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Abstract

As other fundamental programming abstractions in energy-efficient computing,
search trees are expected to support both high parallelism and data locality. How-
ever, existing highly-concurrent search trees such as red-black trees and AVL trees
do not consider data locality while existing locality-aware search trees such as those
based on the van Emde Boas layout (vEB-based trees), poorly support concurrent
(update) operations.

This paper presents DeltaTree, a practical locality-aware concurrent search tree
that combines both locality-optimisation techniques from vEB-based trees and con-
currency-optimisation techniques from non-blocking highly-concurrent search trees.
DeltaTree is a k-ary leaf-oriented tree of DeltaNodes in which each DeltaNode is
a size-fixed tree-container with the van Emde Boas layout. The expected memory
transfer costs of DeltaTree’s Search, Insert and Delete operations are O(logBN),
where N,B are the tree size and the unknown memory block size in the ideal cache
model, respectively. DeltaTree’s Search operation is wait-free, providing prioritised
lanes for Search operations, the dominant operation in search trees. Its Insert and
Delete operations are non-blocking to other Search, Insert and Delete operations,
but they may be occasionally blocked by maintenance operations that are sometimes
triggered to keep DeltaTree in good shape. Our experimental evaluation using the
latest implementation of AVL, red-black, and speculation friendly trees from the
Synchrobench benchmark has shown that DeltaTree is up to 5 times faster than all
of the three concurrent search trees for searching operations and up to 1.6 times
faster for update operations when the update contention is not too high.
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1 Introduction

Energy efficiency is becoming a major design constraint in current and future computing
systems ranging from embedded to high performance computing (HPC) systems. In
order to construct energy efficient software systems, data structures and algorithms must
support not only high parallelism but also data locality [Dal11]. Unlike conventional
locality-aware data structures and algorithms that concern only whether data is on-chip
(e.g. data in cache) or not (e.g. data in DRAM), new energy-efficient data structures
and algorithms must consider data locality in finer-granularity: where on chip the data
is. It is because in modern manycore systems the energy difference between accessing
data in nearby memories (2pJ) and accessing data across the chip (150pJ) is almost two
orders of magnitude, while the energy difference between accessing on-chip data (150pJ)
and accessing off-chip data (300pJ) is only two-fold [Dal11]. Therefore, fundamental data
structures and algorithms such as search trees need to support both high parallelism and
fine-grained data locality.

However, existing highly-concurrent search trees do not consider fine-grained data
locality. The highly concurrent search trees includes non-blocking [EFRvB10, BH11] and
Software Transactional Memory (STM) based search trees [AKK+12, BCCO10, CGR12,
DSS06]. The prominent highly-concurrent search trees included in several benchmark
distributions are the concurrent red-black tree [DSS06] developed by Oracle Labs and
the concurrent AVL tree developed by Stanford [BCCO10]. The highly concurrent trees,
however, do not consider the tree layout in memory for data locality.

Concurrent B-trees [BP12, Com79, Gra10, Gra11] are optimised for a known memory
block size B (e.g. page size) to minimise the number of memory blocks accessed during a
search, thereby improving data locality. As there are different block sizes at different levels
of the memory hierarchy (e.g. register size, SIMD width, cache line size and page size)
that can be utilised to design locality-aware layout for search trees [KCS+10], concurrent
B-trees limits its spatial locality optimisation to the memory level with block size B,
leaving memory accesses to the other memory levels unoptimised. For example, if the
concurrent B-trees are optimised for accessing disks (i.e. B is the page size), the cost of
searching a key in a block of size B in memory is Θ(log(B/L)) cache line transfers, where
L is the cache line size [BFJ02]. Since each memory read basically contains only one node
of size L from a top down traversal of a path in the search tree of B/L nodes, except for
the topmost blog(L + 1)c levels. Note that the optimal cache line transfers in this case is
O(logLB), which is achievable by using the van Emde Boas layout.

A van Emde Boas (vEB) tree is an ordered dictionary data type which implements
the idea of recursive structure of priority queues [vEB75]. The efficient structure of the
vEB tree, especially how it arranges data in a recursive manner so that related values are
placed in contiguous memory locations, has inspired cache oblivious (CO) data structures
[Pro99] such as CO B-trees [BDFC05, BFGK05, BFCF+07] and CO binary trees [BFJ02].
These researches have demonstrated that the locality-aware structure of the vEB layout is
a perfect fit for cache oblivious algorithms, lowering the upper bound on memory transfer
complexity.

Figure 1 illustrates the vEB layout. A tree of height h is conceptually split between
nodes of heights h/2 and h/2 + 1, resulting in a top subtree T of height h/2 and m = 2h/2

bottom subtrees B1, B2, · · · , Bm of height h/2. The (m + 1) subtrees are located in
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Figure 1: An illustration for the van Emde Boas layout

contiguous memory locations in the order T,B1, B2, · · · , Bm. Each of the subtrees of
height h/2i, i ∈ N, is recursively partitioned into (m + 1) subtrees of height h/2i+1 in a
similar manner, where m = 2h/2i+1

, until each subtree contains only one node. With the
vEB layout, the search cost is O(logBN) memory transfers, where N is the tree size and B
is the unknown memory block size in the I/O [AV88] or ideal-cache[FLPR99] model. The
search cost is optimal and matches the search bound of B-trees that requires the memory
block size B to be known in advance. More details on the vEB layout are presented in
Section 2.

The vEB-based trees, however, poorly support concurrent update operations. Insert-
ing or deleting a node in a tree may result in relocating a large part of the tree in order to
maintain the vEB layout. For example, inserting a node in full subtree T in Figure 1 will
affect the other subtrees B1, B2, · · · , Bm due to shifting them to the right in the memory,
or even allocating a new contiguous block of memory for the whole tree, in order to have
space for the new node [BFJ02]. Note that the subtrees T,B1, B2, · · · , Bm must be located
in contiguous memory locations according to the vEB layout. The work in [BFGK05] has
discussed the problem but not yet come out with a feasible implementation [BP12].

We introduce ∆Tree, a novel locality-aware concurrent search tree that combines both
locality-optimisation techniques from vEB-based trees and concurrency-optimisation tech-
niques from non-blocking highly-concurrent search trees. Our contributions are threefold:

• We introduce a new relaxed cache oblivious model and a novel dynamic vEB lay-
out that makes the vEB layout suitable for highly-concurrent data structures with
update operations. The dynamic vEB layout supports dynamic node allocation via
pointers while maintaining the optimal search cost of O(logBN) memory transfers
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without knowing the exact value of B (cf. Lemma 2.1). The new relaxed cache-
oblivious model and dynamic vEB layout are presented in Section 2.

• Based on the new dynamic vEB layout, we develop ∆Tree, a novel locality-aware
concurrent search tree. ∆Tree is a k-ary leaf-oriented tree of ∆Nodes in which
each ∆Node is a size-fixed tree-container with the van Emde Boas layout. The
expected memory transfer costs of ∆Tree’s Search, Insert and Delete operations
are O(logBN), where N is the tree size and B is the unknown memory block size
in the ideal cache model [FLPR99]. ∆Tree’s Search operation is wait-free while
its Insert and Delete operations are non-blocking to other Search, Insert and Delete
operations, but they may be occasionally blocked by maintenance operations. ∆Tree
overview is presented in Section 3 and its detailed implementation and analysis are
presented in Section 4.

• We experimentally evaluate ∆Tree on commodity machines, comparing it with the
prominent concurrent search trees such as AVL trees [BCCO10], red-black trees
[DSS06] and speculation friendly trees [CGR12] from the Synchrobench benchmark
[Gra]. The experimental results show that ∆Tree is up to 5 times faster than all
of the three concurrent search trees for searching operations and up to 1.6 times
faster for update operations when the update contention is not too high. We have
also developed a concurrent version of the sequential vEB-based tree in [BFJ02]
using GCC’s STM in order to gain insights into the performance characteristics of
concurrent vEB-based trees. The detailed experimental evaluation is presented in
Section 5. The code of the ∆Tree and its experimental evaluation are available upon
request.

2 Dynamic Van Emde Boas Layout

2.1 Notations

We first define these notations that will be used hereafter in this paper:

• bi (unknown): block size in term of nodes at level i of memory hierarchy (like B in
the I/O model [AV88]), which is unknown as in the cache-oblivious model [FLPR99].
When the specific level i of memory hierarchy is irrelevant, we use notation B instead
of bi in order to be consistent with the I/O model.

• UB (known): the upper bound (in terms of the number of nodes) on the block size
bi of all levels i of the memory hierarchy.

• ∆Node: the coarsest recursive subtree of a vEB-based search tree that contains at
most UB nodes (cf. dash triangles of height 2L in Figure 3). ∆Node is a size-fixed
tree-container with the vEB layout.

• Let L be the level of detail of ∆Nodes. Let H be the height of a ∆Node, we have
H = 2L. For simplicity, we assume H = log2(UB + 1).

• N, T : size and height of the whole tree in terms of basic nodes (not in terms of
∆Nodes).
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• density(r) = nr/UB is the density of ∆Node rooted at r, where nr the number of
nodes currently stored in the ∆Node.

2.2 Static van Emde Boas (vEB) Layout

The conventional static van Emde Boas (vEB) layout has been introduced in cache-
oblivious data structures [BDFC05, BFJ02, FLPR99]. Figure 1 illustrates the vEB layout.
Suppose we have a complete binary tree with height h. For simplicity, we assume h is a
power of 2, i.e. h = 2k. The tree is recursively laid out in the memory as follows. The
tree is conceptually split between nodes of height h/2 and h/2 + 1, resulting in a top
subtree T and m1 = 2h/2 bottom subtrees B1, B2, · · · , Bm of height h/2. The (m1 + 1)
top and bottom subtrees are then located in consecutive memory locations in the order of
subtrees T,B1, B2, · · · , Bm. Each of the subtrees of height h/2 is then laid out similarly
to (m2 + 1) subtrees of height h/4, where m2 = 2h/4. The process continues until each
subtree contains only one node, i.e. the finest level of detail, 0. Level of detail d is a
partition of the tree into recursive subtrees of height at most 2d.

The main feature of the vEB layout is that the cost of any search in this layout is
O(logBN) memory transfers, where N is the tree size and B is the unknown memory block
size in the I/O [AV88] or ideal-cache [FLPR99] model. The search cost is the optimal and
matches the search bound of B-trees that requires the memory block size B to be known
in advance. Moreover, at any level of detail, each subtree in the vEB layout is stored in
a contiguous block of memory.

Although the vEB layout is helpful for utilising data locality, it poorly supports con-
current update operations. Inserting (or deleting) a node at position i in the contiguous
block storing the tree may restructure a large part of the tree stored after node i in the
memory block. For example, inserting new nodes in the full subtree A in Figure 1 will
affect the other subtrees B1, B2, · · · , Bm by shifting them to the right in order to have
space for new nodes. Even worse, we will need to allocate a new contiguous block of
memory for the whole tree if the previously allocated block of memory for the tree runs
out of space [BFJ02]. Note that we cannot use dynamic node allocation via pointers since
at any level of detail, each subtree in the vEB layout must be stored in a contiguous block
of memory.

2.3 Relaxed Cache-oblivious Model and Dynamic vEB Layout

In order to make the vEB layout suitable for highly concurrent data structures with update
operations, we introduce a novel dynamic vEB layout. Our key idea is that if we know an
upper bound UB on the unknown memory block size B, we can support dynamic node
allocation via pointers while maintaining the optimal search cost of O(logBN) memory
transfers without knowing B (cf. Lemma 2.1).

We define relaxed cache oblivious algorithms to be cache-oblivious (CO) algorithms
with the restriction that an upper bound UB on the unknown memory block size B
is known in advance. As long as an upper bound on all the block sizes of multilevel
memory is known, the new relaxed CO model maintains the key feature of the original
CO model, namely analysis for a simple two-level memory are applicable for an unknown
multilevel memory (e.g. registers, L1/L2/L3 caches and memory). This feature enables
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Figure 2: An illustration for the new dynamic vEB layout

designing algorithms that can utilise fine-grained data locality in energy-efficient chips
[Dal11]. In practice, although the exact block size at each level of the memory hierarchy
is architecture-dependent (e.g. register size, cache line size), obtaining a single upper
bound for all the block sizes (e.g. register size, cache line size and page size) is easy. For
example, the page size obtained from the operating system is such an upper bound.

Figure 2 illustrates the new dynamic vEB layout based on the relaxed cache oblivious
model. Let L be the coarsest level of detail such that every recursive subtree contains
at most UB nodes. The tree is recursively partitioned into level of detail L where each
subtree represented by a triangle in Figure 2, is stored in a contiguous memory block
of size UB. Unlike the conventional vEB, the subtrees at level of detail L are linked to
each other using pointer, namely each subtree at level of detail k > L is not stored in a
contiguous block of memory. Intuitively, since UB is an upper bound on the unknown
memory block size B, storing a subtree at level of detail k > L in a contiguous memory
block of size greater than UB, does not reduce the number of memory transfer. For
example, in Figure 2, a travel from a subtree A at level of detail L, which is stored in a
contiguous memory block of size UB, to its child subtree B at the same level of detail
will result in at least two memory transfers: one for A and one for B. Therefore, it is
unnecessary to store both A and B in a contiguous memory block of size 2UB. As a
result, the cost of any search in the new dynamic vEB layout is intuitively the same as
that of the conventional vEB layout (cf. Lemma 2.1) while the former supports highly
concurrent update operations because it utilises pointers.

Let ∆Node be a subtree at level of detail L, which is stored in a contiguous memory
block of size UB and is represented by a triangle in Figure 2.

Lemma 2.1 A search in a complete binary tree with the new dynamic vEB layout needs
O(logBN) memory transfers, where N and B is the tree size and the unknown memory
block size in the ideal cache model [FLPR99], respectively.
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Proof. (Sketch) Figure 3 illustrates the proof. Let k be the coarsest level of detail such
that every recursive subtree contains at most B nodes. Since B ≤ UB, k ≤ L, where L is
the coarsest level of detail at which every recursive subtree contains at most UB nodes.
That means there are at most 2L−k subtrees along to the search path in a ∆Node and no
subtree of depth 2k is split due to the boundary of ∆Nodes. Namely, triangles of height
2k fit within a dash triangle of height 2L in Figure 3.

Due to the property of the new dynamic vEB layout that at any level of detail i ≤ L,
a recursive subtree of depth 2i is stored in a contiguous block of memory, each subtree of
depth 2k within a ∆Node is stored in at most 2 memory blocks of size B (depending on
the starting location of the subtree in memory). Since every subtree of depth 2k fits in a
∆Node (i.e. no subtree is stored across two ∆Nodes), every subtree of depth 2k is stored
in at most 2 memory blocks of size B.

Since the tree has height T , dT/2ke subtrees of depth 2k are traversed in a search and
thereby at most 2dT/2ke memory blocks are transferred.

Since a subtree of height 2k+1 contains more than B nodes, 2k+1 ≥ log2(B + 1), or
2k ≥ 1

2
log2(B + 1).

We have 2T−1 ≤ N ≤ 2T since the tree is a complete binary tree. This implies
log2N ≤ T ≤ log2N + 1.

Therefore, 2dT/2ke ≤ 4d log2N+1
log2(B+1)

e = 4dlogB+1N+logB+12e = O(logBN), where N ≥ 2.
ut
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3 ∆Tree Overview

Figure 4 illustrates a ∆Tree named U . ∆Tree U uses our new dynamic vEB layout
presented in Section 2. The ∆Tree consists of |U | ∆Nodes of fixed size UB each of which
contains a leaf-oriented binary search tree (BST) Ti, i = 1, . . . , |U |. ∆Node’s internal
nodes are put together in cache-oblivious fashion using the vEB layout.

The ∆Tree U acts as the dictionary of abstract data types. It maintains a set of values
which are members of an ordered universe [EFRvB10]. It offers the following operations:
insertNode(v, U), which adds value v to the set U , deleteNode(v, U) for removing a
value v from the set, and searchNode(v, U), which determines whether value v exists
in the set. We may use the term update operation for either insert or delete operation.
We assume that duplicate values are not allowed inside the set and a special value, say 0,
is reserved as an indicator of an Empty value.

Operation searchNode(v, U) is going to walk over the ∆Tree to find whether the
value v exists in U . This particular operation is guaranteed to be wait-free, and returning
true whenever v has been found, or false otherwise. The insertNode(v, U) inserts
a value v at the leaf of ∆Tree, provided v does not yet exist in the tree. Following the
nature of a leaf-oriented tree, a successful insert operation will replace a leaf with a subtree
of three nodes [EFRvB10] (cf. Figure 5a). The deleteNode(v, U) simply just marks
the leaf that contains the value v as deleted, instead of physically removing the leaf or
changing its parent pointer as proposed in [EFRvB10].

Apart from the basic operations, three maintenance ∆Tree operations are invoked in
certain cases of inserting and deleting a node from the tree. Operation rebalance(Tv.root)
is responsible for rebalancing a ∆Node after an insertion. Figure 5a illustrates the rebal-
ance operation. Whenever a new node v is to be inserted at the last level H of ∆Node
T1, the ∆Node is rebalanced to a complete BST by setting a new depth for all leaves (e.g.
a, v, x, z in Figure 5a) to logN + 1, where N is the number of leaves. In Figure 5a, we
can see that after the rebalance operation, tree T1 becomes more balanced and its height
is reduced from 4 into 3.

We also define the expand(v) operation, that will be responsible for creating new
∆Node and connecting it to the parent of the leaf node v. Expand will be triggered only
if after insertNode(v, U), the leaf v will be at the last level of a ∆Node and rebalancing
will no longer reduce the current height of the subtree Ti stored in the ∆Node. For example
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if the expanding is taking place at a node v located at the bottom level of the ∆Node
(Figure 5b), or depth(v) = H, then a new ∆Node (T2 for example) will be referred by the
parent of node v, immediately after value of node v is copied to T2.root node. Namely,
the parent of v swaps one of its pointer that previously points to v, into the root of the
newly created ∆Node, T2.root.

The merge(Tv.root) is for merging Tv with its sibling after a node deletion. For
example, in Figure 5c T2 is merged into T3. Then the pointer of T3’s grandparent that
previously points to the parent of both T3 and T2 is replaced to point to T3. The operations
are invoked provided that a particular ∆Node where the deletion takes place, is filled less
than half of its capacity and all values of that ∆Node and its siblings can be fitted into
a ∆Node.

To minimise block transfers required during tree traversal, the height of the tree should
be kept minimal. These auxiliary operations are the unique feature of ∆Tree in the effort
of maintaining a small height.

These insertNode and deleteNode operations are non-blocking to other searchN-
ode, insertNode and deleteNode operations. Both of the operations are using single
word CAS (Compare and Swap) and ”leaf-checking” to achieve that. Section 4 will explain
more about these update operations.

As a countermeasure against unnecessary waiting for concurrent maintenance opera-
tions, a buffer array is provided in each of the ∆Nodes. This buffer has a length that
is equal to the number of maximum concurrent threads. As an illustration of how it
works, consider two concurrent operations insertNode(v, U) are operating inside the
same ∆Node. Both are successful and have determined that expanding or rebalancing are
necessary. Instead of rebalancing twice, those two threads will then compete to obtain
the lock on that ∆Node. The losing thread will just append v into the buffer and then
exits. The winning thread, which has successfully acquired the lock, will do rebalancing or
expanding using all the leaves and the buffer of that ∆Node. The same process happens
for concurrent delete, or the mix of concurrent insert and delete.

Despite insertNode and deleteNode are non-blocking, they still need to wait at
the tip of a ∆Node whenever either of the maintenance operations, rebalance and
merge is currently operating within that ∆Node. We employ TAS (Test and Set) using
∆Node lock to make sure that no basic update operations will interfere with the main-
tenance operations. Note that the previous description has shown that rebalance and
merge execution are actually sequential within a ∆Node, so reducing the invocations
of those operations is crucial to deliver a scalable performance of the update operations.
To do this, we have set a density threshold that acts as limiting factor, bringing a good
amortised cost of insertion and deletion within a ∆Node, and subsequently for the whole
∆Tree. The proof for the amortised cost are given in Section 4 of this paper.

Concerning the expand operation, an amount of memory for a new ∆Node needs to
be allocated during runtime. Since we kept the size of a ∆Node equal to the page size,
memory allocation routine for new ∆Nodes does not require plenty of CPU cycles.

12
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4 Detailed Implementation

4.1 Function specifications

The searchNode(v, U) function will return true whenever value v has been inserted in
one of the ∆Tree (U) leaf node and that node’s mark property is currently set to false.
Or if v is placed on one of the ∆Node’s buffer located at the lowest level of U . It returns
false whenever it couldn’t find a leaf node with value = v, or v couldn’t be found in the
last level Ttid.rootbuffer.

insertNode(v, U) will insert value v and returns true if there is no leaf node with
value = v, or there is a leaf node x which satisfy x.value = v but with x.mark = true, or
v is not found in the last Ttid’s rootbuffer. In the other hand, insertNode returns false
if there is a leaf node with value = v and mark = false, or v is found in Ttid.rootbuffer.

For deleteNode(v, U), a value of true is returned if there is a leaf node with value =
v and mark = false, or v is found in the last Ttid’s rootbuffer. The value v will be then
deleted. In the other hand, deleteNode returns false if there is a leaf node with
value = v and mark = true, or v is not found in Ttid.rootbuffer.
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1: function waitandcheck(lock, opcount)
2: do
3: spinwait(lock)
4: flagup(opcount)
5: repeat← false
6: if lock = true then
7: flagdown(opcount)
8: repeat← true

9: while repeat = true

Figure 6: Wait and check algorithm

4.2 Synchronisation calls

For synchronisation between update and maintenance operations, we define flagup(opcount)
that is doing atomic increment of opcount and also a function that do atomic decrement
of opcount as flagdown(opcount).

Also there is spinwait(lock) that basically instruct a thread to spin waiting while
lock value is true. Only Merge and Rebalance that will have to privilege to set
Tx.lock as true. Lastly there is waitandcheck(lock, opcount) function (Figure 6) that
is preventing updates in getting mixed-up with maintenance operations. The mechanism
of waitandcheck(lock, opcount) will instruct a thread to wait at the tip of a current
∆Node whenever another thread has obtained a lock on that ∆Node for the purpose of
doing any maintenance operations.

4.3 Wait-free and Linearisability of search

Lemma 4.1 ∆Tree search operation is wait-free.

Proof. (Sketch) In the searching algorithm (cf. Figure 8), the ∆Tree will be traversed
from the root node using iterative steps. When at root, the value to search v is compared
to root.value. If v < root.value, the left side of the tree will be traversed by setting
root ← root.left (line 5), in contrary v > root.value will cause the right side of the tree
to be traversed further (line 7). The procedure will repeat until a leaf has been found
(v.isleaf = true) in line 3.

If the value v couldn’t be found and search has reached the end of ∆Tree, a buffer
search will be conducted (line 15). This search is done by simply searching the buffer
array from left-to-right to find v, therefore no waiting will happen in this phase.

The deleteNode and insertNode algorithms (Figure 9) are non-intrusive to the
structure of a tree, thus they won’t interfere with an ongoing search. A deleteNode
operation, if succeeded, is only going to mark a node by setting a v.mark variable as true
(line 18 in Figure 9). The v.value is retained so that a search will be able to proceed
further. For insertNode, it can ”grow” the current leaf node as it needs to lays down
two new leaves (lines 52 and 63 in Figure 9), however the operation never changes the
internal pointer structure of a ∆Node, since ∆Node internal tree structure is pre-allocated
beforehand, allowing a search to keep moving forward. As depicted in Figure 5(a), after
an insertion of v grows the node, the old node (now x′) still contains the same value
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1: Struct node n:
2: member fields:
3: tid ∈ N, if > 0 indicates the node is root of a

∆Node with an id of tid (Ttid)
4: value ∈ N, the node value, default is empty
5: mark ∈ {true, false}, a value of true indicates a logically

deleted node
6: left, right ∈ N, left / right child pointers
7: isleaf ∈ true, false, indicates whether the

node is a leaf of a ∆Node, default is true

8: Struct ∆Node T :
9: member fields:

10: nodes, a group of (|T | × 2) amount of
pre-allocated node n.

11: rootbuffer, an array of value with a length
of the current number of threads

12: mirrorbuffer, an array of value with a length
of the current number of threads

13: lock, indicates whether a ∆Node is locked
14: flag, semaphore for active update operations
15: root, pointer the root node of the ∆Node
16: mirror, pointer to root node of the ∆Node’s

mirror

17: Struct universe U :
18: member fields:
19: root, pointer to the root of the topmost ∆Node

(T1.root)

Figure 7: Cache friendly binary search tree structure

as x (assuming v < x), thus a search still can be directed to find either v or x. The
rebalance/Merge operation is also not an obstacle for searching since its operating
on a mirror ∆Node. ut

We have designed the searching to be linearisable in various concurrent operation
scenarios (Lemma 4.2). This applies as well to the update operations.

Lemma 4.2 For a value that resides on the leaf node of a ∆Node, searchNode oper-
ation (Figure 8) has the linearisation point to deleteNode at line 10 and the lineari-
sation point to insertNode at line 9. For a value that stays in the buffer of a ∆Node,
searchNode operation has the linearisation point at line 16.

Proof. (Sketch) It is trivial to demonstrate this in relation to deletion algorithm in Figure
9 since only an atomic operation is responsible for altering the mark property of a node
(line 18). Therefore deleteNode has the linearisation point to searchNode at line 18.

For searchNode interaction with an insertion that grows new subtree, we rely on
the facts that: 1) a snapshot of the current node p is recorded on lastnode as a first step
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1: function searchNode(v, U)
2: lastnode, p← U.root
3: while p 6= not end of tree & p.isleaf 6= TRUE do
4: lastnode← p
5: if p.value < v then
6: p← p.left
7: else
8: p← p.right

9: if lastnode.value = v then
10: if lastnode.mark = FALSE then
11: return TRUE
12: else
13: return FALSE
14: else
15: Search (Ttid.rootbuffer) for v
16: if v is found then
17: return TRUE
18: else
19: return FALSE

Figure 8: A wait-free searching algorithm of ∆Tree

of searching iteration (Figure 8, line 4); 2) v.value change, if needed, is not done until
the last step of the insertion routine for insertion of v > node.value and will be done in
one atomic step with node.isleaf change (Figure 9, line 66); and 3) isleaf property of
all internal nodes are by default true (Figure 7, line 7) to guarantee that values that are
inserted are always found, even when the leaf-growing (both left-and-right) are happening
concurrently. Therefore insertNode has the linearisation point to searchNode at line
52 when inserting a value v smaller than the leaf node’s value, or at line 63 otherwise.

A search procedure is also able to cope well with a ”buffered” insert, that is if an
insert thread loses a competition in locking a ∆Node for expanding or rebalancing and
had to dump its carried value inside a buffer (Figure 9, line 89). Any value inserted
to the buffer is guaranteed to be found. This is because after a leaf lastnode has been
located, the search is going to evaluate whether the lastnode.value is equal to v. Failed
comparison will cause the search to look further inside a buffer (Tx.rootbuffer) located
in a ∆Node where the leaf resides (Figure 8, line 15). By assuring that the switching of
a root ∆Node with its mirror includes switching Tx.rootbuffer with Tx.mirrorbuffer,
we can show that any new values that might be placed inside a buffer are guaranteed
to be found immediately after the completion of their respective insert procedures. The
”buffered” insert has the linearisation point to searchNode at line 89.

Similarly, deleting a value from a buffer is as trivial as exchanging that value inside
a buffer with an empty value. The search operation will failed to find that value when
doing searching inside a buffer of ∆Node. This type of delete has the linearisation point
to searchNode at the same line it’s emptying a value inside the buffer (line 29). ut
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1: function insertNode(v, U) . Inserting an new item v into ∆Tree U
2: t← U.root
3: return insertHelper(v, t)

4:

5: function deleteNode(v, T ) . Deleting an item v from ∆Tree U
6: t← U.root
7: return deleteHelper(v, t)

8:

9: function deleteHelper(v, node)
10: success← TRUE
11: if Entering new ∆Node Tx then . Observed by examining x ← node.tid value

change
12: T ′x ← getParent∆Node(Tx)
13: flagdown(T ′x.opcount) . Flagging down operation count on the previ-

ous/parent triangle
14: waitandcheck(Tx.lock, Tx.opcount)
15: flagup(Tx.opcount)

16: if (node.isleaf = TRUE) then . Are we at leaf?
17: if node.value = v then
18: if CAS(node.mark, FALSE, TRUE) != FALSE) then . Mark it delete
19: success← FALSE . Unable to mark, already deleted
20: else
21: if (node.left.value=empty&node.right.value=empty) then
22: Tx.bcount← Tx.bcount− 1
23: mergeNode(parentOf(Tx))← TRUE . Delete succeed, invoke merging
24: else
25: deleteHelper(v, node) . Not leaf, re-try delete from node

26: else
27: Search (Tx.rootbuffer) for v
28: if v is found in Tx.rootbuffer.idx then
29: Tx.rootbuffer.idx← empty
30: Tx.bcount← Tx.bcount− 1
31: Tx.countnode← Tx.countnode− 1
32: else
33: flagdown(Tx.opcount)
34: success← FALSE . Value not found
35: flagdown(Tx.opcount)
36: else
37: if v < node.value then
38: deleteHelper(v, node.left)
39: else
40: deleteHelper(v, node.right)

41: return success
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42: function insertHelper(v, node)
43: success← TRUE
44: if Entering new ∆Node Tx then . Observed by examining x← node.tid change
45: T ′x ← getParent∆Node(Tx)
46: flagdown(T ′x.opcount) . Flagging down operation count on the previ-

ous/parent triangle
47: waitandcheck(Tx.lock, Tx.opcount)
48: flagup(Tx.opcount)

49: if node.left & node.right then . At the lowest level of a ∆Tree?
50: if v < node.value then
51: if (node.isleaf = TRUE) then
52: if CAS(node.left.value, empty, v) = empty then
53: node.right.value← node.value
54: node.right.mark ← node.mark
55: node.isleaf ← FALSE
56: flagdown(Tx.opcount)
57: else
58: insertHelper(v, node) . Else try again to insert starting with the same

node
59: else
60: insertHelper(v, node.left) . Not a leaf, proceed further to find the leaf

61: else if v > node.value then
62: if (node.isleaf = TRUE) then
63: if CAS(node.left.value, empty, v) = empty then
64: node.right.value← v
65: node.left.mark ← node.mark
66: atomic { node.value← v
67: node.isleaf ← FALSE }
68: flagdown(Tx.opcount)
69: else
70: insertHelper(v, node) . Else try again to insert starting with the same

node
71: else
72: insertHelper(v, node.right) . Not a leaf, proceed further to find the leaf

73: else if v = node.value then
74: if (node.isleaf = TRUE) then
75: if node.mark = FALSE then
76: success← FALSE . Duplicate Found
77: flagdown(Tx.opcount)
78: else
79: Goto 63
80: else
81: insertHelper(v, node.right) . Not a leaf, proceed further to find the leaf

82: else
83: if val = node.value then
84: if node.mark = 1 then
85: success← FALSE
86: else . All’s failed, need to rebalance or expand the

triangle Tx
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87: if v already in Tx.rootbuffer then success← FALSE
88: else
89: put v inside Tx.rootbuffer
90: Tx.bcount← Tx.bcount + 1
91: Tx.countnode← Tx.countnode + 1

92: if TAS(Tx.lock) then . All threads try to lock Tx

93: flagdown(Tx.opcount) . Make sure no flag is still raised
94: spinwait(Tx.opcount) . Now wait all insert/delete operations to finish
95: total← Tx.countnode + Tx.bcount
96: if total ∗ 4 > U.maxnode + 1 then . Expanding needed, density > 0.5
97: . . .Create(a new triangle) AND attach it on the to the parent of node . . .
98: else
99: if Tx don’t have triangle child(s) then
100: Tx.mirror ← rebalance(Tx.root, Tx.rootbuffer)
101: switchtree(Tx.root, Tx.mirror)
102: Tx.bcount← 0
103: else
104: if Tx.bcount > 0 then
105: Fill childA with all value in Tx.rootbuffer . Do non-blocking

insert here
106: Tx.bcount← 0

107: spinunlock(Tx.lock)
108: else
109: flagdown(Tx.opcount)

110: return success

Figure 9: Update algorithms and their helpers functions

4.4 Non-blocking Update Operations

Lemma 4.3 ∆Tree Insert and Delete operations are non-blocking to each other in the
absence of maintenance operations.

Proof. (Sketch) Non-blocking update operations supported by ∆Tree are possible by
assuming that any of the updates are not invoking Rebalance and Merge operations.
In a case of concurrent insert operations (Figure 9) at the same leaf node x, assuming
all insert threads need to ”grow” the node (for illustration, cf. Figure 5), they will have
to do CAS(x.left, empty, . . .) (line 52 and 63) as their first step. This CAS is the
only thing needed since the whole ∆Node structure is pre-allocated and the CAS is an
atomic operation. Therefore, only one thread will succeed in changing x.left and proceed
populating the x.right node. Other threads will fail the CAS operation and they are
going to try restart the insert procedure all over again, starting from the node x.

To assure that the marking delete (line 18) behaves nicely with the ”grow” insert
operations, deleteNode(v, U) that has found the leaf node x with a value equal to
v, will need to check again whether the node is still a leaf (line 21) after completing
CAS(x.mark, FALSE, TRUE). The thread needs to restart the delete process from x if
it has found that x is no longer a leaf node.

The absence of maintenance operations means that a ∆Node lock is never set to true,
thus either insert/delete operations are never blocked at the execution of line number 63
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1: procedure balanceTree(T )
2: Array temp[|H|]← Traverse(T ) . Traverse all the non-empty node into temp ar-

ray
3: RePopulate(T, temp) . Re-populate the tree T with all the value from

temp recursively. RePopulate will resulting a
balanced tree T

4: procedure mergeTree(root)
5: parent← parentOf(root)
6: if parent.left = root then
7: sibling ← parent.right
8: else
9: sibling ← parent.left

10: Tr ← triangleOf(root) . Get the T of root node
11: Tp ← triangleOf(parent) . Get the T of parent
12: Ts ← triangleOf(sibling) . Get the T of sibling
13: if spintrylock(Tr.lock) then . Try to lock the current triangle
14: spinlock(Ts.lock, Tp.lock) . lock the sibling triangles
15: flagdown(Tr.opcount)
16: spinwait(Tr.opcount, Ts.opcount, Tp.opcount) . Wait for all insert/delete

operations to finish
17: total← Ts.nodecount + Ts.bcount + Tr.nodecount + Tr.bcount
18: if (Ts & Tr don’t have children) & (Tp > U.maxnode + 1)/2)‖Ts > U.maxnode +

1)/2)) & total 6 (U.maxnode + 1)/2 then
19: MERGE Tr.root, Tr.rootbuffer, Ts.rootbuffer into T.s
20: if parent.left = root then . Now re-do the pointer
21: parent.left← root.left . Merge Left
22: else
23: parent.right← root.right . Merge Right

24: spinunlock(Tr.lock, Ts.lock, Tp.lock)
25: else
26: flagdown(Tr.opcount)

Figure 10: Merge and Balance algorithm

in Figure 6. ut

Lemma 4.4 In Figure 9, insertNode operation has the linearisation point against
deleteNode at line 52 and line 63. Whereas deleteNode has a linearisation point
at line 21 against an insertNode operation. For inserting and deleting into a buffer
of a ∆Node, an insertNode operation has the linearisation point at line 89. While
deleteNode has its linearisation point at line 29.

Proof. (Sketch) An insertNode operation will do a CAS on the left node as its first step
after finding a suitable node for growing a subtree. If value v is lower than node.value,
the correspondent operation is the line 52. Line 63 is executed in other conditions. A
deleteNode will always check a node is still a leaf by ensuring node.left.value as empty
(line 21). This is done after it tries to mark that node. If the comparison on line 21 returns
true, the operation finishes successfully. A false value will instruct the insertNode to
retry again, starting from the current node.
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A buffered insert and delete are operating on the same buffer. When a value v is
put inside a buffer it will always available for delete. And that goes the opposite for the
deletion case. ut

4.5 Memory Transfer and Time Complexities

In this subsection, we will show that ∆Tree is relaxed cache oblivious and the overhead
of maintenance operations (e.g. rebalancing, expanding and merging) is negligible for big
trees. The memory transfer analysis is based on the ideal-cache model [FLPR99]. Namely,
re-accessing data in cache due to re-trying in non-blocking approaches incurs no memory
transfer.

For the following analysis, we assume that values to be searched, inserted or deleted
are randomly chosen. As ∆Tree is a binary search tree (BST), which is embedded in the
dynamic vEB layout, the expected height of a randomly built ∆Tree of size N is O(logN)
[CSRL01].

Lemma 4.5 A search in a randomly built ∆Tree needs O(logB N) expected memory trans-
fers, where N and B is the tree size and the unknown memory block size in the ideal cache
model [FLPR99], respectively.

Proof. (Sketch) Similar to the proof of Lemma 2.1, let k, L be the coarsest levels of detail
such that every recursive subtree contains at most B nodes or UB nodes, respectively.
Since B ≤ UB, k ≤ L. There are at most 2L−k subtrees along to the search path in a
∆Node and no subtree of depth 2k is split due to the boundary of ∆Nodes (cf. Figure
3). Since every subtree of depth 2k fits in a ∆Node of size UB, the subtree is stored in
at most 2 memory blocks of size B.

Since a subtree of height 2k+1 contains more than B nodes, 2k+1 ≥ log2(B + 1), or
2k ≥ 1

2
log2(B + 1).

Since a randomly built ∆Tree has an expected height of O(logN), there are O(logN)
2k

subtrees of depth 2k are traversed in a search and thereby at most 2O(logN)
2k

= O( logN
2k

)
memory blocks are transferred.

As logN
2k
≤ 2 logN

log(B+1)
= 2 logB+1N ≤ 2logBN , expected memory transfers in a search

are O(logB N). ut

Lemma 4.6 Insert and Delete operations within the ∆Tree are having a similar amor-
tised time complexity of O(log n + UB), where n is the size of ∆Tree, and UB is the
maximum size of element stored in ∆Node.

Proof. (Sketch) An insertion operation at ∆Tree is tightly coupled with the rebalancing
and expanding algorithm.

We assume that ∆Tree was built using random values, therefore the expected height
is O(log n). Thus, an insertion on a ∆Tree costs O(log n). Rebalancing after insertion
only happens at single ∆Node, and it has an upper bound cost of O(UB + UB logUB),
because it has to read all the stored elements, sort it out and re-insert it in a balanced
fashion. In the worst possible case for ∆Tree, there will be an n insertion that cost log n
and there is at most n rebalancing operations with a cost of O(UB + UB logUB) each.
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Using aggregate analysis, we let total cost for insertion as
n∑

k=1

ci 6 n log n+
n∑

k=1

UB +

UB logUB ≈ n log n + n · (UB + UB logUB). Therefore the amortised time complexity
for insert is O(log n + UB + UB logUB). If we have defined UB such as UB << n, the
amortised time complexity for inserting a value into ∆Tree is now becoming O(log n).

For the expanding scenarios, an insertion will trigger expand(v) whenever an insertion
of v in a ∆Node Tj is resulting on depth(v) = H(Tj) and |Tj| > (2H(Tj)−1) − 1. An
expanding will require a memory allocation of a UB-sized ∆Node, cost merely O(1),
together with two pointer alterations that cost O(1) each. In conclusion, we have shown
that the total amortised cost for insertion, that is incorporating both rebalancing and
expanding procedures as O(log n).

In the deletion case, right after a deletion on a particular ∆Node will trigger a merging
of that ∆Node with its sibling in a condition of at least one of the ∆Nodes is filled less
than half of its maximum capacity (density(v) < 0.5) and all values from both ∆Nodes
can fit into a single ∆Node.

Similar to insertion, a deletion in ∆Tree costs log n. However merging that combines
2 ∆Nodes costs 2UB at maximum. Using aggregate analysis, the total cost of deletion

could be formulated as
n∑

k=1

ci 6 n log n +
n∑

k=1

2 · UB ≈ n log n + 2n · UB. The amortised

time complexity is therefore O(log n + UB) or O(log n), if UB << n.
ut

5 Experimental Result and Discussion

To evaluate our conceptual idea of ∆Tree, we compare its implementation performance
with those of STM-based AVL tree (AVLtree), red-black tree (RBtree), and Speculation
Friendly tree (SFtree) in the Synchrobench benchmark [Gra]. We also have developed
an STM-based binary search tree which is based on the work of [BFJ02] utilising GNU
C Compiler’s STM implementation from the version 4.7.2 . This particular tree will be
referred as VTMtree, and it has all the traits of vEB tree layout, although it only has
a fixed size, which is pre-defined before the runtime. Pthreads were used for concurrent
threads and the GCC were invoked with -O2 optimisation to compile all of the programs.

The base of the conducted experiment consists of running a series of (rep = 100, 000, 000)
operations. Assuming we have nr as the number of threads, the time for a thread to finish a
sequence of rep/nr operations will be recorded and summed with the similar measurement
from the other threads. We also define an update rate u that translates to upd = u%×rep
number of insert and delete operations and src = rep− upd number of search operations
out of rep. We set a consecutive run for the experiment to use a combination of update
rate u = {0, 1, 3, 5, 10, 20, 100} and number of thread nr = {1, 2, . . . , 16} for each runs.
Update rate of 0 means that only searching operations were conducted, while 100 update
rate indicates that no searching were carried out, only insert and delete operations. For
each of the combination above, we pre-filled the initial tree using 1,023 and 2,500,000
values. A ∆Tree with initial members of 1,023 increases the chances that a thread will
compete for a same resources and also simulates a condition where the whole tree fits into
the cache. The initial size of 2,500,000 lowers the chance of thread contentions and simu-
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lates a big tree that not all of it will fits into the last level of cache. The operations involved
(e.g. searching, inserting or deleting) used random values v ∈ (0, 5, 000, 000], v ∈ N, as
their parameter for searching, inserting or deleting. Note that VTMtree is fixed in size,
therefore we set its size to 5,000,000 to accommodate this experiment.

The conducted experiment was run on a dual Intel Xeon CPU E5-2670, for a total of
16 available cores. The node had 32GB of memory, with a 2MB L2 cache and a 20MB
L3 cache. The Hyperthread feature of the processor was turned off to make sure that the
experiments only ran on physical cores. The performance (in operations/second) result
for update operations were calculated by adding the number successful insert and delete.
While searching performance were using the number of attempted searches. Both were
divided by the total time required to finish rep operations.

In order to satisfy the locality-aware properties of the ∆Tree, we need to make sure
that the size of ∆Nodes, or UB, not only for Lemma 2.1 to hold true, but also to make
sure that all level of the memory hierarchy (L1, L2, ... caches) are efficiently utilised,
while also minimising the frequency of false sharing in a highly contended concurrent
operation. For this we have tested various value for UB, using 127, 1K − 1, 4K − 1,
and 512K − 1 sized elements, and by assuming a node size in the ∆Node is 32 bytes.
These values will correspond to 4 Kbytes (page size for most systems), L1 size, L2 size,
and L3 size respectively. Please note that L1, L2, and L3 sizes here are measured in our
test system. Based on the result of this test, we found out that UB = 127 delivers the
best performance results, in both searching and updating. This is in-line with the facts
that the page size is the block size used during memory allocation [Smi82, Dre07]. This
improves the transfer rate from main memory to the CPU cache. Having a ∆Node that
fits in a page will help the ∆Tree in exploiting the data locality property.

As shown in Figure 11, under a small tree setup, the ∆Tree has a better update
performance (i.e. insertion and deletion) compared to the other trees, whenever the
update ratio is less than 10%. From the said figure, 10% update ratio seems to be
the cut-off point for ∆Tree before SFtree, AVLtree, and RBtree gradually took over the
performance lead. Even though the update rate of the ∆Tree were severely hampered after
going on higher than 10% update ratio, it does manage to keep a comparable performance
for a small number of threads.

For the search performance evaluation using the same setup, ∆Tree is superior com-
pared to other types of tree when the search ratio higher than 90% (cf. Figure 11). In
the extreme case of 100% search ratio (i.e. no update operation), ∆Tree does however
get beaten by the VTMtree.

On the other setup, the big tree setup with an initial member of 2,500,000 nodes (cf.
Figure 12), a slightly different result on update performance can be observed. Here the
∆Tree maintains a lead in the concurrent update performance up to 20% update ratio.
Higher ratio than this diminishes the ∆Tree concurrent update performance superiority.
Similar to what can bee seen at the small tree setup, during the extreme case of 100%
update ratio (i.e. no search operation), the ∆Tree seems to be able to kept its pace for
6 threads, before flattening-out in the long run, losing out to the SFtree, AVLtree, and
RBtree. VTMtree update performance is the worst.

As for the concurrent searching performance in the same setup, the ∆Tree outperforms
the other trees when the search ratio is less than 100%. At the 80 % search ratio, the
VTMtree search performance is the worst and the search performance of the other four
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Figure 11: Performance rate (operations/second) of a ∆Tree with 1,023 initial members.
The y-axis indicates the rate of operations/second.
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Figure 12: Performance rate (operations/second) of a ∆Tree with 2,500,000 initial mem-
bers. The y-axis indicates the rate of operations/second.
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Table 1: Cache profile comparison during 100% searching
Tree Load

count
Last level
cache miss

%miss operations
/second

∆Tree (UB = 5M) 4301253301 454239096 10.56 469942
∆Tree (UB = 127) 4895074596 435682140 8.90 429945
SFtree 3675847131 406925489 11.07 85473
VTMtree 1140447360 62794247 5.51 2261378

trees is comparable. At the extreme case of 100% search ratio, the VTMtree performance
is the best.

The ∆Tree performs well in the low-contention situations. Whenever the a big tree
setup is used, the ∆Tree delivers scalable updating and searching performance up to 20%
update ratio, compared to only 10% update ratio in the small tree setup. The good
update performance of ∆Tree can be attributed to the dynamic vEB layout that permits
that multiple different ∆Nodes can be concurrently updated and restructured. Keeping
the frequency of restructuring done by Merge and Rebalance at low also contribute
to this good performance. In terms of searching, the ∆Tree have been showing an overall
good performance, which only gets beaten by the static vEB layout-based VTMtree at
the extreme case of 100% searching ratio.

In order to get better insight into the performance ∆Tree, we conducted additional
experiment targeting the cache behaviour of the different trees. In this experiment, two
flavours of ∆Tree, one using ∆Node size of 127 and another using a size of 5,000,000,
together with both VTMtree and SFtree were put to do 100M searching operations. Big
∆Node size in this experiment simulates a leaf-oriented static vEB, with only 1 ∆Node
involved, whereas the VTMtree simulates a original static vEB where values can be stored
at internal nodes. Those trees are pre-filled with 1,048,576 random non-recurring numbers
within (0, 5, 000, 000] range. The values searched for were randomly picked as well within
the same range. Cache profiles were then collected using Valgrind [NWF06] Our test
system has 20MB of CPU’s L3 cache, therefore the pre-initialised nodes were not entirely
contained within the cache (1048576 × 32B > 20MB). This experiment result in Table
1 proved that using the dynamic vEB layout were indeed able to reduce the number
of cache misses by almost 2%. This is observed by comparing the percentage of cache
misses between leaf-oriented static vEB ∆Tree (UB = 5M) and leaf-oriented dynamic
vEB ∆Tree (UB = 127). However it doesn’t translate to a higher update rate due to
increasing load count.

It is interesting to see that VTMtree is able to deliver the lowest load count as well as
the lowest number of cache misses. This result leads us to conclude that using leaf-oriented
tree for the sake of supporting scalable concurrent updates, has a downside of introducing
more cache misses. This can be related to the fact that a search in leaf-oriented tree has
to always traverse all the way down to the leaves. Although using dynamic vEB really
improves locality property, traversing down further to leaf will cause data inside the cache
to be replaced more often.

The bad performance of VTMtree’s concurrent update on both of the tree setups are
inevitable, because of the nature of static tree layout. The VTMtree needs to always
maintain a small height, which is done by incrementally rebalancing different portions

26



of its structure[BFJ02]. In case of VTMtree, the whole tree must be locked whenever
rebalance is executed, blocking other operations. While [BFJ02] explained that amortised
cost for this is small, it will hold true only in when implemented in the sequential fashion.

6 Related Work

The trees involved in the benchmark section are not all the available implementation of
the concurrent binary search tree. A novel non-blocking BST was coined in [EFRvB10],
which subsequently followed by its k-ary implementation [BH11]. These researches are
using leaf-oriented tree, the same principle used by ∆Tree and it has a good concurrent
operation performance. However the tree doesn’t focus on high-performance searches, as
the structure used is a normal BST. CBTree [AKK+12] tried to tackle good concurrent
tree with its counting-based self-adjusting feature. But this too, didn’t look at how an
efficient layout can provide better search and update performance.

Also we have seen the work on concurrent cache-oblivious B-tree[BFGK05], which
provides a good overview on how to combine efficient layout with concurrency. However
its implementation was far from practical. The recent works in both [CGR12, CGR13]
provides the current state-of-the art for the subject. However none of them targeted
a cache-friendly structure which would ultimately lead to a more energy efficient data
structure.

7 Conclusions and Future Work

We have introduced a new relaxed cache oblivious model that enables high parallelism
while maintaining the key feature of the original cache oblivious (CO) model [Pro99]
that analyses for a simple two-level memory are applicable for an unknown multilevel
memory. Unlike the original CO model, the relaxed CO model assumes a known upper
bound on unknown memory block sizes B of a multilevel memory. The relaxed CO model
enables developing highly concurrent algorithms that can utilize fine-grained data locality
as desired by energy efficient computing [Dal11].

Based on the relaxed CO model, we have developed a novel dynamic van Emde Boas
(dynamic vEB) layout that makes the vEB layout suitable for highly-concurrent data
structures with update operations. The dynamic vEB supports dynamic node allocation
via pointers while maintaining the optimal search cost of O(logBN) memory transfers for
vEB-based trees of size N without knowing memory block size B.

Using the dynamic van Emde Boas layout, we have developed ∆Tree that supports
both high concurrency and fine-grained data locality. ∆Tree’s Search operation is wait-
free and its Insert and Delete operations are non-blocking to other Insert, Delete and
Search operations. ∆Tree is relaxed cache oblivious: the expected memory transfer costs
of its Search, Delete and Insert operations are O(logBN), where N is the tree size and
B is unknown memory block size in the ideal cache model [FLPR99]. Our experimental
evaluation comparing ∆Tree with AVL, red-black and speculation-friendly trees from the
the Synchrobench benchmark [Gra] has shown that ∆Tree achieves the best performance
when the update contention is not too high.
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