic and metallic 

products that enter the environment either through weathering processes of natural deposits, or 

industrial and mining activities, but most frequently as a result of anthropogenic human 

activities. Most are persistent toxic substances (PTS) that are characterised by very slow 

degradation rates,  their ability to bioaccumulate and biomagnify, and their dispersion into the 

environment (AMAP, 2004). 

 

Of major concern are the health effects of PTS on humans, fauna and flora.  Both toxic elements 

and persistent organic pollutants (POPs) pose a risk to the health of humans and wildlife 

(Rodriguez-Dozal et al., 2012).  It has been shown that POPs, such as organochlorine pesticides 

(OCPs), polybrominated diphenyl ether (PBDEs), polychlorinated biphenyls (PCBs) and 

polychlorinated dibenzo-p-dioxins and furans (PCDDs and PCDFs), can be found in human 

blood, adipose tissue and breast milk (Doucet et al., 2009; Eskenazi et al., 2003; Guvenius et al., 

2003; Hedgeman et al., 2009; Solomon and Weiss, 2002).  Toxic metals and elements also 

accumulate in humans, in their specific target organs.  For example, the main target organs for 

mercury (Hg) are the central nervous system (brain) (Park and Zheng, 2012), kidneys (Barbier et 

al., 2005; Park and Zheng, 2012) and lungs (USEPA-TTN, 2000). 

 

Another major concern is the exposure of women of reproductive age to PTS, as it has been 

shown that toxic metals (including Hg), OCPs, PBDEs, PCBs, PCDDs and PCDFs accumulate in 

the maternal body and are transferred to the foetus via the placenta during pregnancy or to the 

infants via maternal milk.  The pregnant women's body burden of contaminants is directly 

responsible for the potential health effects in the foetuses and infants (Todaka et al., 2010; Wang 

et al., 2009). 

 

The time between conception and birth is perhaps one of the most vulnerable life stages.  During 

this time, the environment may have tremendous immediate and lasting effects on foetal 

health.  During pregnancy, the foetus undergoes rapid growth and organ development, and the 
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maternal environment may directly influence these processes, for better or for worse.  In 

addition, timing of the prenatal exposure to specific contaminants during the pregnancy stage 

may influence the severity of the detrimental health effects.  Early childhood is also a critical 

period for the continued development and maturation of several biological systems; hence infants 

are very susceptible to environmental exposures after birth (WECF, 2012 ).     

 

Numerous studies concerned with the effects of exposure to PTS on reproductive health and birth 

outcomes have been performed in the northern hemisphere over the last two decades (AMAP, 

2011). Regrettably, there is a paucity of similar research conducted in the southern hemisphere, 

including SA.  Under the umbrella of the Arctic Monitoring and Assessment Programme 

(AMAP), SA was included as a participant from 2004 onwards. A pilot study involved 

collaboration between the South African Medical Research Council (SA MRC), the University 

of Tromsø (UT) and the Norwegian Institute for Air Research (NILU).  The collaborative study 

investigated levels of PTS in selected areas of SA.  The toxic elements in the blood of delivering 

women and paired umbilical cord blood samples, the essential elements in maternal serum, as 

well as selected POPs in maternal plasma, were measured (Hanssen et al., 2010; Röllin et al., 

2009a; Röllin HB, 2008; Rylander et al., 2010).  Since then, similar studies have been performed 

or are currently underway in other southern hemisphere regions such as Brazil, Argentina, 

Malawi, Tanzania and Australia (Rudge et al., 2009).  From the pilot study results obtained in 

SA, it was clear that environmental contamination is region dependent, with evidence of elevated 

concentrations of some toxic metals, particularly Hg, but also high concentrations of selected 

POPs.  DDT which is applied for malaria vector control, was found in higher concentrations than 

those found in the northern hemisphere, as expected (Röllin et al., 2009a).  

 

As SA can be considered both a developed and a developing country, it is an ideal study site for 

the purpose of this project. This country has extensive mining, industrial and agricultural 

activities, both formal and informal. These activities release both toxic metals and organic 

pollutants in the living environment (SouthAfrica.Info, 2012a; SouthAfrica.Info, 2012b). 

 

As far as agriculture is concerned, SA has a large sector favouring a highly diverse range of 

marine (fish farming) and agricultural products, from deciduous, citrus and subtropical fruit to 
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grain, wool, cut flowers, livestock and game, thereby increasing the use of pesticides.  Each 

individual crop is susceptible to a unique host of pests that in turn require a unique mixture of 

pesticides.  Currently, SA has more than 500 registered pesticides for use (Pesticide Action 

Network (PAN, 2010)), and is one of the largest importers of pesticides in sub-Saharan Africa 

(Osibanjo et al., 2003).  In addition, pesticides are also used in the management of disease 

vectors such as malaria.  In SA, malaria is currently managed by the use of DDT and pyrethroids 

via Indoor Residual Spraying (IRS), increasing the risk of exposure to the household members, 

in particular the most susceptible populations, such as pregnant women, young children, the aged 

and those in poor health. Past and present mining activities are constantly contributing to the 

environmental contamination and degradation. Uncontrolled urbanisation, increasing levels of 

unemployment, poor housing, deprived diet, and inadequate health due to the high rate of 

communicable diseases (such as HIV/Aids, TB and malaria), further increase the risk of 

detrimental health effects in the population.  

 

This study was performed in the KwaZulu Natal (KZN) province of SA, which lies along the 

Indian Ocean coast, where agricultural activities are very prominent.  The study was designed 

under the auspices of Norway-SA Bilateral Research Collaboration, with the SA MRC, UT and 

NILU being the main collaborators. 
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2. AIMS OF THE STUDY 

 

To enhance the current understanding of the complex chemical exposures in pregnant women 

before delivery, in malaria (where DDT is used in IRS), intermittent and non-malaria areas 

situated along the KwaZulu Natal coast, the following primary objectives were identified: 

 

 Assess the levels of DDT in pregnant women in malaria endemic and non-malarial areas 

of SA, due to the reintroduction of DDT use for vector management, via controlled IRS. 

 Assess the levels of other pesticides that may be used for malaria control, in agriculture, 

or against household pests.    

 Assess the levels of Hg due to industrial activities and possible artisanal mining in the 

region. 

 Compare the levels of pesticides and Hg statistically, and derive an initial risk assessment 

and possible predictors in pregnant women.  
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3. BACKGROUND TO THE STUDY 

 

Reproductive health is an area of priority research worldwide.  This thesis attempts to quantify 

levels of selected PTS as an indication of prenatal exposures, by measuring these contaminants 

in maternal blood compartments of delivering women who reside along the Indian Ocean of the 

KZN Province in SA. 

 

The regions under study consisted of three very distinctive rural study sites situated along the 

western coast of the Indian Ocean, namely, site 1 - a malaria endemic site; site 2 - a non-malaria 

site; and site 3 - an intermittent malaria site. The malaria endemic site was chosen because of the 

reintroduction of controlled IRS with DDT in 2001.  

 

There is no other comprehensive study that has attempted to quantify the actual exposure to DDT 

and its metabolites resulting from IRS activities.  In addition, other so called currently used 

pesticides (CUPs) such as some of the pyrethroid (cis-permethrin, cyfluthrin, cypermethrin, 

deltamethrin) pesticides were measured, as well as Hg, which is considered to be the most toxic 

metal to humans. The study also measured some other selected POPs, such as endosulfan, α-, β-, 

γ-HCH, HCB and brominated flame retardants. Most (DDT, α-, β-, γ–HCH, endosulfan, some 

PBDE isomers and HCB) of the contaminants measured are listed by the Stockholm Convention 

(UNEP, 2008b) as banned chemicals.  Results obtained in the malaria endemic site were 

compared with the results from the other two sites (intermittent malaria and non-malaria area).  

The findings from this study will identify the extent of prenatal exposure to environmental 

contaminants in three regions along the coast.  In addition, these regions are very rich in other 

water bodies such as lakes and rivers. 

  



Page | 19 
 

3.1. Malaria in Africa 

In Africa, malaria is the biggest killer of children under five years of age, who account for nearly 

86% of all malaria deaths.  It is estimated that a child dies every 45 seconds from the disease. 

The effect of malaria on reproductive health is extreme, resulting in high maternal mortality rate, 

low birth weight and maternal anaemia (WHO, 2011).  Moreover, many countries in Africa lack 

the infrastructure and resources necessary to treat and prevent malaria. As a result, very few 

countries have benefited from past efforts to eradicate malaria (WHO-RBM, 2010). In the 

southern part of Africa, malaria remains endemic in the north-eastern border regions of SA and 

in the adjacent countries of Mozambique, Swaziland and Zimbabwe, where 22 million, 0.5 

million and 6 million people respectively, are at risk of contracting the disease  (WHO, 2010).   

 

SA has carried out intensive malaria control activities over many decades and has succeeded in 

halting transmission in most of the country.  At present, approximately 10% (5 million) of the 

SA population is at risk of contracting malaria by residing in malaria risk areas (Rogan and 

Chen, 2005).  IRS is the primary vector control measure used in SA (WHO, 2010).   

 

In short, IRS involves the treatment of all interior walls and ceilings with insecticides at a 

prescribed dosage, and is particularly effective against mosquitoes, since many species rest on 

walls before or after feeding. The main aims of IRS are to reduce the life span and density of 

vector mosquitoes (WHO, 2006).  

  

3.2. Concerns about DDT use in SA to eradicate malaria 

Since the 1940s, the spread of malaria worldwide has been controlled by the use of 

organochlorines (OCs), mainly DDT [1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane], which has 

also been used extensively in agriculture.  Although DDT has been banned in most countries for 

the last 30 years, due to its persistent nature, it can still be detected in the environment, not only 

at the point of origin, but also at remote locales (AMAP, 2004).  The major detrimental health 

effects of exposure to DDT and its breakdown products include breast, liver and other cancers; 

male infertility; miscarriages and low birth weight; reduced immunity; developmental delay; and 

nervous system damage (Aneck-Hahn et al., 2007; Cohn et al., 2007; Crinnion, 2009; Hardell et 

al., 2004; Karmaus et al., 2001; Longnecker et al., 2001; McGlynn et al., 2006; McGlynn et al., 
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2008; Narita et al., 2007; Porta et al., 2008a; Quaranta et al., 2006; Ribas-Fito et al., 2003; 

Sunyer et al., 2005; Vine et al., 2000; Younglai et al., 2002).  

 

In SA, malaria is mostly confined to the low altitude (below 1000 metres above sea level), 

subtropical, northern border areas of the Limpopo Province, Mpumalanga Province and the north 

east of the KZN province (Sharp and le Sueur, 1996; Steketee and Campbell, 2010).  

 

In the 1990s, malaria was virtually eradicated in SA. In 1996 the SA government, due to 

international policy changes, partially replaced DDT with pyrethroid compounds, considered to 

be less toxic, for its malaria control strategy.  This move resulted in the reappearance of severe 

malaria outbreaks in a very short time.  By the year 2000, almost 65 000 cases of malaria had 

been diagnosed and 424 deaths had occurred countrywide (DOH-RSA, 2010).  In addition, the 

Anopheles fenestus mosquitoes, which feed almost exclusively on humans and had not been 

recorded in SA for many years, had re-emerged in KZN, since they became resistant to 

pyrethroids within a very short time (Hargreaves et al., 2000; Mouatcho et al., 2007). 

 

A UNEP meeting held in Johannesburg, SA in December 2000, concluded the fifth and final 

round of negotiations on a treaty to ban POPS [now the Stockholm Convention] (IPEP, 2006).  

The SA government, experiencing a malaria epidemic at the time, was instrumental in the 

signing of a treaty that allowed for the re-introduction of DDT usage for malaria vector control.  

Since then, SA has continued to promote the use of DDT as a necessary intervention for malaria 

control, and re-expressed its commitment to the continued use of DDT for malaria control during 

the First Conference of the Parties (COP1) of the Stockholm Convention (UNEP, 2005).    

 

After the reintroduction of DDT use for IRS in 2001, reported malaria cases in SA began to 

decline almost immediately, with malaria admissions and deaths decreasing by 89%, and 

outpatient malaria cases by 85% (O'Meara et al., 2010). At the same time, more advanced and 

modified drug therapy was applied, which replaced the combination of sulphadoxine / 

pyrimethamine with artemisinin-based combination therapy (ACT). This move further 

contributed to the decrease in malaria cases in SA (Barnes et al., 2005). 
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After a long deliberation in 2004, the Stockholm Convention and WHO finally agreed to grant 

exemption not only to SA, but also other malaria endemic countries, to use DDT for IRS as a 

major vehicle of malaria vector control, until similarly effective pesticides and methods become 

available (UNEP, 2008b). 

 

Although permission was granted to use DDT, the Stockholm Convention, WHO and other 

global initiatives are actively supporting research and development of safe alternative chemical 

and non-chemical products, methods and strategies (relevant to the specific conditions of 

countries affected), to reduce the human, environmental and economic burden of malaria.  Other 

additional measures are also introduced such as insecticide treated nets (ITN) which are 

impregnated with synthetic pyrethroids, which is the only approved class of insecticides for this 

purpose (Maharaj et al., 2005). 

 

3.3. Pesticide use in South Africa 

SA is one of the largest users of pesticides on the African continent.  Approximately one fifth of 

the arable land is used for agriculture, and about one tenth of the economically active population 

is employed in the agricultural sector.  Agriculture is a substantially important income generating 

activity in SA. This country has a wide variety of registered pesticides; however, detailed 

information on the proportions of pesticides used is not available (Heeren et al., 2003; PAN, 

2010; Quinn et al., 2011). 

 

Although international trends show that many developed countries are adopting policies that 

promote pesticide reduction, the use of pesticides in SA for agriculture, public health and 

domestic purposes continues to expand.  Due to the banning of the persistent OC compounds, 

use of the additional pesticides, such as organophosphates, carbamates and pyrethroids has 

increased.  Despite having legal controls that seem to conform to international standards, the 

present health and environmental impacts of pesticide use in SA are substantial but generally 

underestimated.  From 2000 to 2008, a total of 12 364 pesticide poisoning cases were notified to 

the Department of Health; however, these figures are a substantial underestimation of the true 

rates, as many cases go unreported (DOH, 2005). 
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3.4. Political transition and changes in farming activities in 

KwaZulu-Natal 

After the political transition in SA in 1994, an approximate area of 94 160 hectares of farmland 

was redistributed to historically disadvantaged people from 1997 to 2000 in the KZN province. 

During this process, 46% of the land was redistributed to women, either as owners or wives of 

the owners. This development has led to a change in women’s roles in agriculture in SA.  There 

is a definite increase in the number of female-headed households, with women owning their own 

farms and planting crops, which were traditionally labelled “men’s crops”.  Women started 

participating in agricultural activities, such as pesticide mixing and application, previously 

carried out by males, due to the migration of men to the industrial sectors.  There is no clear 

distinction between women’s and men’s roles in agriculture anymore.  In addition, women with 

lower literacy levels and financial income, as compared to their male counterparts, may be 

unable to read pesticide information leaflets and purchase protective equipment, thereby 

increasing their risk of pesticide exposure and adverse health effects (Naidoo et al., 2008).   Due 

to the increase in economic development in the rural areas, agricultural practices and crops 

grown have changed from mainly subsistence, to a mixture of subsistence, cash crop and 

commercial farming.  The use of pesticides has therefore increased significantly.   

 

Pesticides such as organophosphates, carbamates and pyrethroids are now used to protect the 

plants, and are considered the major crop protection and veterinary chemicals in SA.  

Internationally, these pesticides are called CUPs.  Studies have measured DDT and CUPs in 

umbilical cord blood samples in the United States of America (Whyatt et al., 2003), as well as in 

breast milk samples in SA (Bouwman and Kylin, 2009; Bouwman et al., 2006; Sereda et al., 

2009).  In the SA study, permethrin was also found at quantifiable levels in the breast milk, 

followed by cyfluthrin and deltamethrin (Bouwman et al., 2006).  Another study performed in 

Switzerland and USA detected pyrethroids in low concentrations in human milk (Weldon et al., 

2011; Zehringer and Herrmann, 2001).  

 

Results from a pilot study in 2006 found high levels of p,p’-DDE and p,p’-DDT (5177 and 1797 

ng/g lipids, respectively)  in  the two malaria endemic areas of KZN.  Other pesticides were also 

detected, such as HCH and HCB, with γ-HCH being dominant (Röllin et al., 2009a; Röllin HB, 
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2008). However, since PCB, chlordanes and nanochlors were found in low levels, they were not 

included in the current study.  

 

3.5. Persistent organic pollutants (POPs) 

3.5.1. Overview 

POPs have been widely used as pesticides or industrial chemicals, and are known to pose a risk 

to human health. The following chemicals are currently included in the Stockholm Convention 

(UNEP, 2008b):  

Aldrin Chlordane 

Dieldrin Endrin 

Hexachlorobenzene Mirex 

Polychlorinated biphenyls Polychlorinated dibenzo-p-dioxins 

Pentabromodiphenyl ether Chlordecone 

Heptabromodiphenyl ether Pentachlorobenzene 

Perfluorooctane sulfonic acids Perfluorooctane sulfonyl fluoride 

Polychlorinated dibenzofurans DDT 

Hexabromobiphenyl ether Heptachlor 

Endosulfan and the isomers Toxaphene 

Tetrabromodiphenyl ether  α-, β- and γ–Hexachlorocyclohexane  

 

3.5.2. Health effects of POPs  

In humans and animals, there are known adverse health effects of exposure to high levels of 

POPs.  In addition, there is also increasing concern on chronic exposure to low level background 

exposure to POPs. The most common route of exposure is through contaminated food.  Other 

routes of exposure include contaminated water and direct contact with the chemicals.  Many 

POPs are known to be endocrine disruptors, binding to cellular hormone receptor sites such as 

estrogen, androgen and thyroid receptors, and have the potential to induce endocrine, 

neurodevelopmental, immunological and reproductive dysfunctions (Crinnion, 2009).   

 

In SA, adverse reproductive effects of DDT have been reported in some men living in houses 

sprayed with DDT (compared to men living in houses that were not sprayed) (de Jager et al., 
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2009), and increased urogenital malformations have manifested in newborn boys whose mothers 

were living in DDT treated areas (Bornman et al., 2010). Reproductive effects of POPs exposure 

have also been reported in other countries (Giordano et al., 2010; Rocheleau et al., 2009).  Liver 

and lung cancer have been detected in the Taiwanese cohort exposed to PCB-contaminated rice 

oil (Thundiyil et al., 2007).  However, there are conflicting results regarding OC exposure and 

breast cancer risk, even though it is known that some OC compounds act as estrogen agonists or 

antagonists (Calle et al., 2002).  Disruptions of developing immune and respiratory systems from 

POPs exposure have been shown to result in reduced capacity to fight infections and an 

increased predisposition to developing allergies, however, in some cases, the exposure-outcome 

associations are inconclusive (Gascon et al., 2013).  Also, the effects on the endocrine system 

involving changes in thyroid hormone levels were not completely evident (Arisawa et al., 2005; 

Rogan and Chen, 2005).  Nevertheless, more evidence is emerging to substantiate an imbalance 

in thyroid hormone levels, following exposure to certain OC compounds (Lopez-Espinosa et al., 

2010; Meeker et al., 2007).   Obesity has also been proposed as another adverse health effect of 

exposure to endocrine disrupting chemicals during the critical stages of development. Studies 

suggest that fat cells and mechanisms involved in weight homeostasis may be affected by 

endocrine disruptors early in life and lend support to the concept that diseases manifesting in 

adulthood may have their origins in early life (Newbold et al., 2008). 

 

 Exposures to low levels of POPs, especially DDT and PCB, have been evaluated in prospective 

cohort studies in populations which consume fish.  Many demonstrated some negative 

association with mental and psychomotor development with maternal DDT levels (Eskenazi et 

al., 2008; Torres-Sanchez et al., 2012).  However, not all studies support these hypotheses (Jusko 

et al., 2012).  Sajiv et al (2012) found higher attention deficit in males compared with females 

(Sagiv et al., 2012); Rosas and Eskenazi (2008) found a stronger neurological association with 

DDT compared to DDE (Rosas and Eskenazi, 2008), and Pan et al (2009) found that infant 

neurodevelopment was not impaired at low concentrations of PCBs, DDE and DDT (Pan et al., 

2009).  Limited studies have been reported for the other POPs; however, exposure to β-HCH 

(Lopez-Espinosa et al., 2010) and HCB (Ribas-Fito et al., 2007) showed some adverse 

neurological effects.   
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Several recent experimental studies suggest that exposure to POPs may cause diabetes in 

humans.  Plasma levels were positively associated with type 2 diabetes, mainly for HCB and 

PCBs (Rylander et al., 2005).  Previously, six POPs (2,2,4,4,5,5-hexachlorobiphenyl, 

1,2,3,4,6,7,8-heptachlorodibenzop- dioxin, 1,2,3,4,6,7,8,9-octachlorodibenzo-p-dioxin, 

oxychlordane, DDT and trans-nanochlor), were strongly and positively associated with diabetes 

prevalence after adjusting for age, sex, race and ethnicity, poverty-income ratio, BMI, and waist 

circumference (Lee et al., 2006).  

 

3.5.3. Distribution of POPs 

As soon as POPs are released into the environment, they may be transported within a specific 

region or throughout the world by "global fractionation" process.  In this process, chemicals may 

be latitudinally fractionated according to ambient temperature and their physical-chemical 

properties (solubility, vapour pressure, molecule size) and the subsequent deposition via rain, fog 

or snow in the water column, sediment or soil.  As vapour, or attached to small particles, POPs 

move between air, water and soil. They can travel long distances, with south to north the main 

route, via the ocean streams and especially by atmospheric transport. Evaporation and 

precipitation are regulated by temperature and it accelerates the process (Macdonald et al., 2005; 

Odland and Nieboer, 2012).   The volatile compounds are easily transported to the deposition 

region.  Semi-volatile compounds, such as DDT and γ-HCH, can be washed out via precipitation 

and temporarily deposited in seawater or soil, and can be absorbed to water, plant and soil 

surfaces from the gaseous phase.  During favourable warm weather conditions, these compounds 

evaporate again into the atmosphere and undergo further atmospheric transport.  SA, having 

warmer climatic conditions would more likely be the source of POPs, rather than the destination 

from long range transportation (AMAP, 2004).   

 

3.5.4.  Exposure of POPs 

Although dietary exposure is considered the most significant route of entry in humans, POPs 

may be absorbed through inhalation and dermal exposures.  A large portion of POPs in the fat of 

a mother can be transferred to her baby in breast milk, or during pregnancy these substances can 

be transferred to the unborn child through the placenta.  Polychlorinated biphenyls (PCBs), DDT 
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and its metabolites, dioxins, dibenzofurans and heavy metals are among the toxic chemicals most 

often found in breast milk (Hooper and McDonald, 2000; Sonawane, 1995). 

 

Studies performed in KwaZulu-Natal found that mothers usually breast-feed their babies for up 

to two years, which can lead to a significant transfer of toxic chemicals from mother to infant 

(Bouwman et al., 1990; Bouwman et al., 2006).  It has been shown that primiparae mothers had 

higher concentrations of DDT in their milk than multiparae mothers (Bouwman et al., 1992).   

 

3.5.5. Toxicokinetics of POPs in humans 

The uptake of POPs into tissues is a function of the blood flow, lipid content of that tissue, and 

the partition coefficient for the chemical between the blood and lipids in the specific organs.  

Once absorbed, POPs are readily distributed via the lymph and circulatory systems to all body 

tissues and are stored in these tissues generally in proportion to organ tissue lipid content 

(Morgan and Roan, 1971; Roan et al., 1971).  The POPs are then slowly excreted from their 

stores, through faeces and urine (ASTDR, 2011). 
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3.6. DDT 

1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) is an organochlorine  pesticide that was once 

widely used to control insects on agricultural crops and insects that carry diseases like malaria 

and typhus, but is now used in only a few countries to control malaria. DDT does not occur 

naturally in the environment.  Commercial DDT is a mixture containing mainly 77% of the p,p'-

DDT  and 15% of the o,p'-DDT isomer.  p,p'-DDE (1,1-dichloro-2,2-bis(p-chlorophenyl)ethene; 

also referred to as dichlorodiphenyl dichloroethylene, DDE) and 1-chloro-4-[2,2-dichloro-1-(4-

chlorophenyl)ethyl]benzene (DDD) are the metabolites and breakdown products of DDT in the 

environment (Crinnion, 2009).  DDE is the main metabolite of p,p'-DDT. It has a longer-half-

life, is more toxic, and usually occurs at higher levels than p,p'-DDT, but this depends on the 

time elapsed since exposure.  p,p'-DDT exposure occurs primarily during its application 

(Longnecker et al., 1997).  The term "total DDT" is often used to refer to the sum of all DDT 

related compounds (p,p'-DDT, o,p'-DDT, DDE, and DDD) in a sample. In humans, p,p'-DDT is 

metabolised to p,p'-DDE within about six months (Crinnion, 2009). The ratio p,p'-DDE/p,p'-

DDT provides information about how recently exposure took place.  p,p'-DDE is the most 

abundant organochlorine pesticide both in the environment and the human body, where it has  

reproductive, immunological, developmental and carcinogenic effects (AMAP, 2009; Cohn et 

al., 2007; Crinnion, 2009; de Jager et al., 2009; Ribas-Fito et al., 2003; Rogan and Chen, 2005; 

Sunyer et al., 2005).   

 

Figure 1: Structure of 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane. 

  

http://en.wikipedia.org/wiki/Arene_substitution_patterns
http://upload.wikimedia.org/wikipedia/commons/0/0b/P,p'-dichlorodiphenyltrichloroethane.svg
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3.7. Hexachlorobenzene (HCB) 

HCB, is a synthetic fully chlorinated hydrocarbon fungicide.   HCB is not found naturally in the 

environment, but is produced as a by-product during the manufacture of, chlorinated 

hydrocarbons such as tetrachloroethylene and trichloroethylene, and is a contaminant in some 

pesticides such as pentachloronitrobenzene and pentachlorophenol, therefore, exposure is still 

possible.  This compound also has non-pesticidal industrial uses. HCB exposure in humans 

results in a liver disease with associated skin lesions.  HCB has shown neurological, 

developmental, endocrine and immunological toxicity in humans (Crinnion, 2009; Ribas-Fito et 

al., 2007; Sala et al., 2001).  The extreme effects of HCB poisoning were reported in a Turkish 

population which consumed bread contaminated with HCB.  Most of the affected people 

developed a liver condition called porphyria cutanea tarda, which disturbs the metabolism of 

haemoglobin and results in skin lesions.  All the children who were breastfed by exposed 

mothers developed the “pembe yara" or "pink sore" (Gocmen et al., 1989).   

 

Figure 2: Structure of hexachlorobenzene. 

 

3.8. α, β and γ-HCH 

Hexachlorocyclohexane (HCH), formally known as benzene hexachloride (BHC), was produced 

to be used as an insecticide on fruit, vegetables, forest crops and animals.  This chemical is 

synthetic, and exists in 8 chemical forms called isomers. The different isomers are named 

according to the position of the hydrogen atoms in the structure of the chemical.  The α-, β-, and 

γ-HCH isomers are widespread environmental pollutants (Schroter et al., 1987), and of the 8 

isomers of HCH, only the insecticidal γ isomer (γ-HCH) is of economic use.  The α- and β-HCH 

(by-products of γ-HCH synthesis) are of major concern due to their considerable persistence in 
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biological systems, where they pollute the environment and certain nutrients (human milk 

contains the highest levels of β-HCH, as well as considerable amounts of α-HCH) (Yu et al., 

2009).  The insecticidal γ-HCH, commonly called Lindane, is also available as a prescription 

medicine (lotion, cream or shampoo) to treat and/or control scabies (mites) and head lice in 

humans.  Workers exposed to γ-HCH are known to show signs of lung irritation, heart and blood 

disorders, headaches, convulsions, and changes in sex hormones.  All isomers can produce liver 

and kidney effects (ASTDR, 2005). 

                 

α-HCH   β-HCH   γ-HCH 

 

Figure 3: Structure of α, β, and γ-HCH. 

 

3.9. Endosulfan 

Endosulfan is a synthetic chlorinated pesticide and was introduced in 1956 as a general use 

insecticide, to protect food crops such as tea, fruits, vegetables, corn, cereals, oil seeds, potatoes, 

and grains, as well as wood, from a wide range of sucking and chewing insect pests. 

Commercially used, endosulfan is composed of its two isomers, the endosulfan 1 and endosulfan 

2.  Although this pesticide is used in resistance management, it is non-specific, and can therefore 

negatively impact populations of beneficial insects, such as the honey bees 

(ExtensionToxicologyNetwork, 1996; Mossler et al., 2012).   Endosulfan is a xenoestrogen, a 

neurotoxin and an endocrine disruptor (Saiyed et al., 2003). 

 

Figure 4: Structure of endosulfan. 

http://en.wikipedia.org/wiki/Endocrine_disruptor
http://en.wikipedia.org/wiki/File:Alpha-(+)-hexachlorocyclohexane.svg
http://en.wikipedia.org/wiki/File:Beta-hexachlorocyclohexane.svg
http://en.wikipedia.org/wiki/File:Gamma-hexachlorocyclohexane.svg
http://upload.wikimedia.org/wikipedia/commons/2/25/Endosulfan.svg
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3.10. Pyrethroid pesticides 

In contrast, pyrethroids are predominantly synthetic forms of pyrethrins and are among the most 

widely used pesticides globally.  These compounds are extensively used in agriculture currently, 

in horticulture, by exterminators and for indoor application (as an insect repellent), but they are 

also used for the treatment of head lice and fleas.  The different pyrethroids biological half-lives 

vary between 2.5 and 12 hours in blood plasma (Leng and Gries, 1997).  Although pyrethroids 

are considered the least toxic among pesticides today, they have been shown to be neurotoxic to 

humans.  In mammals, it has been shown that pyrethroids at high doses affect nerve impulse 

transmission, by interacting with the sodium channels (Couture et al., 2009). 

 

3.11. Polybrominated diphenyl ethers (PBDE) 

Polybrominated diphenyl ethers (PBDE) are well known flame retardants which are widely used 

in the industrial and consumer market. They are chemically similar to PCBs, with 209 possible 

types of PBDE congeners and are numbered using the same system as PCBs (Costa et al., 2008). 

Three mixtures of PBDEs, namely, pentabrominated DE, octabrominated DE, decabrominated 

DE have been marketed (Costa et al., 2008).  Only decabrominated DE is still produced in the 

USA and still widely used globally, because the European Union and several other states in the 

US have banned pentaBDE and octaBDE (Costa et al., 2008; Tu et al., 2012; van der Ven et al., 

2009).  PBDEs are also persistent organic pollutants (Gill et al., 2004; Johnson-Restrepo and 

Kannan, 2009; Odusanya et al., 2009).  In the environment they have been detected in outdoor 

air, sediments, and leachates in landfills, sludge, soil, indoor air and house dust (Costa et al., 

2008).  In humans, PBDEs have been detected in human adipose tissue, serum and breast milk 

(Costa et al., 2008). The following PBDEs are found in high amounts in most cases: BDE-47, 

BDE-99 and BDE-153 (Costa et al., 2008).  In the general population, the main sources of 

exposure are diet (fish, meats and dairy products that are found to contain the highest 

concentrations of PBDEs) and the indoor environment.  There are currently no studies in SA that 

have measured PBDEs in maternal plasma.  The measurements of PBDEs were however found 

in certain bird species in SA (Polder et al., 2008), in breast milk in the Limpopo Province 

(Darnerud et al., 2011), and in certain landfill sites around SA (Odusanya et al., 2009).  The 

health effects from exposure to PBDE include thyroid hormone disruption, neurodevelopmental 

effects and, for some congeners, cancer (McDonald, 2002).    
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3.12. Mercury 

Hg is a highly neurotoxic metal that has various physical and chemical forms presenting with 

different toxicities.   The most important forms of Hg are the metallic form (elemental mercury, 

Hg0) and the organic form (methyl mercury, [MeHg]).  Hg0 is released from the earth’s crust by 

volcanic and other geothermal activities, thus contributing to the natural background levels 

(Hansen and Gilman, 2005). Anthropogenic sources of atmospheric Hg emissions include fossil 

fuel combustion, mining and smelting, and solid waste incineration.  To a lesser extent, Hg may 

also be released from the soil and from industrial wastewater (UNEP, 2002).   

 

 In the environment, Hg is transformed through complex biogeochemical interactions and can be 

transported long distances through the air or via water-courses ending up in soil, water bodies or 

snow.  Hg is often re-emitted into the environment.  This repeated re-emission is called the 

“grasshopper effect” (EnvironmentCanada, 2010).  

 

Microorganisms (bacteria, phytoplankton in the ocean, and fungi) convert inorganic Hg to 

MeHg, which after release can enter the water bodies or soil where it remains for a long time, 

particularly if attached to small particles. Of major concern is MeHg deposited into the aquatic 

environment, because it is ingested by biota.  Since MeHg has a high affinity for sulphur ligands, 

it binds to the sulphur-containing amino acid cysteine and enters the protein pool.  Due to the 

long half life of MeHg (72 days), this chemical bio-accumulates and biomagnifies in marine and 

fresh water organisms (Hansen and Gilman, 2005).  

 

Most of the MeHg originally present in small organisms will eventually be stored in the larger 

and older fish.  Saltwater fish (especially sharks and swordfish) that have a long life and can 

grow to a very large size tend to have the highest levels of MeHg in their bodies.  As a result, 

populations who consume top-of-the-food-chain fish species and marine mammals will have the 

highest exposure levels.  In humans, about 95% of MeHg ingested from fish is absorbed (Aberg 

et al., 1969).  Plants (such as corn, wheat, and peas) have very low levels of Hg, even if grown in 

soils containing Hg at significantly higher than background levels.  Mushrooms, however, can 

accumulate high levels of MeHg if grown in contaminated soils (EncyclopediaOfEarth, 2012).  

 

http://www.ec.gc.ca/mercure-mercury/default.asp?lang=En&n=67E16201-1
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3.12.1. Mercury sources in SA 

It was reported in 2006 that Hg emissions in SA were second only to China, contributing more 

than 10% of global Hg emissions (Pacyna et al., 2006).  Coal combustion, past formal gold 

mining and current extensive informal gold mining were identified as the main contributors.  

However, there is some doubt about the validity of these figures, and some sort of verification is 

required.  The nature and extent of Hg pollution, and its impacts in SA have not been extensively 

studied, and most studies are being initiated from emergency incidents (i.e., the effluent spill 

from the Hg plant into the Mngcewni River in KwaZulu-Natal during the late 1990's).  As a 

result of that pollution, it was recommended that the consumption of fish by local communities 

be significantly reduced, therefore mercury exposure needed to be evaluated.  In SA, coal 

combustion in many poorer households (for cooking and/or heating) and in the informal artisanal 

mining industry are common and therefore may also contribute significantly to Hg emissions 

(UNEP, 2008a).   

 

3.12.2. Mercury uptake and excretion in humans 

The main routes of exposure to Hg are inhalation, ingestion and dermal absorption. After 

inhalation of Hg vapours, most (about 80%) of the Hg enters the bloodstream directly from the 

lungs, and is then rapidly distributed to other parts of the body.  Most of the metallic form will 

accumulate in the kidneys.  Some metallic Hg enters the brain, where it is readily converted to an 

inorganic form and remains "trapped" indefinitely (Bernhoft, 2012).  The metallic Hg absorbed 

into the body is eventually excreted through urine and faeces, while smaller amounts leave the 

body in exhaled breath (USEPA, 1997). 

 

 After human consumption of fish and mammals, or other foods that are contaminated, the MeHg 

enters the bloodstream easily and moves rapidly to most tissues, and readily enters the brain.  

The foetus is much more susceptible to the toxic effect of MeHg than the mature adult. MeHg 

present in the blood of a pregnant woman will move across the placental barrier effortlessly and 

enter the foetal system. The excretory half life of methyl mercury in man is about 70 days 

(Bernhoft, 2012).   When MeHg does leave the body following exposure, it is lost slowly over a 

period of several months, mostly in the inorganic form in the faeces (Aberg et al., 1969; USEPA, 

1997). 
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3.12.3. Toxic effects of mercury 

The nervous system is very sensitive to all forms of Hg.  Both MeHg and metallic Hg vapours 

are more harmful than other forms, because more Hg in these forms reaches the brain.  Exposure 

to high levels of metallic, inorganic, or organic Hg can permanently damage the brain, kidneys, 

and the developing foetus.  The developmental neurotoxicity of MeHg became evident in the 

1950s in Minimata Bay, Japan, after industrial effluent heavily contaminated with Hg entered the 

bay (Harada, 1995).  

 

The primary health effect of exposure to MeHg for foetuses, infants, and children (PANNA, 

2012), even at low doses is impaired neurological development to both the sensory and central 

nervous system (Harada, 1995).  MeHg exposure in the womb can adversely affect foetal brain 

development, which continues after birth. Congenital MeHg poisoning can cause cerebral palsy 

syndrome (Davis et al., 1994).  Impacts on cognitive thinking, memory, attention, language, fine 

motor and visual spatial skills, and decrease in IQ have been seen in children exposed to MeHg 

in the womb (Grandjean et al., 1997; Inskip and Piotrowski, 1985). 

 

Hg present in the mother's body passes to the foetus, where it accumulates.  It can also pass to a 

nursing infant through breast milk. Hg concentrations are generally found to be higher in the 

cord blood compared to the paired maternal blood, because the MeHg fraction (usually >98% of 

total Hg) binds to haemoglobin and has an especially high affinity for foetal haemoglobin.  Thus, 

the cord blood Hg in its methylated form passes easily through the placenta (Rudge et al., 2009). 

Massive Hg exposure may result in brain damage, mental retardation, incoordination, blindness, 

seizures, inability to speak, as well as other nervous, digestive and urinary system damage 

(ASTDR, 1999).  Lesser prenatal doses have been associated with neurodevelopmental delays 

and cognitive deficits.  

 

3.12.4. Interaction of mercury and selenium 

It has been shown that the trace element selenium (Se) can have a protective effect against Hg.  

High levels of Hg exposure deplete the amount of cellular Se available for the biosynthesis of 

thioredoxin reductase and other selenoenzymes that prevent and reverse oxidative damage.  If the 

Se depletion is severe and long lasting, it results in brain cell dysfunctions that can ultimately 



Page | 34 
 

cause death (Ralston and Raymond, 2010).  The content of Se in foods depends on the 

concentration of Se in the soil where the crops were grown. The following foods are generally 

considered good sources of Se: Brazil nuts, sunflower seeds, fish (tuna, halibut, sardines, 

flounder, salmon), shellfish (oysters, mussels, shrimp, clams, scallops), meat (beef, liver, lamb, 

pork), poultry (chicken, turkey), eggs, mushrooms (button, crimini, shiitake), grains (wheat 

germ, barley, brown rice, oats), and onions. It is important to note that in most places, including 

Africa, there is very little Se in the soil, and therefore only sparse amounts are available to plants 

(Frank, 2008).  

  

http://www.naturalnews.com/selenium.html
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4. MATERIALS AND METHODS 

4.1. Study populations 

This study investigated 3 different regional mother-and-child-cohorts namely: Site 1 – Manguzi 

(malaria endemic), Site 2 – Port Shepstone (non-malaria), and Site 3 – Empangeni (intermittent 

malaria).  Samples from all three sites were collected in the summer months from February to 

May 2008. See Figure 6.  

  

4.2. Compounds measured in this study 

The following POPs, as well as Hg were measured in blood components in this study: p,p’-DDE, 

o,p’-DDD, p,p’-DDD, o,p’-DDT, p,p’-DDT, o,p’-DDE, α, β, γ-HCH, HCB, endosulfan 1and 

endosulfan 2. The following pyrethroid pesticides were measured: cis-permethrin, cyfluthrin, 

cypermethrin, deltamethrin.  PBDE isomer levels were also measured. 

 

4.3. Biological fluids used for the measurement of internal dose  

Measuring the internal dose of POPs in human blood has many advantages over measuring the 

same variables in urine.  In blood, the parent compound is measured and no detailed information 

on the metabolism of the toxicants in the body is required.  In addition, detailed information is 

not required on the metabolites.  Blood is also a regulated fluid, which means that the volume 

does not vary with water intake or other factors (unlike urine where corrections for dilution are 

always necessary).  In addition, blood concentrations of the toxicant are often at a maximum 

directly after exposure, so the preferred time range for sampling may be clearer than with urine.   

Furthermore, blood measurements are more likely to reflect the dose available at the target site 

(Needham et al., 1995).   However, when using blood or plasma, a clean-up procedure is 

required to eliminate interfering substances, such as lipids that co-elute with the analytes, 

resulting in inaccurate results.  In addition, the establishment of an analytical laboratory at 

currently acceptable international standards is a relatively expensive undertaking. The use of 

isotope-labelled analytical standards and high-resolution mass spectrometry for routine POPs 

analysis is particularly expensive.   For pyrethroids, urine is a better medium for monitoring in 

terms of limit of detection.  In this study, all the pesticides were analysed in one medium 

(plasma), and under one preparation so as to lower costs and time.   
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Figure 5: Map of the study sites, number of participants and blood components used for specific 

analyses. 

Notes: 

*Pesticide analysis included the following: 

 α-, β-, and γ-HCH, Endosulfan 1 and 2, HCB, 

 Pyrethroids (cis-permethrin, cyfluthrin, cypermethrin and deltamethrin). 

 

**DDT & metabolites analysis included the following: 

 p,p’-DDT, o,p’-DDT,  p,p’-DDE, o,p’-DDE, o,p’-DDD and p,p’-DDD. 

 

***PBDE isomers included the following: 

 PBDE28, PBDE49, PBDE71, PBDE47, PBDE66, PBDE77, PBDE110, 

PBDE119, PBDE99, PBDE85, PBDE154, PBDE153 and PBDE138. 

Study Site 2:  

Port Shepstone (non-malaria endemic area) 

Hospital - Port Shepstone 

 

Pesticides* - 101 plasma samples 

DDT** - 117 plasma samples 

Hg – 200 paired maternal and  

cord blood samples  

PBDE*** – 101 plasma samples 

Se- 200 serum samples 

 

Selenium - 200 serum samples 

 

Study Site 1:  

Manguzi (malaria endemic area) 

Hospital - Manguzi  

 

Pesticides* - 91 plasma samples  

DDT** - 91 plasma samples  

Hg – 100 paired maternal  

and cord blood samples 

PBDE*** – 91 plasma samples 

Se - 100 serum samples 

 

Study Site 3:  
Empangeni (intermittent malaria endemic area) 

Hospital - LUD Memorial War 

 

Pesticides* - 49 plasma samples 

DDT** - 47 plasma samples 

Hg – 50 paired  maternal and  

cord blood samples 

PBDE*** – 49 plasma samples  

Se- 50 serum samples 

 

 

 

 

 

Selenium - 50 serum samples 

 and 
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4.4. Recruitment of participants and informed consent 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Procedure followed for the recruitment of participants.  

Agreement to donate blood before delivery, and umbilical cord blood post-partum. 

Inclusion criteria:  Permanent residency in the specific area for at least 10 years 

years. 

Informed consent obtained via signed consent forms. 

Pregnant women. 

Admission to one of the local government hospitals at time of delivery. 

Agreement to be interviewed in the language of their choice to ascertain socioeconomic 

background and demographic factors, diet and lifestyle factors. 

Consent obtained for access to post-partum records (delivery outcomes and eventual 

complications, if any). 

Human Research Ethics approval obtained prior to this study 
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4.5. Sampling procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Procedure for collection of samples. 

  

Tubes for serum and plasma were centrifuged. 

Three maternal venous blood samples were collected before delivery (per participant) 

using a sterile Venoject system: one into an EDTA containing BD Vacutainer tube for 

whole blood analyses, one into a serum tube for serum analyses, and one into an EDTA 

containing Vacutainer tube for plasma separation. 

Maternal urine samples were collected in 25ml sterile containers. 

Umbilical cord blood was collected post-partum into EDTA containing tubes. 

Plasma, serum and whole blood samples were immediately frozen at -20oC. 

Plasma fractions were transferred into solvent pre-washed tubes. 

Serum was transferred to metal free tubes. 

Plasma samples were shipped in a frozen state to Tromsø, Norway for analyses of DDT and 

pesticides. Serum and whole blood samples were couriered in a frozen state to the NIOH, 

Johannesburg, South Africa, for Hg and Se analysis.  
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4.6. Analytical procedures 

POPs and the pyrethroids were extracted from plasma with dichloromethane using solid phase 

extraction with slight modifications (Sandanger et al., 2007).  The extracted samples were 

cleaned on a column containing 1 g of deactivated silica, concentrated and injected onto the GC-

MS. 

4.6.1. DDT & Pesticides 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Analytical procedure for DDT and Pesticides.  

  

Following evaporation, the samples were resuspended in hexane. 

Samples were concentrated and octachloronaphthalene (100 µl) was added as a recovery standard.  

 

Extraction and cleanup procedures were automated using a Rapidtrace Automated SPE 

workstation (Zymark Corp., Hopkinton, MA, USA), and evaporation was performed using a 

heated vacuum evaporator (Rapidvap; Labconco Corp.,Kansas City, MO, USA). 

Internal standards (C-13 labelled), formic acid (2 ml) and water (2 ml) were added to the plasma 

samples (2 ml), vortexed and left overnight in a refrigerator. The HLB column was conditioned with 

methanol (3 ml), dichloromethane (3 ml), methanol (3 ml), followed by 5% methanol in 0.1 M 

hydrochloric acid (3 ml).  The samples were added to the column and dried with N2 and extracted using 

dichloromethane (14 ml).  

 

Plasma samples were extracted using an Oasis® HLB Extraction Cartridge (3cc, 540 mg; Waters Corp., 

Milford, MA, USA) according to the method by Sandanger et al., 2007 (Sandanger et al., 2007) 

Extracts were subsequently eluted through a column containing 1g deactivated silica (0,063-0,2 

mm; Merck, Darmstadt, Germany) and eluted with hexane/dichloromethane (9/1; 6 ml) and 

dichloromethane (6 ml).  
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4.6.2. Mercury 

 

 

 

 

 

Figure 9: Analytical procedure for Mercury. 

  

Whole blood samples were diluted to a final volume of 7 ml. 

204Tl was the internal standard used for whole blood. 

The whole blood (0.5ml) samples were digested in contamination free vessels, with nitric acid (1 

ml) at 90oC for 2 hours.  
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4.7. Instrumental measurements 

4.7.1. DDT & Pesticides 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Instrumental procedure for DDT and pesticides.   

30µl extracts were analysed on an Agilent 

7890A gas chromatographand a 5975C mass 

spectrometer (Agilent Technologies, 

Böblingen, Germany). 

The MS operated in MS/MS (MRM) mode 

with an EI source set at 220°C. The collision 

gas was argon at a pressure of approximately 

2.3×10-3 mbar. Dwell times for specific ion 

transitions were 0.05 seconds. 

Peaks with differences in isotopic mass 

ratios greater than 20% (compared to 

the quantification standard), were 

rejected and not quantified. 

The different compounds were 

identified based on their SIM masses 

and retention times.  For every 8 

samples a blank was analysed for 

laboratory contamination. 

The GC temperature programme consisted of 

an initial temperature of 70°C with a hold 

time of 3 min; the temperature was then 

ramped at 15°C min-1 to 180°C, followed by 

a temperature ramp of 5°C min-1 to 280°C 

with a hold time of 5 min. 

 

A 1 µL injection volume was accomplished using 

a PTV injector (Agilent 7683 Series, Agilent 

Technologies, Böblingen, Germany) in splitless 

mode. The initial PTV temperatures was 70°C 

which was  increased by  120°C min-1 to a final 

temperature of 275°C that was held for 3 min. 

 

A volume of 2µl was injected in splitless 

mode on the GC. 

 
The initial oven temperature was 70oC for 

1min, thereafter ramped by 10oC/min to 

310oC and held for 5 min. 

 
The quantitation was done using negative 

chemical ionization (NCI) in selected ion 

mode (SIM). Methane was used as the 

reagent gas. The transfer line and 

quadrupole temperatures were 200oC and 

180oC, respectively. 

A 30 m DB5-MS column (0.25 mm id and 0.25 μm film thickness; J&W, Folsom, USA) was used 

for separation. Helium (6.0 quality, Hydrogas, Porsgrunn, Norway) was the carrier gas at 1 ml/min 

under constant flow conditions. 

30µl extracts were analysed on an Agilent 7890A gas 

chromatograph (Agilent Technologies, Böblingen, 

Germany) equipped with a triple quadrupole mass 

spectrometer, Quattro Micro GC (Waters Corporation, 

Manchester, UK). 

DDT Pesticides 
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4.7.2. Mercury 

  

 

 

 

 

 

 

 

Figure 11: Instrumental procedure for Mercury. 

 

4.7.3. Selenium 

  

 

 

 

 

 

 

 

 

 

 

Figure 12: Analytical procedure for Selenium. 

 

 

  

A Se calibration curve was prepared by dilution of a 10 mg/l working stock solution, so that 

the concentration range was from 50 –200 μg/l of Se. 
 

Se in serum measurements were carried out on a Thermo Scientific iCE3000 series spectrometer 

with GFS graphite furnace and autosampler. 
 

For the Se assay, samples were diluted three fold, with equal amounts of a diluent (1.35% sodium 

chloride and 0.017% ammonium dihydrogen phosphate) and a palladium modifier (60% 

palladium 2000mg/l in a  0.5% Triton X-100 solution).   
 

The instrument was calibrated with calibration standards using Seronorm TMTrace Elements 

in whole blood level 1 for matrix matching (SeroLTD., Billingstad, Norway). 

Digested blood samples were analysed in triplicate for Hg content using an Agilent 7500ce ICP-

MS with an Octopole Reaction System, with the acquisition ‘no gas’ mode used for Hg analyses. 
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4.8. Quality assurance and quality control 

4.8.1. DDT & Pesticides 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 13: Quality assurance for DDT and pesticides. 

 

4.8.2. Mercury 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Quality assurance for Mercury. 

 

4.8.3. Selenium 

 

Figure 15: Quality assurance for Selenium. 

The detection limit for Se in serum was 6.5 μg/l. 

The NIOH laboratory participates in the ‘New York State Department of Health, External Quality 

Assurance Programme, three times a year. 

The detection limit for Hg in blood was 0.08 μg/l. 

The percentage recovery for the mercury controls in blood ranged from 83.2 -104%, 

with a coefficient of variation of 5%.  

Certified reference controls, Seronorm TMTrace Elements in whole blood, levels 1 and 2 were 

analysed after every 10 samples.  

The NILU laboratory participates in international inter-laboratory comparison programmes 

(AMAP Human Ringtest for plasma samples with +/- 20% deviation from result as best 

performance, according to AMAP Ringtest protocol). 
 
 

DDT: The inclusion of certified reference materials and an internal QAQC pool in the analyses, 

assured the accuracy. 

Pesticides: Spiked bovine serum samples were analysed after every 12 samples and Standard 

Reference Material 1957 from the National Institute of Standards and Technology were analysed 

after every 24 samples.   

The limits of detection (LODs) were calculated using the signal to noise ratio calculations in serum 

samples, and corresponded to 3 times the area of the noise or 3 times the average concentrations 

found in blank samples. 
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4.9. Lipid correction 

Lipids were determined enzymatically for DDT and pesticides and the total lipids were 

calculated according to the formula used by  (Sandanger et al., 2003b). 

 

4.9.1. Justification for lipid correction 

The concentration of lipid soluble compounds is available in two ways, either as whole or wet 

weight basis (i.e., weight per volume of serum), or lipid weight basis (i.e., per gram of total 

lipid). The whole wet weight concentrations reflect recent exposure and the steady state 

circulating levels (Sandanger et al., 2003b). For lipid soluble chemicals, the lipid adjusted 

measurement is recommended, because of the lipid soluble nature of these chemical compounds 

and their concentrations in adipose tissue (Bernert et al., 2007).  Adjusting for lipid content 

provides standardised body burden estimation and allows for comparisons between studies.  

Total lipids (TL) in mg/dL were estimated by using the summation of lipid values of individuals: 

TLs = (2.27 * Total Cholesterol) + Triglycerides + 62.3l; the serum specific gravity was also 

taken into account in the adjustment. 
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4.10. Statistical analyses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 16: Statistical analysis procedure.  

All data analyses were performed using STATA package, version 11 for Windows 

(STATA 11.1, 2009). 
 
 

Arithmetic and geometric mean ± standard deviation (SD), median, interquartile range, minimum 

and maximum values and skewness were calculated for continuous variables. 

 To describe the characteristics of the study population, descriptive statistical parameters were 

computed initially.  

The criteria for significance were set at a p value ≤ 0.05. 

Parameter distributions were normalised through logarithmic transformation. 

The Spearman Correlation Coefficient test analysis was used to examine the association between 

the various pesticide variables. 

The relationship between categorical variables was assessed by using the Kruskal-Wallis test. 

Univariate analysis was performed to assess the association of p,p’-DDE, γ-HCH and 

endosulfan and cord Hg with demographic, lifestyle, diet, maternal and birth characteristics.  

The variable was considered a potential confounder when p < 0.05.  Those factors that were 

significant were added stepwise to the multivariate model. The model for Hg is discussed 

comprehensively in Paper 3. 

All the post regression analysis (normality of residuals, heteroscedasticity, multicollinearity, model 

specification [linktest, ovtest]) for p,p’-DDE and endosulfan failed, therefore a suitable model could 

not be obtained, and no adjustments made for any cofactors. 
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4.11. Ethical considerations 

The study protocol was approved unconditionally by the Human Research Ethics Committee 

(Medical) of the University of the Witwatersrand (Protocol: M040314).   Approval was also 

granted by the Provincial Health Research Committee, KwaZulu-Natal Department of Health 

(Reference: HRKM001/08), and the Regional Committee for Medical Research Ethics, REK 

Nord. 
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5. RESULTS 

5.1. Paper 1: Prenatal exposure to DDT in malaria endemic region following 

indoor residual spraying and in non-malaria coastal regions of South 

Africa 

DDT and its metabolites were measured in the plasma of pregnant women before delivery at 

three sites along the Indian Ocean coast.  In total, 255 women participated in the study at the 

following sites: malaria endemic (n = 91; Site 1), intermittent malaria (n = 47; Site 3) and non-

malaria sites (n = 117; Site 2). Indoor residual spraying (IRS) with DDT increased the 

concentrations of DDT and its metabolites in the plasma of delivering women.   p,p’-DDT and 

o,p’-DDT, and their metabolites p,p’-DDE, p,p’-DDD, o,p’-DDE and o,p’-DDD, were 

significantly higher in Site 1 (malaria endemic), compared to Site 2 (non-malaria) and Site 3 

(low risk/intermittent-malaria).  In Site 1, the dominant metabolite p,p’-DDE was detected in 

100% of the samples, while p,p’-DDT was detected in 99% of samples.  The low p,p’-DDE/ 

p,p’-DDT ratio of 1.75 is expected in Site 1, as this site is a malaria endemic site and IRS takes 

place as part of the  malaria vector control programme.   

 

In the intermittent and non-malaria sites >80% of the samples had detectable levels of p,p’-DDE. 

The low p,p’-DDE/ p,p’-DDT ratio of 4 and 5 in Site 2 and Site 3, respectively, where no IRS 

occurs, also reflects recent-ongoing exposure. 

 

The Kruskal-Wallis test showed that in the malaria endemic Site 1, the women whose homes 

were sprayed by the malaria control programme, the younger mothers, as well those that had no 

children or had never breastfed, had elevated DDT levels. 
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5.2. Paper 2: Regional variation in pesticide concentrations in plasma of 

delivering women residing in rural Indian Ocean Coastal regions of 

South Africa  

Of the pesticides measured (α-, β- and γ-HCH, endosulfan, HCB and the pyrethroids: cis-

permethrin, cyfluthrin, cypermethrin, and deltamethrin), results indicated that subjects were 

mainly exposed to γ-HCH (detected in 100%), endosulfan 1 (95%) and endosulfan 2 (34%).  The 

rest of the pesticides were detected in < 31% of the samples.  Endosulfan and γ-HCH levels were 

significantly higher in Site 3 (Empangeni-low malaria endemic), compared to Site 1 (Manguzi-

malaria endemic) and 2 (Port Shepstone – non-malaria endemic).   

 

Endosulfan 1 and 2 levels correlated strongly in all three sites (r > 0.7), and both endosulfans 

correlated strongly with γ-HCH in only Sites 2 and 3 (r > 0.63).  

 

Using the Kruskal-Wallis test, a significant increase of γ-HCH levels were seen in women in Site 

1 (malaria endemic) who reported growing one’s own food (p = 0.0005), who drank water from 

the tap (p = 0.0040) and using pesticides in the garden (p = 0.0161).   In Site 3 (low malaria 

endemic), a significant increase in γ-HCH levels was seen in women who used pesticides in the 

garden (p = 0.0145).  No significant relationships were found for endosulfan, except that the 

levels decreased with the number of the children in site 2 (non-malaria endemic) (p = 0.0070). 
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5.3. Paper 3: Differences in prenatal exposure to mercury in South African 

communities along the Indian Ocean 

The overall results for maternal Hg levels ranged from 0.2-13 µg/l, while the corresponding cord 

blood levels were 0.2-18 µg/l.  Site 1 participants (n = 100) had significantly higher maternal 

blood geometric mean (GM) Hg (0.93 µg/l) compared with Site 2 (n = 200; 0.49 µg/l) and Site 3 

(n = 50; 0.56 µg/l).  The same pattern was found in the paired cord blood Hg levels.  Cord blood 

Hg levels (GM) in Site 1 was 1.45 µg/l, Site 2 was 0.7 µg/l and Site 3 was 0.73 µg/l.  There was 

a strong positive correlation (r2 = 0.66) between maternal and cord blood Hg levels.  No 

correlation was seen between maternal Hg and Se levels. 

 

The percentage of subjects where the largest Hg levels in maternal blood were found to be above 

the 90th percentile were as follows: 86% residing in Site 1; 37% in the age group 20-29; 92% 

with no reported environmental pollution around the home; 57% using the outdoor tap as a 

source of drinking water; 74% using wood for cooking; 57% consuming fish once per week; 

53% consuming tinned fish and 83% having their home sprayed as part of the malaria vector 

control programme. 

 

As expected, maternal Hg levels had a significant influence on cord blood Hg levels. The 

univariate analysis showed that living together with one’s partner (p < 0.001), residing in Site 1 

(p < 0.001), living in an informal house (p = 0.050), using wood (p < 0.001) or gas (p = 0.040) as 

a fuel for cooking, using borehole water (p = 0.001) instead of municipal water, having one’s 

home sprayed by the malaria control personnel (p < 0.001), having a household member 

involved in fishing (p < 0.001) and the consumption of that fish (p = 0.002), using pesticides in 

the garden (p < 0.001), or consuming fresh  (p = 0.031) or tinned fish (p = 0.005) had a positive 

influence on the log of Hg levels in cord blood.  In contrast, education (p = 0.009), consumption 

of fruit (p = 0.033), or dairy products (p < 0.001), increasing parity (p = 0.036) or BMI (p = 

0.003) had a negative influence on cord blood Hg levels. 

 

The multivariate regression model found that the following were strong predictors of elevated 

umbilical cord blood Hg concentrations: maternal blood Hg levels (p < 0.001), living in Site 1 (p 
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< 0.001), environmental pollution in the home (p = 0.004) and having a household member 

involved in fishing (p = 0.002).  

 

5.4. Additional analytical and statistical results not discussed in 

the papers 

5.4.1. PBDE 

A large range of PBDE isomers was also measured along with the pesticides on the GC-MS 

instrument, following the same methodology as for the pesticides. The isomers measured 

included PBDE28, PBDE49, PBDE71, PBDE47, PBDE66, PBDE77, PBDE110, PBDE119, 

PBDE99, PBDE85, PBDE154, PBDE153 and PBDE138.  These results were not published, as 

more than 90% of the results were below the detection limit (Table 1).  The low levels were 

found in all three sites with no regional differences, indicating a low exposure to PBDEs in SA 

women from this study group. 

 

Table 1: List of PBDE isomers measured with % of samples above the detection limit. 

Name of isomer % above detection limit Detection limit (pg/ml) 

PBDE 28 0 4 

PBDE 49 5 6 

PBDE 71 0 6 

PBDE 47 9 6 

PBDE 66 0 6 

PBDE 77 0 4 

PBDE 100 0 6 

PBDE 119 0 6 

PBDE 99 2 6 

PBDE 85 0 6 

PBDE 154 0 6 

PBDE 153 2 4 

PBDE 138 0 6 

 

5.4.2. Predictors of DDT exposure 

In Paper 1, no regression analysis was performed on the DDT data.  From the univariate analysis, 

the positive predictors of p,p’-DDE include, using wood as a fuel for cooking (p = 0.042), having 
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one’s home sprayed by the malaria vector control programme (p = 0.008), consuming tinned fish 

(p < 0.001), Hg in cord blood (p = 0.018) or Hg in maternal blood (p = 0.026).  The age (p = 

0.025) and weight (p = 0.001) of the mother, or consuming dairy products (p = 0.018) or 

drinking bottled water (p < 0.001), all negatively influenced the p,p’-DDE levels (Table 2). No 

multivariate regression model could be formulated because none of the post regression tests 

(normality of residuals, heteroscedasticity, multicolllinearity, model specification [linktest, 

ovtest]) passed.  This implies that no adjustment was made for any cofactors. 

 

Table 2: Overall univariate analyses with log p,p'-DDE.   

 Log p,p'-DDE 
Univariate 

β t p 

Age group: <20* 

  

  

 

20 – 29 -0.365 -3.14 0.002 

  30 – 39 -0.296 -2.03 0.046 

  ≥ 40 -0.586 -2.28 0.025 

Fuel used for cooking: Electricity* 

  

  

  Gas 0.233 1.12 0.266 

  Wood 0.304 2.06 0.042 

Indoor Residual Spraying for Malaria: No* 

  

  

  Yes 0.688 2.73 0.008 

Consume Fresh fish: Seldom* 

  

  

  Once/week 0.079 0.80 0.426 

  Everyday 0.439 1.73 0.087 

Consume Tin fish: Seldom* 

  

  

  Once/week 1.130 4.82 0.000 

  Everyday 1.045 4.55 0.000 

Consume Leafy vegetables: Seldom* 

  

  

  Once/week 0.668 1.83 0.071 

  Everyday 0.710 1.95 0.054 

Consume Dairy productsSeldom* 

  

  

  Once/week 0.152 1.28 0.205 

  Everyday -0.514 -2.43 0.018 

Consume Bottled water: Seldom* 

  

  

  Once/week -0.089 -0.66 0.510 

  Everyday -1.733 -4.19 0.000 

Maternal weight (kg) -0.016 -3.43 0.001 

Mercury in cord blood 0.128 2.43 0.018 

Mercury in maternal blood 0.228 2.26 0.026 

 

* reference      
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5.4.3. Evaluation of concomitant exposure to mercury and p,p’-DDE    

The common positive predictors for both Hg and DDT exposure in the univariate analysis 

include: residential area, using wood for heating, having one’s home sprayed by the malaria 

vector control programme, or consuming tinned fish.  The age of the mother or consuming dairy 

products were negatively associated with both mercury and DDT exposure.  The combination of 

Hg and p,p’-DDE gave a multivariate regression model explaining 30% of the model, that 

included, log p,p’-DDE, maternal Hg, maternal age and  weight,  and spraying the home by the 

malaria vector control programme.  However, none of the post regression tests (normality of 

residuals, heteroscedasticity, multicollinearity, model specification [linktest, ovtest]) passed and 

therefore the model is not presented.  

 

It is well known that during breastfeeding, PTS are transferred to the baby.  However, 

breastfeeding did not show any association with any of the pesticides or Hg, possibly because the 

exposure is continuous.  In contrast, increasing parity was associated with a decrease in pesticide 

levels.  However, this should be taken with caution as more than 50% of the women in the study 

were nulliparous.   

 

5.4.4. Predictors of γ-HCH and endosulfan 

In Paper 2, the only relationships shown were those investigated using the Kruskal-Wallis test.  

The only association from the Kruskal-Wallis that remained in the multivariate model was an 

increase in γ-HCH levels with drinking borehole water. Table 3 below shows the multivariate 

regression analysis model of the log of γ-HCH.  From the different study areas, mothers in Site 3 

(p < 0.001) had significantly higher levels of γ-HCH compared to Site 1, whereas no significance 

was found with mothers from Site 2.  Drinking borehole water as a source of drinking water (p = 

0.005), significantly increased the levels of γ-HCH, but not when rain / river water was 

consumed.  γ-HCH levels were significantly lower in women who consumed processed meat at 

least once a week (p = 0.016).  With an increase in maternal weight (p = 0.025) or a decrease in 

maternal age (p = 0.026), the levels of γ-HCH increased significantly.   This could be due to 

those women who had not breastfed being significantly younger (p = 0.0000, T-Test). The model 

explained 37% variation in the γ-HCH levels. 
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Table 3: Linear regression model of log γ-HCH. 

Covariate Std. β t p 95% CI 

    Lower Upper 

Study site: Manguzi (Site 1) 

                  Port Shepstone (Site 2) 

                  Empangeni (Site 3) 

 

0.36 

2.13 

 

0.22 

0.25 

 

0.111 

0.000 

 

-0.08 

1.63 

 

0.80 

2.63 

Source of drinking water: Tap 

                                          Rain/River 

                                           Borehole 

 

0.06 

0.83 

 

0.30 

0.29 

 

0.828 

0.005 

 

-0.53 

0.26 

 

0.66 

1.40 

Consumption of processed meat: Seldom 

                                                     Once a 

week 

                                                     Daily 

 

-0.46 

-0.29 

 

0.19 

0.26 

 

0.016 

0.259 

 

-0.84 

-0.79 

 

-0.09 

0.22 

Weight 0.02 0.01 0.025 0.00 0.04 

Age -0.04 0.02 0.026 -0.07 -0.00 

r2 37%     

 

Table 4 shows the univariate regression analysis of the log of endosulfan.  No multivariate 

regression model could be formulated.  Living in Site 3 (p < 0.001), environmental pollution 

around the home (p < 0.001), or growing one’s own food (p = 0.008), significantly increased the 

endosulfan levels, whereas consuming meat (p = 0.001) or dairy (p = 0.017) had a protective 

effect on endosulfan levels.   
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Table 4: Overall univariate analyses with log endosulfan. 

Log endosulfan 
Univariate 

β t p 

Residential Area: Study site 3* 

  

  

  Study site 1 -0.726 -7.37 0.000 

  Study site 2 -1.063 -11.40 0.000 

Air quality around home: Good* 

  

  

  Bad 0.712 5.92 0.000 

Environmental pollution around home: No* 

  

  

  Yes 0.582 4.60 0.000 

Grow own food in garden: No* 

  

  

  Yes 0.240 2.68 0.008 

Consume Processed meat: Seldom* 

  

  

  Once/week -0.310 -3.06 0.003 

  Everyday -0.406 -3.36 0.001 

Consume Dairy products: Seldom* 

  

  

  Once/week -0.082 -0.67 0.504 

  Everyday -0.279 -2.40 0.017 
 

The results below (Table 5) clearly show a good correlation between endosulfan and γ-HCH, 

being more prominent in Site 2 and Site 3.  The good correlation indicates a possibility of a 

common source of exposure.  Some correlation exists between α-HCH and endosulfan 2, 

especially in Site 2.   

 

Table 5: Spearman correlation (r) results of γ, α-HCH and endosulfan.  

  

α-HCH γ-HCH Endosulfan 1 

Site 

1 

Site 

2 

Site 

3 

Site 

1 

Site 

2 

Site 

3 

Site 

1 

Site 

2 

Site 

3 

γ-HCH 0.43 0.44 0.69             

Endosulfan 1 0.49 0.48 0.48 0.57 0.85 0.75       

Endosulfan 2 0.55 0.78 0.47 0.48 0.64 0.71 0.83 0.72 0.95 
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6.  DISCUSSION 

6.1. Main findings 

6.1.1. PTS levels in blood of the participating women  

High levels of DDT metabolites, particularly p,p’-DDE and p,p’-DDT, were found in maternal 

plasma in the malaria endemic site (Site 1), where IRS is taking place.  The direct and recent 

activity of IRS is confirmed by the low p,p’-DDE / p,p’-DDT ratio of  1.75, confirming that the 

malaria prevention programme is applied during the summer months when sample collection for 

this study took place.  Environmental studies that were performed in two districts of SA (Venda) 

have shown that using DDT for IRS has resulted in indoor air contamination in the ranges of 750 

- 6000 ng/m3 with a mean of 2200 ng/m3,  in comparison with non-IRS dwellings, where  DDT 

concentration was found to be much lower (range: 1.5 - 2.8 ng/m3, mean 7.2 ng/m3 (Van Dyk et 

al., 2010).  The authors suggested that inhalation or contact with DDT particles falling from the 

treated walls and roofs of the dwellings is a probable mechanism of continuous exposure, as is 

ingestion through contaminated food or water.  Similar findings were reported from 

Mozambique (Manaca et al., 2012a).  In the malaria area of Mozambique, before IRS was 

restarted in 2006, the p,p’-DDE concentration measured in cord blood samples was around 0.6 

ng/ml, which was much lower than that found in the maternal blood in Site 1 of the current study 

(20 ng/ml).  It is evident that there has been a steady decline in p,p’-DDE levels from 2003 to 

2006, before the reintroduction of IRS, in Mozambique  (Manaca et al., 2012b).   

 

Recent studies performed in other malaria prone regions, such as Saudi Arabia and India, have 

found lower concentrations of DDT in maternal serum samples (550 pg/ml and 2300 pg/ml, 

respectively; compared to this study (20279 pg/ml) (Al-Saleh et al., 2012; Dewan et al., 2013).  

However, p,p’-DDE concentrations higher than this study’s results (3840 ng/g lipid) were found 

in agricultural workers in Bolivia (median 4788.7 ng/g lipid) (Mercado et al., 2013) and in 

Mexican inhabitants (15800 ng/g lipid) (Waliszewski et al., 2012).   In Australia, where no IRS 

with DDT is taking place, the concentrations measured in maternal serum samples (mean 1050 

pg/ml) (Reid et al., 2013 ) were similar to the levels found in the intermittent malaria site (Site 3; 

1167 pg/ml) of this study (Reid et al., 2013). 
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This study found that in Site 1, where DDT levels were high, Hg levels in maternal plasma and 

paired cord whole blood were also elevated.  Although the Hg results for pregnant women in this 

study were found to be lower than those reported from Brazil, Korea, Greenland and Canada, the 

continuous low level exposure to Hg in combination with DDT remains a concern.  The 

hepatotoxicity of the combination of DDT and MeHg in Amazonian fish tissues, has been 

demonstrated by its greater effect on glucose-6-phosphate dehydrogenase (G6PDH) and 

glutathione-S-transferase activities and lipid damage, when compared to the effects of the 

individual chemicals (Filipak Neto et al., 2008).   This study’s findings suggest that efforts 

should therefore be made to reduce the concomitant exposure to DDT and the continuous low 

level of Hg in pregnant women.  It may not be easy to reduce DDT through IRS until suitable 

alternatives are found to eradicate malaria, but surely efforts can be made to reduce the Hg 

exposure.  It has been reported that fish-eating communities in the Amazon are at a high risk of 

exposure to both Hg and DDT (Rabitto Ida et al., 2011).  This study showed in its univariate 

regression analysis that p,p’-DDE levels  in maternal plasma (p < 0.001) and Hg levels in cord 

blood (p = 0.005) were significantly increased when the subjects consumed tinned fish on a daily 

basis.  However, consumption of fresh fish only significantly increased cord blood Hg levels (p = 

0.031) and not p,p’-DDE levels (p = 0.087).  This study consisted of a higher percentage of 

subjects that consumed tinned fish (25%) when compared to fresh fish (8%) on a daily basis.   

More than 50% of the study subjects ate fresh or tinned fish less than once a week.  This study’s 

demographics substantiate the general understanding that fresh fish in not highly consumed in 

SA, and that tinned fish is a more economically viable option, especially for low income 

communities.   

 

DDT and its metabolites were also found in mothers residing in the intermittent (Site 3) and non-

malaria (Site 2) study areas, but to a lesser extent than in Site 1.  The non-malaria and low-risk 

malaria sites suggest recent, on-going exposure to parent DDT as shown by the low p,p’-DDE / 

p,p’-DDT ratio of 4 and 5, respectively.  However, these low p,p’-DDE / p,p’-DDT ratios (<10) 

cannot be attributed to food as being the only source of exposure to DDT (Kang et al., 2008).  A 

previous pilot study conducted in 2006 in various sites throughout SA (Röllin et al., 2009b), 

found p,p’-DDE / p,p’-DDT ratios ranging from 3 to 22. The two DDT sites (inland and coastal) 

had a ratio of 3 (similar to the current study; whereas the mining site close to Mozambique (also 
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a malaria endemic area) had a ratio of 8, indicating recent exposure.  However, the area in  the 

Western Cape of SA, which is very far from any malaria endemic region, had a ratio of 22, 

suggesting high environmental persistence of DDT and ongoing bioaccumulation or past limited 

use of DDT (Jaga and Dharmani, 2003).  This suggests that there are no gradients of DDT from 

the spraying area, and that the subjects in Site 2 and Site 3 were exposed to DDT in the recent 

past, thus indicating limited, scattered, and illegal use of DDT in both sites.  Efforts must be 

made to find the source of DDT in non-malaria endemic areas in SA, so as to stop its use.   

Evidence of illegal use of DDT has also been reported in Bolivia (Mercado et al., 2013). 

 

This study found that in Site 1, the participants were not only exposed to DDT and Hg, but also 

to γ-HCH and endosulfan.  Endosulfan was detected in > 97% of the subjects and γ-HCH was 

detected in all subjects in Site 1.  The health effects of the synergistic exposure to various 

organochlorine (OC) pesticides and Hg is of great concern.  In Site 1, it is anticipated that 

subjects will continue to be exposed to DDT used for malaria eradication, until safer and more 

effective substitutes are developed.  Hence, it is very important that the public should be 

informed to not use additional OC pesticides in households and in agricultural activities, but to 

use the safer alternatives instead, such as the pyrethroids. 

 

In the present study, γ-HCH levels were significantly higher in Site 3 (Empangeni), compared to 

Sites 1 (Manguzi) and 2 (Port Shepstone).  This can be attributed to extensive commercial and 

subsistence farming taking place there, with women being the active workers on the farms.  It 

has been reported in France that areas of more intensive agricultural activity show larger 

concentrations of γ-HCH in the soil (Orton et al., 2013).  The results of the pilot study of 2006, 

as well as the outcomes from the current study, clearly show that γ-HCH use and exposure is not 

evenly distributed throughout SA (Röllin et al., 2009b).  Delivering women residing in areas 

with high agricultural activity have higher levels of γ-HCH compared to women living in urban, 

mining and industrialised regions.  Interestingly, studies done in South Africa before 1997 have 

found γ-HCH to be the most dominant OC pesticide in soil and sedimentation (Quinn et al., 

2009).  
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No detectable concentrations of γ-HCH were found in Australian maternal samples (Reid et al., 

2013), or in other similar studies in Poland and Mexico (Jaraczewska et al., 2006; Rodriguez-

Dozal et al., 2012).  Hoferkamp reported that γ-HCH is unable to biomagnify in the arctic food 

webs, accounting for the low detection for countries in the Arctic Circle (Hoferkamp et al., 

2010).  This may apply to other food webs across the globe. 

 

In India, a recent study reported γ-HCH concentrations of 6.60 ng/ml in maternal blood which 

are very similar to levels found in the present study, in Site 3, i.e. 6.14 ng/ml (Dewan et al., 

2013).  Furthermore, in healthy children (aged 6-12 years) in Mexico, very high levels of γ-HCH 

were reported in 3 communities (mean 1639.6 ng/g lipid; (Antonio et al., 2013), compared to 

Site 3 of this study (956 ng/g lipid).  These high γ-HCH levels are not consistent throughout 

Mexico, as shown by Waliszewski, where γ-HCH was not detected in the serum of the 

inhabitants (Waliszewski et al., 2012).  Furthermore, lower levels of γ-HCH were seen in male 

and female residents in Hong Kong (161 ng/g lipid) and in Romania (127 ng/g lipid) (Dirtu et al., 

2006; Wang et al., 2013).  

 

In SA, Mexico and India, where agriculture is an important sector, higher levels of γ-HCH have 

been found in the population, indicating that agriculture plays a role in γ-HCH persistence in 

exposed individuals. In SA, γ-HCH was produced until the 1980s, and only banned for use in 

2009.  The samples for the current study were collected in 2008, therefore a follow up study of 

this cohort is recommended to ascertain if the banning of γ-HCH use would have decreased the 

γ-HCH concentrations in the study population.  

 

Similar to γ-HCH, endosulfan concentrations in maternal plasma were significantly higher in 

women residing in Site 3, compared to those residing in Sites 1 and 2.  The high maternal levels 

of endosulfan in Site 3 are most probably the result of endosulfan usage in  extensive commercial 

and subsistence farming in the area, and are indicative of on-going exposure.   In addition, strong 

positive correlations were found between γ-HCH and endosulfan in maternal plasma, indicating 

a similar source of exposure, and most probably the use of a pesticide formulation, containing 

both γ-HCH and endosulfan.  The OC pesticide, endosulfan, continues to be widely used as an 
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insecticide across the globe, including SA, with technical formulations dominated by endosulfan 

1.  

In SA (Vaal Triangle region), endosulfan has been found in soil and sediment media (Quinn et 

al., 2009).  Additionally, in the Western Cape province, endosulfan has been found in the 

Lourens River (Schulz, 2001),  in rural surface and ground drinking water sources (Dalvie et al., 

2003),  and in farm workers (Dalvie et al., 2009).  SA is a signatory to the Rotterdam Convention 

and therefore is legally obliged to implement the local banning of endosulfan.   Since all sales 

and use of endosulfan were terminated on the 31st April 2012, it is anticipated that levels of 

endosulfan will decrease in the future.   

Globally, levels of endosulfan 1 do not show a declining trend in atmospheric monitoring data, 

reflecting on-going use of this pesticide (Weber et al., 2010).  However, a recent New Delhi – 

India study has shown a decrease in endosulfan concentrations in maternal blood, between the 

years 2008 and 2012, from 3700 to 2200 pg/ml (Pathak et al., 2008; Sharma et al., 2012).  These 

endosulfan concentrations are  still much higher than the mean concentration observed in this SA 

study,  i.e. 837 pg/ml.  In Brazil, lower concentrations of endosulfan (Sarcinelli et al., 2003) were 

reported in delivering mothers in 2003 (108 pg/ml); however, current levels reported on 

endosulfan in the general popuation were far higher (10400 pg/ml) (Freire et al., 2012).   

Researchers in Spain reported a very wide range in endosulfan levels. Extremely high levels of 

endosulfan 2 (76380 pg/ml) were found in maternal serum (Jimenez Torres et al., 2006), 

compared to the levels reported (1310 pg/ml) in cord serum (Jimenez Torres et al., 2006; 

Mariscal-Arcas et al., 2010);  levels of 4.02 ng/g were found in placenta (Freire et al., 2011); and 

one study reported non-dectable levels in serum in the general population (Aurrekoetxea Agirre 

et al., 2011).  This current SA study found higher endosulfan concentrations (mean of 837 pg/ml) 

when compared to studies carried out  in Mexico, in pregnant women before delivery (153 

pg/ml) (Alvarado-Hernandez et al., 2013), and in children aged 6-12 years (250 pg/ml) (Meza-

Montenegro et al., 2013).   

 

All other pesticides investigated in this SA study (HCB; α, β-HCH; cis-permethrin; cyfluthrin; 

cypermethrin; deltamethrin) showed low levels in blood components.  In contrast, reports from 
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Mexico, Spain and Brazil found β-HCH to be the dominant HCH isomer, in higher 

concentrations (Alvarado-Hernandez et al., 2013; Aurrekoetxea Agirre et al., 2011; Freire et al., 

2012; Wang et al., 2013).  β -HCH is one of the five stable isomers of technical HCH and due to 

its persistence, it can still be detected at low background levels in all environmental media.  

 

Pyrethroids are used for malaria control in the SA study sites, nevertheless, very low 

concentrations were detected in all three sites.  This may be due to the fact that the samples 

chosen were plasma instead of urine, even though urine has been found to be more suited for 

biological monitoring to detect the pyrethroids.  Pyrethroid metabolites are more stable in urine, 

whereas in plasma they are more susceptible to further bio-degeneration (Leng et al., 1997).  

Furthermore, due to the short half-life of pyrethroids (2.5 – 12 hours), samples have to be 

collected directly at the end of exposure.   

 

The concentrations of Polybrominated Diphenyl Ether (PBDE) isomers, 28, 49, 71, 47, 66, 77, 

100, 119, 99, 85, 154, 153, 138 were also found to be low in maternal plasma samples across all 

three sites in this study.  As these sites are predominantly rural, lower levels are expected, as the 

concentrations of PBDEs in air samples have been shown to be higher in urban and industrialised 

locations across Europe, when compared with rural or remote regions (Jaward et al., 2004).  

However, Australia reported no difference between the rural and urban residential dust samples, 

except for PBDE 209 (Stasinska et al., 2013).  Relatively high concentrations of PBDEs (28, 47, 

71 and 75) in SA have been detected in leachates, in landfill sites in an industrialised region 

(Odusanya et al., 2009), but low levels were detected in a river catchment area in Gauteng 

(Olukunle et al., 2012).   In Limpopo province, which is situated in the north, bordering 

Zimbabwe, the presence of PBDEs was reported in breast milk samples, with PBDE 183 having 

the highest mean value (Darnerud et al., 2011).  The authors suggested that PBDE 183 

concentrations were elevated due to either specific PBDE usage or contamination.  Although low 

levels of PBDE were found in maternal plasma in the current study, the afore-mentioned reports 

indicate higher levels of PBDE in certain study areas.  In Canada, a greater percentage detection 

of PBDEs was found in pregnant women (33 - 86 %) before delivery (Foster et al., 2012), and in 

children; PBDE 47 was detected in all samples, compared to this current study (0 – 9%) 

(Turgeon O'Brien et al., 2012).   
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6.1.2. Main predictors of exposure 

6.1.2.1. Study Site 

Subjects in study Site 1 were not only exposed to elevated concentrations of DDT from IRS, but 

also to γ-HCH, endosulfan and low levels of Hg.  The concomitant prenatal exposure of some 

POPs and Hg has deleterious effects on neurodevelopment and immune system function 

(Donaldson et al., 2010).   In this region, historically, DDT has been used to curtail and stop 

malaria infections and death.  However, in terms of other contaminants, concerted efforts should 

be made to reduce exposure to γ-HCH, endosulfan and Hg.  Subjects are exposed to γ-HCH and 

endosulfan from agricultural activity, and as both chemicals have been banned since the 

collection of the samples for the current study, a reduction in the levels is anticipated in the 

future, assuming no illegal use of the chemicals.   Exposure to Hg is suspected to come from 

environmental conditions, probably due to the influx of pollutants from surrounding mining, 

water bodies, as well as other industrial and farming activities, as well as the consumption of 

fish.     

 

In study Site 3 (Empangeni), significantly higher levels of γ-HCH and endosulfan were found 

when compared with the other two areas, most probably due to the large number of commercial 

farms, as well as extensive subsistence farming taking place in this area.  A media statement in 

South Africa, in 2010, reported that insecticides that contain the active ingredient γ-HCH were 

sold in many nurseries and other retail outlets, despite a national ban on the use of such products  

one year previously (AVCASA, 2010).   Educating the farm workers and owners on the 

environmental and health effects of the compounds may play an important role in stopping the 

use of these chemicals.   The authorities also need to play a stronger role in the discontinuation 

of these compounds. 

 

6.1.2.2. Age 

In the current study, DDT and γ-HCH levels significantly decreased as the maternal age 

increased. These findings are contradictory, as many reports show positive and statistically 

significant associations between age and concentrations of DDT and other POPs (Arrebola et al., 

2009; Llop et al., 2010; Valera et al., 2013; Wolff et al., 2005).  In the scientific literature, the 

phenomenon is explained as, the older the subject, the greater the accumulation time of the 
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compounds due to the relatively long half-lives of many of the OCs  (Grandjean et al., 2008; 

Jakszyn et al., 2009; Koppen et al., 2009; Llop et al., 2010).  Pharmacokinetic modelling 

suggests that accumulation with age requires a continuous supply.   From placental transfer, 

through childhood to adulthood, the body burden (and thus the serum / plasma levels) can reflect 

the time since peak exposure (past, recent and current), the year born, and the body type (lean 

versus obese).  It is possible that the elevated levels of DDT (increased body burden) in this 

study may have an effect on the half-life of this chemical.  Although suggested in the literature, 

no studies have been done to show the effect of high / low body burden on the half-life of OCs, 

or possible changes in half-life for different age groups (Bates et al., 2004).   Also, in pregnant 

women, additional factors may contribute to the variation in pesticide levels, such as potential 

dilution effect as a consequence of weight gain, different sources of exposure, age, physical 

activity, diet and toxicokinetics (Kotlyar and Carson, 1999; Wolff et al., 2005).   

 

6.1.2.3. Drinking Water 

Drinking borehole water instead of municipal water resulted in an increase in γ-HCH levels, 

indicating that the water may be contaminated by the surrounding environment.  A major 

contribution to chemical contamination is wastewater discharges that negatively impact on water 

quality, due to both the organic and inorganic constituents of wastewater. Additional 

contamination may come from agricultural activities in which fertilisers and pesticides are used 

throughout the year.  Globally, the more agricultural activity in an area, the more contamination 

of pesticides is possible in the wastewater.  Since Site 3 has larger areas of commercial and 

subsistence farming, the water is more likely to be contaminated, compared to Sites 1 and 2.  

 

6.1.2.4. Dietary Predictors  

Fish is important in a healthy diet, in that it is a lean and low-calorie source of protein.  However, 

some fish may contain MeHg or other OC chemicals, at sufficiently high levels to be of concern.  

Unless there are direct sources present, the main source of OC chemicals is the diet, with fish 

and marine mammals being the main contributors. 

 

In this study, DDT as well as Hg levels increased as the consumption of fish increased, but fish 

consumption had no effect on γ-HCH and endosulfan levels.  Only tinned fish was positively 
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associated with DDT levels, indicating that not only the amount of fish, but also the type of fish 

is important.  Tinned fish is an economically viable option which is more readily available than 

fresh fish.  The KwaZulu Natal coast has warm water fish species, whereas most studies have 

been done with cold water fish species, and therefore not easily comparable.  The consumption 

of fish in this study did not influence the levels of DDT or Hg to a large extent, unlike some 

studies done in the northern hemisphere (Furberg et al., 2002; Kvalem et al., 2009; Sandanger et 

al., 2003a).  In Norway (Kvalem et al., 2009) it was found that fish and seafood were closely 

associated with coastal living, with fatty fish being the main source of protein. One study 

reported that boiled fresh cod-liver oil contained significant levels of p,p'-DDE and PCBs 

(Sandanger et al., 2003a).  A study along the coast of North Norway, with a high lean fish / 

seafood intake, observed a significant association between OC plasma levels and seagull egg 

intake (Furberg et al., 2002).  Another study showed that fatty fish contributes more strongly to 

the intake of OCs, when compared to lean fish (Hansen et al., 2010).  In Vietnam it was found 

that the concentrations of contaminants were dependent on the size, age, species and amount of 

fish, as well as whether contaminants were from local sources and / or environmental deposition 

by long-range transport (Kannan et al., 1992).    

 

This SA study found that eating processed meat had a protective effect, reducing γ-HCH and 

endosulfan levels. This is most probably due to the increased consumption of bought processed 

meat, when compared with local meat which may be contaminated with pesticides.  In SA, 

consumption of processed meat is a lifestyle indicator and may also point toward a decreased 

consumption of fruits and vegetables.  In general, consumption of fish, meat, dairy products and 

fats as well as fruits and vegetables are considered a source of exposure through the diet (Gasull 

et al., 2011).  These dietary indicators were included in the linear regression models, but have 

been shown to not play a significant role, except for the processed meat.   This may be due to 

changes in diet of individuals and differences in pesticide levels in the same food item, 

depending on where and when it was consumed, as well as the dietary habits before pregnancy.  
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6.2. Global comparison of pesticides and mercury levels  

This study clearly shows higher concentration of DDE in SA, when compared with other 

countries (Figure 17).  High levels of DDT were also found in blood samples in agricultural 

workers in Bolivia and Mexican inhabitants.  For γ-HCH, South Africa has similar levels in 

maternal blood samples (Figure 20), to those found in India (Dewan et al., 2013; Pathak et al., 

2008), but higher levels than those found in Australia (Reid et al., 2013), Brazil (Sarcinelli et al., 

2003), Poland (Jaraczewska et al., 2006), Mexico (Rodriguez-Dozal et al., 2012) and Kenya 

(Kanja et al., 1992) (Figure 20).  The distribution of relatively volatile OC compounds (such as 

hexachlorobenzene) is dependent on latitude and demonstrates the global distillation effect 

(geochemical process where POPs are known to be transported from warmer to cooler regions of 

the Earth, particularly to the Arctic and mountain tops).  Less volatile OC compounds (such as 

endosulfan) are not as effectively distilled and tend to remain in the region of use (Simonich and 

Hites, 1995).  DDT and γ-HCH are semi-volatile, i.e. they evaporate, but very slowly, and 

therefore the effect of global distillation is slower.  Thus, these chemicals occur initially in high 

levels in the environment, close to the region of use, before they are globally distributed.  β-HCH 

concentrations were found to be very low in maternal samples from SA, compared to those found 

in Russia, Spain, Ireland and Mexico (Figure 19).  Similarly, Hg levels, although detected in 

100% of the maternal samples in SA, were lower than most countries (Figure 21).   The different 

exposure patterns for the various compounds indicate geographical variations on the human body 

fluid concentrations.  Both global emissions with long-range transport and local sources are 

significant, in terms of individual and population exposures. It is important to note that when 

comparing population concentrations between studies, a number of factors have to be taken into 

consideration, such as: year of sampling, and characteristics of the study group such as age, 

gender, area of residence, diet and obstetrical history (Porta et al., 2008b; Sandanger et al., 

2009).  Special attention should be given to the analytical methods and quality assurance 

measures used; taking into account the matrices in which the concentrations are measured (e.g. 

whole blood, serum or plasma) and the units used to express the concentrations e.g., wet-weight 

or lipid-adjusted for OCs, in plasma or serum. 

 

 

http://en.wikipedia.org/wiki/Geochemistry
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Figure 17: Comparison between countries, of maternal p,p’-DDE  (GM) ng/g lipids. 
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Location of study (n) year of study: Alaska, North slope arctic coast (43) 1999-2003 (AMAP, 2009); Alaska, 

Yukon-Kushokwim River (206) 2004-2006 (AMAP, 2009); Canada, Nunavik (42) 2004-2007(AMAP, 2009); 

Canada, Nunavut (99) 2005-2007(AMAP, 2009); Greenland, Disko Bay (20) 2006(AMAP, 2009); Greenland, 

Nuuk (10) 2005(AMAP, 2009); Iceland (40)2004(AMAP, 2009); Italy (70) 2006(Bergonzi et al., 2009); Kenya 

(11) 1986(Kanja et al., 1992); Mexico (240) 2005-2006(Rodriguez-Dozal et al., 2012); Northern Norway (50) 

2007-2008(Hansen et al., 2010); Northern Norway (10) 2004(AMAP, 2009); Poland (18) 2004 (Jaraczewska et 

al., 2006); Russia, Chukotka Coastal (68) 2001-2003(AMAP, 2009); Russia, Chukotka Inland (58) 2001-

2003(AMAP, 2009); Russia, Norilsk (59) 2001-2003(AMAP, 2009); Russia, Taymir (69) 2001-2003(AMAP, 

2009); Spain (541) 2003-2005(Llop et al., 2010); Sweden (25) 2007(AMAP, 2009); Sweden (323) 1996-

1999(Glynn et al., 2007); USA, NHANES (179) 1999-2002(Wang et al., 2009); South Africa, Coastal Malaria 

(11) 2005-2006(Röllin et al., 2009b); South Africa, Inland Malaria (12) 2005-2006(Röllin et al., 2009b); Current 

study - South Africa (91). 
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Figure 18: Comparison between countries, of maternal p,p’-DDE  (GM) ng/ml. 
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Figure 19: Comparison between countries, of maternal β-HCH (GM) ng/g lipids. 
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Figure 20: Comparison between countries, of maternal γ-HCH (GM) ng/g lipids. 
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Figure 21: Comparison between countries, of maternal mercury (GM) μg/l.  
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6.3. Gaps in data 

Pesticide use in SA is an integral part of every-day life.  The farmer, consumer, exporter and 

end-user of natural resources, such as water, are exposed to pesticides.  In addition, pesticide 

exposure could occur from malaria prevention programmes.  Pesticide research is well 

established in SA; however, limitations exist in terms of technical expertise (laboratory 

competency and equipment).   Although pesticides have been detected in most media, there is 

still a lack of knowledge of pesticide background levels.  These levels are required so as to make 

realistic impact and health assessments when studying highly contaminated areas.  

  

There is a problem in some areas with low literacy, and in many cases proper training on the use 

of pesticides is not provided.  In addition, obsolete pesticide stockpiles can leach into the 

environment and have disastrous effects on ground water.  Although a stockpile control 

programme is in place to remove banned pesticides, and agricultural users and retailers have to 

declare the use of pesticides, very little control mechanism is actually implemented.  

 

Although pesticides are required, the advantages must be weighed against the negative side 

effects.  Serious consideration must be given to promoting and expanding the correct use of less 

harmful substances. 

 

There is a lack of data on prenatal exposure to POPs in the southern hemisphere, and especially 

in Africa.  Due to good climatic conditions, the southern hemisphere is ideal for extensive 

farming and the use of not only the ‘old’ POPs, but also the new emerging POPs, such as PFOS 

and flame retardants.  More studies are required in the southern hemisphere. 

   

6.4. Limitations 

This investigation was based on a cross-sectional study, i.e. simultaneous analyses of exposures 

and effects.  The exposure component is the focus of the scientific papers.  

 

To obtain high validity, and thus dependable results, the challenge is to minimise the sources of 

random and systematic errors.  Random errors were reduced by quality control measures being in 

place at both the NILU and NIOH (e.g. use of reference and control samples, and the laboratories 
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participation in external-proficiency testing), but could have been increased by the lower sample 

size in the intermittent malaria site. Method errors were considered minimal, as all protocol 

procedures and measurements were standardised, both in the field and in the laboratory 

according to the AMAP protocol.  

 

In order to have increased validity, an absence of bias and generalisation of the population are 

required. 

 

For DDT, the intermittent study site was included between the malaria and non-malaria sites as a 

form of a second control, and therefore only a small number of women participated.  The sample 

size was also limited by costs. The power of analyses was reduced due to the small sample size 

in the intermittent malaria area.  The unequal sample sizes could have added to the sampling 

bias. 

 

The recruitment of subjects only from government hospitals may have caused a selection bias in 

terms of socioeconomic status.  Including mothers from the private hospitals in this investigation 

could potentially have resulted in a more accurate representation of the women residing in all 

three study sites. However private clinics are very scarce in deeply rural areas and even if 

present, these clinics care for a very small percentage of the population. Participating women 

were predominantly African Blacks. A better representation of population groups/ethnicity 

within the samples chosen for this study would have increased the validity of the results for the 

population as a whole.  If too many traits are similar, then selection bias is a strong possibility. 

 

Although every effort was made to acquire accurate information from the pregnant women, there 

is the possibility that some of the information could be biased, due to cultural misunderstandings 

or imprecise recall. However, the language barrier was eradicated by asking the interview 

questions in the women’s preferred language. 

 

The type of pesticides used in and around the residences was requested in the questionnaire, but 

many of the subjects were not able to name the type of pesticide used, which could have added 

value to the findings and more accurate predictors could have been determined. 
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6.5. Policy formulation 

The Stockholm Convention is a global treaty which aims to protect humans, animals and the 

environment from exposure to POPs.  The convention was adopted in 2001.  SA has accepted the 

convention as 23rd May 2004.  SA has also accepted the Rotterdam Convention as of June 2006.  

A decision has to be made by SA to eliminate or restrict the use of chemicals (DDT, endosulfan) 

under the Stockholm Convention, and implement an import control response for chemicals under 

the Rotterdam Convention. These thesis research findings will affect the way that authorities 

assess pesticide control, in terms of protecting the population from negative health effects. The 

high concentrations of DDT, endosulfan and γ-HCH levels found in this study indicate a need to 

assess the source of exposure and eliminate these sources as far as possible, so as to reduce the 

local and global burden.  The results will help the policy makers on contaminants not only in SA 

but also globally. 

 

6.6. Concluding remarks 

This is one of the first studies to measure prenatal exposure to DDT resulting from controlled 

IRS with DDT in coastal rural settings.  As expected, this study confirms that the levels of DDT 

and its metabolites from IRS, as measured in pregnant women, were significantly higher than in 

regions where IRS does not occur.  In addition, the subjects from the intermittent and non-

malaria areas were also exposed to DDT, and the observed differences in concentrations were 

significant. The reason for the elevated levels in the non-malaria area are not clear, and 

considering the long residence time in each place, the migration of people from contaminated 

regions is not a likely reason.  The low p,p’-DDE / p,p’-DDT ratios in the two sites confirm that 

the exposure is not only due to food alone, and suggests recent, scattered on-going use of DDT in 

the surrounding areas.  Further efforts must be made to identify the source of DDT exposure in 

these two sites. 

 

The malaria endemic site showed the highest levels of DDT and Hg in maternal blood, compared 

to the other two study sites. Although Hg was detected in 100 % of maternal and cord blood 

samples analysed, it was found to be in lower concentrations than in some other countries.  In 

addition, the women who participated in the study are also exposed to γ-HCH and endosulfan.  

Although low levels of Hg and the other pesticides were detected, the negative parallel 
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neurotoxic effects for vulnerable groups such as the foetus, newborns and growing children, 

remain a concern.  In addition, the combination of high p,p'-DDE and p,p'-DDT levels and some 

Hg exposure, requires extra attention in preventing possible health effects, especially to the 

foetus and during breastfeeding.  Education should be provided as a priority to household 

members on ways to restrict exposure following IRS.  

 

The other pesticides measured, viz γ-HCH and endosulfan 1 and 2, were found to be elevated in 

all three regions, with significantly higher concentrations in Site 3. Agricultural spraying may be 

a common source, but considering the elevated levels in Site 3, there is reason to believe there 

are other sources. Thus, the exposure patterns are unique for each site. Furthermore, these 

concentrations of γ-HCH and endosulfan were higher than those found in other countries. With 

γ-HCH being on the Stockholm POP list, and endosulfan being on the 9 new POP lists, efforts 

must be made to identify and remove sources of exposure, to curtail the use of these pesticides.   

 

The results presented are of particular value to policy makers and regulatory toxicology 

organisations, as they characterise the extent of controlled exposure to DDT, used exclusively for 

IRS purposes. The findings of this study will form a basis for further investigation into foetal 

exposure to pollutants. 

 

Future studies are required to assess the health effects on the children of this study cohort, the 

sources of DDT in non-IRS sites, as well as γ-HCH and endosulfan sources, so as to reduce 

exposure.  

 

In addition to exposure to a variety of pesticides, the effect of climate change will exacerbate the 

situation, leading to catastrophic outcomes such as accelerating sea level rise, droughts, floods, 

storms and heat waves. These phenomena will have broad based negative impacts, especially for 

the poorest and most vulnerable people living along the South African coastline, by increasing 

the prevalence of malaria, as well as other vector-borne and diarrhoeal diseases; decreasing 

agricultural yields; and having many more detrimental effects on health, habitats and the 

economy.   
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 The period from the embryonic stages to the growth of the child is very sensitive to 

environmental impact and changes in the climate. The foetus is prone to exposure to different 

metals and POPs through the placenta.  Substances such as Hg and lead, can affect the 

developing brain before birth and during childhood.  Thus, the monitoring of certain compounds 

in mother-child cohorts is highly recommended. 

 

Mankind will have to endeavor to set policies, and enforce practices and behavior norms that will 

provide long-term economic opportunities and improved quality of life around the world, while 

maintaining a sustainable climate and viable ecosystems. 

 

6.7. Future perspectives 

As evident from this study, pregnant women in SA are exposed to numerous pollutants (DDT, γ- 

HCH and endosulfan) at concentrations exceeding benchmark levels, indicating serious prenatal 

exposures in the three sites. The sources of exposure in the various sites require more in-depth 

investigation. Further studies should concentrate on other geographical regions with special 

attention given to simultaneous exposure to mixtures of contaminants.  To assess the 

developmental risks associated with exposure to selected contaminants, follow-up cohort studies 

should be initiated.  A concerted effort is necessary to increase data quality and availability, and 

to develop new environmental monitoring and surveillance databases, including a traceable birth 

register. One recommendation is to establish a multidisciplinary scientific network between the 

northern and southern hemispheres, in an effort to gain a better understanding of the dynamics of 

the contaminants that are having negative impacts on populations and environments, across the 

globe.  The added dimension of climate change and its detrimental outcomes presents a unique 

opportunity to investigate the transport, trends and potential health impacts of the contaminants 

that are less likely to remain in the Arctic, due to the global distillation effect. Higher 

temperatures, coupled with the decimation of sea ice, can result in constant re-emissions of 

contaminants to the atmosphere and their transportation out of the Arctic region, mostly in a 

southward direction.  Since it is predicted that the southern hemisphere will be affected the most 

by climatic changes, especially the coastal regions, more  assessments and targeted investigations 

into the state and impacts of contaminants are required in this region, with some urgency. 
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SUBJECT INFORMATION SHEET 
 
 
Dear Mother 
 
We are researchers from the Medical Research Council (my name is…..) and we are studying levels of 
pollutants in the environment and maternal health in selected areas of South Africa. Specifically, the study 
will be looking at the levels of pollutants in the environment and in the blood and urine of expectant mothers 
admitted for delivery in clinics in these areas. Studies conducted in other parts of the world showed that in 
certain areas environmental pollution may have an effect on the foetus and newborns. By conducting this 
research in South Africa we will be able to determine the current situation in our country. 
  
We would appreciate it very much if you agree to participate in our study. If you agree, we will be asking you 
to answer series of questions, which should take 35 minutes. The interview will focus on general information 
about yourself, including your age, health and diet, your house type, and your occupation. A trained research 
assistant will be interviewing you.  
 
We also ask that you allow us to take a blood sample of approximately 20ml from you (4 teaspoons) once 
only, and to donate about 20ml of urine. A professional nursing sister will take the blood sample at the clinic. 
Sterile, disposable equipment will be used and disposed of immediately, so there is no chance of transfer of 
any infection from one subject to another. The technique is safe and there is only a slight prick as the needle 
passes through the skin. Over the years we have sampled blood from many hundreds of people in this way 
without any problems. We will measure the concentration of some metals and organic chemicals in your 
blood and urine. 
 
We also ask you to allow us to take 10 ml of blood sample from the cord (umbilical cord/khujwana/nkaba) 
after your baby is delivered. This is done only after the cord is cut so there is no interference with delivery 
and your baby. Doctor attending to you will do it. Cord blood will also be analyzed for chemicals.  
 
Finally we also ask your permission to obtain information from hospital records about your baby’s weight and 
length, sex and gestational age, and health. 
 
 
We do not know at this stage if this study will have a direct benefit to you, but if we find anything wrong with 
your results, we will come back to you.  The results of this study will be published, but the names of you or 
your child will not be mentioned. You may request the results in relation to yourself and your child.  
 
You are free to withdraw from the study at any time without having to give a reason. Remember that your 
participation in the study is completely voluntary and not taking part in it, or withdrawing from it, carries no 
penalty of any sort. Your health care will not be influenced.  
 
 
 
If you would like to discuss the study further, or have any questions, please do not hesitate to 
contact, Dr Halina Röllin, telephone: 011 274 6064 during office hours.  



 
 

SUBJECT INFORMED CONSENT 
Name: 
 
Surname: 

House/Plot Number: 

Street: Town: 
Contact telephone number: 
 

Age:                

Clinic address:  
  
Subject Study Number: Area Study Code: 
 
 
I…………………………………………………………………………………………… 

(Full name(s) and surname of participant) 
 
hereby agree to participate in the Environment and Reproductive Health Study being undertaken by the 
Medical Research Council. 
 
The research objectives have been explained to me and I understand that I will be required to complete a 
questionnaire about my health and diet, living conditions and occupation. 
 
I also understand that I will be expected to donate approximately 20 ml of blood (4 teaspoons) and 20 ml of 
urine on my last visit to clinic before delivery or at delivery. Medical personnel will take blood under 
sterile conditions. 
 
I understand that 10 ml of the blood from the cord (umbilical cord/khujwana/nkaba) will be collected after 
delivery by the doctor. 
 
I give permission to hospital to disclose medical information regarding myself (age, weight before delivery, 
height, health status and medication) and details about baby (health at delivery, weight and length). 
  
I understand that ethical approval for this investigation has been obtained.   
 
I understand that there is no cost involved. 
 
I understand that all results will be treated with strict confidentiality. 
 
I acknowledge that the results of this research project may be published in medical and scientific journals; 
however, my name, and the names of my family, will not be mentioned. The results will be reported only as 
a group. 
 
I understand my participation is voluntary, and that I am free to withdraw from the project at any time 
without prejudice.  I further understand that should I request it, the results in relation to my child and 
myself will be made available to me. 
 
 
 
Signature…………………………………date…………………. 



 
 
 

 
  
   
  

MEDICAL RESEARCH COUNCIL 
 
 

ENVIRONMENT & REPRODUCTIVE HEALTH STUDY 
  
  
This questionnaire is part of the Medical Research Council environment and 
reproductive health study. We would like to request that you take the time to 
answer the questionnaire with the assistance of trained interviewer. We thank 
you in advance for your participation. 
 
 
If you have questions or need more information, please do not hesitate to call 
Dr Halina Röllin at 011 274 6064(office hours). 
 
 
 
SUBJECT STUDY NUMBER …………  AREA STUDY CODE………. 
 
 
Clinic Name: ............................................... 
 
Clinic address: ………………....................... 
 
Town/Province: ……………………………… 
 
Interview date (date/month/year): ............................................... 
 
Interviewer: ………………....................... 
 
 

 1



 2

SECTION A: BACKGROUND DETAILS         
 
In this section we would like to obtain a few background details about yourself.  
 
1.  What is your first name? ...............................……………  
         
2.  What is your surname? .................................…………….  
  
 
3.  What is your home address?......................................................  
  

......................................................  
  

.......................................................   
  
4.  What is your present contact telephone  number 

……………………………………  
  
5.  When were you born?  (please  give day, month and year)   
  

Where……………………… 
 
Day …………………………  
 
Month   ……………………… 
 
Year    ………………………….   

                
6. How many children do you already have:    
  

…………………………………   
  
7. How many daughters do you have:  number: …… ages: ………….  
  
  
8. How many sons do you have:  number: …………..ages …………..  
 
9. What language do you usually speak at home (please circle!)  
   

1.  English  
        

2.  Afrikaans  
  

3.  Xhosa  
       

4.  Sotho  
  

5.  Zulu  
  

6.  Other (please specify) …………………………….  
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10.  What is your race/population group? (please circle!) 
 
(This question is being asked because in South Africa population group is still closely 
linked to economic status, which in turn is closely linked to certain environmental 
factors.) 
 

 1.  African black  
 

 2.  Coloured  
 

 3.  Asian  
 

 4.  White   
 
  

11.  What is your nationality?  …………………………………….  
  

  
12.  How would you describe your place of residence  (please circle one 

answer only)  
      

1.  Urban (city) 
  

2.  Rural (farming community)  
  

  3.  Peri urban  (close to the city)  
  

4.  Informal settlement  
  

5.  Close to industrial site: (please specify)  
   ………………………………………………  
  
  6.  Don’t Know         
 
  

13.  How long have you lived at your present home address?  
   
           Years ………………………  
  

 Months ……………………             
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SECTION B: HOUSING            
In this section we would like to have some information about the household   
you presently live in  
  
1.  Is this home:  (please circle)         
 
  
       1. Owned  
  
       2. Rented  
  
 
2.  How would you describe your home? (please circle)  
  
       1. House  
  
       2. Flat  
  
       3. Backyard dwelling  
  
       4. Informal house (shack)  
  
       5. Other (please specify)  .................   
          
  
3.  How many rooms, not counting the kitchen, bathroom or toilet, does this home   
  

 have?   …………………………………………………  
  
               
4.  What fuel is used most of the time for cooking? (please circle)  
     
       1.  Electricity   
  
       2.  Paraffin  
  
       3.  Gas  
  
       4.  Wood  
  
       5.  Coal  
  
       6.  Car batteries  
  
       7.  Other (please specify) .....................……..  
    
5.  What fuel is used most of the time for heating the home? (please circle)           

     
1.  Electricity    
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2.  Paraffin  
  

3.  Gas  
  

4.  Wood  
  

5.  Coal  
  

6.  Car batteries  
  

7.  None  
  

Other (please specify)  ...........................  
  
6.  Does anyone regularly smoke at home? (please circle!)      

  
1.  Yes   
 
2.  No  

   
7.  How many people regularly smoke cigarettes in the home? (At least one  
  cigarette per day at home)  
      ........................………   
  
8.  Did you smoke: (please circle)  
  

1.  Before pregnancy  
  

2  During pregnancy  
  

3.  Both  
  

4.  Number of cigarettes daily   
  
 
9.  Where do you get your drinking water from most of the time? (please circle)  
     

1.  Indoor tap  
  

2.  Outdoor tap  
  

3.  Rainwater tank 
 

4.  Borehole   
   

5.  River/stream  
  

6.  Other (please specify)………………………………………. 
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SECTION C: SOCIAL AND ENVIRONMENTAL ASPECTS        
 
In this section we will ask some questions relating to you and other people living in your  
home.  
  
  
1. Marital status: (please circle)   
  

1.  Married      
 

2.  Divorced   
 
3.  Single  
 
4.  Living together  
 
5.  Widowed  

 
2. How many people live in this house? 
 

1.   Males older than 15 years   
 
2.   Women (including yourself) older than 15 years  
 
3.   Children aged 15 years or younger  

 
 
3. What is your highest educational qualification?    
 
  ………………….. ................................  
  
4.  Do you have permanent job:  (please circle)   
  

1.  YES   
  

2.  NO  
     
If yes, what type (seasonal or pemament) please underline  
  

 
Employer………………………………………..  

   
Occupation/Position………………………………………..  

  
 
 
5. For how many years have you held your current job?  
 
  ………………………………………….  
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6. What does your husband/partner do at work?        
…………………...................................  

  …………………………………………  
  …………………………………………  
7. Where does he work?  

 …………………………………………..  
  …………………………………………….  
  
8. What is the highest education qualification of your husband/partner?   
  ………………….. ................................     
  
9. How many years has he held his current job?  
  

………………………………………….  
 
10. How many people, living with you, have permanent jobs?   

……….……………………………………. 
 
11. Does anyone living in the house, work from home? (please circle)   
 

1.  Yes 
 

2.  No 
 

3.  Don’t know  
 

If yes, what do they do?  
  
 ............................................…………………………………………….  
 ………………………………………………………………………….  
  
  12. If maintaining or repairing your home, do you or handyman use lead-containing 

materials  (paints, solders etc).? (please circle) 
    

1.  Yes    
  
2.  No  
    
3.  Don’t know  

 
 
 
13. What is the total monthly income in your family?  
 

......................................................  
 
14. Describe the hobbies of people living in the house (for instance car repairs, 

pottery, welding, etc).  
  
  ………………………………………………  
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  ………………………………………………  
  ………………………………………………  
  
15. What is your opinion on air quality in your area? (please circle)   
  

1.  Good   
  
2.  Bad   
  
3.  I don’t know  

  
16. Are there any sources of environmental pollution around your home? (please 

circle) 
  

1.  Yes  
  
2.  No  
  
3.  If yes specify source  ,………………………………………………  
  
 …………………………………………………………………….  

  
17. How far is your home from the nearest the highway?   ….  .Km  
  
18 Do you use pesticides for insect control (flies, bugs, cockroaches, mosquitoes, in 

your  home?) (please circle)  
  

1.  Yes  
  
2.  No  

  
19. If yes, are these pesticides used in: (please circle)  
  

1.  Kitchen  
  
2.  Living room  
  
3.  Bedroom 

 
4.  Others, please specify 
………………………………………………  

  
20. What are the names of the pesticides do you use?   
  

…………………………………………………..  
 
21. How often do you use the pesticides?    

 
1.  In a week   
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2.  In a month  
 
22. Where do you store these pesticides? ……………………………………………  
 
23. Do you grow your own food? (vegetables, fruits, others) (please circle) 
 

1.  Yes  
  
2.  No   
  

If yes specify……………………………………  
  

24. Do you use pesticides in you garden? (please circle) 
  

1.  Yes  
    
2.  No  
  
If yes please specify which pesticide? 
………………………………………………….  

  
25. Do you or a member of your household fish?  (please circle) 
  

1.  Yes    
  
2.  No   

  
Where do you fish? Please name the location …………………………………….  

  
Please name the fish type  ……………………………………………………   

 
26. If yes do you consume this fish?  (please circle) 
  

1. Yes 
  
2.  No  

 
27. Is your house sprayed regularly by Malaria Control Programme  
 
  1. Yes…………………… 
 
  2. No 
   

If yes how often………………. 
28.  Is the crop at farms near your house sprayed.    

1. Yes 
 
2. No 
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SECTION D: INFORMATION ABOUT YOUR JOB  
 
Please list in chronological order all the jobs you were engaged in for the period of more 
than 6 months, over the past 10 years. Also mention whether you were exposed to any 
chemicals during your work (which):  
 
 

JOB DESCRIPTION 
AND WHERE  

FROM   TO  DO YOU KNOW OF ANY CHEMICALS 
USED AT YOUR WORK PLACE   

  
  
  

      

  
  
  

      

  
  
  

      

  
  
  

      

  
  
  

      

  
  
  

      

 
Chemicals check list (please circle Y/N) 
  
1   Solvents (turpentine, spirits, paraffin,   Yes   No  
2   Paints        Yes   No 
3   Metals (in foundry, mine    Yes   No  
4   Cleaning fluids (floor, windows   Yes   No  
5   Polish (for floor, car polish    Yes   No  
6   Paint removers     Yes   No  
7  Oils/lubricants (grease….)    Yes   No  
8   Spray paints      Yes   No  
9   Spray oils      Yes   No  
10   Others, please specify     Yes   No  
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SECTION E: HEALTH          
In this section some information about your health status is requested.  
  
1.  Are you well at present?  
  

1.  Yes      
 

2.  No      
 
3.  Don’t know     

 
2.  If you are not well, what are the problems?  
  

 …..........................................…………………………………………  
  

 …..........................................…………………………………………  
         
3.  Do you suffer from any of the following? (circle correct answers please)       
 
 1.  Diabetes    
  
  Since when / How long …………………………………..   
  
    Are you on medication for this condition?  YES    NO  
  
  

 2.  Thyroid gland    
  
  Since when / How long  …………………………………..  
  
  Are you on medication for this condition?  YES    NO  
  
  
  3.  Liver disease  
  
  Since when / How long    
  
  Are you on medication for this condition?  YES    NO  
  
  4.  Heart disease    
  
  Since when / How long  
  

Are you on medication for this condition?   YES    NO  
 

5.  High blood pressure  
    

Since when / How long   
   Are you on medication for this condition?   YES    NO  

6.  Infectious/parasite disease, if yes please tick:   



 12

 
1. TB (tuberculosis)  

  
2. Pneumonia  

  
3. Virus hepatitis  

 
If other please specify ……………………..  

  
7.  Cancer     YES       NO  

  
If yes, please specify ……………………………………….  

  
If yes, did you receive treatment: ……………………………………..  

 
Please specify type of treatment……………………………………….    

  
 

8.  Are there any hereditary diseases in family (for example high blood 
pressure, lung  disease, etc.? )  

  
If yes, please specify …………………………..  

  
  

9.  Do you suffer from any other illnesses (for example skin condition etc):  
  

1.  Yes  
  

2.  No  
 

If yes, please specify)…............................... 
 
10.  Have you ever been given any home remedies for illnesses or to improve 

your health  (please circle)?   
  

1.  Yes  
 

If yes, please specify………………..     
  
2.  No    

 
3.  Don’t know  
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11.  Are you taking any prescription medication at present? (please circle)  
  

1.  Yes:    
  

If yes, what medication are you taking, please specify:  
  
    …………………………………………………..  
  
   ……………………………………………………  

2.  No  
  

3.  Don’t know  
  

12.  Are you taking any special remedies during your pregnancy?  
 

If yes, please specify …………………………………  
  

…………………………………………………  
 
 13.  How long did you breastfed your other children: 
 
  1. Child 1 (oldest)…………….. 
 
  2. Child 2………………………. 
 
  3. Child 3 ………………………. 
 
  4. Child 4……………………… 
 
  5. Child 5………………………. 
 
 

14.  Do you plan to breastfeed this child: 
 
 1. Yes 
 
 2. No 
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SECTION F: DIET AND LIFESTYLE  
 
Please answer questions about your usual diet before and during pregnancy:  
 
Table: Frequency of consumption of food / before / during pregnancy,  
1 =seldom;  2= at least once a week;  3-= almost every day  

  
 

TYPE OF  
FOODSTUFF 
 
 

BEFORE 
PREGNANCY 
 

DURING 
PREGNANCY 
 

FOOD LOCALLY 
PRODUCED  
(by respondent or in the 
area) Y/N 

PROTEINS 
Meat    
Poultry    
Processed meet (smoked 
sausage, ham etc) 

   

Tinned meat    
Eggs    
Fish fresh    
Fish tinned    
Fish smoked    
Sea food    

VEGETABLES AND FRUITS 
Vegetables root (potatoes, 
carrots, beetroot, onion etc) 

   

Vegetables leafy/ground 
(spinach, cabbage, lettuce, 
cucumbers, pumpkin, water 
melon etc) 

   

Vegetables vine/tree 
(mielie, beans, tomatoes, 
garlic) 

   

Fruits 
 

   

DAIRY PRODUCTS AND FATS 
Dairy products (milk)    
Butter and cheese    
Fats (oil, margarine)    

CARBOHYDRATES 
Cereals 
(mieliepap,rice,noodles) 

   

Bread    

Sugar    
FLUIDS 

Fresh fruit juices    
Soft drinks    
Bottled water    

NON FOOD 
Non food items specify    
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2.  How many cups of coffee do you drink?  
  

1.  Daily  
  

2.  Weekly  
  
3.  How many cups of tea do you drink?  
  

1.  Daily  
  

2 . Weekly  
  
4.  How many bottles of beer do you drink?  
  

1.  Weekly  
  

2.  Monthly  
  

3.  None  
  

5.  How many bottles of wine do you drink?  
  

1.  Weekly  
  

2.  Monthly  
  

3.  None  
  
6.  How many glasses of vodka or other strong alcohols do you drink?  
  

1.  Weekly 
  

2.  Monthly  
  

3.  None  
  
7.  Do you smoke?   
  

1.  Yes  
  

2.  No  
  
8.  If yes, for how many years have you smoked regularly? ……years 

 
9.    At what age did you start to smoke regularly? …………. 
  
10.  What do you smoke? (please circle)     
  

cigarettes              self-rolled cigarettes   pipe    cigars  
  



 16

11.   How many cigarettes do you smoke daily?........... 
 
12.  If you do not smoke, did you smoke earlier?   Yes    No  
  
13.  At what age did you start to smoke regularly?........ 
  
14.   At what age did you quit smoking? …………. 
  
15. Within the last 6 months, did you take any drugs that influenced on your 

mood?  
  

1.  Yes  
  

2.  No   
 
3.  Refused to answer  

16. Do you have any hobby? 
  

1.  Yes  
 

2.  No  
 

3.  If yes, what?  
  

 
17  How many times you visited this clinic during pregnancy:………………  

  
  
  

  
 
 

END OF QUESTIONNAIRE,  
THANK YOU for answering the questions, your assistance is highly appreciated.  



 
 
 

MEDICAL RESEARCH COUNCIL 
 
 

ENVIRONMENT & REPRODUCTIVE HEALTH STUDY 
 

 
POST DELIVERY MEDICAL INFORMATION  
To be completed by attending medical personnel or designated field worker. 
 
This questionnaire is part of the Medical Research Council environment and maternal 
health study being conducted on women attending your prenatal and delivery clinic. 
The subject volunteered to participate in this study and agreed that we extract 
necessary information from their hospital records after delivery. 
 
If you have questions or need more information, please do not hesitate to call  
Dr Halina Röllin at 011 274 6064 (office hours). 
 
 
SUBJECT STUDY NUMBER …………  AREA STUDY CODE………. 
 
 
 
Clinic Name:  ...............................................       
             
Clinic address: ………………....................... 
 
Patient name:  ……………………………………………  
 
Patient Hospital Code       ………………………………………….. 
 
Delivery date: ……….............................................      
              
Name of Doctor or Sister attending:  ………………....................... 
 
Was cord blood collected: ………Yes……………………No…… 
 
 
     If no, please explain …………… 
 
 

 
 

1



 
 

2

 
 
SECTON A: MATERNAL INFORMATION       
      
 

1. Maternal age: …………………………………… 

2. Maternal weight before delivery:   …………       Kilograms     

3. Maternal height:    ………………………cm… 

4. Parity:     …………………………. 

5. Previous spontaneous abortions 1. trimester: (if available)  

6. Previous spontaneous abortions 2. trimester (if available) 

7. Previous preterm abortions  <week 37 (if available) 

8. Major illnesses of mother – if any: 

…………………………………………………………………………………………

……………………… 

9. Any complication during pregnancy  (hypertension, pre-eclampsia, infections) 

………………………………………………………………………………….. 

 …………………………………………………………………………….. 
 
10. Medication of mother – if daily:  

………………………………………………………………………………… 

………………………………………………………………………………….. 

 



 
 

3

SECTION B: INFORMATION ABOUT THE NEWBORN CHILD 
 
 
 1. Birth weight of baby: ………………kg….. 

 2. Birth length of baby: …………………cm 

 3. Caput circumference of baby: …………cm 

 4. Gestation age of baby (based on Naegele term): 

 5. APGAR score (any sign of asphyxia?)       ……………………… 

 6. Gender of baby  …………… 

 7. Congenital malformations (visible at birth ) …………… 

8. Any delivery complications, if yes, what kind (section Caesarean, forceps, 

 vacuum, retentio placenta) 

…………………………………………………………………………….. 

……………………………………………………………………………… 

 
 9. Any other medical observations or conditions  

  ...................................................…………………………….. 

  ……………………………………………………………….. 

 

 
END OF QUESTIONNAIRE 

THANK YOU 



ISBN xxx-xx-xxxx-xxx-x 

 

 

 

 

 

 


	Socioeconomic Questionnaire 2008.pdf
	MEDICAL RESEARCH COUNCIL 
	ENVIRONMENT & REPRODUCTIVE HEALTH STUDY 
	 
	26. If yes do you consume this fish?  (please circle) 
	  
	1. Yes 
	  
	2.  No  
	 SECTION D: INFORMATION ABOUT YOUR JOB  
	 
	 




	Post delivery records 2008.pdf
	MEDICAL RESEARCH COUNCIL 
	 
	ENVIRONMENT & REPRODUCTIVE HEALTH STUDY 
	POST DELIVERY MEDICAL INFORMATION  
	To be completed by attending medical personnel or designated field worker. 
	SECTON A: MATERNAL INFORMATION       
	SECTION B: INFORMATION ABOUT THE NEWBORN CHILD 
	 
	 
	 1. Birth weight of baby: ………………kg….. 
	 2. Birth length of baby: …………………cm 
	 3. Caput circumference of baby: …………cm 
	 4. Gestation age of baby (based on Naegele term): 
	 5. APGAR score (any sign of asphyxia?)       ……………………… 
	 6. Gender of baby  …………… 
	 7. Congenital malformations (visible at birth ) …………… 
	8. Any delivery complications, if yes, what kind (section Caesarean, forceps,  vacuum, retentio placenta) 
	 9. Any other medical observations or conditions  
	END OF QUESTIONNAIRE 







